1
|
Wu Z, Li H, Zhao W, Zheng M, Cheng J, Cao Z, Sun C. Kidney toxicity and transcriptome analyses of male ICR mice acutely exposed to the mushroom toxin α-amanitin. Food Chem Toxicol 2024; 187:114622. [PMID: 38531469 DOI: 10.1016/j.fct.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Amatoxins are responsible for most fatal mushroom poisoning cases, as it causes both hepatotoxicity and nephrotoxicity. However, studies on amatoxin nephrotoxicity are limited. Here, we investigated nephrotoxicity over 4 days and nephrotoxicity/hepatotoxicity over 14 days in mice. The organ weight ratio, serological indices, and tissue histology results indicated that a nephrotoxicity mouse model was established with two stages: (1) no apparent effects within 24 h; and (2) the appearance of adverse effects, with gradual worsening within 2-14 days. For each stage, the kidney transcriptome revealed patterns of differential mRNA expression and significant pathway changes, and Western blot analysis verified the expression of key proteins. Amanitin-induced nephrotoxicity was directly related to RNA polymerase II because mRNA levels decreased, RNA polymerase II-related pathways were significantly enriched at the transcription level, and RNA polymerase II protein was degraded in the early poisoning stage. In the late stage, nephrotoxicity was more severe than hepatotoxicity. This is likely associated with inflammation because inflammation-related pathways were significantly enriched and NF-κB activation was increased in the kidney.
Collapse
Affiliation(s)
- Zhijun Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Haijiao Li
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Wenjin Zhao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Min Zheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Juan Cheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Zhengjie Cao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Chengye Sun
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
2
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Garcia J, Carvalho A, das Neves RP, Malheiro R, Rodrigues DF, Figueiredo PR, Bovolini A, Duarte JA, Costa VM, Carvalho F. Antidotal effect of cyclosporine A against α-amanitin toxicity in CD-1 mice, at clinical relevant doses. Food Chem Toxicol 2022; 166:113198. [PMID: 35671903 DOI: 10.1016/j.fct.2022.113198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Amanita phalloides is one of the most toxic mushrooms worldwide, being responsible for the majority of human fatal cases of mushroom intoxications. α-Amanitin, the most deleterious toxin of A. phalloides, inhibits RNA polymerase II (RNAP II), causing hepatic and renal failure. Herein, we used cyclosporine A after it showed potential to displace RNAP II α-amanitin in silico. That potential was not confirmed either by the incorporation of ethynyl-UTP or by the monitoring of fluorescent RNAP II levels. Nevertheless, concomitant incubation of cyclosporine A with α-amanitin, for a short period, provided significant protection against its toxicity in differentiated HepaRG cells. In mice, the concomitant administration of α-amanitin [0.45 mg/kg intraperitoneal (i.p.)] with cyclosporine A (10 mg/kg i.p. plus 2 × 10 mg/kg cyclosporine A i.p. at 8 and 12 h post α-amanitin) resulted in the full survival of α-amanitin-intoxicated mice, up to 30 days after the toxin's administration. Since α-amanitin is a substrate of the organic-anion-transporting polypeptide 1B3 and cyclosporine A inhibits this transporter and is a potent anti-inflammatory agent, we hypothesize that these mechanisms are responsible for the protection observed. These results indicate a potential antidotal effect of cyclosporine A, and its safety profile advocates for its use at an early stage of α-amanitin intoxications.
Collapse
Affiliation(s)
- Juliana Garcia
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Alexandra Carvalho
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal; IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo Pires das Neves
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Rui Malheiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Daniela F Rodrigues
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | - Pedro R Figueiredo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517, Coimbra, Portugal
| | | | - José Alberto Duarte
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e a Bioeconomia, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Mechanisms of cellular mRNA transcript homeostasis. Trends Cell Biol 2022; 32:655-668. [PMID: 35660047 DOI: 10.1016/j.tcb.2022.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022]
Abstract
For most genes, mRNA transcript abundance scales with cell size to ensure a constant concentration. Scaling of mRNA synthesis rates with cell size plays an important role, with regulation of the activity and abundance of RNA polymerase II (Pol II) now emerging as a key point of control. However, there is also considerable evidence for feedback mechanisms that kinetically couple the rates of mRNA synthesis, nuclear export, and degradation to allow cells to compensate for changes in one by adjusting the others. Researchers are beginning to integrate results from these different fields to reveal the mechanisms underlying transcript homeostasis. This will be crucial for moving beyond our current understanding of relative gene expression towards an appreciation of how absolute transcript levels are linked to other aspects of the cellular phenotype.
Collapse
|
5
|
Berry S, Müller M, Rai A, Pelkmans L. Feedback from nuclear RNA on transcription promotes robust RNA concentration homeostasis in human cells. Cell Syst 2022; 13:454-470.e15. [PMID: 35613616 DOI: 10.1016/j.cels.2022.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/13/2021] [Accepted: 04/21/2022] [Indexed: 12/18/2022]
Abstract
RNA concentration homeostasis involves coordinating RNA abundance and synthesis rates with cell size. Here, we study this in human cells by combining genome-wide perturbations with quantitative single-cell measurements. Despite relative ease in perturbing RNA synthesis, we find that RNA concentrations generally remain highly constant. Perturbations that would be expected to increase nuclear mRNA levels, including those targeting nuclear mRNA degradation or export, result in downregulation of RNA synthesis. This is associated with reduced abundance of transcription-associated proteins and protein states that are normally coordinated with RNA production in single cells, including RNA polymerase II (RNA Pol II) itself. Acute perturbations, elevation of nuclear mRNA levels, and mathematical modeling indicate that mammalian cells achieve robust mRNA concentration homeostasis by the mRNA-based negative feedback on transcriptional activity in the nucleus. This ultimately acts to coordinate RNA Pol II abundance with nuclear mRNA degradation and export rates and may underpin the scaling of mRNA abundance with cell size.
Collapse
Affiliation(s)
- Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Micha Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Arpan Rai
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Borsos BN, Pantazi V, Páhi ZG, Majoros H, Ujfaludi Z, Berzsenyi I, Pankotai T. The role of p53 in the DNA damage-related ubiquitylation of S2P RNAPII. PLoS One 2022; 17:e0267615. [PMID: 35511765 PMCID: PMC9070946 DOI: 10.1371/journal.pone.0267615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
DNA double-strand breaks are one of the most deleterious lesions for the cells, therefore understanding the macromolecular interactions of the DNA repair-related mechanisms is essential. DNA damage triggers transcription silencing at the damage site, leading to the removal of the elongating RNA polymerase II (S2P RNAPII) from this locus, which provides accessibility for the repair factors to the lesion. We previously demonstrated that following transcription block, p53 plays a pivotal role in transcription elongation by interacting with S2P RNAPII. In the current study, we reveal that p53 is involved in the fine-tune regulation of S2P RNAPII ubiquitylation. Furthermore, we emphasize the potential role of p53 in delaying the premature ubiquitylation and the subsequent chromatin removal of S2P RNAPII as a response to transcription block.
Collapse
Affiliation(s)
- Barbara N. Borsos
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Vasiliki Pantazi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zoltán G. Páhi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Hajnalka Majoros
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Ujfaludi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ivett Berzsenyi
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tibor Pankotai
- Institute of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- * E-mail:
| |
Collapse
|
7
|
Noe Gonzalez M, Blears D, Svejstrup JQ. Causes and consequences of RNA polymerase II stalling during transcript elongation. Nat Rev Mol Cell Biol 2021; 22:3-21. [PMID: 33208928 DOI: 10.1038/s41580-020-00308-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The journey of RNA polymerase II (Pol II) as it transcribes a gene is anything but a smooth ride. Transcript elongation is discontinuous and can be perturbed by intrinsic regulatory barriers, such as promoter-proximal pausing, nucleosomes, RNA secondary structures and the underlying DNA sequence. More substantial blocking of Pol II translocation can be caused by other physiological circumstances and extrinsic obstacles, including other transcribing polymerases, the replication machinery and several types of DNA damage, such as bulky lesions and DNA double-strand breaks. Although numerous different obstacles cause Pol II stalling or arrest, the cell somehow distinguishes between them and invokes different mechanisms to resolve each roadblock. Resolution of Pol II blocking can be as straightforward as temporary backtracking and transcription elongation factor S-II (TFIIS)-dependent RNA cleavage, or as drastic as premature transcription termination or degradation of polyubiquitylated Pol II and its associated nascent RNA. In this Review, we discuss the current knowledge of how these different Pol II stalling contexts are distinguished by the cell, how they overlap with each other, how they are resolved and how, when unresolved, they can cause genome instability.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Blears
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London, UK.
