1
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Wang L, Qian J, Yang Y, Gu C. Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). Int J Oncol 2021; 59:73. [PMID: 34368858 PMCID: PMC8360622 DOI: 10.3892/ijo.2021.5253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) system serves an important role in the regulation of protein stability and function. SUMOylation sustains the homeostatic equilibrium of protein function in normal tissues and numerous types of tumor. Accumulating evidence has revealed that SUMO enzymes participate in carcinogenesis via a series of complex cellular or extracellular processes. The present review outlines the physiological characteristics of the SUMOylation pathway and provides examples of SUMOylation participation in different cancer types, including in hematological malignancies (leukemia, lymphoma and myeloma). It has been indicated that the SUMO pathway may influence chromosomal instability, cell cycle progression, apoptosis and chemical drug resistance. The present review also discussed the possible relationship between SUMOylation and carcinogenic mechanisms, and evaluated their potential as biomarkers and therapeutic targets in the diagnosis and treatment of hematological malignancies. Developing and investigating inhibitors of SUMO conjugation in the future may offer promising potential as novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Jinjun Qian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China
| |
Collapse
|
3
|
Reichman R, Shi Z, Malone R, Smolikove S. Mitotic and Meiotic Functions for the SUMOylation Pathway in the Caenorhabditis elegans Germline. Genetics 2018; 208:1421-1441. [PMID: 29472245 PMCID: PMC5887140 DOI: 10.1534/genetics.118.300787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Meiosis is a highly regulated process, partly due to the need to break and then repair DNA as part of the meiotic program. Post-translational modifications are widely used during meiotic events to regulate steps such as protein complex formation, checkpoint activation, and protein attenuation. In this paper, we investigate how proteins that are obligatory components of the SUMO (small ubiquitin-like modifier) pathway, one such post-translational modification, affect the Caenorhabditis elegans germline. We show that UBC-9, the E2 conjugation enzyme, and the C. elegans homolog of SUMO, SMO-1, localize to germline nuclei throughout prophase I. Mutant analysis of smo-1 and ubc-9 revealed increased recombination intermediates throughout the germline, originating during the mitotic divisions. SUMOylation mutants also showed late meiotic defects including defects in the restructuring of oocyte bivalents and endomitotic oocytes. Increased rates of noninterfering crossovers were observed in ubc-9 heterozygotes, even though interfering crossovers were unaffected. We have also identified a physical interaction between UBC-9 and DNA repair protein MRE-11 ubc-9 and mre-11 null mutants exhibited similar phenotypes at germline mitotic nuclei and were synthetically sick. These phenotypes and genetic interactions were specific to MRE-11 null mutants as opposed to RAD-50 or resection-defective MRE-11 We propose that the SUMOylation pathway acts redundantly with MRE-11, and in this process MRE-11 likely plays a structural role.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Zhuoyue Shi
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Robert Malone
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
4
|
Xiong Y, Ye C, Yang N, Li M, Liu H. Ubc9 Binds to ADAP and Is Required for Rap1 Membrane Recruitment, Rac1 Activation, and Integrin-Mediated T Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2017; 199:4142-4154. [PMID: 29127148 DOI: 10.4049/jimmunol.1700572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
Although the immune adaptor adhesion and degranulation-promoting adaptor protein (ADAP) acts as a key mediator of integrin inside-out signaling leading to T cell adhesion, the regulation of this adaptor during integrin activation and clustering remains unclear. We now identify Ubc9, the sole small ubiquitin-related modifier E2 conjugase, as an essential regulator of ADAP where it is required for TCR-induced membrane recruitment of the small GTPase Rap1 and its effector protein RapL and for activation of the small GTPase Rac1 in T cell adhesion. We show that Ubc9 interacted directly with ADAP in vitro and in vivo, and the association was increased in response to anti-CD3 stimulation. The Ubc9-binding domain on ADAP was mapped to a nuclear localization sequence (aa 674-700) within ADAP. Knockdown of Ubc9 by short hairpin RNA or expression of the Ubc9-binding-deficient ADAP mutant significantly decreased TCR-induced integrin adhesion to ICAM-1 and fibronectin, as well as LFA-1 clustering, although it had little effect on the TCR proximal signaling responses and TCR-induced IL-2 transcription. Furthermore, downregulation of Ubc9 impaired TCR-mediated Rac1 activation and attenuated the membrane targeting of Rap1 and RapL, but not Rap1-interacting adaptor molecule. Taken together, our data demonstrate for the first time, to our knowledge, that Ubc9 acts as a functional binding partner of ADAP and plays a selective role in integrin-mediated T cell adhesion via modulation of Rap1-RapL membrane recruitment and Rac1 activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Chengjin Ye
- Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Madanqi Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and .,Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
5
|
Abstract
Background Dysregulated DNA repair and cell proliferation controls are essential driving forces in mammary tumorigenesis. BCCIP was originally identified as a BRCA2 and CDKN1A interacting protein that has been implicated in maintenance of genomic stability, cell cycle regulation, and microtubule dynamics. The aims of this study were to determine whether BCCIP deficiency contributes to mammary tumorigenesis, especially for a subset of breast cancers with 53BP1 abnormality, and to reveal the mechanistic implications of BCCIP in breast cancer interventions. Methods We analyzed the BCCIP protein level in 470 cases of human breast cancer to determine the associations between BCCIP and 53BP1, p53, and subtypes of breast cancer. We further constructed a unique BCCIP knockdown mouse model to determine whether a partial BCCIP deficiency leads to spontaneous breast cancer formation. Results We found that the BCCIP protein level is downregulated in 49% of triple-negative breast cancer and 25% of nontriple-negative breast cancer. The downregulation of BCCIP is mutually exclusive with p53 mutations but concurrent with 53BP1 loss in triple-negative breast cancer. In a K14-Cre-mediated conditional BCCIP knockdown mouse model, we found that BCCIP downregulation causes a formation of benign modules in the mammary glands, resembling the epidermal inclusion cyst of the breast. However, the majority of these benign lesions remain indolent, and only ~ 10% of them evolve into malignant tumors after a long latency. This tumor progression is associated with a loss of 53BP1 and p16 expression. BCCIP knockdown did not alter the latency of mammary tumor formation induced by conditional Trp53 deletion. Conclusions Our data suggest a confounding role of BCCIP deficiency in modulating breast cancer development by enhancing tumor initiation but hindering progression. Furthermore, secondary genetic alternations may overcome the progression suppression imposed by BCCIP deficiency through a synthetic viability mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0907-5) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
7
|
Rasighaemi P, Ward AC. ETV6 and ETV7: Siblings in hematopoiesis and its disruption in disease. Crit Rev Oncol Hematol 2017; 116:106-115. [PMID: 28693791 DOI: 10.1016/j.critrevonc.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 01/07/2023] Open
Abstract
ETV6 (TEL1) and ETV7 (TEL2) are closely-related members of the ETS family of transcriptional regulators. Both ETV6 and ETV7 have been demonstrated to play key roles in hematopoiesis, particularly with regard to maintenance of hematopoietic stem cells and control of lineage-specific differentiation, with evidence of functional interactions between both proteins. ETV6 has been strongly implicated in the molecular etiology of a number of hematopoietic diseases, including as a tumor suppressor, an oncogenic fusion partner, and an important regulator of thrombopoiesis, but recent evidence has also identified ETV7 as a potential oncogene in certain malignancies. This review provides an overview of ETV6 and ETV7 and their contribution to both normal and disrupted hematopoiesis. It also highlights the key clinical implications of the growing knowledge base regarding ETV6 abnormalities with respect to prognosis and treatment.
Collapse
Affiliation(s)
- Parisa Rasighaemi
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, 3216, Australia.
| | - Alister C Ward
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, 3216, Australia.
| |
Collapse
|
8
|
Poggi M, Canault M, Favier M, Turro E, Saultier P, Ghalloussi D, Baccini V, Vidal L, Mezzapesa A, Chelghoum N, Mohand-Oumoussa B, Falaise C, Favier R, Ouwehand WH, Fiore M, Peiretti F, Morange PE, Saut N, Bernot D, Greinacher A, BioResource N, Nurden AT, Nurden P, Freson K, Trégouët DA, Raslova H, Alessi MC. Germline variants in ETV6 underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34+ progenitors. Haematologica 2017; 102:282-294. [PMID: 27663637 PMCID: PMC5286936 DOI: 10.3324/haematol.2016.147694] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022] Open
Abstract
Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, have recently been reported to be responsible for inherited thrombocytopenia and hematologic malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive activity of all tested ETV6 variants, and variants located in the E26 transformation-specific binding domain (encoding p.A377T, p.Y401N) led to reduced binding to corepressors. We also observed a large expansion of megakaryocyte colony-forming units derived from variant carriers and reduced proplatelet formation with abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control CD34+ cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. Reduced expression levels of key regulators of the actin cytoskeleton CDC42 and RHOA were measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet shape with a highly heterogeneous size, decreased platelet arachidonic response, and spreading and retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34+ cells were found in p.P214L and p.Y401N carriers, and two patients from different families suffered from refractory anemia with excess blasts, while one patient from a third family was successfully treated for acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of cytoskeletal regulatory gene expression during platelet production, and the impact of variants resulting in platelets with altered size, shape and function and potentially also in changes in circulating progenitor levels.
