1
|
Peng X, Zhong G, Wang H. Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in an Efficient Way in Plants. J Vis Exp 2018. [PMID: 30010670 DOI: 10.3791/57354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Information about the spatiotemporal subcellular localization(s) of a protein is critical to understand its physiological functions in cells. Fluorescent proteins and generation of fluorescent fusion proteins have been wildly used as an effective tool to directly visualize the protein localization and dynamics in cells. It is especially useful to compare them with well-known organelle markers after co-expression with the protein of interest. Nevertheless, classical approaches for protein co-expression in plants usually involve multiple independent expression plasmids, and therefore have drawbacks that include low co-expression efficiency, expression-level variation, and high time expenditure in genetic crossing and screening. In this study, we describe a robust and novel method for co-expression of multiple chimeric fluorescent proteins in plants. It overcomes the limitations of the conventional methods by using a single expression vector that is composed of multiple semi-independent expressing cassettes. Each protein expression cassette contains its own functional protein expression elements, and therefore it can be flexibly adjusted to meet diverse expression demand. Also, it is easy and convenient to perform the assembly and manipulation of DNA fragments in the expression plasmid by using an optimized one-step reaction without additional digestion and ligation steps. Furthermore, it is fully compatible with current fluorescent protein derived bio-imaging technologies and applications, such as FRET and BiFC. As a validation of the method, we employed this new system to co-express fluorescently fused vacuolar sorting receptor and secretory carrier membrane proteins. The results show that their perspective subcellular localizations are the same as in previous studies by both transient expression and genetic transformation in plants.
Collapse
Affiliation(s)
- Xiaomin Peng
- College of Life Sciences, South China Agricultural University
| | - Guitao Zhong
- College of Life Sciences, South China Agricultural University
| | - Hao Wang
- College of Life Sciences, South China Agricultural University;
| |
Collapse
|
2
|
Zhong G, Zhu Q, Li Y, Liu Y, Wang H. Once for All: A Novel Robust System for Co-expression of Multiple Chimeric Fluorescent Fusion Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1071. [PMID: 28676815 PMCID: PMC5476739 DOI: 10.3389/fpls.2017.01071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/02/2017] [Indexed: 05/24/2023]
Abstract
Chimeric fluorescent fusion proteins have been employed as a powerful tool to reveal the subcellular localizations and dynamics of proteins in living cells. Co-expression of a fluorescent fusion protein with well-known organelle markers in the same cell is especially useful in revealing its spatial and temporal functions of the protein in question. However, the conventional methods for co-expressing multiple fluorescent tagged proteins in plants have the drawbacks of low expression efficiency, variations in the expression level and time-consuming genetic crossing. Here, we have developed a novel robust system that allows for high-efficient co-expression of multiple chimeric fluorescent fusion proteins in plants in a time-saving fashion. This system takes advantage of employing a single expression vector which consists of multiple semi-independent expressing cassettes for the protein co-expression thereby overcoming the limitations of using multiple independent expressing plasmids. In addition, it is a highly manipulable DNA assembly system, in which modification and recombination of DNA molecules are easily achieved through an optimized one-step assembly reaction. By employing this effective system, we demonstrated that co-expression of two chimeric fluorescent fusion reporter proteins of vacuolar sorting receptor and secretory carrier membrane protein gave rise to their perspective subcellular localizations in plants via both transient expression and stable transformation. Thus, we believed that this technical advance represents a promising approach for multi-color-protein co-expression in plant cells.