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Rodrigues DF, Pires das Neves R, Carvalho ATP, Lourdes Bastos M, Costa VM, Carvalho F. In vitro mechanistic studies on α-amanitin and its putative antidotes. Arch Toxicol 2020; 94:2061-2078. [PMID: 32193566 DOI: 10.1007/s00204-020-02718-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
α-Amanitin plays a key role in Amanita phalloides intoxications. The liver is a major target of α-amanitin toxicity, and while RNA polymerase II (RNA Pol II) transcription inhibition is a well-acknowledged mechanism of α-amanitin toxicity, other possible toxicological pathways remain to be elucidated. This study aimed to assess the mechanisms of α-amanitin hepatotoxicity in HepG2 cells. The putative protective effects of postulated antidotes were also tested in this cell model and in permeabilized HeLa cells. α-Amanitin (0.1-20 µM) displayed time- and concentration-dependent cytotoxicity, when evaluated through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and neutral red uptake assays. Additionally, α-amanitin decreased nascent RNA synthesis in a concentration- and time-dependent manner. While α-amanitin did not induce changes in mitochondrial membrane potential, it caused a significant increase in intracellular ATP levels, which was not prevented by incubation with oligomycin, an ATP synthetase inhibitor. Concerning the cell redox status, α-amanitin did not increase reactive species production, but caused a significant increase in total and reduced glutathione, which was abolished by pre-incubation with the inhibitor of gamma-glutamylcysteine synthase, buthionine sulfoximine. None of the tested antidotes [N-acetyl cysteine, silibinin, benzylpenicillin, and polymyxin B (PolB)] conferred any protection against α-amanitin-induced cytotoxicity in HepG2 cells or reversed the inhibition of nascent RNA caused by the toxin in permeabilized HeLa cells. Still, PolB interfered with RNA Pol II activity at high concentrations, though not impacting on α-amanitin observed cytotoxicity. New hepatotoxic mechanisms of α-amanitin were described herein, but the lack of protection observed in clinically used antidotes may reflect the lack of knowledge on their true protection mechanisms and may explain their relatively low clinical efficacy.
Collapse
Affiliation(s)
- Daniela Ferreira Rodrigues
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ricardo Pires das Neves
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexandra T P Carvalho
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Maria Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera M Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
9
|
A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage. Sci Rep 2019; 9:17914. [PMID: 31784551 PMCID: PMC6884465 DOI: 10.1038/s41598-019-54027-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/30/2019] [Indexed: 02/01/2023] Open
Abstract
RNA polymerase II (RNAPII) is the workhorse of eukaryotic transcription and produces messenger RNAs and small nuclear RNAs. Stalling of RNAPII caused by transcription obstacles such as DNA damage threatens functional gene expression and is linked to transcription-coupled DNA repair. To restore transcription, persistently stalled RNAPII can be disassembled and removed from chromatin. This process involves several ubiquitin ligases that have been implicated in RNAPII ubiquitylation and proteasomal degradation. Transcription by RNAPII is heavily controlled by phosphorylation of the C-terminal domain of its largest subunit Rpb1. Here, we show that the elongating form of Rpb1, marked by S2 phosphorylation, is specifically controlled upon UV-induced DNA damage. Regulation of S2-phosphorylated Rpb1 is mediated by SUMOylation, the SUMO-targeted ubiquitin ligase Slx5-Slx8, the Cdc48 segregase as well as the proteasome. Our data suggest an RNAPII control pathway with striking parallels to known disassembly mechanisms acting on defective RNA polymerase III.
Collapse
|
10
|
Wang X, Rusin A, Walkey CJ, Lin JJ, Johnson DL. The RNA polymerase III repressor MAF1 is regulated by ubiquitin-dependent proteasome degradation and modulates cancer drug resistance and apoptosis. J Biol Chem 2019; 294:19255-19268. [PMID: 31645432 DOI: 10.1074/jbc.ra119.008849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
MAF1 homolog, negative regulator of RNA polymerase III (MAF1) is a key repressor of RNA polymerase (pol) III-dependent transcription and functions as a tumor suppressor. Its expression is frequently down-regulated in primary human hepatocellular carcinomas (HCCs). However, this reduction in MAF1 protein levels does not correlate with its transcript levels, indicating that MAF1 is regulated post-transcriptionally. Here, we demonstrate that MAF1 is a labile protein whose levels are regulated through the ubiquitin-dependent proteasome pathway. We found that MAF1 ubiquitination is enhanced upon mTOR complex 1 (TORC1)-mediated phosphorylation at Ser-75. Moreover, we observed that the E3 ubiquitin ligase cullin 2 (CUL2) critically regulates MAF1 ubiquitination and controls its stability and subsequent RNA pol III-dependent transcription. Analysis of the phenotypic consequences of modulating either CUL2 or MAF1 protein expression revealed changes in actin cytoskeleton reorganization and altered sensitivity to doxorubicin-induced apoptosis. Repression of RNA pol III-dependent transcription by chemical inhibition or knockdown of BRF1 RNA pol III transcription initiation factor subunit (BRF1) enhanced HCC cell sensitivity to doxorubicin, suggesting that MAF1 regulates doxorubicin resistance in HCC by controlling RNA pol III-dependent transcription. Together, our results identify the ubiquitin proteasome pathway and CUL2 as important regulators of MAF1 levels. They suggest that decreases in MAF1 protein underlie chemoresistance in HCC and perhaps other cancers and point to an important role for MAF1 and RNA pol III-mediated transcription in chemosensitivity and apoptosis.
Collapse
Affiliation(s)
- Xianlong Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
11
|
Leśniewska E, Cieśla M, Boguta M. Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:25-34. [PMID: 30342998 DOI: 10.1016/j.bbagrm.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022]
Abstract
Respiratory growth and various stress conditions repress RNA polymerase III (Pol III) transcription in Saccharomyces cerevisiae. Here we report a degradation of the largest Pol III catalytic subunit, C160 as a consequence of Pol III transcription repression. We observed C160 degradation in response to transfer of yeast from fermentation to respiration conditions, as well as treatment with rapamycin or inhibition of nucleotide biosynthesis. We also detected ubiquitylated forms of C160 and demonstrated that C160 protein degradation is dependent on proteasome activity. A comparable time-course study of Pol III repression upon metabolic shift from fermentation to respiration shows that the transcription inhibition is correlated with Pol III dissociation from chromatin but that the degradation of C160 subunit is a downstream event. Despite blocking degradation of C160 by proteasome, Pol III-transcribed genes are under proper regulation. We postulate that the degradation of C160 is activated under stress conditions to reduce the amount of existing Pol III complex and prevent its de novo assembly.
Collapse
Affiliation(s)
- Ewa Leśniewska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Małgorzata Cieśla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
12
|
Abstract
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function.
Collapse
|
13
|
Borsos BN, Huliák I, Majoros H, Ujfaludi Z, Gyenis Á, Pukler P, Boros IM, Pankotai T. Human p53 interacts with the elongating RNAPII complex and is required for the release of actinomycin D induced transcription blockage. Sci Rep 2017; 7:40960. [PMID: 28102346 PMCID: PMC5244413 DOI: 10.1038/srep40960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
The p53 tumour suppressor regulates the transcription initiation of selected genes by binding to specific DNA sequences at their promoters. Here we report a novel role of p53 in transcription elongation in human cells. Our data demonstrate that upon transcription elongation blockage, p53 is associated with genes that have not been reported as its direct targets. p53 could be co-immunoprecipitated with active forms of DNA-directed RNA polymerase II subunit 1 (RPB1), highlighting its association with the elongating RNA polymerase II. During a normal transcription cycle, p53 and RPB1 are localised at distinct regions of selected non-canonical p53 target genes and this pattern of localisation was changed upon blockage of transcription elongation. Additionally, transcription elongation blockage induced the proteasomal degradation of RPB1. Our results reveal a novel role of p53 in human cells during transcription elongation blockage that may facilitate the removal of RNA polymerase II from DNA.
