1
|
Bradford SA, Sasidharan S, Kim H, Gomez-Flores A, Li T, Shen C. Colloid Interaction Energies for Surfaces with Steric Effects and Incompressible and/or Compressible Roughness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1501-1510. [PMID: 33470105 DOI: 10.1021/acs.langmuir.0c03029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloid aggregation and retention in the presence of macromolecular coatings (e.g., adsorbed polymers, surfactants, proteins, biological exudates, and humic materials) have previously been correlated with electric double layer interactions or repulsive steric interactions, but the underlying causes are not fully resolved. An interaction energy model that accounts for double layer, van der Waals, Born, and steric interactions as well as nanoscale roughness and charge heterogeneity on both surfaces was extended, and theoretical calculations were conducted to address this gap in knowledge. Macromolecular coatings may produce steric interactions in the model, but non-uniform or incomplete surface coverage may also create compressible nanoscale roughness with a charge that is different from the underlying surface. Model results reveal that compressible nanoscale roughness reduces the energy barrier height and the magnitude of the primary minimum at separation distances exterior to the adsorbed organic layer. The depth of the primary minimum initially alters (e.g., increases or decreases) at separation distances smaller than the adsorbed organic coating because of a decrease in the compressible roughness height and an increase in the roughness fraction. However, further decreases in the separation distance create strong steric repulsion that dominates the interaction energy profile and limits the colloid approach distance. Consequently, adsorbed organic coatings on colloids can create shallow primary minimum interactions adjacent to organic coatings that can explain enhanced stability and limited amounts of aggregation and retention that have commonly been observed. The approach outlined in this manuscript provides an improved tool that can be used to design adsorbed organic coatings for specific colloid applications or interpret experimental observations.
Collapse
Affiliation(s)
| | - Salini Sasidharan
- USDA, ARS, SAWS Unit, Davis, California 95616, United States
- Environmental Sciences Department, University of California, Riverside, California 92521, United States
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 664-14 Deokjin, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Allan Gomez-Flores
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 664-14 Deokjin, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Tiantian Li
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Chongyang Shen
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Chan AJ, Sarkar P, Gaboriaud F, Fontaine-Aupart MP, Marlière C. Control of interface interactions between natural rubber and solid surfaces through charge effects: an AFM study in force spectroscopic mode. RSC Adv 2017. [DOI: 10.1039/c7ra08589c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adhesion of nanoparticles (natural rubber) is monitored by slight changes in the surface charge state of the contacting solid surfaces.
Collapse
Affiliation(s)
- Alan Jenkin Chan
- Institut des Sciences Moléculaires d'Orsay, ISMO
- Université Paris-Sud
- CNRS
- 91405 Orsay Cedex
- France
| | | | - Fabien Gaboriaud
- Manufacture Française des Pneumatiques Michelin
- F-63040 Clermont Ferrand 9
- France
| | | | - Christian Marlière
- Institut des Sciences Moléculaires d'Orsay, ISMO
- Université Paris-Sud
- CNRS
- 91405 Orsay Cedex
- France
| |
Collapse
|
3
|
Dehghani ES, Spencer ND, Ramakrishna SN, Benetti EM. Crosslinking Polymer Brushes with Ethylene Glycol-Containing Segments: Influence on Physicochemical and Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10317-10327. [PMID: 27642809 DOI: 10.1021/acs.langmuir.6b02958] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The introduction of different types and concentrations of crosslinks within poly(hydroxyethyl methacrylate) (PHEMA) brushes influences their interfacial, physicochemical properties, ultimately governing their adsorption of proteins. PHEMA brushes and brush-hydrogels were synthesized by surface-initiated, atom-transfer radical polymerization (SI-ATRP) from HEMA, with and without the addition of di(ethylene glycol) dimethacrylate (DEGDMA) or tetra(ethylene glycol) dimethacrylate (TEGDMA) as crosslinkers. Linear (pure PHEMA) brushes show high hydration and low modulus and additionally provide an efficient barrier against nonspecific protein adsorption. In contrast, brush-hydrogels are stiffer and less hydrated, and the presence of crosslinks affects the entropy-driven, conformational barrier that hinders the surface interaction of biomolecules with brushes. This leads to the physisorption of proteins at low concentrations of short crosslinks. At higher contents of DEGDMA or in the presence of longer TEGDMA-based crosslinks, brush-hydrogels recover their antifouling properties due to the increase in interfacial water association by the higher concentration of ethylene glycol (EG) units.
Collapse
Affiliation(s)
- Ella S Dehghani
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
4
|
Adsorbed plasma proteins modulate the effects of single-walled carbon nanotubes on neutrophils in blood. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1615-25. [DOI: 10.1016/j.nano.2016.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/20/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022]
|
5
|
Hulander M, Lundgren A, Faxälv L, Lindahl TL, Palmquist A, Berglin M, Elwing H. Gradients in surface nanotopography used to study platelet adhesion and activation. Colloids Surf B Biointerfaces 2013; 110:261-9. [PMID: 23732803 DOI: 10.1016/j.colsurfb.2013.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/15/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
Abstract
Gradients in surface nanotopography were prepared by adsorbing gold nanoparticles on smooth gold substrates using diffusion technique. Following a sintering procedure the particle binding chemistry was removed, and integration of the particles into the underlying gold substrate was achieved, leaving a nanostructured surface with uniform surface chemistry. After pre-adsorption of human fibrinogen, the effect of surface nanotopography on platelets was studied. The use of a gradient in nanotopography allowed for platelet adhesion and activation to be studied as a function of nanoparticle coverage on one single substrate. A peak in platelet adhesion was found at 23% nanoparticle surface coverage. The highest number of activated platelets was found on the smooth control part of the surface, and did not coincide with the number of adhered platelets. Activation correlated inversely with particle coverage, hence the lowest fraction of activated platelets was found at high particle coverage. Hydrophobization of the gradient surface lowered the total number of adhering cells, but not the ratio of activated cells. Little or no effect was seen on gradients with 36nm particles, suggesting the existence of a lower limit for sensing of surface nano-roughness in platelets. These results demonstrate that parameters such as ratio between size and inter-particle distance can be more relevant for cell response than wettability on nanostructured surfaces. The minor effect of hydrophobicity, the generally reduced activation on nanostructured surfaces and the presence of a cut-off in activation of human platelets as a function of nanoparticle size could have implications for the design of future blood-contacting biomaterials.