Collapse
Affiliation(s)
- Guitao Zhong
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural UniversityGuangzhou, China
| | - Yingxin Li
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural UniversityGuangzhou, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
3
|
Xu J, Ge X, Dolan MC. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 2011; 29:278-99. [DOI: 10.1016/j.biotechadv.2011.01.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 12/24/2010] [Accepted: 01/02/2011] [Indexed: 12/16/2022]
|
4
|
Dafny-Yelin M, Chung SM, Frankman EL, Tzfira T. pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants. PLANT PHYSIOLOGY 2007; 145:1272-81. [PMID: 17766396 PMCID: PMC2151715 DOI: 10.1104/pp.107.106062] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful tool for functional gene analysis, which has been successfully used to down-regulate the levels of specific target genes, enabling loss-of-function studies in living cells. Hairpin (hp) RNA expression cassettes are typically constructed on binary plasmids and delivered into plant cells by Agrobacterium-mediated genetic transformation. Realizing the importance of RNAi for basic plant research, various vectors have been developed for RNAi-mediated gene silencing, allowing the silencing of single target genes in plant cells. To further expand the collection of available tools for functional genomics in plant species, we constructed a set of modular vectors suitable for hpRNA expression under various constitutive promoters. Our system allows simple cloning of the target gene sequences into two distinct multicloning sites and its modular design provides a straightforward route for replacement of the expression cassette's regulatory elements. More importantly, our system was designed to facilitate the assembly of several hpRNA expression cassettes on a single plasmid, thereby enabling the simultaneous suppression of several target genes from a single vector. We tested the functionality of our new vector system by silencing overexpressed marker genes (green fluorescent protein, DsRed2, and nptII) in transgenic plants. Various combinations of hpRNA expression cassettes were assembled in binary plasmids; all showed strong down-regulation of the reporter genes in transgenic plants. Furthermore, assembly of all three hpRNA expression cassettes, combined with a fourth cassette for the expression of a selectable marker, resulted in down-regulation of all three different marker genes in transgenic plants. This vector system provides an important addition to the plant molecular biologist's toolbox, which will significantly facilitate the use of RNAi technology for analyses of multiple gene function in plant cells.
Collapse
Affiliation(s)
- Mery Dafny-Yelin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
5
|
Behnke K, Ehlting B, Teuber M, Bauerfeind M, Louis S, Hänsch R, Polle A, Bohlmann J, Schnitzler JP. Transgenic, non-isoprene emitting poplars don't like it hot. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:485-99. [PMID: 17587235 DOI: 10.1111/j.1365-313x.2007.03157.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The physiological role of isoprene emission in plants is a matter of much debate. One of the most widely propagated hypotheses suggests a function of isoprene in the protection of leaf physiological processes against thermal and oxidative stress. To test this hypothesis, we developed transgenic Grey poplar (Populusxcanescens) plants in which gene expression of isoprene synthase (ISPS) was either silenced by RNA interference (RNAi) or upregulated by over-expression of the ISPS gene. Despite increased ISPS mRNA levels, we did not observe consistent increases in isoprene emission in the over-expressing lines, indicating post-transcriptional control of ISPS by co-suppression. In the RNAi lines, levels of isoprene emission were effectively suppressed to virtually zero. Transgenic plants were subjected to temperature stress with three transient heat phases of 38-40 degrees C, each followed by phases of recovery at 30 degrees C. Parallel measurements of gas exchange, chlorophyll fluorescence and isoprene emission provided new insights into the physiological link between isoprene and enhanced temperature tolerance. Transgenic non-isoprene-emitting poplars showed reduced rates of net assimilation and photosynthetic electron transport during heat stress, but not in the absence of stress. The decrease in the efficiency of photochemistry was inversely correlated with the increase in heat dissipation of absorbed light energy, measured as NPQ (non-photochemical quenching). Isoprene-repressed poplars also displayed an increased formation of the xanthophyll cycle pigment zeaxanthin in the absence of stress, which can cause increased NPQ or may indicate an increased requirement for antioxidants. In conclusion, using a molecular genetic approach, we show that down-regulation of isoprene emission affects thermotolerance of photosynthesis and induces increased energy dissipation by NPQ pathways.