Collapse
Affiliation(s)
- Barbara N Borsos
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, 6726, Hungary
| | - Ildikó Huliák
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, 6726, Hungary
| | - Hajnalka Majoros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, 6726, Hungary
| | - Zsuzsanna Ujfaludi
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, 6726, Hungary
| | - Ákos Gyenis
- Department of Molecular Genetics, Erasmus University Medical Centre, Rotterdam, PO Box 2040, 3000 CA, The Netherlands
| | - Peter Pukler
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, 6726, Hungary
| | - Imre M Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, 6726, Hungary.,Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary
| | - Tibor Pankotai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, 6726, Hungary
| |
Collapse
|
14
|
Intronic cleavage and polyadenylation regulates gene expression during DNA damage response through U1 snRNA. Cell Discov 2016; 2:16013. [PMID: 27462460 PMCID: PMC4906801 DOI: 10.1038/celldisc.2016.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian cells. Alternative cleavage and polyadenylation regulation in the 3ʹ untranslated region is substantial, leading to both shortening and lengthening of 3ʹ untranslated regions of genes. Interestingly, a strong activation of intronic alternative cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic alternative cleavage and polyadenylation events are biased to the 5ʹ end of genes and affect gene groups with important functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation during DNA damage response correlates with a decrease in U1 snRNA levels, and is reversible by U1 snRNA overexpression. Importantly, U1 snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data reveal a significant gene regulatory scheme in DNA damage response where U1 snRNA impacts gene expression via the U1-alternative cleavage and polyadenylation axis.
Collapse
|
15
|
Karakasili E, Burkert-Kautzsch C, Kieser A, Sträßer K. Degradation of DNA damage-independently stalled RNA polymerase II is independent of the E3 ligase Elc1. Nucleic Acids Res 2014; 42:10503-15. [PMID: 25120264 PMCID: PMC4176355 DOI: 10.1093/nar/gku731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022] Open
Abstract
Transcription elongation is a highly dynamic and discontinuous process, which includes frequent pausing of RNA polymerase II (RNAPII). RNAPII complexes that stall persistently on a gene during transcription elongation block transcription and thus have to be removed. It has been proposed that the cellular pathway for removal of these DNA damage-independently stalled RNAPII complexes is similar or identical to the removal of RNAPII complexes stalled due to DNA damage. Here, we show that-consistent with previous data-DNA damage-independent stalling causes polyubiquitylation and proteasome-mediated degradation of Rpb1, the largest subunit of RNAPII, using Saccharomyces cerevisiae as model system. Moreover, recruitment of the proteasome to RNAPII and transcribed genes is increased when transcription elongation is impaired indicating that Rpb1 degradation takes place at the gene. Importantly, in contrast to the DNA damage-dependent pathway Rpb1 degradation of DNA damage-independently stalled RNAPII is independent of the E3 ligase Elc1. In addition, deubiquitylation of RNAPII is also independent of the Elc1-antagonizing deubiquitylase Ubp3. Thus, the pathway for degradation of DNA damage-independently stalled RNAPII is overlapping yet distinct from the previously described pathway for degradation of RNAPII stalled due to DNA damage. Taken together, we provide the first evidence that the cell discriminates between DNA damage-dependently and -independently stalled RNAPII.
Collapse
Affiliation(s)
- Eleni Karakasili
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Cornelia Burkert-Kautzsch
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Anja Kieser
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Katja Sträßer
- Gene Center and Munich Center for Integrated Protein Science CIPSM at the Department of Biochemistry of the Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
16
|
Boichuk S, Lee DJ, Mehalek KR, Makielski KR, Wozniak A, Seneviratne DS, Korzeniewski N, Cuevas R, Parry JA, Brown MF, Zewe J, Taguchi T, Kuan SF, Schöffski P, Debiec-Rychter M, Duensing A. Unbiased compound screening identifies unexpected drug sensitivities and novel treatment options for gastrointestinal stromal tumors. Cancer Res 2014; 74:1200-13. [PMID: 24385214 DOI: 10.1158/0008-5472.can-13-1955] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most gastrointestinal stromal tumors (GIST) are caused by oncogenic KIT or platelet-derived growth factor receptor activation, and the small molecule kinase inhibitor imatinib mesylate is an effective first-line therapy for metastatic or unresectable GIST. However, complete remissions are rare and most patients ultimately develop resistance, mostly because of secondary mutations in the driver oncogenic kinase. Hence, there is a need for novel treatment options to delay failure of primary treatment and restore tumor control in patients who progress under therapy with targeted agents. Historic data suggest that GISTs do not respond to classical chemotherapy, but systematic unbiased screening has not been performed. In screening a compound library enriched for U.S. Food and Drug Administration (FDA)-approved chemotherapeutic agents (NCI Approved Oncology Drugs Set II), we discovered that GIST cells display high sensitivity to transcriptional inhibitors and topoisomerase II inhibitors. Mechanistically, these compounds exploited the cells' dependency on continuous KIT expression and/or intrinsic DNA damage response defects, explaining their activity in GIST. Mithramycin A, an indirect inhibitor of the SP1 transcription factor, and mitoxantrone, a topoisomerase II inhibitor, exerted significant antitumor effects in mouse xenograft models of human GIST. Moreover, these compounds were active in patient-derived imatinib-resistant primary GIST cells, achieving efficacy at clinically relevant concentrations. Taken together, our findings reveal that GIST cells have an unexpectedly high and specific sensitivity to certain types of FDA-approved chemotherapeutic agents, with immediate implications for encouraging their clinical exploration.
Collapse
Affiliation(s)
- Sergei Boichuk
- Authors' Affiliations: Cancer Virology Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Laboratory of Experimental Oncology, Department of General Medical Oncology; Department of Human Genetics, University Hospitals Leuven and KU Leuven, Leuven, Belgium; Molecular Urooncology, University of Heidelberg School of Medicine, Heidelberg, Germany; and Department of Anatomy, Kochi Medical School, Nankoku, Kochi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wilson MD, Harreman M, Svejstrup JQ. Ubiquitylation and degradation of elongating RNA polymerase II: the last resort. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:151-7. [PMID: 22960598 DOI: 10.1016/j.bbagrm.2012.08.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023]
Abstract
During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have evolved to ensure that transcription stalling or arrest does not occur. If, however, the polymerase cannot be restarted, it becomes poly-ubiquitylated and degraded by the proteasome. This process is highly regulated, ensuring that only RNAPII molecules that cannot otherwise be salvaged are degraded. In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Marcus D Wilson
- Mechanisms of Transcription Laboratory, Cancer Research UK London Research Institute, South Mimms, UK
| | | | | |
Collapse
|
18
|
Arora M, Zhang J, Heine GF, Ozer G, Liu HW, Huang K, Parvin JD. Promoters active in interphase are bookmarked during mitosis by ubiquitination. Nucleic Acids Res 2012; 40:10187-202. [PMID: 22941662 PMCID: PMC3488253 DOI: 10.1093/nar/gks820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We analyzed modification of chromatin by ubiquitination in human cells and whether this mark changes through the cell cycle. HeLa cells were synchronized at different stages and regions of the genome with ubiquitinated chromatin were identified by affinity purification coupled with next-generation sequencing. During interphase, ubiquitin marked the chromatin on the transcribed regions of ∼70% of highly active genes and deposition of this mark was sensitive to transcriptional inhibition. Promoters of nearly half of the active genes were highly ubiquitinated specifically during mitosis. The ubiquitination at the coding regions in interphase but not at promoters during mitosis was enriched for ubH2B and dependent on the presence of RNF20. Ubiquitin labeling of both promoters during mitosis and transcribed regions during interphase, correlated with active histone marks H3K4me3 and H3K36me3 but not a repressive histone modification, H3K27me3. The high level of ubiquitination at the promoter chromatin during mitosis was transient and was removed within 2 h after the cells exited mitosis and entered the next cell cycle. These results reveal that the ubiquitination of promoter chromatin during mitosis is a bookmark identifying active genes during chromosomal condensation in mitosis, and we suggest that this process facilitates transcriptional reactivation post-mitosis.
Collapse
Affiliation(s)
- Mansi Arora
- Department of Biomedical Informatics and the Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Manzo SG, Zhou ZL, Wang YQ, Marinello J, He JX, Li YC, Ding J, Capranico G, Miao ZH. Natural product triptolide mediates cancer cell death by triggering CDK7-dependent degradation of RNA polymerase II. Cancer Res 2012; 72:5363-73. [PMID: 22926559 DOI: 10.1158/0008-5472.can-12-1006] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triptolide is a bioactive ingredient in traditional Chinese medicine that exhibits diverse biologic properties, including anticancer properties. Among its many putative targets, this compound has been reported to bind to XPB, the largest subunit of general transcription factor TFIIH, and to cause degradation of the largest subunit Rpb1 of RNA polymerase II (RNAPII). In this study, we clarify multiple important questions concerning the significance and basis for triptolide action at this core target. Triptolide decreased Rpb1 levels in cancer cells in a manner that was correlated tightly with its cytotoxic activity. Compound exposure blocked RNAPII at promoters and decreased chromatin-bound RNAPII, both upstream and within all genes that were examined, also leading to Ser-5 hyperphosphorylation and increased ubiqutination within the Rbp1 carboxy-terminal domain. Notably, cotreatment with inhibitors of the proteasome or the cyclin-dependent kinase CDK7 inhibitors abolished the ability of triptolide to ablate Rpb1. Together, our results show that triptolide triggers a CDK7-mediated degradation of RNAPII that may offer an explanation to many of its therapeutic properties, including its robust and promising anticancer properties.