Collapse
Affiliation(s)
- M Hulander
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9E, 413 90 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
6
|
Measurement of interaction forces between fibrinogen coated probes and mica surface with the atomic force microscope: The pH and ionic strength effect. Biointerphases 2010; 3:1-8. [PMID: 20408656 DOI: 10.1116/1.2840052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study of protein-surface interactions is of great significance in the design of biomaterials and the evaluation of molecular processes in tissue engineering. The authors have used atomic force microscopy (AFM) to directly measure the force of attraction/adhesion of fibrinogen coated tips to mica surfaces and reveal the effect of the surrounding solution pH and ionic strength on this interaction. Silica colloid spheres were attached to the AFM cantilevers and, after plasma deposition of poly(acrylic acid), fibrinogen molecules were covalently bound on them with the help of the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of N-hydroxysulfosuccinimide (sulfo-NHS). The measurements suggest that fibrinogen adsorption is controlled by the screening of electrostatic repulsion as the salt concentration increases from 15 to 150 mM, whereas at higher ionic strength (500 mM) the hydration forces and the compact molecular conformation become crucial, restricting adsorption. The protein attraction to the surface increases at the isoelectric point of fibrinogen (pH 5.8), compared with the physiological pH. At pH 3.5, apart from fibrinogen attraction to the surface, evidence of fibrinogen conformational changes is observed, as the pH and the ionic strength are set back and forth, and these changes may account for fibrinogen aggregation in the protein solution at this pH.
Collapse
|
7
|
Müller C, Lüders A, Hoth-Hannig W, Hannig M, Ziegler C. Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability, and isoelectric point. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4136-4141. [PMID: 19888741 DOI: 10.1021/la903299y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The adsorption of bovine serum albumin (BSA) on surfaces of dental enamel and of dental materials was investigated by scanning force spectroscopy. This method provides adhesion forces which can be measured as a function of contact time between protein and surface, pH, wettability, and isoelectric point of the surface. Whereas the chosen ceramic and composite materials resemble very well the adhesion on natural enamel, a much stronger adhesion was found for the more hydrophobic surfaces, that is, gold, titanium, poly(methyl methacrylate) (PMMA), and poly(tetrafluoroethylene) (PTFE). On hydrophilic surfaces, adhesion is mainly influenced by the electrostatic forces between protein and surface. However, the conformational change of BSA at pH values above pH 8 has to be taken into account. On the very hydrophobic PTFE surface, the special interface structure between PTFE and water plays an important role which governs BSA adhesion.
Collapse
Affiliation(s)
- Christine Müller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
8
|
Averett LE, Schoenfisch MH. Atomic force microscope studies of fibrinogen adsorption. Analyst 2010; 135:1201-9. [DOI: 10.1039/b924814e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Tsapikouni TS, Missirlis YF. Measuring the force of single protein molecule detachment from surfaces with AFM. Colloids Surf B Biointerfaces 2009; 75:252-9. [PMID: 19783413 DOI: 10.1016/j.colsurfb.2009.08.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 08/04/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
Atomic force microscopy (AFM) was used to measure the non-specific detachment force of single fibrinogen molecules from glass surfaces. The identification of single unbinding events was based on the characteristics of the parabolic curves, recorded during the stretching of protein molecules. Fibrinogen molecules were covalently bound to Si(3)N(4) AFM tips, previously modified with 3-aminopropyl-dimethyl-ethoxysilane, through a homobifunctional poly(ethylene glycol) linker bearing two hydroxysulfosuccinimide esters. The most probable detachment force was found to be 210 pN, when the tip was retracting with a velocity of 1400 nm/s, while the distribution of the detachment distances indicated that the fibrinogen chain can be elongated beyond the length of the physical conformation before detachment. The dependence of the most probable detachment force on the loading rate was examined and the dynamics of fibrinogen binding to the surface were found amenable to the simple expression of the Bell-Evans theory. The theory's expansion, however, by incorporating the concept of the rupture of parallel residue-surface bonds could only describe the detachment of fibrinogen for a small number of such bonds. Finally, the mathematical expression of the Worm-Like Chain model was used to fit the stretching curves before rupture and two interpretations are suggested for the description of the AFM curves with multiple detachment events.
Collapse
Affiliation(s)
- Theodora S Tsapikouni
- Laboratory of Biomechanics and Biomedical Engineering, Mechanical Engineering and Aeronautics Department, University of Patras, Patras 26504, Greece.
| | | |
Collapse
|
10
|
Xu LC, Siedlecki CA. Atomic force microscopy studies of the initial interactions between fibrinogen and surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:3675-81. [PMID: 19275182 PMCID: PMC2749234 DOI: 10.1021/la803258h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Atomic force microscopy (AFM) was used to analyze the interactions between fibrinogen and model surfaces having different levels of water wettability. In contrast to most AFM studies, proteins were coupled to the substrate while model surface colloids were attached to the end of the AFM probe, thereby ensuring that proteins undergo only a single compression/decompression cycle. Similar values of adhesion force were observed between fibrinogen and all of the highly wettable surfaces; in the same manner, fibrinogen showed similar adhesion forces against all poorly wettable surfaces, with a step-like transition observed between the two groups. Relationships between the adhesion forces and loading rates were used to analyze the energy profiles involved in protein/surface interactions. Multiple energy barriers were found in the interaction of proteins with poorly wettable surfaces; whereas a single energy barrier was found for protein interactions with highly wettable surfaces. Contact time-dependent adhesion data were fit to an exponential model and showed that the rate constants of the protein unfolding process on highly wettable surface were smaller at low loading rates, but increased rapidly to yield values similar to those on poorly wettable surfaces at high loading rates. The activation energies of protein unfolding derived from the data offer insight into the role of surface wettability in affecting adhesion, conformational changes, and ultimately, the activity of proteins at biomaterial surfaces.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, Biomedical Engineering Institute, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033
| | - Christopher A. Siedlecki
- Department of Surgery, Biomedical Engineering Institute, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033
- Department of Bioengineering, Biomedical Engineering Institute, The Pennsylvania State University, College of Medicine, Hershey, PA, 17033
| |
Collapse
|
11
|
Interactions of KLVFF-PEG Peptide Conjugate with Fibrinogen in Neutral Aqueous Solutions. Macromol Biosci 2008; 8:1182-9. [DOI: 10.1002/mabi.200800065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Abstract
The term "biological complexes" broadly encompasses particles as diverse as multisubunit enzymes, viral capsids, transport cages, molecular nets, ribosomes, nucleosomes, biological membrane components and amyloids. The complexes represent a broad range of stability and composition. Atomic force microscopy offers a wealth of structural and functional data about such assemblies. For this review, we choose to comment on the significance of AFM to study various aspects of biology of selected nonmembrane protein assemblies. Such particles are large enough to reveal many structural details under the AFM probe. Importantly, the specific advantages of the method allow for gathering dynamic information about their formation, stability or allosteric structural changes critical for their function. Some of them have already found their way to nanomedical or nanotechnological applications. Here we present examples of studies where the AFM provided pioneering information about the biology of complexes, and examples of studies where the simplicity of the method is used toward the development of potential diagnostic applications.