Collapse
Affiliation(s)
- Marjorie Poggi
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | | | - Marie Favier
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
- Inserm U1170, Gustave Roussy, University Paris Sud, Equipe labellisée Ligue contre le Cancer 94805 Villejuif, France
| | - Ernest Turro
- Department of Haematology and National Health Service Blood & Transplant, Cambridge University, UK
- MRC Biostatistics Unit, Cambridge, UK
| | - Paul Saultier
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | | | | | - Lea Vidal
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Anna Mezzapesa
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Nadjim Chelghoum
- Post-Genomic Platform of Pitié-Salpêtrière (P3S), Pierre and Marie Curie University, F-75013 Paris, France
| | - Badreddine Mohand-Oumoussa
- Post-Genomic Platform of Pitié-Salpêtrière (P3S), Pierre and Marie Curie University, F-75013 Paris, France
| | - Céline Falaise
- French Reference-Center on Inherited Platelet Disorders, Marseille, France
| | - Rémi Favier
- Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Willem H Ouwehand
- Department of Haematology and National Health Service Blood & Transplant, Cambridge University, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Mathieu Fiore
- French Reference-Center on Inherited Platelet Disorders, Marseille, France
- Laboratoire d'hématologie, CHU de Bordeaux, Pessac, France
| | | | - Pierre Emmanuel Morange
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
- French Reference-Center on Inherited Platelet Disorders, Marseille, France
| | - Noémie Saut
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
- French Reference-Center on Inherited Platelet Disorders, Marseille, France
| | - Denis Bernot
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Germany
| | - Nihr BioResource
- NIHR BioResource - Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Alan T Nurden
- LIRYC, Plateforme Technologique et d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| | - Paquita Nurden
- French Reference-Center on Inherited Platelet Disorders, Marseille, France
- LIRYC, Plateforme Technologique et d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Belgium
| | - David-Alexandre Trégouët
- ICAN Institute of Cardiometabolism and Nutrition, F-75013 Paris, France
- Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, F-75013 Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, F-75013 Paris, France
| | - Hana Raslova
- Inserm U1170, Gustave Roussy, University Paris Sud, Equipe labellisée Ligue contre le Cancer 94805 Villejuif, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
- French Reference-Center on Inherited Platelet Disorders, Marseille, France
| |
Collapse
|
9
|
Abstract
Covalent linkage to members of the small ubiquitin-like (SUMO) family of proteins is an important mechanism by which the functions of many cellular proteins are regulated. Sumoylation has roles in the control of protein stability, activity and localization, and is involved in the regulation of transcription, gene expression, chromatin structure, nuclear transport and RNA metabolism. Sumoylation is also linked, both positively and negatively, with the replication of many different viruses both in terms of modification of viral proteins and modulation of sumoylated cellular proteins that influence the efficiency of infection. One prominent example of the latter is the widespread reduction in the levels of cellular sumoylated species induced by herpes simplex virus type 1 (HSV-1) ubiquitin ligase ICP0. This activity correlates with relief from intrinsic immunity antiviral defence mechanisms. Previous work has shown that ICP0 is selective in substrate choice, with some sumoylated proteins such the promyelocytic leukemia protein PML being extremely sensitive, while RanGAP is completely resistant. Here we present a comprehensive proteomic analysis of changes in the cellular SUMO2 proteome during HSV-1 infection. Amongst the 877 potentially sumoylated species detected, we identified 124 whose abundance was decreased by a factor of 3 or more by the virus, several of which were validated by western blot and expression analysis. We found many previously undescribed substrates of ICP0 whose degradation occurs by a range of mechanisms, influenced or not by sumoylation and/or the SUMO2 interaction motif within ICP0. Many of these proteins are known or are predicted to be involved in the regulation of transcription, chromatin assembly or modification. These results present novel insights into mechanisms and host cell proteins that might influence the efficiency of HSV-1 infection. Proteins are subject to many types of modification that regulate their functions and which are applied after their initial synthesis in the cell. One such modification is known as sumoylation, the covalent linkage of a small ubiquitin-like protein to a wide variety of substrate proteins. Sumoylation is involved in the regulation of many cellular pathways, including transcription, DNA repair, chromatin modification and defence to viral infections. Several viruses have connections with sumoylation, either through modification of their own proteins or in changing the sumoylation status of cellular proteins in ways that may be beneficial for infection. Herpes simplex virus type 1 (HSV-1) causes a widespread reduction in uncharacterized sumoylated cellular protein species, an effect that is caused by one of its key regulatory proteins (ICP0), which also induces the degradation of a number of repressive cellular proteins and thereby stimulates efficient infection. This study describes a comprehensive analysis of cellular proteins whose sumoylation status is altered by HSV-1 infection. Of 877 putative cellular sumoylation substrates, we found 124 whose sumoylation status reduces at least three-fold during infection. We validated the behavior of several such proteins and identified amongst them several novel targets of ICP0 activity with predicted repressive properties.
Collapse
|
10
|
mGlu5 receptors regulate synaptic sumoylation via a transient PKC-dependent diffusional trapping of Ubc9 into spines. Nat Commun 2014; 5:5113. [PMID: 25311713 DOI: 10.1038/ncomms6113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/01/2014] [Indexed: 12/27/2022] Open
Abstract
Sumoylation plays important roles in the modulation of protein function, neurotransmission and plasticity, but the mechanisms regulating this post-translational system in neurons remain largely unknown. Here we demonstrate that the synaptic diffusion of Ubc9, the sole conjugating enzyme of the sumoylation pathway, is regulated by synaptic activity. We use restricted photobleaching/photoconversion of individual hippocampal spines to measure the diffusion properties of Ubc9 and show that it is regulated through an mGlu5R-dependent signalling pathway. Increasing synaptic activity with a GABAA receptor antagonist or directly activating mGlu5R increases the synaptic residency time of Ubc9 via a Gαq/PLC/Ca(2+)/PKC cascade. This activation promotes a transient synaptic trapping of Ubc9 through a PKC phosphorylation-dependent increase of Ubc9 recognition to phosphorylated substrates and consequently leads to the modulation of synaptic sumoylation. Our data demonstrate that Ubc9 diffusion is subject to activity-dependent regulatory processes and provide a mechanism for the dynamic changes in sumoylation occurring during synaptic transmission.
Collapse
|
11
|
Findlay VJ, LaRue AC, Turner DP, Watson PM, Watson DK. Understanding the role of ETS-mediated gene regulation in complex biological processes. Adv Cancer Res 2014; 119:1-61. [PMID: 23870508 DOI: 10.1016/b978-0-12-407190-2.00001-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ets factors are members of one of the largest families of evolutionarily conserved transcription factors, regulating critical functions in normal cell homeostasis, which when perturbed contribute to tumor progression. The well-documented alterations in ETS factor expression and function during cancer progression result in pleiotropic effects manifested by the downstream effect on their target genes. Multiple ETS factors bind to the same regulatory sites present on target genes, suggesting redundant or competitive functions. The anti- and prometastatic signatures obtained by examining specific ETS regulatory networks will significantly improve our ability to accurately predict tumor progression and advance our understanding of gene regulation in cancer. Coordination of multiple ETS gene functions also mediates interactions between tumor and stromal cells and thus contributes to the cancer phenotype. As such, these new insights may provide a novel view of the ETS gene family as well as a focal point for studying the complex biological control involved in tumor progression. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such an understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection, as well as better diagnosis and staging of disease; (2) detection of minimal residual disease recurrences and evaluation of response to therapy; (3) prevention; and (4) novel treatment strategies. Increased understanding of ETS-regulated biological pathways will directly impact these areas.
Collapse
Affiliation(s)
- Victoria J Findlay
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | |
Collapse
|
12
|
Wang S, Jiao B, Geng S, Ma S, Liang Z, Lu S. Combined aberrant expression of microRNA-214 and UBC9 is an independent unfavorable prognostic factor for patients with gliomas. Med Oncol 2013; 31:767. [DOI: 10.1007/s12032-013-0767-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022]
|
13
|
Kar A, Gutierrez-Hartmann A. Molecular mechanisms of ETS transcription factor-mediated tumorigenesis. Crit Rev Biochem Mol Biol 2013; 48:522-43. [PMID: 24066765 DOI: 10.3109/10409238.2013.838202] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The E26 transformation-specific (ETS) family of transcription factors is critical for development, differentiation, proliferation and also has a role in apoptosis and tissue remodeling. Changes in expression of ETS proteins therefore have a significant impact on normal physiology of the cell. Transcriptional consequences of ETS protein deregulation by overexpression, gene fusion, and modulation by RAS/MAPK signaling are linked to alterations in normal cell functions, and lead to unlimited increased proliferation, sustained angiogenesis, invasion and metastasis. Existing data show that ETS proteins control pathways in epithelial cells as well as stromal compartments, and the crosstalk between the two is essential for normal development and cancer. In this review, we have focused on ETS factors with a known contribution in cancer development. Instead of focusing on a prototype, we address cancer associated ETS proteins and have highlighted the diverse mechanisms by which they affect carcinogenesis. Finally, we discuss strategies for ETS factor targeting as a potential means for cancer therapeutics.
