1
|
Knockenhauer KE, Copeland RA. The importance of binding kinetics and drug-target residence time in pharmacology. Br J Pharmacol 2024; 181:4103-4116. [PMID: 37160660 DOI: 10.1111/bph.16104] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
A dominant assumption in pharmacology throughout the 20th century has been that in vivo target occupancy-and attendant pharmacodynamics-depends on the systemic concentration of drug relative to the equilibrium dissociation constant for the drug-target complex. In turn, the duration of pharmacodynamics is temporally linked to the systemic pharmacokinetics of the drug. Yet, there are many examples of drugs for which pharmacodynamic effect endures long after the systemic concentration of a drug has waned to (equilibrium) insignificant levels. To reconcile such data, the drug-target residence time model was formulated, positing that it is the lifetime (or residence time) of the binary drug-target complex, and not its equilibrium affinity per se, that determines the extent and duration of drug pharmacodynamics. Here, we review this model, its evolution over time, and its applications to natural ligand-macromolecule biology and synthetic drug-target pharmacology.
Collapse
|
2
|
Lee S, Wang D, Seeliger MA, Tiwary P. Calculating Protein-Ligand Residence Times through State Predictive Information Bottleneck Based Enhanced Sampling. J Chem Theory Comput 2024; 20:6341-6349. [PMID: 38991145 PMCID: PMC11990086 DOI: 10.1021/acs.jctc.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long time scales. Recent advances in rare event sampling have allowed us to reach these time scales, yet predicting protein-ligand residence times remains a significant challenge. Here we present a semi-automated protocol to calculate the ligand residence times across 12 orders of magnitude of time scales. In our proposed framework, we integrate a deep learning-based method, the state predictive information bottleneck (SPIB), to learn an approximate reaction coordinate (RC) and use it to guide the enhanced sampling method metadynamics. We demonstrate the performance of our algorithm by applying it to six different protein-ligand complexes with available benchmark residence times, including the dissociation of the widely studied anticancer drug Imatinib (Gleevec) from both wild-type Abl kinase and drug-resistant mutants. We show how our protocol can recover quantitatively accurate residence times, potentially opening avenues for deeper insights into drug development possibilities and ligand recognition mechanisms.
Collapse
Affiliation(s)
- Suemin Lee
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Dedi Wang
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Pratyush Tiwary
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- University of Maryland Institute for Health Computing, Bethesda, Maryland 20852, USA
| |
Collapse
|
3
|
Lee S, Wang D, Seeliger MA, Tiwary P. Calculating Protein-Ligand Residence Times Through State Predictive Information Bottleneck based Enhanced Sampling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589710. [PMID: 38659748 PMCID: PMC11042289 DOI: 10.1101/2024.04.16.589710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long timescales. Recent advances in rare event sampling have allowed us to reach these timescales, yet predicting protein-ligand residence times remains a significant challenge. Here we present a semi-automated protocol to calculate the ligand residence times across 12 orders of magnitudes of timescales. In our proposed framework, we integrate a deep learning-based method, the state predictive information bottleneck (SPIB), to learn an approximate reaction coordinate (RC) and use it to guide the enhanced sampling method metadynamics. We demonstrate the performance of our algorithm by applying it to six different protein-ligand complexes with available benchmark residence times, including the dissociation of the widely studied anti-cancer drug Imatinib (Gleevec) from both wild-type Abl kinase and drug-resistant mutants. We show how our protocol can recover quantitatively accurate residence times, potentially opening avenues for deeper insights into drug development possibilities and ligand recognition mechanisms.
Collapse
Affiliation(s)
- Suemin Lee
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Dedi Wang
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Pratyush Tiwary
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- University of Maryland Institute for Health Computing, Rockville, United States
| |
Collapse
|
4
|
Engineering a disulfide-gated switch in streptavidin enables reversible binding without sacrificing binding affinity. Sci Rep 2020; 10:12483. [PMID: 32719366 PMCID: PMC7385176 DOI: 10.1038/s41598-020-69357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
Although high affinity binding between streptavidin and biotin is widely exploited, the accompanying low rate of dissociation prevents its use in many applications where rapid ligand release is also required. To combine extremely tight and reversible binding, we have introduced disulfide bonds into opposite sides of a flexible loop critical for biotin binding, creating streptavidin muteins (M88 and M112) with novel disulfide-switchable binding properties. Crystal structures reveal how each disulfide exerts opposing effects on structure and function. Whereas the disulfide in M112 disrupts the closed conformation to increase koff, the disulfide in M88 stabilizes the closed conformation, decreasing koff 260-fold relative to streptavidin. The simple and efficient reduction of this disulfide increases koff 19,000-fold, thus creating a reversible redox-dependent switch with 70-fold faster dissociation kinetics than streptavidin. The facile control of disulfide formation in M88 will enable the development of many new applications requiring high affinity and reversible binding.