Collapse
|
20
|
Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal 2011; 24:410-421. [PMID: 22033037 DOI: 10.1016/j.cellsig.2011.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
Abstract
Rivaling or cooperating with other post-translational modifications, ubiquitination plays central roles in regulating numerous cellular processes. Not surprisingly, gain- or loss-of-function mutations in several components of the ubiquitin system are causally linked to human pathologies including cancer. The covalent attachment of ubiquitin to target proteins occurs in sequential steps and involves ubiquitin ligases (E3s) which are the most abundant enzymes of the ubiquitin system. Although often associated with proteasomal degradation, ubiquitination is also involved in regulatory events in a proteasome-independent manner. Moreover, ubiquitination is reversible and specific proteases, termed deubiquitinases (DUBs), remove ubiquitin from protein substrates. While we now appreciate the importance of ubiquitin signaling in coordinating a plethora of physio-pathological processes, the molecular mechanisms are not fully understood. This review summarizes current findings on the critical functions exerted by E3s and DUBs in transcriptional control, particularly chromatin remodeling and transcription initiation/elongation.
Collapse
Affiliation(s)
- Ian Hammond-Martel
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - Helen Yu
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Center, Department of Medicine and Department of Biochemistry, University of Montréal, Montréal, Canada.
| |
Collapse
|
21
|
Wang Y, Lu JJ, He L, Yu Q. Triptolide (TPL) inhibits global transcription by inducing proteasome-dependent degradation of RNA polymerase II (Pol II). PLoS One 2011; 6:e23993. [PMID: 21931633 PMCID: PMC3172214 DOI: 10.1371/journal.pone.0023993] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 08/03/2011] [Indexed: 11/18/2022] Open
Abstract
Triptolide (TPL), a key biologically active component of the Chinese medicinal herb Tripterygium wilfordii Hook. f., has potent anti-inflammation and anti-cancer activities. Its anti-proliferative and pro-apoptotic effects have been reported to be related to the inhibition of Nuclear Factor κB (NF-κB) and Nuclear Factor of Activated T-cells (NFAT) mediated transcription and suppression of HSP70 expression. The direct targets and precise mechanisms that are responsible for the gene expression inhibition, however, remain unknown. Here, we report that TPL inhibits global gene transcription by inducing proteasome-dependent degradation of the largest subunit of RNA polymerase II (Rpb1) in cancer cells. In the presence of proteosome inhibitor MG132, TPL treatment causes hyperphosphorylation of Rpb1 by activation of upstream protein kinases such as Positive Transcription Elongation Factor b (P-TEFb) in a time and dose dependent manner. Also, we observe that short time incubation of TPL with cancer cells induces DNA damage. In conclusion, we propose a new mechanism of how TPL works in killing cancer. TPL inhibits global transcription in cancer cells by induction of phosphorylation and subsequent proteasome-dependent degradation of Rpb1 resulting in global gene transcription, which may explain the high potency of TPL in killing cancer.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Jin-jian Lu
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Li He
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qiang Yu
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
- * E-mail:
| |
Collapse
|
22
|
Brooks SA. Functional interactions between mRNA turnover and surveillance and the ubiquitin proteasome system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:240-52. [PMID: 21935888 DOI: 10.1002/wrna.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome is a critical regulator of protein levels within the cell and is essential for maintaining homeostasis. A functional proteasome is required for effective mRNA surveillance and turnover. During transcription, the proteasome localizes to sites of DNA breaks, degrading RNA polymerase II and terminating transcription. For fully transcribed and processed messages, cytoplasmic surveillance is initiated with the pioneer round of translation. The proteasome is recruited to messages bearing premature termination codons, which trigger nonsense-mediated decay (NMD), as well as messages lacking a termination codon, which trigger nonstop decay, to degrade the aberrant protein produced from these messages. A number of proteins involved in mRNA translation are regulated in part by proteasome-mediated decay, including the initiation factors eIF4G, eIF4E, and eIF3a, and the poly(A)-binding protein (PABP) interacting protein, Paip2. eIF4E-BP (4E-BP) is differentially regulated by the proteasome: truncated to generate a protein with higher eIF4B binding or completely degraded, depending on its phosphorylation status. Finally, a functional proteasome is required for AU-rich-element (ARE)-mediated decay but the specific role the proteasome plays is unclear. There is data indicating the proteasome can bind to AREs, act as an endonuclease, and degrade ARE-binding proteins. How these events interact with the 5'-to-3' and 3'-to-5' decay pathways is unclear at this time; however, data is provided indicating that proteasomes colocalize with Xrn1 and the exosome RNases Rrp44 and Rrp6 in untreated HeLa cells.
Collapse
Affiliation(s)
- Seth A Brooks
- Veterans Administration Medical Center Research, White River Junction, VT 05009, USA.
| |
Collapse
|
23
|
Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J 2008; 28:123-34. [PMID: 19078963 DOI: 10.1038/emboj.2008.262] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/24/2008] [Indexed: 11/08/2022] Open
Abstract
Mammalian circadian oscillators are considered to rely on transcription/translation feedback loops in clock gene expression. The major and essential loop involves the autorepression of cryptochrome (Cry1, Cry2) and period (Per1, Per2) genes. The rhythm-generating circuitry is functional in most cell types, including cultured fibroblasts. Using this system, we show that significant reduction in RNA polymerase II-dependent transcription did not abolish circadian oscillations, but surprisingly accelerated them. A similar period shortening was observed at reduced incubation temperatures in wild-type mouse fibroblasts, but not in cells lacking Per1. Our data suggest that mammalian circadian oscillators are resilient to large fluctuations in general transcription rates and temperature, and that PER1 has an important function in transcription and temperature compensation.
Collapse
|
24
|
He KL, Deora AB, Xiong H, Ling Q, Weksler BB, Niesvizky R, Hajjar KA. Endothelial cell annexin A2 regulates polyubiquitination and degradation of its binding partner S100A10/p11. J Biol Chem 2008; 283:19192-200. [PMID: 18434302 PMCID: PMC2443646 DOI: 10.1074/jbc.m800100200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/14/2008] [Indexed: 01/08/2023] Open
Abstract
The annexin A2 (A2) heterotetramer, consisting of two copies of A2 and two copies of S100A10/p11, promotes fibrinolytic activity on the surface of vascular endothelial cells by assembling plasminogen and tissue plasminogen activator (tPA) and accelerating the generation of plasmin. In humans, overexpression of A2 by acute promyelocytic leukemia cells is associated with excessive fibrinolysis and hemorrhage, whereas anti-A2 autoantibodies appear to accentuate the risk of thrombosis in patients with anti-phospholipid syndrome. Complete deficiency of A2 in mice leads to a lack of tPA cofactor activity, accumulation of intravascular fibrin, and failure to clear arterial thrombi. Within the endothelial cell, p11 is required for Src kinase-mediated tyrosine phosphorylation of A2, which signals translocation of both proteins to the cell surface. Here we show that p11 is expressed at very low levels in the absence of A2 both in vitro and in vivo. We demonstrate further that unpartnered p11 becomes polyubiquitinated and degraded via a proteasome-dependent mechanism. A2 stabilizes intracellular p11 through direct binding, thus masking an autonomous p11 polyubiquitination signal that triggers proteasomal degradation. This interaction requires both the p11-binding N-terminal domain of A2 and the C-terminal domain of p11. This mechanism prevents accumulation of free p11 in the endothelial cell and suggests that regulation of tPA-dependent cell surface fibrinolytic activity is precisely tuned to the intracellular level of p11.
Collapse
Affiliation(s)
- Kai-Li He
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol 2008; 28:2701-17. [PMID: 18285459 DOI: 10.1128/mcb.01231-07] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human renal clear cell carcinoma (RCC) is frequently associated with loss of the von Hippel-Lindau (VHL) tumor suppressor (pVHL), which inhibits ubiquitylation and degradation of the alpha subunits of hypoxia-inducible transcription factor. pVHL also ubiquitylates the large subunit of RNA polymerase II, Rpb1, phosphorylated on serine 5 (Ser5) within the C-terminal domain (CTD). A hydroxylated proline 1465 within an LXXLAP motif located N-terminal to the CTD allows the interaction of Rpb1 with pVHL. Here we report that in RCC cells, pVHL regulates expression of Rpb1 and is necessary for low-grade oxidative-stress-induced recruitment of Rpb1 to the DNA-engaged fraction and for its P1465 hydroxylation, phosphorylation, and nondegradative ubiquitylation. Egln-9-type prolyl hydroxylases, PHD1 and PHD2, coimmunoprecipitated with Rpb1 in the chromatin fraction of VHL(+) RCC cells in response to oxidative stress, and PHD1 was necessary for P1465 hydroxylation while PHD2 had an inhibitory effect. P1465 hydroxylation was required for oxidative-stress-induced Ser5 phosphorylation of Rpb1. Importantly, overexpression of wild-type Rpb1 stimulated formation of kidney tumors by VHL(+) cells, and this effect was abolished by P1465A mutation of Rpb1. These data indicate that through this novel pathway involving P1465 hydroxylation and Ser5 phosphorylation of Rbp1, pVHL may regulate tumor growth.