Collapse
|
13
|
Asirvatham SJ. Innovation focus: the patient with arrhythmia. J Cardiovasc Transl Res 2008; 1:258-72. [PMID: 20559933 DOI: 10.1007/s12265-008-9061-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 09/08/2008] [Indexed: 11/25/2022]
Abstract
Great strides have been made over the last two decades in the management of patients with rhythm disorders. Despite this, however, the remaining critical problems of stroke related to atrial fibrillation or as a result of radiofrequency ablation require innovative solutions to fully realize the potential of these recent advances. Similarly, implanted cardiac devices have revolutionized the care of patients with bradyrhythmias and tachyarrhythmias. Dyssynchronus ventricular pacing associated with present devices; however, results in heart failure, tricuspid regurgitation, and inappropriate device therapy once again create a demand for creative solutions. While not technically an arrhythmia, epilepsy management today is riddled with many of the problems that plagued cardiac arrhythmia management previously, and thus an appreciation of the similarities in requirement for investigative solutions may yield groundbreaking solutions. In this paper, we describe some novel methods to reduce complications associated with rhythm disorders and their treatment and apply the lessons learned from cardiovascular arrhythmia management to the brain. These include: a method to reduce coagulum formation and thus subsequent thromboembolism with indwelling catheters specifically during radiofrequency ablation procedures; a technique to ligate the left atrial appendage through percutaneous subxiphoid pericardial access; development and testing of a novel intramyocardial pace-sense lead, particularly used in a unique anatomic location (the atrioventricular septum) to allow pacing the ventricles in a relatively synchronous manner without crossing the tricuspid valve or entering the coronary sinus; finally, novel modifications of the cardiovascular mapping and ablation techniques used for the management of the central nervous system disorders primarily via the venous drainage of the brain. Innovative and potential solutions to treat the patient with arrhythmia are presented.
Collapse
Affiliation(s)
- Samuel J Asirvatham
- Division of Cardiovascular Diseases and Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
14
|
Lim B, Venkatachalam KL, Jahangir A, Johnson SB, Asirvatham SJ. Concurrent application of charge using a novel circuit prevents heat-related coagulum formation during radiofrequency ablation. J Cardiovasc Electrophysiol 2008; 19:843-50. [PMID: 18363694 DOI: 10.1111/j.1540-8167.2008.01117.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Thromboembolism resulting from coagulum formation on the catheter and electrode surfaces is a serious complication with radiofrequency ablation procedures for heart rhythm disorders. Why coagulum occurs despite therapeutic heparinization is unclear. In this report, we demonstrate a novel approach to minimize coagulum formation based on the electromolecular characteristics of fibrinogen. METHODS AND RESULTS Atomic force microscopy was used to establish that fibrinogen deposited on surfaces underwent conformational changes that resulted in spontaneous clot formation. We then immersed ablation catheters that were uncharged, negatively, or positively charged in heparinized blood for 30 minutes and noted the extent of clot formation. In separate experiments, ablation catheters were sutured to the ventricle of an excised porcine heart immersed in whole, heparinized blood and radiofrequency ablation performed for 5 minutes with and without charge delivered to the catheter tips. Electron microscopy of the catheter tips showed surface coverage of fibrin clot of the catheter to be 33.8% for negatively charged catheters, compared with 84.7% (P = 0.01) in noncharged catheters. There was no significant difference in surface coverage of fibrin clot between positively charged catheters (93.8%) and noncharged catheters (84.7%, P = ns). In contrast, the thickness of surface clot coverage for positively charged catheters was 87.5%, compared with 28.45% (P= 0.03) for noncharged catheters and 11.25% (P = 0.03) for negatively charged catheters, compared with noncharged catheters. CONCLUSIONS We describe a novel method of placing negative charge on electrodes during ablation that reduced coagulum formation. This may decrease thromboembolism-related complications with radiofrequency ablation procedures.