Collapse
Affiliation(s)
- Katja Behnke
- Research Centre Karlsruhe, Institute for Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hamada T, Iba K, Shimada T. Reduction of trienoic fatty acid content by expression of a double-stranded RNA of a plastid omega-3 fatty acid desaturase gene in transgenic tobacco. Biotechnol Lett 2006; 28:779-85. [PMID: 16786241 DOI: 10.1007/s10529-006-9009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
Plastid omega-3 fatty acid desaturase catalyzes the conversion of dienoic fatty acids (16:2 and 18:2) to trienoic fatty acids (16:3 and alpha-18:3) in glycerolipids which are the main constituents of chloroplast membranes. We produced transgenic tobacco plants that express the transcript of a double-stranded RNA (dsRNA) of tobacco plastid omega-3 fatty acid desaturase gene, NtFAD7. In these transgenic plants, 16:3 and alpha-18:3 content in leaves decreased to less than 2.7% and 7.5-10.4%, respectively, when compared with the control plant. The steady-state NtFAD7 mRNA was not detected in the transgenic plants. These results indicate that down-regulation of the transcript level in the NtFAD7 by introduction of NtFAD7 dsRNA constructs is useful to decrease the trienoic fatty acid contents of the vegetative tissues in higher plants.
Collapse
Affiliation(s)
- Tatsuro Hamada
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichimachi, Ishikawa 921-8836, Japan.
| | | | | |
Collapse
|
7
|
Silencing of potato virus X coat protein gene in transgenic tobaccos by codon replacement that confers resistance to PVX infection. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Akashi H, Miyagishi M, Taira K. Suppression of gene expression by RNA interference in cultured plant cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:359-67. [PMID: 11838637 DOI: 10.1089/108729001753411326] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Suppression by double-stranded RNA (dsRNA) of the expression of a target gene is known as RNA interference (RNAi). No quantitative analysis of the effects of RNAi on the expression of specific genes in cultured plant cells has been reported. However, as it is possible to produce populations of cultured plant cells that are uniform and divide synchronously for functional analysis of genes of interest, we performed a quantitative study of the effects of RNAi in such cells. We constructed dsRNA expression plasmids for a luciferase gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter by simply connecting sense and antisense sequences in a head-to-head manner. An RNAi effect was observed 24 hours after the introduction of dsRNA expression plasmids into tobacco BY-2 cells by electroporation. The simple system for suppression of specific genes in plant cells should be useful in attempts to elucidate the roles of individual genes in plant cells.
Collapse
Affiliation(s)
- H Akashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Japan
| | | | | |
Collapse
|
9
|
Abstract
Evidence for gene silencing of Haemophilus influenzae involved a beta-subunit of RNA polymerase. The gene presumed silenced was rifampin resistance. The evidence that it was silencing, rather than dominance of a rifampin-sensitive marker, was that it took place when the rifampin resistance marker was on both a plasmid and the chromosome, without the presence of a rifampin-sensitive marker, as judged by lack of transformation of a rifampin-resistant cell to rifampin sensitivity by the plasmid. In addition, three compounds that are known to decrease gene silencing in eukaryotes (trichostatin A, sodium butyrate and 5-azacytidine) also decreased the presumed silencing in H. influenzae. Silencing of rifampin-resistant Escherichia coli did not take place with the plasmid from H. influenzae.
Collapse
Affiliation(s)
- J K Setlow
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | |
Collapse
|
10
|
Adelman ZN, Blair CD, Carlson JO, Beaty BJ, Olson KE. Sindbis virus-induced silencing of dengue viruses in mosquitoes. INSECT MOLECULAR BIOLOGY 2001; 10:265-73. [PMID: 11437918 DOI: 10.1046/j.1365-2583.2001.00267.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aedes aegypti were injected intrathoracically with double subgenomic Sindbis (dsSIN) viruses with inserted sequences derived from the genome of one or more of the four dengue (DEN) virus serotypes. Mosquitoes were highly resistant to challenge with homologous DEN viruses from which the effector sequences were derived, and resistance to DEN viruses was independent of the orientation of the effector RNA. dsSIN viruses designed to express RNA derived from the premembrane coding region of DEN-2 prevented the accumulation of DEN2 RNA, and C6/36 cells were highly resistant to DEN-2 virus when challenged at 2, 5 or 8 days after the initial dsSIN virus infections, even though the dsSIN-derived RNA had sharply declined at the later time points. Initiation of resistance occurred prior to or within the first 8 h after challenge with DEN-2 virus. We conclude that DEN viruses are inhibited by a mechanism similar to post-transcriptional gene silencing (PTGS) or RNA interference (RNAi) phenomena described in plants and invertebrates, respectively. The potential occurrence of PTGS or RNAi in mosquitoes and mosquito cells suggests new ways of inhibiting the replication of arthropod-borne viruses in mosquito vectors, studying vector-virus interactions, and silencing endogenous mosquito genes.