Collapse
|
26
|
Heine GF, Horwitz AA, Parvin JD. Multiple mechanisms contribute to inhibit transcription in response to DNA damage. J Biol Chem 2008; 283:9555-61. [PMID: 18281289 DOI: 10.1074/jbc.m707700200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cellular DNA damage elicits the phosphorylation and ubiquitination of RNA polymerase II (RNAPII), leading to the global repression of transcription. In this report we show that there are at least two different pathways to transcriptional repression, depending on the type of DNA damage. After H2O2 treatment, transcription was rapidly inhibited and rapidly restored. On the other hand, UV irradiation caused a much slower transcriptional inhibition, with a corresponding depletion of unphosphorylated RNAPII. We found that after UV treatment, but not treatment with H2O2, the inhibition of transcription was dependent on both the proteasome and new protein synthesis. In addition, RNAPII activity and ubiquitination were regulated through the phosphorylation of RNAPII by the P-TEFb kinase. These results highlight that multiple cellular pathways exist to globally repress transcriptional processes that might interfere with the repair of DNA damage.
Collapse
Affiliation(s)
- George F Heine
- Department of Biomedical Informatics and the Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
27
|
Mirkin N, Fonseca D, Mohammed S, Cevher MA, Manley JL, Kleiman FE. The 3' processing factor CstF functions in the DNA repair response. Nucleic Acids Res 2008; 36:1792-804. [PMID: 18252771 PMCID: PMC2330234 DOI: 10.1093/nar/gkn005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following DNA damage, mRNA levels decrease, reflecting a coordinated interaction of the DNA repair, transcription and RNA processing machineries. In this study, we provide evidence that transcription and polyadenylation of mRNA precursors are both affected in vivo by UV treatment. We next show that the polyadenylation factor CstF, plays a direct role in the DNA damage response. Cells with reduced levels of CstF display decreased viability following UV treatment, reduced ability to ubiquitinate RNA polymerase II (RNAP II), and defects in repair of DNA damage. Furthermore, we show that CstF, RNAP II and BARD1 are all found at sites of repaired DNA. Our results indicate that CstF plays an active role in the response to DNA damage, providing a link between transcription-coupled RNA processing and DNA repair.
Collapse
Affiliation(s)
- Nurit Mirkin
- Chemistry Department, Hunter College, City University of New York, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
28
|
Epidermal-growth-factor-dependent phosphorylation and ubiquitinylation of MAGE-11 regulates its interaction with the androgen receptor. Mol Cell Biol 2008; 28:1947-63. [PMID: 18212060 DOI: 10.1128/mcb.01672-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The androgen receptor (AR) is a ligand-activated transcription factor that interacts with coregulatory proteins during androgen-dependent gene regulation. Melanoma antigen gene protein 11 (MAGE-11) is an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif and modulates the AR NH(2)- and carboxyl-terminal N/C interaction to increase AR transcriptional activity. Here we demonstrate that epidermal growth factor (EGF) signaling increases androgen-dependent AR transcriptional activity through the posttranslational modification of MAGE-11. EGF in the presence of dihydrotestosterone stabilizes the AR-MAGE complex through the site-specific phosphorylation of MAGE-11 at Thr-360 and ubiquitinylation at Lys-240 and Lys-245. The time-dependent EGF-induced increase in AR transcriptional activity by MAGE-11 is mediated through AR activation functions 1 and 2 in association with the increased turnover of AR and MAGE-11. The results reveal a dynamic mechanism whereby growth factor signaling increases AR transcriptional activity through the covalent modification of an AR-specific coregulatory protein. Sequence conservation of the MAGE-11 phosphorylation and ubiquitinylation sites throughout the MAGE gene family suggests common regulatory mechanisms for this group of cancer-testis antigens.
Collapse
|
29
|
Abstract
The low abundance and heterogeneity of ubiquitinated proteins has led to the development and use of tagged forms of ubiquitin. Additional residues present at the ubiquitin amino terminus provide immunological and/or affinity sites to facilitate visualization, identification, and purification of ubiquitinated substrates by virtue of their covalent attachment to the tagged ubiquitin. The use of tagged ubiquitin to understand the scope, nature, and biological relevance of this conserved modification system has been demonstrated in multiple ways. Unknown substrates can be identified, or a previously identified substrate can be analyzed with tagged ubiquitin in vitro or in vivo to determine the specificity, regulation, and type of ubiquitin linkages formed. This contribution describes the generation and use of multiple types of modified ubiquitins: biotinylated ubiquitin produced in vitro, or GST-, myc-, HA-, and hexahistidine-tagged ubiquitins produced in vivo.
Collapse
Affiliation(s)
- Judy Callis
- Section of Molecular and Cellular Biology, University of California-Davis, Davis, California, USA
| | | |
Collapse
|
30
|
Li H, Zhang Z, Wang B, Zhang J, Zhao Y, Jin Y. Wwp2-mediated ubiquitination of the RNA polymerase II large subunit in mouse embryonic pluripotent stem cells. Mol Cell Biol 2007; 27:5296-305. [PMID: 17526739 PMCID: PMC1952083 DOI: 10.1128/mcb.01667-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ubiquitination and the degradation of the large subunit of RNA polymerase II, Rpb1, is not only involved in DNA damage-induced arrest but also in other transcription-obstructing events. However, the ubiquitin ligases responsible for DNA damage-independent processes in mammalian cells remain to be identified. Here, we identified Wwp2, a mouse HECT domain ubiquitin E3 ligase, as a novel ubiquitin ligase of Rpb1. We found that Wwp2 specifically interacted with mouse Rpb1 and targeted it for ubiquitination both in vitro and in vivo. Interestingly, the interaction with and ubiquitination of Rpb1 was dependent neither on its phosphorylation state nor on DNA damage. However, the enzymatic activity of Wwp2 was absolutely required for its ubiquitin modification of Rpb1. Furthermore, our study indicates that the interaction between Wwp2 and Rpb1 was mediated through WW domain of Wwp2 and C-terminal domain of Rpb1, respectively. Strikingly, downregulation of Wwp2 expression compromised Rpb1 ubiquitination and elevated its intracellular steady-state protein level significantly. Importantly, we identified six lysine residues in the C-terminal domain of Rpb1 as ubiquitin acceptor sites mediated by Wwp2. These results indicate that Wwp2 plays an important role in regulating expression of Rpb1 in normal physiological conditions.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
31
|
Siddiq A, Aminova LR, Ratan RR. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem Res 2007; 32:931-46. [PMID: 17342411 PMCID: PMC2576999 DOI: 10.1007/s11064-006-9268-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 12/20/2006] [Indexed: 01/29/2023]
Abstract
Studies of adaptive mechanisms to hypoxia led to the discovery of the transcription factor called hypoxia inducible factor (HIF). HIF is a ubiquitously expressed, heterodimeric transcription factor that regulates a cassette of genes that can provide compensation for hypoxia, metabolic compromise, and oxidative stress including erythropoietin, vascular endothelial growth factor, or glycolytic enzymes. Diseases associated with oxygen deprivation and consequent metabolic compromise such as stroke or Alzheimer's disease may result from inadequate engagement of adaptive signaling pathways that culminate in HIF activation. The discovery that HIF stability and activation are governed by a family of dioxygenases called HIF prolyl 4 hydroxylases (PHDs) identified a new target to augment the transcriptional activity of HIF and thus the adaptive machinery that governs neuroprotection. PHDs lose activity when cells are deprived of oxygen, iron or 2-oxoglutarate. Inhibition of PHD activity triggers the cellular homeostatic response to oxygen and glucose deprivation by stabilizing HIF and other proteins. Herein, we discuss the possible role of PHDs in regulation of both HIF-dependent and -independent cell survival pathways in the nervous system with particular attention to the co-substrate requirements for these enzymes. The emergence of neuroprotective therapies that modulate genes capable of combating metabolic compromise is an affirmation of elegant studies done by John Blass and colleagues over the past five decades implicating altered metabolism in neurodegeneration.