Collapse
Affiliation(s)
- Bernard Lim
- Division of Cardiology, Department of Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55902, USA
| | | | | | | | | |
Collapse
|
15
|
Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 2007; 28:3273-83. [PMID: 17466368 PMCID: PMC3671914 DOI: 10.1016/j.biomaterials.2007.03.032] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 03/27/2007] [Indexed: 11/24/2022]
Abstract
Atomic force microscopy (AFM) was used to directly measure the adhesion forces between three test proteins and low density polyethylene (LDPE) surfaces treated by glow discharge plasma to yield various levels of water wettability. The adhesion of proteins to the LDPE substrates showed a step dependence on the wettability of surfaces as measured by the water contact angle (theta). For LDPE surfaces with theta> approximately 60-65 degrees , stronger adhesion forces were observed for bovine serum albumin, fibrinogen and human FXII than for the surfaces with theta<60 degrees . Smaller adhesion forces were observed for FXII than for the other two proteins on all surfaces although trends were identical. Increasing the contact time from 0 to 50s for each protein-surface combination increased the adhesion force regardless of surface wettability. Time varying adhesion data was fit to an exponential model and free energies of protein unfolding were calculated. This data, viewed in light of previously published studies, suggests a 2-step model of protein denaturation, an early stage on the order of seconds to minutes where the outer surface of the protein interacts with the substrate and a second stage involving movement of hydrophobic amino acids from the protein core to the protein/surface interface. Impact statement: The work described in this manuscript shows a stark transition between protein adherent and protein non-adherent materials in the range of water contact angles 60-65 degrees , consistent with known changes in protein adsorption and activity. Time-dependent changes in adhesion force were used to calculate unfolding energies relating to protein-surface interactions. This analysis provides justification for a 2-step model of protein denaturation on surfaces.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, Biomedical Engineering Institute, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | - Christopher A. Siedlecki
- Department of Surgery, Biomedical Engineering Institute, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
- Department of Bioengineering, Biomedical Engineering Institute, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
16
|
Schneider A, Richert L, Francius G, Voegel JC, Picart C. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films. Biomed Mater 2007; 2:S45-51. [PMID: 18458419 DOI: 10.1088/1748-6041/2/1/s07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media).
Collapse
Affiliation(s)
- Aurore Schneider
- Institut National de Santé et de Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
17
|
Abstract
AbstractInteraction of human plasma fibrinogen (HPF) with fumed nanosilica A-300 in a phosphate buffer solution (PBS) was studied using 1H NMR spectroscopy with layer-by-layer freezing-out of bulk and interfacial water in the temperature range of 210–273 K, TSDC (90 T FTIR, and UV spectroscopy methods. An increase in concentration of HPF in the PBS leads to a decrease in amounts of structured water (frozen at T FTIR and UV spectra show that the HPF adsorption on silica leads to structural changes of the protein molecules. These changes and formation of hybrid HPF/A-300 aggregates can increase the rate of clotting that is of importance on nanosilica application as a component of tourniquet preparations.
Collapse
|
18
|
Gil R, Guillerez MG, Poulin JC, Schulz E. Charge-transfer complex study by chemical force spectroscopy: a dynamic force spectroscopic approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:542-8. [PMID: 17209605 DOI: 10.1021/la062169h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Charge-transfer interaction, as a reversible and rapid phenomenon, was evidenced by force microscopy. Pull-off forces were measured between a tip grafted with a trinitrofluorenone derivative and a surface functionalized with an electron-rich aromatic anthracene compound in a dodecane environment. The effect of the sweep time on the measured interaction forces is described, together with an extensive study of a competitive influence of free aromatic molecules in dodecane diluted solutions. These forces depend on the nature of the competitor and its concentration as well as on the velocity of tip/sample separation.
Collapse
Affiliation(s)
- Richard Gil
- Equipe Catalyse Moléculaire, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud, Bât 420, 91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
19
|
Schneider A, Vodouhê C, Richert L, Francius G, Le Guen E, Schaaf P, Voegel JC, Frisch B, Picart C. Multifunctional polyelectrolyte multilayer films: combining mechanical resistance, biodegradability, and bioactivity. Biomacromolecules 2007; 8:139-45. [PMID: 17206799 PMCID: PMC2535908 DOI: 10.1021/bm060765k] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cross-linked polyelectrolyte multilayer films (CL PEM) have an increased rigidity and are mechanically more resistant than native (e.g., uncrosslinked) films. However, they are still biodegradable, which make them interesting candidates for biomedical applications. In this study, CL PEM films have been explored for their multifunctional properties as (i) mechanically resistant, (ii) biodegradable, and (iii) bioactive films. Toward this end, we investigated drug loading into CL chitosan/hyaluronan (CHI/HA) and poly(L-lysine)/hyaluronan (PLL/HA) films by simple diffusion of the drugs. Sodium diclofenac and paclitaxel were chosen as model drugs and were successfully loaded into the films. The effect of varying the number of layers in the (CHI/HA) films as well as the cross-linker concentration on diclofenac loading were studied. Diclofenac was released from the film in about 10 h. Paclitaxel was also found to diffuse within CL films. Its activity was maintained after loading in the CL films, and cellular viability could be reduced by about 55% over 3 days. Such a simple approach may be applied to other types of cross-linked films and to other drugs. These results prove that it is possible to design multifunctional multilayer films that combine mechanical resistance, biodegradability, and bioactivity properties into a single PEM architecture.
Collapse
Affiliation(s)
- Aurore Schneider
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
- Laboratoire de Chimie Enzymatique et Vectorisation LC01, UMR 7175 CNRS-Université Louis Pasteur, 74 route du Rhin, 67 400 Illkirch, France
| | - Constant Vodouhê
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Ludovic Richert
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Gregory Francius
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Erell Le Guen
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Pierre Schaaf
- Institut Charles Sadron, Centre National de la Recherche Scientifique, Université Louis Pasteur, 6 rue Boussingault, 67083 Strasbourg Cedex, France
| | - Jean-Claude Voegel
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Benoît Frisch
- Laboratoire de Chimie Enzymatique et Vectorisation LC01, UMR 7175 CNRS-Université Louis Pasteur, 74 route du Rhin, 67 400 Illkirch, France
| | - Catherine Picart
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| |
Collapse
|
20
|
Schneider A, Francius G, Obeid R, Schwinté P, Hemmerlé J, Frisch B, Schaaf P, Voegel JC, Senger B, Picart C. Polyelectrolyte multilayers with a tunable Young's modulus: influence of film stiffness on cell adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:1193-200. [PMID: 16430283 DOI: 10.1021/la0521802] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mechanical properties of model and natural gels have recently been demonstrated to play an important role in various cellular processes such as adhesion, proliferation, and differentiation, besides events triggered by chemical ligands. Understanding the biomaterial/cell interface is particularly important in many tissue engineering applications and in implant surgery. One of the final goals would be to control cellular processes precisely at the biomaterial surface and to guide tissue regeneration. In this work, we investigate the substrate mechanical effect on cell adhesion for thin polyelectrolyte multilayer (PEM) films, which can be easily deposited on any type of material. The films were cross linked by means of a water-soluble carbodiimide (EDC), and the film elastic modulus was determined using the AFM nanoindentation technique with a colloidal probe. The Young's modulus could be varied over 2 orders of magnitude (from 3 to 400 kPa) for wet poly(L-lysine)/hyaluronan (PLL/HA) films by changing the EDC concentration. The chemical changes upon cross linking were characterized by means of Fourier transform infrared spectroscopy (FTIR). We demonstrated that the adhesion and spreading of human chondrosarcoma cells directly depend on the Young's modulus. These data indicate that, besides the chemical properties of the polyelectrolytes, the substrate mechanics of PEM films is an important parameter influencing cell adhesion and that PEM offer a new way to prepare thin films of tunable mechanical properties with large potential biomedical applications including drug release.