Collapse
|
14
|
Uemura A, Taniguchi M, Matsuo Y, Oku M, Wakabayashi S, Yoshida H. UBC9 regulates the stability of XBP1, a key transcription factor controlling the ER stress response. Cell Struct Funct 2013; 38:67-79. [PMID: 23470653 DOI: 10.1247/csf.12026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
XBP1 is a key transcription factor regulating the mammalian endoplasmic reticulum (ER) stress response, which is a cytoprotective mechanism for dealing with an accumulation of unfolded proteins in the ER (ER stress). The expression of XBP1 is regulated by two different mechanisms: mRNA splicing and protein stability. When ER stress occurs, unspliced XBP1 mRNA is converted to mature mRNA, from which an active transcription factor, pXBP1(S), is translated and activates the transcription of ER-related genes to dispose of unfolded proteins. In the absence of ER stress, pXBP1(U) is translated from unspliced XBP1 mRNA and enhances the degradation of pXBP1(S). Here, we analyzed the regulatory mechanism of pXBP1(S) stability, and found that a SUMO-conjugase, UBC9, specifically bound to the leucine zipper motif of pXBP1(S) and increased the stability of pXBP1(S). Suppression of UBC9 expression by RNA interference reduced both the expression of pXBP1(S) and ER stress-induced transcription by pXBP1(S). Interestingly, overexpression of a UBC9 mutant deficient in SUMO-conjugating activity was able to increase pXBP1(S) expression as well as wild-type UBC9, indicating that UBC9 stabilizes pXBP1(S) without conjugating SUMO moieties. From these observations, we concluded that UBC9 is a novel regulator of the mammalian ER stress response.
Collapse
Affiliation(s)
- Aya Uemura
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Cho KI, Searle K, Webb M, Yi H, Ferreira PA. Ranbp2 haploinsufficiency mediates distinct cellular and biochemical phenotypes in brain and retinal dopaminergic and glia cells elicited by the Parkinsonian neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell Mol Life Sci 2012; 69:3511-27. [PMID: 22821000 PMCID: PMC3445802 DOI: 10.1007/s00018-012-1071-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/04/2012] [Accepted: 06/21/2012] [Indexed: 11/25/2022]
Abstract
Many components and pathways transducing multifaceted and deleterious effects of stress stimuli remain ill-defined. The Ran-binding protein 2 (RanBP2) interactome modulates the expression of a range of clinical and cell-context-dependent manifestations upon a variety of stressors. We examined the role of Ranbp2 haploinsufficiency on cellular and metabolic manifestations linked to tyrosine-hydroxylase (TH+) dopaminergic neurons and glial cells of the brain and retina upon acute challenge to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a parkinsonian neurotoxin, which models facets of Parkinson disease. MPTP led to stronger akinetic parkinsonism and slower recovery in Ranbp2+/− than wild-type mice without viability changes of brain TH+-neurons of either genotype, with the exception of transient nuclear atypia via changes in chromatin condensation of Ranbp2+/− TH+-neurons. Conversely, the number of wild-type retinal TH+-amacrine neurons compared to Ranbp2+/− underwent milder declines without apoptosis followed by stronger recoveries without neurogenesis. These phenotypes were accompanied by a stronger rise of EdU+-proliferative cells and non-proliferative gliosis of GFAP+-Müller cells in wild-type than Ranbp2+/− that outlasted the MPTP-insult. Finally, MPTP-treated wild-type and Ranbp2+/− mice present distinct metabolic footprints in the brain or selective regions thereof, such as striatum, that are supportive of RanBP2-mediated regulation of interdependent metabolic pathways of lysine, cholesterol, free-fatty acids, or their β-oxidation. These studies demonstrate contrasting gene-environment phenodeviances and roles of Ranbp2 between dopaminergic and glial cells of the brain and retina upon oxidative stress-elicited signaling and factors triggering a continuum of metabolic and cellular manifestations and proxies linked to oxidative stress, and chorioretinal and neurological disorders such as Parkinson.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Kelly Searle
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, 21205 MD
| | - Mason Webb
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Haiqing Yi
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC 27710 USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
16
|
Wilson VG. Sumoylation at the host-pathogen interface. Biomolecules 2012; 2:203-27. [PMID: 23795346 PMCID: PMC3685863 DOI: 10.3390/biom2020203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/11/2022] Open
Abstract
Many viral proteins have been shown to be sumoylated with corresponding regulatory effects on their protein function, indicating that this host cell modification process is widely exploited by viral pathogens to control viral activity. In addition to using sumoylation to regulate their own proteins, several viral pathogens have been shown to modulate overall host sumoylation levels. Given the large number of cellular targets for SUMO addition and the breadth of critical cellular processes that are regulated via sumoylation, viral modulation of overall sumoylation presumably alters the cellular environment to ensure that it is favorable for viral reproduction and/or persistence. Like some viruses, certain bacterial plant pathogens also target the sumoylation system, usually decreasing sumoylation to disrupt host anti-pathogen responses. The recent demonstration that Listeria monocytogenes also disrupts host sumoylation, and that this is required for efficient infection, extends the plant pathogen observations to a human pathogen and suggests that pathogen modulation of host sumoylation may be more widespread than previously appreciated. This review will focus on recent aspects of how pathogens modulate the host sumoylation system and how this benefits the pathogen.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX 77807-1359
| |
Collapse
|
17
|
Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett 2011; 316:113-25. [PMID: 22138131 DOI: 10.1016/j.canlet.2011.10.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/15/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
SUMOylation is a post-translational modification characterized by covalent and reversible binding of small ubiquitin-like modifier (SUMO) to a target protein. In mammals, four different isoforms, termed SUMO-1, -2, -3 and -4 have been identified so far. SUMO proteins are critically involved in the modulation of nuclear organization and cell viability. Their expression is significantly increased in processes associated with carcinogenesis such as cell growth, differentiation, senescence, oxidative stress and apoptosis. Little is known about the role of SUMOylation in cancer development. Therefore the present review focuses on possible implications of SUMOylation in carcinogenesis highlighting its impact as an important regulatory cell cycle protein. Moreover, novel opportunities for therapeutic approaches are discussed. The differential expression levels, the target protein preferences and the function of the SUMO pathway in different cancer subtypes raises unexpected issues questioning our understanding of the implication of SUMO in carcinogenesis.
Collapse
|
18
|
Cho KI, Yi H, Tserentsoodol N, Searle K, Ferreira PA. Neuroprotection resulting from insufficiency of RANBP2 is associated with the modulation of protein and lipid homeostasis of functionally diverse but linked pathways in response to oxidative stress. Dis Model Mech 2010; 3:595-604. [PMID: 20682751 PMCID: PMC2931537 DOI: 10.1242/dmm.004648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 05/19/2010] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.