Collapse
Affiliation(s)
- Ambreena Siddiq
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | |
Collapse
|
32
|
Kobayashi K, Karran P, Oda S, Yanaga K. Involvement of mismatch repair in transcription-coupled nucleotide excision repair. Hum Cell 2006; 18:103-15. [PMID: 17022143 DOI: 10.1111/j.1749-0774.2005.tb00001.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nucleotide excision repair (NER) is a versatile repair pathway to remove a variety of DNA distorting lesions. NER operate via two subpathways, that are global genome repair (GGR) and transcription coupled nucleotide excision repair (TCR). GGR removes DNA damage from the genome over all, whilst TCR is selectively directed to DNA lesions in the transcribed strand of expressed genes. The damage recognition step in GGR and TCR is also different. In GGR, the XPC-HR23B complex is an essential factor to recruit proteins for subsequent process. In TCR, a stalled RNA polymerase II is a presumed trigger to initiate TCR machinery in concert with Cockayne syndrome (CS) proteins. Mismatch repair (MMR) keeps fidelity of DNA replication through correcting replication errors. A distinctive feature of MMR pathway is that this repair is directed exclusively to the newly synthesized strand. This characteristic contributes to mediation of cytotoxity by methylating agents, and MMR deficient cells are more resistant to methylating agents than MMR proficient cells. The interaction between MMR and NER has been reported by several investigators. However, the most controversial problem is the role of MMR in TCR TCR in E. coli requires the participation of the MutS and MutL MMR proteins. On the contrary, TCR in yeast is independent of the yeast MutS and MutL homologues. To date, in mammalian cells, there are conflicting evidences for the association of MMR with TCR pathway. The aim of this article is to provide a brief overview of the recent literature on this subject.
Collapse
|
33
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
34
|
Jung Y, Lippard SJ. RNA polymerase II blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase. J Biol Chem 2005; 281:1361-70. [PMID: 16275646 DOI: 10.1074/jbc.m509688200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The consequences of human RNA polymerase II (pol II) arrest at the site of DNA damaged by cisplatin were studied in whole cells and cell extracts, with a particular focus on the stability of stalled pol II and its subsequent ubiquitylation. Site-specifically platinated DNA templates immobilized on a solid support were used to perform in vitro transcription in HeLa nuclear extracts. RNA elongation was completely blocked by a cisplatin intrastrand cross-link. The stalled polymerase was quite stable, remaining on the DNA template in nuclear extracts. The stability of pol II stalled at the site of cisplatin damage was also observed in live cells. A cell fractionation experiment using cisplatin-treated HeLa cells revealed an increased level of chromatin-associated pol II proteins following DNA damage. The stalled polymerase was transcriptionally active and capable of elongating the transcript following chemical removal of platinum from the template. Transcription inhibition by alpha-amanitin in vitro enhanced pol II ubiquitylation at ubiquitin residues Lys-6, Lys-48, and Lys-63. In live cells expressing epitope-tagged ubiquitin mutants, several ubiquitin lysines also participated in pol II ubiquitylation following DNA damage. Cisplatin treatment triggered ubiquitylation-mediated pol II degradation in HeLa cells, which could be prevented by the proteasomal inhibitor MG132. Fractionation of pol II from cells co-treated with MG132 and cisplatin indicated that the undegraded ubiquitylated polymerase was mostly unbound or only loosely associated with chromatin. These data are consistent with a model in which only a fraction of pol II, ubiquitylated in response to cisplatin damage of DNA, dissociates from the sites of platination. This altered polymerase is rapidly destroyed by proteasomes.
Collapse
Affiliation(s)
- Yongwon Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
35
|
Kleiman FE, Wu-Baer F, Fonseca D, Kaneko S, Baer R, Manley JL. BRCA1/BARD1 inhibition of mRNA 3' processing involves targeted degradation of RNA polymerase II. Genes Dev 2005; 19:1227-37. [PMID: 15905410 PMCID: PMC1132008 DOI: 10.1101/gad.1309505] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian cells exhibit a complex response to DNA damage. The tumor suppressor BRCA1 and associated protein BARD1 are thought to play an important role in this response, and our previous work demonstrated that this includes transient inhibition of the pre-mRNA 3' processing machinery. Here we provide evidence that this inhibition involves proteasomal degradation of a component necessary for processing, RNA polymerase II (RNAP II). We further show that RNAP IIO, the elongating form of the enzyme, is a specific in vitro target of the BRCA1/BARD1 ubiquitin ligase activity. Significantly, siRNA-mediated knockdown of BRCA1 and BARD1 resulted in stabilization of RNAP II after DNA damage. In addition, inhibition of 3' cleavage induced by DNA damage was reverted in extracts of BRCA1-, BARD1-, or BRCA1/BARD1-depleted cells. We also describe corresponding changes in the nuclear localization and/or accumulation of these factors following DNA damage. Our results support a model in which a BRCA1/BARD1-containing complex functions to initiate degradation of stalled RNAP IIO, inhibiting the coupled transcription-RNA processing machinery and facilitating repair.
Collapse
Affiliation(s)
- Frida E Kleiman
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
36
|
Somesh BP, Reid J, Liu WF, Søgaard TMM, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Multiple Mechanisms Confining RNA Polymerase II Ubiquitylation to Polymerases Undergoing Transcriptional Arrest. Cell 2005; 121:913-23. [PMID: 15960978 DOI: 10.1016/j.cell.2005.04.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 03/16/2005] [Accepted: 04/04/2005] [Indexed: 12/27/2022]
Abstract
In order to study mechanisms and regulation of RNA polymerase II (RNAPII) ubiquitylation and degradation, highly purified factors were used to reconstitute RNAPII ubiquitylation in vitro. We show that arrested RNAPII elongation complexes are the preferred substrates for ubiquitylation. Accordingly, not only DNA-damage-dependent but also DNA-damage-independent transcriptional arrest results in RNAPII ubiquitylation in vivo. Def1, known to be required for damage-induced degradation of RNAPII, stimulates ubiquitylation of RNAPII only in an elongation complex. Ubiquitylation of RNAPII is dependent on its C-terminal repeat domain (CTD). Moreover, CTD phosphorylation at serine 5, a hallmark of the initiating polymerase, but not at serine 2, a hallmark of the elongating polymerase, completely inhibits ubiquitylation. In agreement with this, ubiquitylated RNAPII is hypophosphorylated at serine 5 in vivo, and mutation of the serine 5 phosphatase SSU72 inhibits RNAPII degradation. These results identify several mechanisms that confine ubiquitylation of RNAPII to the forms of the enzyme that arrest during elongation.
Collapse
Affiliation(s)
- Baggavalli P Somesh
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Herts EN6 3LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
37
|
Starita LM, Horwitz AA, Keogh MC, Ishioka C, Parvin JD, Chiba N. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J Biol Chem 2005; 280:24498-505. [PMID: 15886201 DOI: 10.1074/jbc.m414020200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The breast- and ovarian-specific tumor suppressor BRCA1, when associated with BARD1, is an ubiquitin ligase. We have shown here that this heterodimer ubiquitinates a hyperphosphorylated form of Rpb1, the largest subunit of RNA polymerase II. Two major phosphorylation sites have been identified in the Rpb1 carboxyl terminal domain, serine 2 (Ser-2) or serine 5 (Ser-5) of the YSPTSPS heptapeptide repeat. Only the Ser-5 hyperphosphorylated form is ubiquitinated by BRCA1/BARD1. Overexpression of BRCA1 in cells stimulated the DNA damage-induced ubiquitination of Rpb1. Similar to the in vitro reaction, the stimulation of Rpb1 ubiquitination by BRCA1 in cells occurred only on those molecules hyperphosphorylated on Ser-5 of the heptapeptide repeat. In vitro, the carboxyl terminus of BRCA1 (amino acids 501-1863) was dispensable for the ubiquitination of hyperphosphorylated Rpb1. In cells, however, efficient Rpb1 ubiquitination required the carboxyl terminus of BRCA1, suggesting that interactions mediated by this region were essential in the complex milieu of the nucleus. These results link the BRCA1-dependent ubiquitination of the polymerase with DNA damage.