Collapse
Affiliation(s)
- Aurore Schneider
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire, Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Francius G, Hemmerlé J, Ohayon J, Schaaf P, Voegel JC, Picart C, Senger B. Effect of crosslinking on the elasticity of polyelectrolyte multilayer films measured by colloidal probe AFM. Microsc Res Tech 2006; 69:84-92. [PMID: 16456840 DOI: 10.1002/jemt.20275] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A homemade colloidal probe atomic force microscope was used to perform nanoindentation with a spherical probe of 5 microm in diameter, at different approach velocities in order to extract the Young's modulus, E0, of poly(L-lysine)/hyaluronan (PLL/HA) films. This parameter is of prime importance to control cellular adhesion. The films were either kept in their native form or cross-linked with a mixture of 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC) and N-hydrosulfosuccinimide (sulfo-NHS), where the EDC concentration was varied from 1 up to 100 mg mL(-1) (approximately from 5 to 500 mM). A model based on Hertz mechanics was used to account for the interactions between film and probe. It is shown that the Young's modulus varies with the approach velocity for the native (PLL/HA) films, whereas for cross-linked ones, E0 is independent from the velocity over the whole range investigated. It is found that for native films, E0 takes a value of 3 kPa at low approach velocities, a velocity domain that should be relevant in cellular adhesion processes. The Young's modulus increases with the EDC concentration used to cross-link the films and levels off at a value of about 400 kPa for EDC concentrations exceeding 40 mg mL(-1). Thus, it is possible by crosslinking PLL/HA films to control their elastic properties with the aim to alter their behavior as to the cellular adhesion.
Collapse
Affiliation(s)
- Grégory Francius
- Institut National de la Santé et de la Recherche Médicale, Unité 595, Faculté de Chirurgie Dentaire,Université Louis Pasteur, 67085 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Boukari A, Francius G, Hemmerlé J. AFM force spectroscopy of the fibrinogen adsorption process onto dental implants. J Biomed Mater Res A 2006; 78:466-72. [PMID: 16721792 DOI: 10.1002/jbm.a.30778] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein binding to implants is governed by the physicochemical properties of the biomaterial surface. The adhesion of a protein onto a solid surface is nonspecific. The aim of this study was to assess the adsorption process of fibrinogen at two different dental implants. The first biomaterial has a sand-blasted titanium surface, whereas the second one is covered by a calcium phosphate coating. After scanning electron microscopy and atomic force microscopy characterization of the implant surfaces, force spectroscopy has been used to determine the unbinding force of fibrinogen adsorbed at the two different substrates. Force-measurement findings indicate that the detachment force of fibrinogen adsorbed onto both surfaces varies as a function of the interaction time. The mean strength of the unbinding forces increases with the interaction time (100 and 1,000 ms, respectively). However, experimental data suggest that fibrinogen fixes to the two studied biomaterials by different mechanisms. Moreover, it appears that, after an interaction time of 1,000 ms, the detachment force of the adsorbed protein is quite larger for the titanium surface than for the calcium phosphate coating.
Collapse
Affiliation(s)
- Abdessamad Boukari
- Faculté de Chirurgie Dentaire, Université Louis Pasteur, 1 place de l'hôpital, 67000 Strasbourg, France
| | | | | |
Collapse
|
23
|
Santore MM, Wertz CF. Protein spreading kinetics at liquid-solid interfaces via an adsorption probe method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:10172-8. [PMID: 16229542 DOI: 10.1021/la051059s] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report the areal growth kinetics of fibrinogen adsorbed on model hydrophobic and hydrophilic surfaces measured via an adsorption probe method. This approach exploits the adsorption of probe molecules to determine the evolution of fibrinogen test molecules under conditions where the fibrinogen test molecules adsorb at relatively dilute surface conditions, minimizing interactions between them. It is found that fibrinogen test molecules spread from an average initial footprint of 100 nm2 to a final footprint near 500 nm2 per molecule on the hydrophobic surface, with a single-exponential decay of 1735 s. On a hydrophilic monolayer, the area increases from 100 to 160 nm2 with a characteristic time of 6740 s. These results demonstrate the power of the adsorption probe approach and comprise the first measurements of the averaged area relaxations of adsorbed proteins. The observation of single-exponential dynamics is remarkable, given the extensive relaxation on the hydrophobic surface, which must involve fibrinogen denaturing.