Collapse
Affiliation(s)
| | | | | | | | - Paulo A. Ferreira
- Department of Ophthalmology and
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Erwin Road, Durham, NC 27710, USA
| |
Collapse
|
19
|
Fradet-Turcotte A, Brault K, Titolo S, Howley PM, Archambault J. Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9. Virology 2009; 395:190-201. [PMID: 19836047 DOI: 10.1016/j.virol.2009.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/17/2009] [Accepted: 09/16/2009] [Indexed: 12/31/2022]
Abstract
The E1 helicase from BPV and HPV16 interacts with Ubc9 to facilitate viral genome replication. We report that HPV11 E1 also interacts with Ubc9 in vitro and in the yeast two-hybrid system. Residues in E1 involved in oligomerization (353-435) were sufficient for binding to Ubc9 in vitro, but the origin-binding and ATPase domains were additionally required in yeast. Nuclear accumulation of BPV E1 was shown previously to depend on its interaction with Ubc9 and sumoylation on lysine 514. In contrast, HPV11 and HPV16 E1 mutants defective for Ubc9 binding remained nuclear even when the SUMO pathway was inhibited. Furthermore, we found that K514 in BPV E1 and the analogous K559 in HPV11 E1 are not essential for nuclear accumulation of E1. These results suggest that the interaction of E1 with Ubc9 is not essential for its nuclear accumulation but, rather, depends on its oligomerization and binding to DNA and ATP.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laboratory of Molecular Virology, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, University of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
20
|
Kuo FT, Bentsi-Barnes IK, Barlow GM, Bae J, Pisarska MD. Sumoylation of forkhead L2 by Ubc9 is required for its activity as a transcriptional repressor of the Steroidogenic Acute Regulatory gene. Cell Signal 2009; 21:1935-44. [PMID: 19744555 DOI: 10.1016/j.cellsig.2009.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 12/15/2022]
Abstract
Forkhead L2 (FOXL2) is a member of the forkhead/hepatocyte nuclear factor 3 (FKH/HNF3) gene family of transcription factors and acts as a transcriptional repressor of the Steroidogenic Acute Regulatory (StAR) gene, a marker of granulosa cell differentiation. FOXL2 may play a role in ovarian follicle maturation and prevent premature follicle depletion leading to premature ovarian failure. In this study, we found that FOXL2 interacts with Ubc9, an E2-conjugating enzyme that mediates sumoylation, a key mechanism in transcriptional regulation. FOXL2 and Ubc9 are co-expressed in granulosa cells of small and medium ovarian follicles. FOXL2 is sumoylated by Ubc9, and this Ubc9-mediated sumoylation is essential to the transcriptional activity of FOXL2 on the StAR promoter. As FOXL2 is endogenous to granulosa cells, we generated a stable cell line expressing FOXL2 and found that activity of the StAR promoter in this cell line is greatly decreased in the presence of Ubc9. The sumoylation site was identified at lysine 25 of FOXL2. Mutation of lysine 25 to arginine leads to loss of transcriptional repressor activity of FOXL2. Taken together, we propose that Ubc9-mediated sumoylation at lysine 25 of FOXL2 is required for transcriptional repression of the StAR gene and may be responsible for controlling the development of ovarian follicles.
Collapse
Affiliation(s)
- Fang-Ting Kuo
- Center for Fertility and Reproductive Medicine, Division of REI, Department of Ob/Gyn, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | | | | | | | | |
Collapse
|
21
|
Kuwata T, Nakamura T. BCL11A is a SUMOylated protein and recruits SUMO-conjugation enzymes in its nuclear body. Genes Cells 2008; 13:931-40. [PMID: 18681895 DOI: 10.1111/j.1365-2443.2008.01216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BCL11A/EVI9 is a zinc-finger protein predominantly expressed in brain and hematopoietic cells. Previous studies show that BCL11A is involved in acute myelomonocytic leukemia and chronic lymphoid leukemia in mouse and human, respectively. Moreover, BCL11A is localized in the characteristic nuclear body in which BCL6 is co-localized. However, the significance of BCL11A in leukemogenesis and nuclear function remains unknown. In this study we show that BCL11A interacts with UBC9, a small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, and recruits SUMO1 into the nuclear body. A lysine residue at amino acid 634 of BCL11A is SUMOylated but not required for the SUMO1 recruitment. The N-terminal region of BCL11A is responsible for SUMO1 recruitment as well as its nuclear body formation. We also show that SENP2, a SUMO specific peptidase, is co-localized in the nuclear body. These results suggest that BCL11A could be involved in the SUMO conjugation system, and that BCL11A might play an important role in protein modification.
Collapse
Affiliation(s)
- Takeshi Kuwata
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | |
Collapse
|
22
|
Guo Y, Yang MCW, Weissler JC, Yang YS. Modulation of PLAGL2 transactivation activity by Ubc9 co-activation not SUMOylation. Biochem Biophys Res Commun 2008; 374:570-5. [PMID: 18655774 DOI: 10.1016/j.bbrc.2008.07.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/15/2008] [Indexed: 11/30/2022]
Abstract
Pleomorphic adenoma gene like-2 (PLAGL2), a developmentally regulated and stress inducible zinc finger protein can be post-translationally modified by small ubiquitin-like modifier peptide (SUMO-1); and SUMOylation attenuates PLAGL2 activity on the interactive promoter. Since PLAGL2 was a transactivator of the surfactant protein-C (SP-C) promoter, we hypothesized that SUMOylation down-regulated PLAGL2-activated SP-C promoter activity. Unexpectedly, the SUMO-conjugating enzyme Ubc9 enhanced, rather than reduced, PLAGL2 activated promoter activity but did not affect TTF-1 activation of the promoter. Ubc9 mutant (Ubc9-C93S) defective in SUMO-conjugating activity also enhanced PLAGL2-driven promoter activity suggesting that the stimulatory effect of Ubc9 on SP-C promoter activation was independent of its enzymatic function. PLAGL2 mutants without the K250 and/or K269 SUMOylation sites did not further improve PLAGL2 programmed transcription nor did they abolish Ubc9 enhanced promoter activity supporting the SUMOylation-independent mechanism. Chromatin immunoprecipitation (ChIP) assay demonstrated the association of PLAGL2 and Ubc9 with the SP-C promoter in vivo. Taken together, our data suggests that Ubc9 can function as a co-factor of PLAGL2, uncoupling from its enzymatic activity, to mediate PLAGL2 interactive SP-C promoter activity.
Collapse
Affiliation(s)
- Yuhong Guo
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8558, USA
| | | | | | | |
Collapse
|
23
|
Hanson CA, Wood LD, Hiebert SW. Cellular stress triggers TEL nuclear export via two genetically separable pathways. J Cell Biochem 2008; 104:488-98. [PMID: 18022807 DOI: 10.1002/jcb.21637] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
TEL (translocation ets leukemia, also known as ETV6) is a repressor of transcription that is disrupted by the t(12;21), which is the most frequent chromosomal translocation in pediatric acute lymphocytic leukemia. TEL is modified by SUMOylation, and the lysine (Lys 99) that is conjugated to SUMO is required for TEL nuclear export. In addition, TEL is phosphorylated by p38 kinase, which is activated by cellular stress. Induction of cellular stress reduced the ability of TEL to repress transcription in vitro, but the mechanistic basis of this phenomenon was unclear. In this study, we show that osmotic stress causes re-localization of TEL to the cytoplasm and that p38-mediated phosphorylation of TEL is sufficient for this re-localization. However, impairment of both SUMOylation of Lys 99 and p38-dependent phosphorylation of Ser 257 of TEL were required to impair the re-localization of TEL in response to cellular stress induced by high salt, identifying two separate nuclear export pathways. Thus, alteration of the cellular localization of TEL may be a part of the cellular stress response and re-localization of TEL to the cytoplasm is an important step in the regulation of TEL.
Collapse
Affiliation(s)
- Caroline A Hanson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
24
|
Abstract
Homeostasis of hematopoietic stem cells (HSCs) is a tightly regulated process, controlled by intrinsic and extrinsic signals. Although a variety of molecules involved in HSC maintenance and self-renewal are known, it remains unclear how robust HSC homeostasis is achieved. In this issue of Genes & Development, Rathinam and colleagues (992-997) report a new player in HSC homeostasis, c-Cbl ubiquitin ligase. They show that this E3 ubiquitin ligase acts as a negative regulator of cytokine signaling.
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Elaine Dzierzak
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
25
|
Szapary D, Song LN, He Y, Simons SS. Differential modulation of glucocorticoid and progesterone receptor transactivation. Mol Cell Endocrinol 2008; 283:114-26. [PMID: 18215457 PMCID: PMC2275900 DOI: 10.1016/j.mce.2007.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 11/29/2007] [Indexed: 01/13/2023]
Abstract
The determinants of the different biological activities of progesterone receptors (PRs) vs. glucocorticoid receptors (GRs), which bind to the same DNA sequences, remain poorly understood. The mechanisms by which differential expression of a common target gene can be achieved by PR and GR include unequal agonist steroid concentrations for half maximal induction (EC50) and dissimilar amounts of residual partial agonist activity for antisteroids in addition to the more common changes in total gene induction, or Vmax. Several factors are known to alter some or all of these three parameters for GR-regulated gene induction and some (i.e., the corepressors NCoR and SMRT) modulate the EC50 and partial agonist activity for GR and PR induction of the same gene in opposite directions. The current study demonstrates that other factors known to modulate GR properties (GME, GMEB-2, Ubc9, and STAMP) can also differentially interact with PRs or alter several of the above induction parameters under otherwise identical conditions. These results support the hypothesis that the modulation of EC50, partial agonist activity, and Vmax by a given factor is not limited to one receptor in a specific cell line. Furthermore, the number of factors that unequally modulate PR and GR induction parameters is now greatly expanded, thereby increasing the possible mechanisms for differential gene regulation by PRs vs. GRs.