Collapse
Affiliation(s)
- Z N Adelman
- Arthropod-borne and Infectious Diseases Laboratory (AIDL), Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
11
|
Solomon-Blackburn RM, Barker H. Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity (Edinb) 2001; 86:17-35. [PMID: 11298812 DOI: 10.1046/j.1365-2540.2001.00799.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tetraploid cultivated potato (Solanum tuberosum) is the World's fourth most important crop and has been subjected to much breeding effort, including the incorporation of resistance to viruses. Several new approaches, ideas and technologies have emerged recently that could affect the future direction of virus resistance breeding. Thus, there are new opportunities to harness molecular techniques in the form of linked molecular markers to speed up and simplify selection of host resistance genes. The practical application of pathogen-derived transgenic resistance has arrived with the first release of GM potatoes engineered for virus resistance in the USA. Recently, a cloned host virus resistance gene from potato has been shown to be effective when inserted into a potato cultivar lacking the gene. These and other developments offer great opportunities for improving virus resistance, and it is timely to consider these advances and consider the future direction of resistance breeding in potato. We review the sources of available resistance, conventional breeding methods, marker-assisted selection, somaclonal variation, pathogen-derived and other transgenic resistance, and transformation with cloned host genes. The relative merits of the different methods are discussed, and the likely direction of future developments is considered.
Collapse
|
12
|
Levin JZ, de Framond AJ, Tuttle A, Bauer MW, Heifetz PB. Methods of double-stranded RNA-mediated gene inactivation in Arabidopsis and their use to define an essential gene in methionine biosynthesis. PLANT MOLECULAR BIOLOGY 2000; 44:759-775. [PMID: 11202438 DOI: 10.1023/a:1026584607941] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Controlled down-regulation of endogenous plant gene expression is a useful tool, but antisense and sense silencing lack predictability. Recent studies show that expression of both antisense and sense RNA together is an effective means of inactivating reporter and viral genes in plants. We created transgenic plants expressing antisense and sense RNA together in a single 'double-stranded RNA' (dsRNA) transcript. This approach shows great promise as a highly effective means for reducing gene function. With this approach, we demonstrated that the Arabidopsis cystathionine beta-lyase gene, which encodes a methionine biosynthetic enzyme, is essential for viability. Inactivation of this gene was rescued by the addition of methionine to the growth medium. Compared to antisense and sense constructs, the dsRNA construct showed a much more consistent and complete suppression of gene activity. Additionally, expression of a transcript with a spacer sequence containing an unrelated gene between antisense and sense luciferase gene fragments led to stronger inactivation of a second luciferase transgene than did constructs with a minimal spacing between sense and antisense fragments. However, the gene in the spacer region was neither functionally expressed nor functional in silencing a second, unlinked homologous transgene.