Collapse
Affiliation(s)
- Maria M Santore
- Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
24
|
Xu LC, Vadillo-Rodriguez V, Logan BE. Residence time, loading force, pH, and ionic strength affect adhesion forces between colloids and biopolymer-coated surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7491-500. [PMID: 16042484 DOI: 10.1021/la0509091] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exopolymers are thought to influence bacterial adhesion to surfaces, but the time-dependent nature of molecular-scale interactions of biopolymers with a surface are poorly understood. In this study, the adhesion forces between two proteins and a polysaccharide [Bovine serum albumin (BSA), lysozyme, or dextran] and colloids (uncoated or BSA-coated carboxylated latex microspheres) were analyzed using colloid probe atomic force microscopy (AFM). Increasing the residence time of an uncoated or BSA-coated microsphere on a surface consistently increased the adhesion force measured during retraction of the colloid from the surface, demonstrating the important contribution of polymer rearrangement to increased adhesion force. Increasing the force applied on the colloid (loading force) also increased the adhesion force. For example, at a lower loading force of approximately 0.6 nN there was little adhesion (less than -0.47 nN) measured between a microsphere and the BSA surface for an exposure time up to 10 s. Increasing the loading force to 5.4 nN increased the adhesion force to -4.1 nN for an uncoated microsphere to a BSA surface and to as much as -7.5 nN for a BSA-coated microsphere to a BSA-coated glass surface for a residence time of 10 s. Adhesion forces between colloids and biopolymer surfaces decreased inversely with pH over a pH range of 4.5-10.6, suggesting that hydrogen bonding and a reduction of electrostatic repulsion were dominant mechanisms of adhesion in lower pH solutions. Larger adhesion forces were observed at low (1 mM) versus high ionic strength (100 mM), consistent with previous AFM findings. These results show the importance of polymers for colloid adhesion to surfaces by demonstrating that adhesion forces increase with applied force and detention time, and that changes in the adhesion forces reflect changes in solution chemistry.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
25
|
Kent MS, Yim H, Sasaki DY, Satija S, Seo YS, Majewski J. Adsorption of myoglobin to Cu(II)-IDA and Ni(II)-IDA functionalized langmuir monolayers: study of the protein layer structure during the adsorption process by neutron and X-ray reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:6815-24. [PMID: 16008391 DOI: 10.1021/la047433q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The structure and orientation of adsorbed myoglobin as directed by metal-histidine complexation at the liquid-film interface was studied as a function of time using neutron and X-ray reflectivity (NR and XR, respectively). In this system, adsorption is due to the interaction between iminodiacetate (IDA)-chelated divalent metal ions Ni(II) and Cu(II) and histidine moieties at the outer surface of the protein. Adsorption was examined under conditions of constant area per lipid molecule at an initial pressure of 40 mN/m. Adsorption occurred over a time period of about 15 h, allowing detailed characterization of the layer structure throughout the process. The layer thickness and the in-plane averaged segment volume fraction were obtained at roughly 40 min intervals by NR. The binding constant of histidine with Cu(II)-IDA is known to be about four times greater than that of histidine with Ni(II)-IDA. The difference in interaction energy led to significant differences in the structure of the adsorbed layer. For Cu(II)-IDA, the thickness of the adsorbed layer at low protein coverage was < or = 20 A and the thickness increased almost linearly with increasing coverage to 42 A. For Ni(II)-IDA, the thickness at low coverage was approximately 38 A and increased gradually with coverage to 47 A. The in-plane averaged segment volume fraction of the adsorbed layer independently confirmed a thinner layer at low coverage for Cu(II)-IDA. These structural differences at the early stages are discussed in terms of either different preferred orientations for isolated chains in the two cases or more extensive conformational changes upon adsorption in the case of Cu(II)-IDA. Subphase dilution experiments provided additional insight, indicating that the adsorbed layer was not in equilibrium with the bulk solution even at low coverages for both IDA-chelated metal ions. We conclude that the weight of the evidence favors the interpretation based on more extensive conformational changes upon adsorption to Cu(II)-IDA.
Collapse
Affiliation(s)
- M S Kent
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lin Y, Wang J, Wan LJ, Fang XH. Study of fibrinogen adsorption on self-assembled monolayers on Au(111) by atomic force microscopy. Ultramicroscopy 2005; 105:129-36. [PMID: 16095837 DOI: 10.1016/j.ultramic.2005.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Revised: 04/13/2005] [Indexed: 11/16/2022]
Abstract
The adsorption of plasma protein fibrinogen on the self-assembled monolayers (SAMs) of n-hexadecyl mercaptan and citrate was investigated with atomic force microscopy (AFM). On the basis of the preparation of these two flat SAMs on Au(111), high-resolution AFM images of bovine fibrinogen were obtained with different protein concentrations. The results indicated that the surface chemical composition significantly affected the adsorption behavior of fibrinogen. Since fibrinogen plays a key role in the regulation of both haemostasis and thrombosis, high-resolution AFM imaging on SAMs is expected to be an effective approach to study the haemocompatibility of materials with different surface chemistry.
Collapse
Affiliation(s)
- Yi Lin
- Center of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
27
|
Tunc S, Maitz MF, Steiner G, Vázquez L, Pham MT, Salzer R. In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids Surf B Biointerfaces 2005; 42:219-25. [PMID: 15893222 DOI: 10.1016/j.colsurfb.2005.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Fibrinogen is a major plasma protein. Previous investigations of structural changes of fibrinogen due to adsorption are mostly based on indirect evidence after its desorption, whereas our measurements were performed on fibrinogen in its adsorbed state. Specific enzyme-linked immunosorption experiments showed that the amount of adsorbed fibrinogen increased as the surface became more hydrophobic. Atomic force microscopy (AFM) investigations revealed the trinodular shape of fibrinogen molecules adsorbed on hydrophilic surfaces, whereas all of the molecules appeared globular on hydrophobic surfaces. The distribution of secondary structures in adsorbed fibrinogen was quantified by in situ Fourier-transform infrared (FTIR) analysis. Substrates of identical chemical bulk composition but different surface hydrophobicity permit direct comparison among them. Adsorption properties of fibrinogen are different for each degree of hydrophobicity. Although there is some increase of turn structure and decrease of beta-sheet structure, the secondary structure of adsorbed fibrinogen on hydrophilic surface turned out to be rather similar to that of the protein in solution phase with a major alpha-helix content. Hydrophilic surfaces exhibit superior blood compatibility as required for medical applications.