Collapse
Affiliation(s)
- Lea M Starita
- Program in Biology and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Arima Y, Nitta M, Kuninaka S, Zhang D, Fujiwara T, Taya Y, Nakao M, Saya H. Transcriptional Blockade Induces p53-dependent Apoptosis Associated with Translocation of p53 to Mitochondria. J Biol Chem 2005; 280:19166-76. [PMID: 15753095 DOI: 10.1074/jbc.m410691200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The tumor suppressor p53 functions as a transcriptional activator to induce cell cycle arrest and apoptosis in response to DNA damage. Although p53 was also shown to mediate apoptosis in a manner independent of its transactivation activity, the mechanism and conditions that trigger such cell death have remained largely unknown. We have now shown that inhibition of RNA polymerase II-mediated transcription by alpha-amanitin or RNA interference induced p53-dependent apoptosis. Inhibition of pol II-mediated transcription resulted in down-regulation of p21Cip1, which was caused by both transcriptional suppression and protein degradation, despite eliciting p53 accumulation, allowing the cells to progress into S phase and then to undergo apoptosis. This cell death did not require the transcription of p53 target genes and was preceded by translocation of the accumulated p53 to mitochondria. Our data thus suggested that blockade of pol II-mediated transcription induced p53 accumulation in mitochondria and was the critical factor for eliciting p53-dependent but transcription-independent apoptosis.
Collapse
Affiliation(s)
- Yoshimi Arima
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Xiong H, Li H, Kong HJ, Chen Y, Zhao J, Xiong S, Huang B, Gu H, Mayer L, Ozato K, Unkeless JC. Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J Biol Chem 2005; 280:23531-9. [PMID: 15837792 DOI: 10.1074/jbc.m414296200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interferon regulatory factor (IRF)-8/interferon consensus sequence-binding protein is regulated by both transcription and degradation. IRF-8 induced in peritoneal macrophages by interferon-gamma and lipopolysaccharide was degraded rapidly, and degradation of IRF-8 was blocked by MG132, the proteasome inhibitor, but inhibitors of calpain and lysosomal enzymes had no effect. The ubiquitination of IRF-8 was shown by co-immunoprecipitation from RAW264.7 macrophages retrovirally transduced with IRF-8 and hemagglutinin-ubiquitin. The dominant negative ubiquitin mutants K48R and K29R inhibited IRF-8 degradation in 293T cells, confirming the relationship between ubiquitination of IRF-8 and its degradation. IRF-8 carboxyl-terminal truncation mutants were not ubiquitinated and were consequently stable, indicating that the carboxyl-terminal domain of IRF-8 controls ubiquitination. The ubiquitin-protein isopeptide ligase (E3) that ubiquitinated IRF-8 was likely to be Cbl, which formed a complex with IRF-8, demonstrable by both immunoprecipitation and gel filtration. Furthermore, IRF-8 stability was increased by dominant negative Cbl, and IRF-8 ubiquitination was significantly attenuated in Cbl-/- cells. Reflecting increased stability and expression, the IRF-8 carboxyl-terminal deletion mutant induced interleukin (IL)-12 p40 promoter activity much more strongly than IRF-8 did. Furthermore, IRF-8-induced IL-12 p40 synthesis in RAW264.7 cells was enhanced by dominant negative Cbl, and peritoneal macrophages from Cbl-/- mice showed increased IL-12 p40 protein production. Taken together, these results suggest that the proteasomal degradation of IRF-8 mediated by the ubiquitin E3 ligase Cbl down-regulates IL-12 expression.
Collapse
Affiliation(s)
- Huabao Xiong
- Immunobiology Center, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dennis AP, O'Malley BW. Rush hour at the promoter: how the ubiquitin-proteasome pathway polices the traffic flow of nuclear receptor-dependent transcription. J Steroid Biochem Mol Biol 2005; 93:139-51. [PMID: 15860256 DOI: 10.1016/j.jsbmb.2004.12.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptor-dependent transcription requires the functional activities of many proteins in order to achieve proper gene expression. Progress in understanding transcription mechanisms has revealed the unexpected involvement of the ubiquitin-proteasome pathway in the transcriptional process. In some instances, stabilization of the transcription protein augments the functional role or activation state of that protein, but other evidence supports the hypothesis that degradation of that factor may be required in order for transcription to proceed. Perhaps most peculiar is the observation that several yeast models support the uncoupling of ubiquitylation from concomitant proteasome-mediated degradation, with the former responsible for regulating posttranslational modification of histones and controlling differential recruitment of a transcription factor to distinct promoters. Additionally, the ATPases of the 19S proteasome regulatory cap have been shown to function in transcription elongation, independently of their role in proteolysis. This review summarizes and discusses progress thus far in integrating the disparate fields of ubiquitylation and proteasome-mediated protein degradation with gene transcription.
Collapse
Affiliation(s)
- Andrew P Dennis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 538] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
42
|
Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD. BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 2004; 24:8457-66. [PMID: 15367667 PMCID: PMC516733 DOI: 10.1128/mcb.24.19.8457-8466.2004] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proper centrosome duplication and spindle formation are crucial for prevention of chromosomal instability, and BRCA1 plays a role in this process. In this study, transient inhibition of BRCA1 function in cell lines derived from mammary tissue caused rapid amplification and fragmentation of centrosomes. Cell lines tested that were derived from nonmammary tissues did not amplify the centrosome number in this transient assay. We tested whether BRCA1 and its binding partner, BARD1, ubiquitinate centrosome proteins. Results showed that centrosome components, including gamma-tubulin, are ubiquitinated by BRCA1/BARD1 in vitro. The in vitro ubiquitination of gamma-tubulin was specific, and function of the carboxy terminus was necessary for this reaction; truncated BRCA1 did not ubiquitinate gamma-tubulin. BRCA1/BARD1 ubiquitinated lysines 48 and 344 of gamma-tubulin in vitro, and expression in cells of gamma-tubulin K48R caused a marked amplification of centrosomes. This result supports the notion that the modification of these lysines in living cells is critical in the maintenance of centrosome number. One of the key problems in understanding the biology of BRCA1 has been the identification of a specific target of BRCA1/BARD1 ubiquitination and its effect on mammary cell biology. The results of this study identify a ubiquitination target and suggest a biological impact important in the etiology of breast cancer.
Collapse
Affiliation(s)
- Lea M Starita
- Brigham and Women's Hospital, Department of Pathology, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Reid J, Svejstrup JQ. DNA Damage-induced Def1-RNA Polymerase II Interaction and Def1 Requirement for Polymerase Ubiquitylation in Vitro. J Biol Chem 2004; 279:29875-8. [PMID: 15166235 DOI: 10.1074/jbc.c400185200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UV-induced DNA damage results in ubiquitylation and degradation of RNA polymerase II (RNAPII). In yeast, this requires the DEF1 gene, the product of which forms a complex with the transcription-coupling repair factor, Rad26. However, whether Def1 is directly involved in RNAPII ubiquitylation has remained unclear. Here we report the establishment of a reconstituted system for studying UV-induced RNAPII ubiquitylation, which mimics the known requirements for this process in vitro. Using this system, we show that Def1 is indeed directly required for RNAPII ubiquitylation. Moreover, Def1 interacts with RNAPII in a damage-dependent manner. These results support a model in which Def1 interacts with RNAPII in response to DNA damage, recruiting the ubiquitylation machinery to enable its modification and subsequent degradation.
Collapse
Affiliation(s)
- James Reid
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | |
Collapse
|
44
|
Jacobs EY, Ogiwara I, Weiner AM. Role of the C-terminal domain of RNA polymerase II in U2 snRNA transcription and 3' processing. Mol Cell Biol 2004; 24:846-55. [PMID: 14701755 PMCID: PMC343789 DOI: 10.1128/mcb.24.2.846-855.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
U small nuclear RNAs (snRNAs) and mRNAs are both transcribed by RNA polymerase II (Pol II), but the snRNAs have unusual TATA-less promoters and are neither spliced nor polyadenylated; instead, 3' processing is directed by a highly conserved 3' end formation signal that requires initiation from an snRNA promoter. Here we show that the C-terminal domain (CTD) of Pol II is required for efficient U2 snRNA transcription, as it is for mRNA transcription. However, CTD kinase inhibitors, such as 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), that block mRNA elongation do not affect U2 transcription, although 3' processing of the U2 primary transcript is impaired. We show further that U2 transcription is preferentially inhibited by low doses of UV irradiation or actinomycin D, which induce CTD kinase activity, and that UV inhibition can be rescued by treatment with DRB or H7. We propose that Pol II complexes transcribing snRNAs and mRNAs have distinct CTD phosphorylation patterns. mRNA promoters recruit factors including kinases that hyperphosphorylate the CTD, and the CTD in turn recruits proteins needed for mRNA splicing and polyadenylation. We predict that snRNA promoters recruit factors including a CTD kinase(s) whose snRNA-specific phosphorylation pattern recruits factors required for promoter-coupled 3' end formation.