Collapse
Affiliation(s)
- Daniele Szapary
- Steroid Hormones Section, NIDDK/CEB, National Institutes of Health, Bethesda, MD 20892-1772, United States
| | | | | | | |
Collapse
|
26
|
Putnik J, Zhang CD, Archangelo LF, Tizazu B, Bartels S, Kickstein M, Greif PA, Bohlander SK. The interaction of ETV6 (TEL) and TIP60 requires a functional histone acetyltransferase domain in TIP60. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:1211-24. [PMID: 17980166 DOI: 10.1016/j.bbadis.2007.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 12/19/2022]
Abstract
The ets-family transcription factor ETV6 (TEL) has been shown to be the target of a large number of balanced chromosomal translocations in various hematological malignancies and in some soft tissue tumors. Furthermore, ETV6 is essential for hematopoietic stem cell function. We identified ETV6 interacting proteins using the yeast two hybrid system. One of these proteins is the HIV Tat interacting protein (TIP60), a histone acetyltransferase (HAT) containing the highly conserved MYST domain. TIP60 functions as a corepressor of ETV6 in reporter gene assays. Fluorescently tagged ETV6 and TIP60 colocalize in the nucleus and an increase in nuclear localization of ETV6 was seen when TIP60 was cotransfected. ETV6 interacts with TIP60 through a 63 amino acids region located in the central domain of ETV6 between the pointed and the ets domain. The ETV6 interacting region of TIP60 mapped to the C2HC zinc finger of the TIP60 MYST domain. The interaction of TIP60 with full length ETV6 required an intact acetyltransferase domain of TIP60. Interestingly, the MYST domains of MOZ and MORF were also able to interact with portions of ETV6. These observations suggest that MYST domain HATs regulate ETV6 transcriptional activity and may therefore play critical roles in leukemogenesis and possibly in normal hematopoietic development.
Collapse
Affiliation(s)
- Jasmina Putnik
- Institute of Human Genetics, Heinrich-Düker-Weg 12, 37037 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim Y, Sun Y, Chow C, Pommier YG, Simons SS. Effects of acetylation, polymerase phosphorylation, and DNA unwinding in glucocorticoid receptor transactivation. J Steroid Biochem Mol Biol 2006; 100:3-17. [PMID: 16723222 DOI: 10.1016/j.jsbmb.2006.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 03/02/2006] [Indexed: 11/29/2022]
Abstract
Varying the concentration of selected factors alters the induction properties of steroid receptors by changing the position of the dose-response curve (or the value for half-maximal induction=EC(50)) and the amount of partial agonist activity of antisteroids. We now describe a rudimentary mathematical model that predicts a simple Michaelis-Menten curve for the multi-step process of steroid-regulated gene induction. This model suggests that steps far downstream from receptor binding to steroid can influence the EC(50) of agonist-complexes and partial agonist activity of antagonist-complexes. We therefore asked whether inhibitors of three possible downstream steps can reverse the effects of increased concentrations of two factors: glucocorticoid receptors (GRs) and Ubc9. The downstream steps (with inhibitors in parentheses) are protein deacetylation (TSA and VPA), DNA unwinding (CPT), and CTD phosphorylation of RNA polymerase II (DRB and H8). None of the inhibitors mimic or prevent the effects of added GRs. However, inhibitors of DNA unwinding and CTD phosphorylation do reverse the effects of Ubc9 with high GR concentrations. These results support our earlier conclusion that different rate-limiting steps operate at low and high GR concentrations versus high GR with Ubc9. The present data also suggest that downstream steps can modulate the EC(50) of GR-mediated induction, thus both supporting the utility of our mathematical model and widening the field of biochemical processes that can modify the EC(50).
Collapse
Affiliation(s)
- Yuli Kim
- Steroid Hormones Section, NIDDK/CEB, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Ubiquitin-conjugating enzyme (Ubc9) was originally thought to be a conjugating enzyme for ubiquitylation, but was later shown to be responsible for the most recently identified type of post-translational modification, (i.e., SUMO [small ubiquitin-related modifier]) conjugation or sumoylation. Like ubiquitylation, sumoylation modulates protein function through post-translational covalent attachment to lysine residues within targeted proteins. However, although ubiquitylation can lead to protein degradation through the 26S proteasome, sumoylation does not cause protein degradation; instead, it has been implicated in other cellular processes, such as regulating the activity of transcription factors, mediating nuclear translocation of proteins or the formation of subnuclear structures. Interestingly, some proteins can be modified at the same lysine residue by both SUMO and ubiquitin, but with distinct functional consequences. Given that many proteins involved in cell-cycle regulation, proliferation, apoptosis and DNA repair are targets for sumoylation, alterations of sumoylation could ultimately have an impact on cell growth, cancer development and drug responsiveness. As Ubc9 is the sole E2-conjugating enzyme required for sumoylation, and, in particular, Ubc9 is upregulated in an increasing number of human malignancies, such as ovarian carcinoma, melanoma and lung adenocarcinoma, it is a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yin-Yuan Mo
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University, PO Box 19626, Springfield, IL 62794, USA.
| | | |
Collapse
|
29
|
Pan X, Li H, Zhang P, Jin B, Man J, Tian L, Su G, Zhao J, Li W, Liu H, Gong W, Zhou T, Zhang X. Ubc9 interacts with SOX4 and represses its transcriptional activity. Biochem Biophys Res Commun 2006; 344:727-34. [PMID: 16631117 DOI: 10.1016/j.bbrc.2006.03.194] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 03/26/2006] [Indexed: 10/24/2022]
Abstract
SOX4 is a member of SOX transcriptional factor family that is crucial for many cellular processes. In this study, a yeast two-hybrid screening of human mammary cDNA library identified human ubiquitin-conjugating enzyme 9 (hUbc9) that interacted with SOX4. This interaction was confirmed by GST pull-down in vitro and co-immunoprecipitation assays in vivo. Deletion mapping demonstrated that HMG-box domain of SOX4 is required to mediate the interaction with Ubc9 in yeast. Furthermore, confocal microscopy showed that Ubc9 co-localized with SOX4 in the nucleus. Luciferase assays found that Ubc9 specifically repressed SOX4 transcriptional activity in 293T cells. We further demonstrated that Ubc9 could functionally repress the transcriptional activity of endogenous SOX4 induced by progesterone in T47D cells. The C93S mutant of Ubc9, which abrogates SUMO-1 conjugation activity, did not abolish the ability to repress SOX4 activity. It shows that Ubc9 interacts with SOX4 and represses its transcriptional activity independent of its SUMO-1-conjugating activity.
Collapse
Affiliation(s)
- Xin Pan
- National Center of Biomedical Analysis, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Macauley MS, Errington WJ, Schärpf M, Mackereth CD, Blaszczak AG, Graves BJ, McIntosh LP. Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence. J Biol Chem 2005; 281:4164-72. [PMID: 16319071 DOI: 10.1074/jbc.m510488200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Sumoylation regulates the activities of several members of the ETS transcription factor family. To provide a molecular framework for understanding this regulation, we have characterized the conjugation of Ets-1 with SUMO-1. Ets-1 is modified in vivo predominantly at a consensus sumoylation motif containing Lys-15. This lysine is located within the unstructured N-terminal segment of Ets-1 preceding its PNT domain. Using NMR spectroscopy, we demonstrate that the Ets-1 sumoylation motif associates with the substrate binding site on the SUMO-conjugating enzyme UBC9 (K(d) approximately 400 microm) and that the PNT domain is not involved in this interaction. Ets-1 with Lys-15 mutated to an arginine still binds UBC9 with an affinity similar to the wild type protein, but is no longer sumoylated. NMR chemical shift and relaxation measurements reveal that the covalent attachment of mature SUMO-1, via its flexible C-terminal Gly-97, to Lys-15 of Ets-1 does not perturb the structure or dynamic properties of either protein. Therefore sumoylated Ets-1 behaves as "beads-on-a-string" with the two proteins tethered by flexible polypeptide segments containing the isopeptide linkage. Accordingly, SUMO-1 may mediate interactions of Ets-1 with signaling or transcriptional regulatory macromolecules by acting as a structurally independent docking module, rather than through the induction of a conformational change in either protein upon their covalent linkage. We also hypothesize that the flexibility of the linking polypeptide sequence may be a general feature contributing to the recognition of SUMO-modified proteins by their downstream effectors.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cancer can be defined as a genetic disease, resulting as a consequence of multiple events associated with initiation, promotion and metastatic growth. Cancer results from the loss of control of cellular homeostasis. Cell homeostasis is the result of the balance between proliferation and cell death, while cellular transformation can be viewed as a loss of relationship between these events. Oncogenes and tumour suppressor genes act as modulators of cell proliferation, while the balance of apoptotic and anti-apoptotic genes controls cell death. All cancer cells acquire similar sets of functional capacities: (1) independence from mitogenic/growth signals; (2) loss of sensitivity to "anti-growth" signals; (3) evade apoptosis; (4) Neo-angiogenic conversion; (5) release from senescence; and (6) invasiveness and metastasis. One of the goals of molecular biology is to elucidate the mechanisms that contribute to the development and progression of cancer. Such understanding of the molecular basis of cancer will provide new possibilities for: (1) earlier detection as well as better diagnosis and staging of disease with detection of minimal residual disease recurrences and evaluation of response to therapy; (2) prevention; and (3) novel treatment strategies. We feel that increased understanding of ETS-regulated biological pathways will directly impact these areas. ETS proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Identification of target genes that are regulated by a specific transcription factor is one of the most critical areas in understanding the molecular mechanisms that control transcription. Furthermore, identification of target gene promoters for normal and oncogenic transcription factors provides insight into the regulation of genes that are involved in control of normal cell growth, and differentiation, as well as provide information critical to understanding cancer development. This review will highlight the current understanding of ETS genes and their role in cancer.
