1
|
Raghavan N, Tettelin H, Miller A, Hostetler J, Tallon L, Knight M. Nimbus (BgI): an active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata. Int J Parasitol 2007; 37:1307-18. [PMID: 17521654 PMCID: PMC2705964 DOI: 10.1016/j.ijpara.2007.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/29/2007] [Accepted: 04/05/2007] [Indexed: 11/22/2022]
Abstract
The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open-reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I-clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterised from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World.
Collapse
Affiliation(s)
- Nithya Raghavan
- Biomedical Research Institute (BRI), 12111 Parklawn Drive, Rockville, MD 20852, USA
| | - Hervé Tettelin
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - André Miller
- Biomedical Research Institute (BRI), 12111 Parklawn Drive, Rockville, MD 20852, USA
| | - Jessica Hostetler
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Luke Tallon
- The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Matty Knight
- Biomedical Research Institute (BRI), 12111 Parklawn Drive, Rockville, MD 20852, USA
| |
Collapse
|
2
|
Dassanayake RS, Silva Gunawardene YIN, Tobe SS. Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs. Peptides 2007; 28:62-75. [PMID: 17161505 DOI: 10.1016/j.peptides.2006.09.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 11/20/2022]
Abstract
Insect defensins containing cysteine-stabilized alpha/beta motifs (Cs-alpha/beta defensin) are cationic, inducible antibacterial peptides involved in humoral defence against pathogens. To examine trends in molecular evolution of these antimicrobial peptides, sequences similar to the well-characterized Cs-alpha/beta defensin peptide of Anopheles gambiae, using six cysteine residues as landmarks, were retrieved from genomic and protein databases. These sequences were derived from different orders of insects. Genes of insect Cs-alpha/beta defensin appear to constitute a multigene family in which the copy number varies between insect species. Phylogenetic analysis of these sequences revealed two main lineages, one group comprising mainly lepidopteran insects and a second, comprising Hemiptera, Coleoptera, Diptera and Hymenoptera insects. Moreover, the topology of the phylogram indicated dipteran Cs-alpha/beta defensins are diverse, suggesting diversity in immune mechanisms in this order of insects. Overall evolutionary analysis indicated marked diversification and expansion of mature defensin isoforms within the species of mosquitoes relative to non-mosquito defensins, implying the presence of finely tuned immune responses to counter pathogens. The observed higher synonymous substitution rate relative to the nonsynonymous rate in almost all the regions of Cs-alpha/beta defensin of mosquitoes suggests that these peptides are predominately under purifying selection. The maximum-likelihood models of codon substitution indicated selective pressure at different amino acid sites in mosquito mature Cs-alpha/beta defensins is differ and are undergoing adaptive evolution in comparison to non-mosquito Cs-alpha/beta defensins, for which such selection was inconspicuous; this suggests the acquisition of selective advantage of the Cs-alpha/beta defensins in the former group. Finally, this study represents the most detailed report on the evolutionary strategies of Cs-alpha/beta defensins of mosquitoes in particular and insects in general, and indicates that insect Cs-alpha/beta defensins have evolved by duplication followed by divergence, to produce a diverse set of paralogues.
Collapse
Affiliation(s)
- R S Dassanayake
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka.
| | | | | |
Collapse
|
3
|
Raghavan N, Knight M. The snail (Biomphalaria glabrata) genome project. Trends Parasitol 2006; 22:148-51. [PMID: 16497557 DOI: 10.1016/j.pt.2006.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/09/2006] [Accepted: 02/09/2006] [Indexed: 11/20/2022]
Abstract
In 2001, ideas for a snail genome project were discussed at the American Society of Parasitologists meeting (New Mexico) and a snail genome consortium was subsequently established (the first consortium meeting was held in 2005). A proposal for sequencing the snail genome was submitted to the National Human Genome Research Institute, and Biomphalaria glabrata was prioritized as a non-mammalian sequencing target in 2004. The sequencing of the genome of this medically important snail is now underway.