Collapse
Affiliation(s)
- Erica Y Jacobs
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA
| | | | | |
Collapse
|
45
|
Inukai N, Yamaguchi Y, Kuraoka I, Yamada T, Kamijo S, Kato J, Tanaka K, Handa H. A Novel Hydrogen Peroxide-induced Phosphorylation and Ubiquitination Pathway Leading to RNA Polymerase II Proteolysis. J Biol Chem 2004; 279:8190-5. [PMID: 14662762 DOI: 10.1074/jbc.m311412200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damage-induced ubiquitination of the largest subunit of RNA polymerase II, Rpb1, has been implicated in transcription-coupled repair for years. The studies so far, however, have been limited to the use of bulky helix-distorting DNA damages caused by UV light and cisplatin, which are corrected by the nucleotide excision repair pathway. Non-bulky, non-helix-distorting damages are caused at high frequency by reactive oxygen species in cells and corrected by the base excision repair pathway. Contrary to a classic view, we recently found that the second type of DNA lesions also causes RNA polymerase II stalling in vitro. In this paper, we show that hydrogen peroxide (H(2)O(2)) causes significant ubiquitination and proteasomal degradation of Rpb1 by mechanisms that are distinct from those employed after UV irradiation. UV irradiation and H(2)O(2) treatment cause characteristic changes in protein kinases phosphorylating the carboxyl-terminal domain at Ser-2 and -5. The H(2)O(2)-induced ubiquitination is likely dependent on unusual Ser-5 phosphorylation by ERK1/2. Moreover, the H(2)O(2)-induced ubiquitination occurs on transcriptionally engaged polymerases without the help of Cockayne syndrome A and B proteins and von Hippel-Lindau tumor suppressor proteins, which are all required for the UV-induced ubiquitination. These results suggest that stalled polymerases are recognized and ubiquitinated differentially depending on the types of DNA lesions. Our findings may have general implications in the basic mechanism of transcription-coupled nucleotide excision repair and base excision repair.
Collapse
Affiliation(s)
- Naoto Inukai
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology and PRESTO, Japan Science and Technology Agency, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chapman RD, Palancade B, Lang A, Bensaude O, Eick D. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res 2004; 32:35-44. [PMID: 14704341 PMCID: PMC373282 DOI: 10.1093/nar/gkh172] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The phosphorylation of the RNA polymerase II (Pol II) C-terminal domain (CTD) has been shown to affect the initiation, and transition to elongation of the Pol II complex. The differential phosphorylation of serines within this domain coincides with the recruitment of factors important for pre-mRNA processing and transcriptional elongation. A role for tyrosine and threonine phosphorylation has yet to be described. The discovery of kinases that express a preference for specific residues within this sequence suggests a mechanism for the controlled recruitment and displacement of CTD-interacting partners during the transcription cycle. The last CTD repeat (CTD52) contains unique interaction sites for the only known CTD tyrosine kinases, Abl1/c-Abl and Abl2/Arg, and the serine/threonine kinase casein kinase II (CKII). Here, we show that removal or severe disruption of the last CTD repeat, but not point mutation of its CKII sites, results in its proteolytic degradation to the Pol IIb form in vivo, but does not appear to affect the specific transcription of genes. These results suggest a possible mechanism of transcription control through the proteolytic removal of the Pol II CTD.
Collapse
Affiliation(s)
- Rob D Chapman
- Institute of Clinical Molecular Biology and Tumour Genetics, GSF Research Center for Environment and Health, Marchioninistr. 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
47
|
Gianní M, Tarrade A, Nigro EA, Garattini E, Rochette-Egly C. The AF-1 and AF-2 domains of RAR gamma 2 and RXR alpha cooperate for triggering the transactivation and the degradation of RAR gamma 2/RXR alpha heterodimers. J Biol Chem 2003; 278:34458-66. [PMID: 12824162 DOI: 10.1074/jbc.m304952200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotic cells, liganded RAR gamma 2/RXR alpha heterodimers activate the transcription of retinoic acid (RA) target genes and then are degraded through the ubiquitin-proteasome pathway. In this study, we dissected the role of the RAR gamma 2 and RXR alpha partners as well as of their respective AF-1 and AF-2 domains in the processes of transactivation and degradation. RAR gamma 2 is the "engine" initiating transcription and its own degradation subsequent to ligand binding. Integrity of its AF-2 domain and phosphorylation of its AF-1 domain are required for both the degradation and the transactivation of the receptor. Deletion of the whole AF-1 domain does not impair these processes but shifts the receptor toward other proteolytic pathways through RXR alpha. In contrast, RXR alpha plays only a modulatory role, cooperating with RAR gamma 2 through its AF-2 domain and its phosphorylated AF-1 domain in both the transcription activity and the degradation of the RAR gamma 2/RXR alpha heterodimers. Our results underline that the AF-1 and AF-2 domains of each heterodimer partner cooperate with one other and that this cooperation is relevant for both the transcription and degradation processes.
Collapse
Affiliation(s)
- Maurizio Gianní
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) CNRS INSERM ULP, UMR 7104, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Lilley BN, Tortorella D, Ploegh HL. Dislocation of a type I membrane protein requires interactions between membrane-spanning segments within the lipid bilayer. Mol Biol Cell 2003; 14:3690-8. [PMID: 12972557 PMCID: PMC196560 DOI: 10.1091/mbc.e03-03-0192] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 04/23/2003] [Accepted: 05/12/2003] [Indexed: 12/22/2022] Open
Abstract
The human cytomegalovirus gene product US11 causes rapid degradation of class I major histocompatibility complex (MHCI) heavy chains by inducing their dislocation from the endoplasmic reticulum (ER) and subsequent degradation by the proteasome. This set of reactions resembles the endogenous cellular quality control pathway that removes misfolded or unassembled proteins from the ER. We show that the transmembrane domain (TMD) of US11 is essential for MHCI heavy chain dislocation, but dispensable for MHCI binding. A Gln residue at position 192 in the US11 TMD is crucial for the ubiquitination and degradation of MHCI heavy chains. Cells that express US11 TMD mutants allow formation of MHCI-beta2m complexes, but their rate of egress from the ER is significantly impaired. Further mutagenesis data are consistent with the presence of an alpha-helical structure in the US11 TMD essential for MHCI heavy chain dislocation. The failure of US11 TMD mutants to catalyze dislocation is a unique instance in which a polar residue in the TMD of a type I membrane protein is required for that protein's function. Targeting of MHCI heavy chains for dislocation by US11 thus requires the formation of interhelical hydrogen bonds within the ER membrane.
Collapse
Affiliation(s)
- Brendan N Lilley
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
49
|
Abstract
Gene transcription is repetitive, enabling the synthesis of multiple copies of identical RNA molecules from the same template. The cyclic process of RNA synthesis from active genes, referred to as transcription reinitiation, contributes significantly to the level of RNAs in living cells. Contrary to the perception that multiple transcription cycles are a mere iteration of mechanistically identical steps, a large body of evidence indicates that, in most transcription systems, reinitiation involves highly specific and regulated pathways. These pathways influence the availability for reinitiation of template DNA and/or transcription proteins, and represent an important yet poorly characterized aspect of gene regulation.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy.
| | | |
Collapse
|
50
|
Kuznetsova AV, Meller J, Schnell PO, Nash JA, Ignacak ML, Sanchez Y, Conaway JW, Conaway RC, Czyzyk-Krzeska MF. von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc Natl Acad Sci U S A 2003; 100:2706-11. [PMID: 12604794 PMCID: PMC151405 DOI: 10.1073/pnas.0436037100] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transition from transcription initiation to elongation involves phosphorylation of the large subunit (Rpb1) of RNA polymerase II on the repetitive carboxyl-terminal domain. The elongating hyperphosphorylated Rpb1 is subject to ubiquitination, particularly in response to UV radiation and DNA-damaging agents. By using computer modeling, we identified regions of Rpb1 and the adjacent subunit 6 of RNA polymerase II (Rpb6) that share sequence and structural similarity with the domain of hypoxia-inducible transcription factor 1 alpha (HIF-1 alpha) that binds von Hippel-Lindau tumor suppressor protein (pVHL). pVHL confers substrate specificity to the E3 ligase complex, which ubiquitinates HIF-alpha and targets it for proteasomal degradation. In agreement with the computational model, we show biochemical evidence that pVHL specifically binds the hyperphosphorylated Rpb1 in a proline-hydroxylation-dependent manner, targeting it for ubiquitination. This interaction is regulated by UV radiation.
Collapse
Affiliation(s)
- Anna V Kuznetsova
- Department of Molecular and Cellular Physiology, Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | | | | | | | | | | | | | | | | |
Collapse
|