Collapse
Affiliation(s)
- J Z Levin
- Novartis Agribusiness Biotechnology Research, Inc., Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
13
|
Wu K, Malik K, Tian L, Brown D, Miki B. Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2000; 44:167-76. [PMID: 11117260 DOI: 10.1023/a:1006498413543] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Histone acetylation is modulated through the action of histone acetyltransferase and deacetylase, which play key roles in the regulation of eukaryotic gene expression. We have screened the expressed sequence tag database with the yeast histone deacetylase RPD3 sequence and identified two Arabidopsis homologues, AtRPD3A and AtRPD3B. The deduced amino acid sequences of AtRPD3A and AtRPD3B show high overall homology (55% identity) to each other. AtRPD3A encodes a putative protein of 502 amino acids with 49% identity to the yeast RPD3. AtRPD3B encodes a putative protein of 471 amino acids and shares 55% amino acid identity with the yeast RPD3. Northern analysis indicated that AtRPD3A was highly expressed in the leaves, stems, flowers and young siliques of Arabidopsis plants, whereas the AtRPD3B transcript was not detected in these organs. An AtRPD3A fusion protein repressed transcription when directed to a promoter driving a reporter gene, indicating a role for AtRPD3A protein in gene repression. Arabidopsis plants were transformed with a gene construct comprising a truncated AtRPD3A cDNA in the antisense orientation driven by a strong constitutive promoter, -394tCUP. Antisense expression of AtRPD3A resulted in decreased endogenous AtRPD3A transcript and delayed flowering in transgenic Arabidopsis plants, suggesting that the transition from the vegetative to reproductive phase of development could be affected by histone acetylation. Our study demonstrates the important role of histone deacetylases in plant growth and development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Blotting, Northern
- DNA, Antisense/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Phenotype
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- K Wu
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario
| | | | | | | | | |
Collapse
|
14
|
Meins F. RNA degradation and models for post-transcriptional gene-silencing. PLANT MOLECULAR BIOLOGY 2000; 43:261-273. [PMID: 10999409 DOI: 10.1023/a:1006443731515] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Post-transcriptional gene silencing (PTGS) is a form of stable but potentially reversible epigenetic modification, which frequently occurs in transgenic plants. The interaction in trans of genes with similar transcribed sequences results in sequence-specific degradation of RNAs derived from the genes involved. Highly expressed single-copy loci, transcribed inverted repeats, and poorly transcribed complex loci can act as sources of signals that trigger PTGS. In some cases, mobile, sequence-specific silencing signals can move from cell to cell or even over long distances in the plant. Several current models hold that silencing signals are 'aberrant' RNAs (aRNA), which differ in some way from normal mRNAs. The most likely candidates are small antisense RNAs (asRNA) and double-stranded RNAs (dsRNA). Direct evidence that these or other aRNAs found in silent tissues can induce PTGS is still lacking. Most current models assume that silencing signals interact with target RNAs in a sequence-specific fashion. This results in degradation, usually in the cytoplasm, by exonucleolytic as well as endonucleolytic pathways, which are not necessarily PTGS-specific. Biochemical-switch models hold that the silent state is maintained by a positive auto-regulatory loop. One possibility is that concentrations of hypothetical silencing signals above a critical threshold trigger their own production by self-replication, by degradation of target RNAs, or by a combination of both mechanisms. These models can account for the stability, reversibility and multiplicity of silent states; the strong influence of transcription rate of target genes on the incidence and stability of silencing, and the amplification and systemic propagation of motile silencing signals.
Collapse
Affiliation(s)
- F Meins
- Friedrich Miescher Institute, A Branch of the Novartis Research Foundation, Basel, Switzerland.
| |
Collapse
|
15
|
Király L. The silencing of (trans)gens – A mechanism of virus resistance in plants. ACTA ACUST UNITED AC 2000. [DOI: 10.1556/aphyt.34.1999.4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Urcuqui-Inchima S, Maia IG, Arruda P, Haenni AL, Bernardi F. Deletion mapping of the potyviral helper component-proteinase reveals two regions involved in RNA binding. Virology 2000; 268:104-11. [PMID: 10683332 DOI: 10.1006/viro.1999.0156] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Potyvirus helper component-proteinase (HC-Pro) binds nonspecifically to single-stranded nucleic acids with a preference for RNA. To delineate the regions of the protein responsible for RNA binding, deletions were introduced into the full-length Potato potyvirus Y HC-Pro gene carried by an Escherichia coli expression vector. The corresponding proteins were expressed as fusions with the maltose-binding protein, purified, and assayed for their RNA-binding capacity. The results obtained by UV cross-linking and Northwestern blot assays demonstrated that the N- and C-terminal regions of HC-Pro are dispensable for RNA binding. They also revealed the presence of two independent RNA-binding domains (designated A and B) located in the central part of HC-Pro. Domain B appears to contain a ribonucleoprotein (RNP) motif typical of a large family of RNA-binding proteins involved in several cellular processes. The possibility that domain B consists of an RNP domain is discussed and suggests that HC-Pro could constitute the first example of a plant viral protein belonging to the RNP-containing family of proteins.