Collapse
Affiliation(s)
- Sibel Tunc
- Institute of Analytical Chemistry, Dresden University of Technology, 01062 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Brayshaw DJ, Berry M, McMaster TJ. Molecular adsorption: early stage surface exploration. Ultramicroscopy 2004; 100:145-51. [PMID: 15231304 DOI: 10.1016/j.ultramic.2003.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 11/03/2003] [Accepted: 11/18/2003] [Indexed: 12/01/2022]
Abstract
In this study, the atomic force microscope has been employed in force spectroscopy mode to gain information on the interaction between long mucin molecules and a positively charged surface during the first few seconds of interaction. Recent studies have revealed that negatively charged mucin molecules introduced to a positively charged surface are kinetically trapped and bind very rapidly, assuming non-equilibrium conformations. This systematic study of surface dwell times has revealed that significant differences exist in mucin adsorption during the first three seconds of introduction to the surface and provides direct evidence of molecular rearrangement for several seconds before trapping occurs. Limited interactions were recorded at dwell times of less than one second, with increased molecular rearrangement observed between 1.5 and 2.25 s. Increasing the surface dwell time beyond this critical limit caused rupture of the tip-tethered mucin molecules during the retract cycle of the cantilever. All subsequent recorded events, at increased dwell times up to 3s, revealed events at much reduced distances from the point of contact between the mucin functionalised-cantilever and the positively charged surface.
Collapse
Affiliation(s)
- Debra J Brayshaw
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| | | | | |
Collapse
|
29
|
Affiliation(s)
- S M Altmann
- European Molecular Biology Laboratory, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
30
|
|
31
|
Berry M, McMaster TJ, Corfield AP, Miles MJ. Exploring the molecular adhesion of ocular mucins. Biomacromolecules 2003; 2:498-503. [PMID: 11749212 DOI: 10.1021/bm000145y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mucins have been ascribed both pro- and anti-adhesive functions. To clarify how both functions can be embodied in the same molecule we studied the interaction of human ocular mucins with mica and with mucins deposited on mica. Adhesion energy and forces of interaction were evaluated as a function of speed of approach, dwell time at maximum extension, and presence of divalent cations in the imaging buffer. Mucins were tethered to an AFM gold-coated tip. Repeated cycles of approach and retract to mica revealed a large number of adhesions in each cycle. Adhesion energy (0.2-48 aJ) and detachment forces (0.1-4 nN) increased with the addition of Ni(II) ions, and with lengthening dwell time. Speed of approach made little difference to the interactions. Most detachments occurred less than 40 nm from the surface. Inter-detachment distances reflected the major periodicities of the mica basal plane. Short distances of interaction, magnitude of detachment forces, and imaging of mucins on SAM all suggest deformable compact mucin aggregates on the AFM tip. Inter-detachment distances suggest a large degree of interpenetration between neighboring molecules. Tip-tethered mucins did not adhere to mucins deposited on mica. This phenomenon is analogous with the nonadherence of the mucin gels on lids and on cornea during blinking.
Collapse
Affiliation(s)
- M Berry
- Mucin Research Group, Bristol Eye Hospital, University of Bristol, Bristol, BS1 2LX, U.K.
| | | | | | | |
Collapse
|
32
|
Conti M, Donati G, Cianciolo G, Stefoni S, Samorì B. Force spectroscopy study of the adhesion of plasma proteins to the surface of a dialysis membrane: role of the nanoscale surface hydrophobicity and topography. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 61:370-9. [PMID: 12115462 DOI: 10.1002/jbm.10168] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A mechanochemical study of the process of adhesion of plasma proteins to the surface of dialysis membranes was carried out with a scanning force microscope (SFM) in the force spectroscopy mode. Three representative blood plasma proteins (fibronectin, fibrinogen, and albumin) covalently were grafted to a SFM probe, and the adhesion forces of these proteins to cellulosic and synthetic dialysis membranes were measured. The experiment was tailored to apply a controlled load on the protein molecules adsorbed onto the surface in order to simulate the squeezing forces exerted on them during blood filtration. The de-adhesion forces, measured using this new approach for studying the interaction between a protein and dialysis membranes, suggest that the membrane's topography, at a nanometer scale, plays a critical role in the adhesion process. This result was strongly supported by parallel experiments performed on a flattened glass surface with the same dominant hydrophilic character as dialysis membranes. In contrast, a hydrophobic polystyrene surface led to de-adhesion forces at least one order of magnitude greater, overwhelming any possible shape recognition process between the protein molecules and the surface.
Collapse
Affiliation(s)
- Matteo Conti
- Dipartimento di Biochimica, Università di Bologna, Via Irnerio 48, Italy
| | | | | | | | | |
Collapse
|
33
|
Gergely C, Hemmerlé J, Schaaf P, Hörber JKH, Voegel JC, Senger B. Multi-bead-and-spring model to interpret protein detachment studied by AFM force spectroscopy. Biophys J 2002; 83:706-22. [PMID: 12124258 PMCID: PMC1302180 DOI: 10.1016/s0006-3495(02)75202-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This article deals with the detachment of molecules (fibrinogen) from a surface studied experimentally with an atomic force microscope. The detachment (or rupture) forces are measured as a function of the retraction velocity and exhibit a clear dependence on this parameter, even though the interaction between the molecules and the surface are nonspecific. To interpret these data, a mechanical multi-bead-and-spring model is developed. It consists of one to several parallel, "molecular" springs connected to an extra spring representing the cantilever that is moved at constant velocity. The free end of each molecular spring terminates with a particle that interacts with the surface through a Lennard-Jones potential. This Brownian dynamics model is used to analyze the experimental findings. In the framework of this model, it appears that the fibrinogen molecule must be ascribed a stiffness much smaller than that of the cantilever. In addition, several bonds between the molecule and the surface must be taken into account for the range of the molecule-surface interaction not to be unrealistically small. In future work, this model will be extended to more complex mechanisms such as the detachment of cells from a surface.
Collapse
Affiliation(s)
- Csilla Gergely
- Institut National de la Santé et de la Recherche Médicale, Unité 424, UFR d'Odontologie, Université Louis Pasteur, 67085 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
34
|
Pierres A, Touchard D, Benoliel AM, Bongrand P. Dissecting streptavidin-biotin interaction with a laminar flow chamber. Biophys J 2002; 82:3214-23. [PMID: 12023246 PMCID: PMC1302111 DOI: 10.1016/s0006-3495(02)75664-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A laminar flow chamber was used to study single molecule interactions between biotinylated surfaces and streptavidin-coated spheres subjected to a hydrodynamic drag lower than a piconewton. Spheres were tracked with 20 ms and 40 nm resolution. They displayed multiple arrests lasting between a few tens of milliseconds and several minutes or more. Analysis of about 500,000 positions revealed that streptavidin-biotin interaction was multiphasic: transient bound states displayed a rupture frequency of 5.3 s(-1) and a rate of transition toward a more stable configuration of 1.3 s(-1). These parameters did not display any significant change when the force exerted on bonds varied between 3.5 and 11 pN. However, the apparent rate of streptavidin-biotin association exhibited about 10-fold decrease when the wall shear rate was increased from 7 to 22 s(-1), which supports the existence of an energy barrier opposing the formation of the transient binding state. It is concluded that a laminar flow chamber can yield new and useful information on the formation of molecular bonds, and especially on the structure of the external part of the energy landscape of ligand-receptor complexes.