Collapse
Affiliation(s)
- Nithya Raghavan
- Biomedical Research Institute, 12111 Parklawn Drive, Rockville, MD 20852, USA
| | | |
Collapse
|
4
|
Kramer MG. Recent advances in transgenic arthropod technology. BULLETIN OF ENTOMOLOGICAL RESEARCH 2004; 94:95-110. [PMID: 15153293 DOI: 10.1079/ber2003290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to insert foreign genes into arthropod genomes has led to a diverse set of potential applications for transgenic arthropods, many of which are designed to advance public health or improve agricultural production. New techniques for expressing foreign genes in arthropods have now been successfully used in at least 18 different genera. However, advances in field biology are lagging far behind those in the laboratory, and considerable work is needed before deployment in nature can be a reality. A mechanism to drive the gene of interest though a natural population must be developed and thoroughly evaluated before any field release, but progress in this area has been limited. Likewise, serious consideration of potential risks associated with deployment in nature has been lacking. This review gives an overview of the most promising techniques for expressing foreign genes in arthropods, considers the potential risks associated with their deployment, and highlights the areas of research that are most urgently needed for the field to advance out of the laboratory and into practice.
Collapse
Affiliation(s)
- M G Kramer
- US Environmental Protection Agency, Office of Science Coordination and Policy, Washington, DC 20460, USA.
| |
Collapse
|
5
|
Gould F, Schliekelman P. Population genetics of autocidal control and strain replacement. ANNUAL REVIEW OF ENTOMOLOGY 2004; 49:193-217. [PMID: 14651462 DOI: 10.1146/annurev.ento.49.061802.123344] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The concept that an insect species' genome could be altered in a manner that would result in the control of that species (i.e., autocidal control) or in the replacement of a pestiferous strain of the species with a more benign genotype was first proposed in the mid-twentieth century. A major research effort in population genetics and ecology followed and led to the development of a set of classical genetic control approaches that included use of sterile males, conditional lethal genes, translocations, compound chromosomes, and microbe-mediated infertility. Although there have been a number of major successes in application of classical genetic control, research in this area has declined in the past 20 years for technical and societal reasons. Recent advances in molecular biology and transgenesis research have renewed interest in genetically based control methods because these advances may remove some major technical problems that have constrained effective genetic manipulation of pest species. Population genetic analyses suggest that transgenic manipulations may enable development of strains that would be 10 to over 100 times more efficient than strains developed by classical methods. Some of the proposed molecular approaches to genetic control involve modifications of classical approaches such as conditional lethality, whereas others are novel. Experience from the classical era of genetic control research indicates that the population structure and population dynamics of the target population will determine which, if any, genetic control approaches would be appropriate for addressing a specific problem. As such, there continues to be a need for ongoing communication between scientists who are developing strains and those who study the native pest populations.
Collapse
Affiliation(s)
- Fred Gould
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
6
|
Olson KE, Adelman ZN, Travanty EA, Sanchez-Vargas I, Beaty BJ, Blair CD. Developing arbovirus resistance in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1333-1343. [PMID: 12225924 DOI: 10.1016/s0965-1748(02)00096-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Diseases caused by arthropod-borne viruses are increasingly significant public health problems, and novel methods are needed to control pathogen transmission. The hypothesis underlying the research described here is that genetic manipulation of Aedes aegypti mosquitoes can profoundly and permanently reduce their competence to transmit dengue viruses to human hosts. Recent key findings now allow us to test the genetic control hypothesis. We have identified viral genome-derived RNA segments that can be expressed in mosquito midguts and salivary glands to ablate homologous virus replication and transmission. We have demonstrated that both transient and heritable expression of virus-derived effector RNAs in cultured mosquito cells can silence virus replication, and have characterized the mechanism of RNA-mediated resistance. We are now developing virus-resistant mosquito lines by transformation with transposable elements that express effector RNAs from mosquito-active promoters.