Collapse
Affiliation(s)
- S Urcuqui-Inchima
- Institut Jacques Monod, 2 place Jussieu-Tour 43, Paris Cedex 05, 75251, France
| | | | | | | | | |
Collapse
|
17
|
Jensen S, Gassama MP, Heidmann T. Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics 1999; 153:1767-74. [PMID: 10581283 PMCID: PMC1460860 DOI: 10.1093/genetics/153.4.1767] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously shown that the activity of functional I elements introduced into Drosophila devoid of such elements can be repressed by transgenes containing an internal nontranslatable part of the I element itself and that this repressing effect presents features characteristic of homology-dependent gene silencing or cosuppression. Here we show that transgenes containing a fragment of the I element in antisense orientation induce I-element silencing with the same characteristic features as the corresponding sense construct: namely, repression takes several generations to be fully established, with similar rates for sense and antisense constructs, and it is only maternally transmitted, with reversal of the effect through paternal transmission. We also show that transcription of the transgenes is necessary to produce the silencing effect and that repression can be maintained for at least one generation following elimination of the transgenes, thus strongly suggesting that a transgene product and not the transgene per se is the essential intermediate in the silencing effect. The data presented strongly support models in which the repressing effect of antisense transcripts involves the same mechanisms as cosuppression by sense constructs and emphasize the role of symmetrically acting nucleic acid structures in mediating repression.
Collapse
Affiliation(s)
- S Jensen
- CNRS UMR 1573, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
18
|
Johnson BW, Olson KE, Allen-Miura T, Rayms-Keller A, Carlson JO, Coates CJ, Jasinskiene N, James AA, Beaty BJ, Higgs S. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proc Natl Acad Sci U S A 1999; 96:13399-403. [PMID: 10557332 PMCID: PMC23959 DOI: 10.1073/pnas.96.23.13399] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rapid and reproducible method of inhibiting the expression of specific genes in mosquitoes should further our understanding of gene function and may lead to the identification of mosquito genes that determine vector competence or are involved in pathogen transmission. We hypothesized that the virus expression system based on the mosquito-borne Alphavirus, Sindbis (Togaviridae), may efficiently transcribe effector RNAs that inhibit expression of a targeted mosquito gene. To test this hypothesis, germ-line-transformed Aedes aegypti that express luciferase (LUC) from the mosquito Apyrase promoter were intrathoracically inoculated with a double subgenomic Sindbis (dsSIN) virus TE/3'2J/anti-luc (Anti-luc) that transcribes RNA complementary to the 5' end of the LUC mRNA. LUC activity was monitored in mosquitoes infected with either Anti-luc or control dsSIN viruses expressing unrelated antisense RNAs. Mosquitoes infected with Anti-luc virus exhibited 90% reduction in LUC compared with uninfected and control dsSIN-infected mosquitoes at 5 and 9 days postinoculation. We demonstrate that a gene expressed from the mosquito genome can be inhibited by using an antisense strategy. The dsSIN antisense RNA expression system is an important tool for studying gene function in vivo.
Collapse
Affiliation(s)
- B W Johnson
- Arthropod-Borne and Infectious Diseases Laboratory (AIDL), Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- S R Grant
- Department of Biology, University of North Carolina, Chapel Hill 27599, USA
| |
Collapse
|