Collapse
Affiliation(s)
- Arun Seth
- Molecular and Cellular Biology Research, Laboratory of Molecular Pathology, Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5.
| | | |
Collapse
|
32
|
Abstract
Alterations of the ets family transcription factor ETV6 (TEL) and the RUNT domain transcription factor RUNX1 (AML1) play pivotal roles in the leukemogenesis of various types of leukemia. While only three fusion partners of RUNX1 namely ETO, ETV6 and MTG16 have been described so far, there is a plethora of ETV6 fusion partners with about 20 partners described so far. Apart from forming fusion genes there are other genetic alterations of ETV6 including deletions, point mutations and possible alterations at the promoter level that might contribute to the malignant phenotype. This review will focus on ETV6 and on the different mechanisms that are used by this gene to cause leukemia.
Collapse
Affiliation(s)
- Stefan K Bohlander
- Department of Medicine III, University Hospital Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany.
| |
Collapse
|
33
|
Qiao F, Bowie JU. The many faces of SAM. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2005; 2005:re7. [PMID: 15928333 DOI: 10.1126/stke.2862005re7] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Protein-protein interactions are essential for the assembly, regulation, and localization of functional protein complexes in the cell. SAM domains are among the most abundant protein-protein interaction motifs in organisms from yeast to humans. Although SAM domains adopt similar folds, they are remarkably versatile in their binding properties. Some identical SAM domains can interact with each other to form homodimers or polymers. In other cases, SAM domains can bind to other related SAM domains, to non-SAM domain-containing proteins, and even to RNA. Such versatility earns them functional roles in myriad biological processes, from signal transduction to transcriptional and translational regulation. In this review, we describe the structural basis of SAM domain interactions and highlight their roles in the scaffolding of protein complexes in normal and pathological processes.
Collapse
Affiliation(s)
- Feng Qiao
- U.S. Department of Energy (UCLA-DOE) Institute of Genomics and Proteomics, Molecular Biology Institute, Department of Chemistry and Biochemistry, UCLA, CA 90095, USA
| | | |
Collapse
|
34
|
Tootle TL, Rebay I. Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. Bioessays 2005; 27:285-98. [PMID: 15714552 DOI: 10.1002/bies.20198] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transcription factors provide nodes of information integration by serving as nuclear effectors of multiple signaling cascades, and thus elaborate layers of regulation, often involving post-translational modifications, modulating and coordinate activities. Such modifications can rapidly and reversibly regulate virtually all transcription factor functions, including subcellular localization, stability, interactions with cofactors, other post-translational modifications and transcriptional activities. Aside from analyses of the effects of serine/threonine phosphorylation, studies on post-translational modifications of transcription factors are only in the initial stages. In particular, the regulatory possibilities afforded by combinatorial usage of and competition between distinct modifications on an individual protein are immense, and with respect to large families of closely related transcription factors, offer the potential of conferring critical specificity. Here we will review the post-translational modifications known to regulate ETS transcriptional effectors and will discuss specific examples of how such modifications influence their activities to highlight emerging paradigms in transcriptional regulation.
Collapse
Affiliation(s)
- Tina L Tootle
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
35
|
Cho S, Kagan BL, Blackford JA, Szapary D, Simons SS. Glucocorticoid Receptor Ligand Binding Domain Is Sufficient for the Modulation of Glucocorticoid Induction Properties by Homologous Receptors, Coactivator Transcription Intermediary Factor 2, and Ubc9. Mol Endocrinol 2005; 19:290-311. [PMID: 15539428 DOI: 10.1210/me.2004-0134] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several factors modulate the position of the dose-response curve of steroid receptor-agonist complexes and the partial agonist activity of antagonist complexes, thereby causing differential gene activation by circulating hormones and unequal gene repression during endocrine therapies with antisteroids. We now ask whether the modulatory activity of three factors (homologous receptor, coactivator transcription intermediary factor 2, and Ubc9) requires the same or different domains of glucocorticoid receptors (GRs). In all cases, we find that neither the amino terminal half of the receptor, which contains the activation function-1 activation domain, nor the DNA binding domain is required. This contrasts with the major role of activation function-1 in determining the amount of gene expression and partial agonist activity of antisteroids with most steroid receptors. However, the situation is more complicated with Ubc9, where GR N-terminal sequences prevent the actions of Ubc9, but not added GR or transcription intermediary factor 2, at low GR concentrations. Inhibition is relieved by deletion of these sequences or by replacement with the comparable region of progesterone receptors but not by overexpression of the repressive sequences. These results plus the binding of C-terminal GR sequences to the suppressive N-terminal domain implicate an intramolecular mechanism for the inhibition of Ubc9 actions at low GR concentrations. A shift from noncooperative to cooperative steroid binding at high GR concentrations suggests that conformational changes reposition the inhibitory N-terminal sequence to allow Ubc9 interaction with elements of the ligand binding domain. Collectively, these results indicate a dominant role of GR C-terminal sequences in the modulation of the dose-response curve and partial agonist activity of GR complexes. They also reveal mechanistic differences both among individual modulators and between the ability of the same factors to regulate the total amount of gene expression.
Collapse
Affiliation(s)
- Sehyung Cho
- Steriod Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/LMCB, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
36
|
Ohshima T, Koga H, Shimotohno K. Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 2004; 279:29551-7. [PMID: 15123625 DOI: 10.1074/jbc.m403866200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Covalent modification of many transcription factors with SUMO-1 is emerging as a key role of trans-activational regulation. Here, we demonstrate that peroxisome proliferator-activated receptor (PPAR) gamma, which is a ligand-activated nuclear receptor, is modified by SUMO-1. Sumoylation of PPARgamma mainly occurs at a lysine residue within the activation function 1 domain. Furthermore, we show that the PIAS family proteins, PIAS1 and PIASxbeta, function as E3 ligases (ubiquitin-protein isopeptide ligase) for PPARgamma. PPARgamma interacts directly with PIASxbeta in a ligand-independent manner. Analysis using a PPARgamma mutant with a disrupted sumoylation site shows that modification of PPARgamma by SUMO-1 represses its transcriptional activity. Interestingly, PIASxbeta and Ubc9 enhance the transcriptional activity of PPARgamma independent of PPARgamma sumoylation. Furthermore, PPARgamma ligand-induced apoptosis in a human hepatoblastoma cell line, HepG2, is significantly enhanced by ectopic production of the sumoylation-mutant PPARgamma. These results suggest that the PPARgamma-dependent transactivation pathway seems to be modulated by SUMO-1 modification and may serve as a novel target for apoptosis-induction therapy in cancer cells.
Collapse
Affiliation(s)
- Takayuki Ohshima
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
37
|
Abstract
Post-translational modification by the ubiquitin-like SUMO protein is emerging as a defining feature of eukaryotic cells. Sumoylation has crucial roles in the regulatory challenges that face nucleate cells, including the control of nucleocytoplasmic signalling and transport and the faithful replication of a large and complex genome, as well as the regulation of gene expression.
Collapse
Affiliation(s)
- Jacob-S Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U 579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
38
|
Nordentoft I, Jørgensen P. The acetyltransferase 60 kDa trans-acting regulatory protein of HIV type 1-interacting protein (Tip60) interacts with the translocation E26 transforming-specific leukaemia gene (TEL) and functions as a transcriptional co-repressor. Biochem J 2003; 374:165-73. [PMID: 12737628 PMCID: PMC1223570 DOI: 10.1042/bj20030087] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 05/07/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
The translocation E26 transforming-specific (ETS) leukaemia (TEL), alias the ETS variant (ETV6), gene is expressed in most human tissues and encodes a transcriptional repressor. The TEL gene is involved in more than 40 different chromosomal translocations associated with haematological malignancies. As little is known about the function of intact TEL, we searched for TEL-interacting proteins by yeast two-hybrid screening. Among the interacting partners, we identified the histone acetyltransferase protein Tip60 [60 kDa trans-acting regulatory protein of HIV type 1 (Tat)-interacting protein]. The interaction was reproduced in vitro, and in mammalian cells we mapped the interaction regions in TEL to the ETS domain and those in Tip60 to the MYST ('MOZ, Ybf2/Sas3, SAS2 and Tip60', where MOZ stands for male absent on the first, SAS for something about silencing and Ybf2 for identical with SAS2) region. Detailed analysis of the Tip60 MYST domain by introduction of point mutations revealed that an N-terminal C2HC zinc finger was essential for interaction with TEL. Finally, we showed that Tip60 functions in a reporter system as a co-repressor in TEL-mediated transcription repression.