Collapse
Affiliation(s)
- Ken E Olson
- Arthropod-borne and Infectious Diseases Laboratory (AIDL), Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Aultman KS, Walker ED, Gifford F, Severson DW, Beard CB, Scott TW. Research ethics. Managing risks of arthropod vector research. Science 2000; 288:2321-2. [PMID: 10917830 DOI: 10.1126/science.288.5475.2321] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Field research with vectors is an essential aspect of vector biology research and vector-borne disease prevention and control. This type of research, which brings experimental vector manipulations into endemic areas, can present risks to human populations. This paper seeks to stimulate a full discussion within the medical entomology community of the risks associated with vector field research. Such discussions will promote development of a consensus, among investigators, sponsoring agencies and the communities within which the work is done, so that appropriate steps can be taken to minimize and manage the risks, and adequate oversight can be maintained.
Collapse
Affiliation(s)
- K S Aultman
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892-7630, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Wang W, Swevers L, Iatrou K. Mariner (Mos1) transposase and genomic integration of foreign gene sequences in Bombyx mori cells. INSECT MOLECULAR BIOLOGY 2000; 9:145-155. [PMID: 10762422 DOI: 10.1046/j.1365-2583.2000.00172.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Widespread occurrence in insects and the capacity to transpose in the absence of host-derived factors means that mariner-like elements are considered to be attractive candidates for the development of a universal insect genetic transformation system. Here we show that the Mos1 mariner element of Drosophila mauritiana is capable of mediating excision and transposition events in a silkmoth (Bombyx mori) derived tissue culture cell line (Bm5 cells). Plasmid rescue assays, in combination with Southern hybridization and polymerase chain reaction (PCR) analyses, confirm that the Mos1 transposase can mediate excision of DNA sequences, inserted between terminally repeated sequences recognized by the transposase, and integration into the chromosomal DNA of the Bm5 cells. In addition to chromosomal integration events, inter- and intraplasmid transposition and target element excision events were also detected. Approximately 50% of the plasmids recovered from plasmid rescue assays were found to contain the 'signature' of Mos1-specific excision and/or integration events, indicating that the mariner transposase functions efficiently in the Bombyx cells. Because mariner-induced excision and integration events are strictly dependent on the presence of a co-transfected Mos1 transposase expression vector, it is clear that the multiple copies of endogenous mariner-like elements (Bmmar1) that exist in the Bombyx genome are neither functional nor do they interfere with the efficiency of the transposition process. Thus, the Mos1 element and, probably, mariner elements, in general, hold great promise for the development of genetic transformation systems for lepidopteran insects.
Collapse
Affiliation(s)
- W Wang
- Department of Biochemistry, University of Calgary, Canada
| | | | | |
Collapse
|
9
|
Abstract
A majority of the plant-infecting viruses and many of the animal-infecting viruses are dependent upon arthropod vectors for transmission between hosts and/or as alternative hosts. The viruses have evolved specific associations with their vectors, and we are beginning to understand the underlying mechanisms that regulate the virus transmission process. A majority of plant viruses are carried on the cuticle lining of a vector's mouthparts or foregut. This initially appeared to be simple mechanical contamination, but it is now known to be a biologically complex interaction between specific virus proteins and as yet unidentified vector cuticle-associated compounds. Numerous other plant viruses and the majority of animal viruses are carried within the body of the vector. These viruses have evolved specific mechanisms to enable them to be transported through multiple tissues and to evade vector defenses. In response, vector species have evolved so that not all individuals within a species are susceptible to virus infection or can serve as a competent vector. Not only are the virus components of the transmission process being identified, but also the genetic and physiological components of the vectors which determine their ability to be used successfully by the virus are being elucidated. The mechanisms of arthropod-virus associations are many and complex, but common themes are beginning to emerge which may allow the development of novel strategies to ultimately control epidemics caused by arthropod-borne viruses.
Collapse
Affiliation(s)
- S M Gray
- Plant Protection Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Ithaca, New York 14853, USA.
| | | |
Collapse
|