Collapse
Affiliation(s)
- Anne Pierres
- Laboratoire d'Immunologie, INSERM U 387, Hôpital Ste-Marguerite, BP 29, 13274 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
35
|
Ladam G, Gergely C, Senger B, Decher G, Voegel JC, Schaaf P, Cuisinier FJ. Protein interactions with polyelectrolyte multilayers: interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers. Biomacromolecules 2002; 1:674-87. [PMID: 11710198 DOI: 10.1021/bm005572q] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interactions between polystyrenesulfonate (PSS)/polyallylamine (PAH) multilayers with human serum albumin (HSA) were investigated by means of scanning angle reflectometry (SAR). We find that albumin adsorbs both on multilayers terminating with PSS (negatively charged) or PAH (positively charged) polyelectrolytes. On films terminating with PSS only, an albumin equivalent monolayer is found whereas when PAH constitutes the outer layer, albumin interacts with the multilayer in such a way as to form a protein film that extends over thicknesses that can be as high as four times the largest dimension of the native albumin molecule. Once the protein film is formed, it is found that when the albumin solution is replaced by a pure buffer solution of same ionic strength as the adsorption solution almost no desorption takes place. On the other hand, when a buffer solution of higher ionic strength is brought in contact with the albumin film, a significant amount of adsorbed proteins is released. One also observes that, for albumin solutions of a given protein concentration, the adsorbed protein amount depends on the ionic strength of the adsorption solution. On surfaces terminating with PAH, the adsorbed protein amount first increases rapidly but passes through a maximum and decreases with the ionic strength. The ionic strength corresponding to the maximum of the adsorbed albumin amount itself depends on the albumin concentration. On the other hand, on films terminating with PSS the adsorbed amount increases with the salt concentration before leveling-off. These results show that the underlying complexity of concentration and pH dependent adsorption/desorption equilibria often simply termed "protein adsorption" is the result of antagonist competing interactions that are mainly of electrostatic origin. We also propose two microscopic models, that are compatible with our experimental observations.
Collapse
Affiliation(s)
- G Ladam
- Institut Charles Sadron (CNRS-ULP), 6, rue Boussingault, 67083 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Gergely C, Senger B, Voegel JC, Hörber JK, Schaaf P, Hemmerlé J. Semi-automatized processing of AFM force-spectroscopy data. Ultramicroscopy 2001; 87:67-78. [PMID: 11310543 DOI: 10.1016/s0304-3991(00)00063-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atomic force microscopy operated in the force-spectroscopy mode is now a widespread technique, often used to investigate ligand-receptor interactions with the goal of measuring forces at the individual molecule level. However, in an experiment, the simultaneous interaction of several ligand/receptor pairs cannot be excluded. This may produce complicated force curves, although unambiguous ruptures are sometimes observed. In the case of the non-specific adhesion of molecules, such as fibrinogen, to a surface, it is usually difficult to identify the real events on the force curves. This can render the application of fixed rules uneasy and in addition can introduce some degree of arbitrariness if the analysis has to be performed by hand. In the present paper a computer algorithm, aimed at speeding up the processing, and at applying selection rules in a reproducible manner, is proposed. It is applied to force recordings performed at various retraction velocities, thus various loading rates. The influence on the evaluation of the rupture forces of the different parameters that can be set by the operator is discussed.
Collapse
Affiliation(s)
- C Gergely
- Institut National de la Santé et de la Recherche Médicale, Unité 424, Fédération de Recherches Odontoloqie, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
37
|
Clausen-Schaumann H, Seitz M, Krautbauer R, Gaub HE. Force spectroscopy with single bio-molecules. Curr Opin Chem Biol 2000; 4:524-30. [PMID: 11006539 DOI: 10.1016/s1367-5931(00)00126-5] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
For many biological molecules, force is an important functional and structural parameter. With the rapidly growing knowledge about the relation between structure, function, and force, single-molecule force spectroscopy has become a versatile analytical tool for the structural and functional investigation of single bio-molecules in their native environments. Within the past year, detailed insights into binding potentials of receptor ligand pairs, protein folding pathways, molecular motors, DNA mechanics and the functioning of DNA-binding agents (such as proteins and drugs), as well as the function of molecular motors, have been obtained.
Collapse
Affiliation(s)
- H Clausen-Schaumann
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Amalienstrasse 54, D-80799 München, Germany
| | | | | | | |
Collapse
|
38
|
Gergely C, Voegel J, Schaaf P, Senger B, Maaloum M, Hörber JK, Hemmerlé J. Unbinding process of adsorbed proteins under external stress studied by atomic force microscopy spectroscopy. Proc Natl Acad Sci U S A 2000; 97:10802-7. [PMID: 10984503 PMCID: PMC27104 DOI: 10.1073/pnas.180293097] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the study of the dynamics of the unbinding process under a force load f of adsorbed proteins (fibrinogen) on a solid surface (hydrophilic silica) by means of atomic force microscopy spectroscopy. By varying the loading rate r(f), defined by f = r(f) t, t being the time, we find that, as for specific interactions, the mean rupture force increases with r(f). This unbinding process is analyzed in the framework of the widely used Bell model. The typical dissociation rate at zero force entering in the model lies between 0. 02 and 0.6 s(-1). Each measured rupture is characterized by a force f(0), which appears to be quantized in integer multiples of 180-200 pN.
Collapse
Affiliation(s)
- C Gergely
- Institut National de la Santé et de la Recherche Médicale, Unité 424, Fédération de Recherche "Odontologie," Université Louis Pasteur, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|