Collapse
Affiliation(s)
- Iver Nordentoft
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé 130, DK 8000 Aarhus C, Denmark
| | | |
Collapse
|
39
|
Boccuni P, MacGrogan D, Scandura JM, Nimer SD. The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 2003; 278:15412-20. [PMID: 12588862 DOI: 10.1074/jbc.m300592200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H-L(3)MBT, the human homolog of the Drosophila lethal(3)malignant brain tumor protein, is a member of the polycomb group (PcG) of proteins, which function as transcriptional regulators in large protein complexes. Homozygous mutations in the l(3)mbt gene cause brain tumors in Drosophila, identifying l(3)mbt as a tumor suppressor gene. The h-l(3)mbt gene maps to chromosome 20q12, within a common deleted region associated with myeloid hematopoietic malignancies. H-L(3)MBT contains three repeats of 100 residues called MBT repeats, whose function is unknown, and a C-terminal alpha-helical structure, the SPM (SCM, PH, MBT domain, which is structurally similar to the SAM (sterile alpha motif) protein-protein interaction domain, found in several ETS transcription factors, including TEL (translocation Ets leukemia). We report that H-L(3)MBT is a transcriptional repressor and that its activity is largely dependent on the presence of a region containing the three MBT repeats. H-L(3)MBT acts as a histone deacetylase-independent transcriptional repressor, based on its lack of sensitivity to trichostatin A. We found that H-L(3)MBT binds in vivo to TEL, and we have mapped the region of interaction to their respective SPM/SAM domains. We show that the ability of TEL to repress TEL-responsive promoters is enhanced by the presence of H-L(3)MBT, an effect dependent on the H-L(3)MBT and the TEL interacting domains. These experiments suggest that histone deacetylase-independent transcriptional repression by TEL depends on the recruitment of PcG proteins. We speculate that the interaction of TEL with H-L(3)MBT can direct a PcG complex to genes repressed by TEL, stabilizing their repressed state.
Collapse
Affiliation(s)
- Piernicola Boccuni
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan Kettering Institute for Cancer Research, New York, New York 10021, USA
| | | | | | | |
Collapse
|
40
|
Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW. Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci U S A 2003; 100:3257-62. [PMID: 12626745 PMCID: PMC152279 DOI: 10.1073/pnas.0637114100] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Indexed: 01/18/2023] Open
Abstract
Posttranslational modification by small ubiquitin-like modifier (SUMO) conjugation regulates the subnuclear localization of several proteins; however, SUMO modification has not been directly linked to nuclear export. The ETS (E-Twenty-Six) family member TEL (ETV6) is a transcriptional repressor that can inhibit Ras-dependent colony growth in soft agar and induce cellular aggregation of Ras-transformed cells. TEL is frequently disrupted by chromosomal translocations such as the t(12;21), which is associated with nearly one-fourth of pediatric B cell acute lymphoblastic leukemia. In the vast majority of t(12;21)-containing cases, the second allele of TEL is deleted, suggesting that inactivation of TEL contributes to the disease. Although TEL functions in the nucleus as a DNA-binding transcriptional repressor, it has also been detected in the cytoplasm. Here we demonstrate that TEL is actively exported from the nucleus in a leptomycin B-sensitive manner. TEL is posttranslationally modified by sumoylation at lysine 99 within a highly conserved domain (the "pointed" domain). Mutation of the sumo-acceptor lysine or mutations within the pointed domain that affect sumoylation impair nuclear export of TEL. Mutation of lysine 99 also results in an increase in TEL transcriptional repression, presumably because of decreased nuclear export. We propose that the ability of TEL to repress transcription and suppress growth is regulated by sumoylation and nuclear export.
Collapse
Affiliation(s)
- Lauren D Wood
- Department of Biochemistry and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
41
|
Verger A, Perdomo J, Crossley M. Modification with SUMO. A role in transcriptional regulation. EMBO Rep 2003; 4:137-42. [PMID: 12612601 PMCID: PMC1315836 DOI: 10.1038/sj.embor.embor738] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2002] [Accepted: 12/17/2002] [Indexed: 12/29/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) is a protein moiety that is ligated to lysine residues in a variety of target proteins. The addition of SUMO can modulate the ability of proteins to interact with their partners, alter their patterns of subcellular localization and control their stability. It is clear that SUMO influences many different biological processes, but recent data suggest that it is particularly important in the regulation of transcription. Indeed, several transcription factors, such as Sp3, c-Jun, c-Myb and various nuclear receptors, have recently been shown to be subject to sumoylation and, although this modification can have a positive influence, a growing body of evidence highlights its role in the negative regulation of transcription. This review summarizes recent experiments focusing on sumoylation and transcriptional repression.
Collapse
Affiliation(s)
- Alexis Verger
- School of Molecular and Microbial Biosciences G08, University of Sydney, Sydney, NSW, 2006, Australia.
| | | | | |
Collapse
|
42
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
43
|
Tojo M, Matsuzaki K, Minami T, Honda Y, Yasuda H, Chiba T, Saya H, Fujii-Kuriyama Y, Nakao M. The aryl hydrocarbon receptor nuclear transporter is modulated by the SUMO-1 conjugation system. J Biol Chem 2002; 277:46576-85. [PMID: 12354770 DOI: 10.1074/jbc.m205987200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear transporter (ARNT) is a member of the basic helix-loop-helix/PAS (Per-ARNT-Sim) family of transcription factors, which are important for cell regulation in response to environmental conditions. ARNT is an indispensable partner of the aryl hydrocarbon receptor (AHR) or hypoxia-inducible factor-1alpha. This protein is also able to form homodimers such as ARNT/ARNT. However, the molecular mechanism that regulates the transcriptional activity of ARNT remains to be elucidated. Here, we report that ARNT is modified by SUMO-1 chiefly at Lys(245) within the PAS domain of this protein, both in vivo and in vitro. Substitution of the target lysine with alanine enhanced the transcriptional potential of ARNT per se. Furthermore, green fluorescent protein-fused ARNT tended to form nuclear foci in approximately 20% of the transfected cells, and the foci partly colocalized with PML nuclear bodies. PML, one of the well known substrates for sumoylation, was found to augment the transcriptional activities of ARNT. ARNT bound AHR or PML, whereas the sumoylated form of ARNT associated with AHR, but not with PML, resulting in a reduced effect of PML on transactivation by ARNT. Our data suggest that the sumoylation of ARNT modulates its transcriptional role through affecting the ability of ARNT to interact with cooperative molecules such as PML. This exemplifies a crucial role of protein sumoylation in modulating protein-protein interactions.
Collapse
Affiliation(s)
- Masahide Tojo
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The human RAD52 protein has been implicated in DNA homologous recombination. Four major functional domains have been identified: a DNA binding domain (amino acids 1-85), a self-association and UBC9-interacting domain (amino acids 85-159), an RPA-interacting domain (amino acids 221-280), and a RAD51-interacting domain (amino acids 287-330). However, it is uncertain about the functional roles of the C-terminal region of RAD52 protein. In this report, we demonstrate an association of a C-terminal domain of human RAD52 (amino acids 302-418) with the XPB and XPD subunits of transcription factor TFIIH and RNA polymerase II (RNAPII). Using a Gal-4 binding based transcription assay, we further show that this C-terminal domain activates transcription. However, the RAD52 self-association domain suppresses transcription, resulting in an overall activity of transcriptional suppression by the full-length RAD52 protein. These results suggest a novel activity of RAD52 in transcription regulation and may further imply a functional role of RAD52 in targeting DNA damage on transcription active loci to recombinational repair.
Collapse
Affiliation(s)
- Jingmei Liu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
45
|
Abstract
BACKGROUND In an effort to better understand the molecular events responsible for progression of prostate carcinoma to metastatic disease, we have recently identified a homozygous deletion at 12p12-13 involving ETV6 (tel). Although mutational analysis of ETV6 has not been examined previously in prostate carcinoma, it is an attractive candidate prostate cancer tumor suppressor gene since as it previously has been implicated in malignancy. Therefore, we decided to analyze 43 prostate cell lines, xenografts, and metastatic foci for inactivating mutations. METHODS DNA was isolated from 7 cell lines, 18 xenografts, and 18 metastatic deposits. Single-strand conformational polymorphism (SSCP) analysis of ETV6, was performed by polymerase chain reaction (PCR) amplification of each exon by using intron specific primers. PCR products were then resolved by gel electrophoresis, and aberrantly migrating PCR products were then sequenced. RESULTS Two previously described polymorphisms and four novel sequence changes were identified. Polymorphisms at nucleotide 258 (G --> A, Thr --> Thr) and 602 (T --> C, Leu --> Pro) were identified in eight and one specimen(s), respectively. Analysis of noncancerous DNA confirmed the presence of the polymorphisms in the germ-line. Four possible mutations were identified at nucleotides 24 (T --> G, Cys --> Trp), 380 (G --> A, Arg --> Glu), 776 (G --> T, Arg --> Leu), and 876 (C --> T, Leu --> Leu). Three were in xenografts or cell lines. Because normal DNA was not available, these could represent rare polymorphisms. The sole mutation in a clinical specimen, at nucleotide 876, did not result in an amino acid change. CONCLUSION Our data suggest that mutational inactivation ETV6 may occur in prostate carcinoma. The functional significance of these potential inactivating mutations remains to be determined.
Collapse
Affiliation(s)
- Adam S Kibel
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
46
|
Netzer C, Bohlander SK, Rieger L, Müller S, Kohlhase J. Interaction of the developmental regulator SALL1 with UBE2I and SUMO-1. Biochem Biophys Res Commun 2002; 296:870-6. [PMID: 12200128 DOI: 10.1016/s0006-291x(02)02003-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the SALL1 gene on chromosome 16q12.1 cause Townes-Brocks syndrome (TBS). This autosomal dominantly inherited disorder is characterized by typical malformations of the thumbs, the ears, and the anus, and also commonly affects the kidneys and other organ systems. SALL1 has recently been shown to localize to chromocenters and other heterochromatin foci in murine fibroblasts and to interact with the telomere-repeat-binding factor TRF1/PIN2. Here, we show that the ubiquitin-conjugating enzyme 2I (UBE2I), the human homolog of S. cerevisiae UBC9, and the small ubiquitin-like modifier-1 (SUMO-1) interact with SALL1 in the yeast two-hybrid system. The interaction of SALL1 and UBE2I was confirmed in a glutathione S-transferase (GST) pull-down experiment. In an in vitro assay, it could be demonstrated that SALL1 is covalently modified by at least two SUMO-1 molecules in the presence of UBA2/AOS1 and UBE2I. Mutation of lysine 1086 of SALL1 to arginine abrogates SALL1 sumoylation, suggesting the presence of a polymeric SUMO-1 chain in the wild type state.
Collapse
Affiliation(s)
- Christian Netzer
- Institute of Human Genetics, University of Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Loh ML, Rubnitz JE. TEL/AML1-positive pediatric leukemia: prognostic significance and therapeutic approaches. Curr Opin Hematol 2002; 9:345-52. [PMID: 12042710 DOI: 10.1097/00062752-200207000-00013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article presents the most recent insights into the biology, prognostic significance, and therapeutic approaches to TEL/AML1-positive leukemia. The TEL/AML1 fusion gene, also known as ETV6 /CBFA2, is the most commonly occurring gene rearrangement in pediatric acute lymphoblastic leukemia (ALL). Considerable controversy exists over its prognostic significance with currently available therapies. Differences in outcome may be explained by the differing intensities of various chemotherapy regimens, individual host responses to chemotherapy, or the hypothesis that relapsed TEL/AML1-positive leukemia represents an outgrowth of a secondary leukemia that shares a common initiating event with the first. Incorporating knowledge of this gene rearrangement into treatment decisions serves as a paradigm for translating molecular discoveries into clinically meaningful data to direct patient care and improve outcome.
Collapse
Affiliation(s)
- Mignon L Loh
- Department of Pediatric Hematology-Oncology, University of California-San Francisco, San Francisco, California 94143-0519, USA.
| | | |
Collapse
|
48
|
Fears S, Chakrabarti SR, Nucifora G, Rowley JD. Differential expression of TCL1 during pre-B-cell acute lymphoblastic leukemia progression. CANCER GENETICS AND CYTOGENETICS 2002; 135:110-9. [PMID: 12127395 DOI: 10.1016/s0165-4608(01)00655-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonrandom, recurring chromosomal translocations are critical events in the pathogenesis of leukemia. The recently identified TEL/AML1 (CBFA2/EVT6) fusion gene occurs as a result of the t(12;21)(p13;q22) in approximately 25% of children with diagnosed pre-B-cell acute lymphoblastic leukemia (PBC-ALL). To identify changes in gene expression patterns that occur during PBC-ALL disease progression, we used cDNA microarrays to compare expressed sequences from the AT-1 and AT-2 cell lines. These cell lines, from the same patient, were established from two distinct stages of PBC-ALL disease progression, namely, first and second relapse. Analysis of both cell lines with spectral karyotying (SKY) revealed an insertion of chromosome 8 into chromosome 5 and a previously undetected translocation in AT-2 involving chromosomes 1 and 17. Hybridization of cDNA microarrays identified the TCL1 transcript as being overexpressed in the AT-2 cell line relative to AT-1. Northern blot analysis showed an eightfold increase of the TCL1 transcript in AT-2 over AT-1 cells. Western blot analysis showed that the TCL1 protein was expressed more than 50-fold higher in AT-2 than AT-1 cells. TCL1 expression was correlated with TEL expression by reintroducing TEL into AT-2 cells and demonstrating that those cells expressing TEL at high levels showed a decreased expression of endogenous TCL1.
Collapse
MESH Headings
- Acute Disease
- Cell Differentiation
- Child, Preschool
- Chromosome Painting
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/ultrastructure
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 17/ultrastructure
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/ultrastructure
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Core Binding Factor Alpha 2 Subunit
- DNA, Complementary/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Disease Progression
- Gene Expression Regulation, Leukemic
- Genetic Complementation Test
- Humans
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/pathology
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-ets
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- Translocation, Genetic
- Tumor Cells, Cultured/metabolism
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- S Fears
- Section of Hematology, Oncology Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
49
|
Kaul S, Blackford JA, Cho S, Simons SS. Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors. J Biol Chem 2002; 277:12541-9. [PMID: 11812797 DOI: 10.1074/jbc.m112330200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The EC(50) of agonists and the partial agonist activity of antagonists are crucial parameters for steroid hormone control of gene expression and endocrine therapies. These parameters have been shown to be modulated by a naturally occurring cis-acting element, called the glucocorticoid modulatory element (GME) that binds two proteins, GMEB-1 and -2. We now present evidence that the GMEBs contact Ubc9, which is the mammalian homolog of a yeast E2 ubiquitin-conjugating enzyme. Ubc9 also binds to glucocorticoid receptors (GRs). Ubc9 displays no intrinsic transactivation activity but modifies both the absolute amount of induced gene product and the fold induction by GR. With high concentrations of GR, added Ubc9 also reduces the EC(50) of agonists and increases the partial agonist activity of antagonists in a manner that is independent of the ability of Ubc9 to transfer SUMO-1 (small ubiquitin-like modifier-1) to proteins. This new activity of Ubc9 requires only the ligand binding domain of GR and part of the hinge region. Interestingly, Ubc9 modulation of full-length GR transcriptional properties can be seen in the absence of a GME. This, though, is consistent with the GME acting by increasing the local concentration of Ubc9, which then activates a previously unobserved target in the transcriptional machinery. With high concentrations of Ubc9 and GR, Ubc9 binding to GR appears to be sufficient to permit Ubc9 to act independently of the GME.
Collapse
Affiliation(s)
- Sunil Kaul
- Steroid Hormones Section, NIDDK/Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
50
|
Chakraborty S, Senyuk V, Nucifora G. Genetic lesions and perturbation of chromatin architecture: a road to cell transformation. J Cell Biochem 2002; 82:310-25. [PMID: 11527156 DOI: 10.1002/jcb.1165] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Differential gene expression is a rigorously precise procedure that defines the developmental program of cells, tissues, organs, and of the entire organism. The correct execution of this program requires the participation of multiple and complex groups of regulators. In addition to transcription factors, which are key tools in ontogenesis by providing sequential switch of different genes, the structure of the chromatin is a dominant determinant leading to gene expression. Through the novel and insightful work of several investigators, it appears that the architecture of the chromatin spanning the genes can and does influence the efficiency of RNA transcription, and therefore of gene expression. Several new enzymatic complexes have been identified that reversibly modify the chromatin architecture by methylation, phosphorylation, and acetylation of the nucleosomal core proteins. These enzymes are crucial for the proper balance and maintenance of gene expression, and are often the target of mutations and alterations in human cancer. Here, we review briefly the current models proposing how some of these enzymes normally modify the chromatin structure and how their functional disruption leads to inappropriate gene expression and cell transformation.
Collapse
MESH Headings
- Acetylation
- Amino Acid Motifs
- Animals
- CREB-Binding Protein
- Cell Transformation, Neoplastic/genetics
- Chromatin/genetics
- Chromatin/ultrastructure
- Chromosome Aberrations
- Dimerization
- Gene Expression Regulation/physiology
- Gene Targeting
- Histones/metabolism
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Macromolecular Substances
- Methylation
- Mice
- Models, Genetic
- Multigene Family
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Nuclear Proteins/physiology
- Nuclear Receptor Coactivator 2
- Nucleosomes/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Phosphorylation
- Protein Processing, Post-Translational
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/physiology
- Trans-Activators/physiology
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- S Chakraborty
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | |
Collapse
|