Collapse
|
5
|
Cong Y, Huang K, Li Y, Zhong S, Zhang JZH, Duan L. Entropic effect and residue specific entropic contribution to the cooperativity in streptavidin-biotin binding. NANOSCALE 2020; 12:7134-7145. [PMID: 32191786 DOI: 10.1039/c9nr08380d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular dynamics (MD) simulations were performed employing the polarized protein-specific charge (PPC) to explore the origin of the cooperativity in streptavidin-biotin systems (wild type, two single mutations and one double-mutation). The results of the experiment found that the existence of cooperativity is mainly the result of the entropic effect. In this study, the entropic contribution to the binding free energy was calculated using the recently developed interaction entropy (IE) method, and computational results are in excellent agreement with the experimental observations and are further verified by the calculation of the thermodynamic integration. Comparison of different force fields in terms of predicted binding strength ordering, cooperativity of energy and the stability of hydrogen bonding suggests that the PPC force field combined IE method is a suitable choice. In addition, the IE method enables us to obtain the residue-specific entropic contributions to the streptavidin-biotin binding affinity and identify ten hot-spot residues providing the dominant contribution to the cooperative binding. Importantly, the overall cooperativity obtained from the ten residues also comes mainly from the entropic effect in our study. The calculation of the potential of mean force shows that the unbinding of streptavidin-biotin is a multi-step process, and each step corresponds to the formation and rupture of the hydrogen bond network. And S45A mutation may increase the rigidity of the linker region, making the flap region relatively difficult to open. The present study provides significant molecular insight into the binding cooperativity of the streptavidin-biotin complex.
Collapse
Affiliation(s)
- Yalong Cong
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
6
|
Tiwary P. Molecular Determinants and Bottlenecks in the Dissociation Dynamics of Biotin–Streptavidin. J Phys Chem B 2017; 121:10841-10849. [DOI: 10.1021/acs.jpcb.7b09510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pratyush Tiwary
- Department of Chemistry and
Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, United States
| |
Collapse
|
7
|
Tiwary P, Mondal J, Berne BJ. How and when does an anticancer drug leave its binding site? SCIENCE ADVANCES 2017; 3:e1700014. [PMID: 28580424 PMCID: PMC5451192 DOI: 10.1126/sciadv.1700014] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/03/2017] [Indexed: 05/08/2023]
Abstract
Obtaining atomistic resolution of drug unbinding from a protein is a much sought-after experimental and computational challenge. We report the unbinding dynamics of the anticancer drug dasatinib from c-Src kinase in full atomistic resolution using enhanced sampling molecular dynamics simulations. We obtain multiple unbinding trajectories and determine a residence time in agreement with experiments. We observe coupled protein-water movement through multiple metastable intermediates. The water molecules form a hydrogen bond bridge, elongating a specific, evolutionarily preserved salt bridge and enabling conformation changes essential to ligand unbinding. This water insertion in the salt bridge acts as a molecular switch that controls unbinding. Our findings provide a mechanistic rationale for why it might be difficult to engineer drugs targeting certain specific c-Src kinase conformations to have longer residence times.
Collapse
Affiliation(s)
- Pratyush Tiwary
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Center for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad, India
| | - B. J. Berne
- Department of Chemistry, Columbia University, New York, NY 10027, USA
- Corresponding author.
| |
Collapse
|
8
|
Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations. J Am Chem Soc 2017; 139:4780-4788. [PMID: 28290199 DOI: 10.1021/jacs.6b12950] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as koff = 0.020 ± 0.011 s-1. This is in good agreement with the experimental value (koff = 0.14 s-1). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.
Collapse
Affiliation(s)
- Rodrigo Casasnovas
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI) , Faculty of Informatics, Institute of Computational Science - Center for Computational Medicine in Cardiology, via G. Buffi 13, CH-6900, Lugano, Switzerland.,Department of Pharmacy, University of Naples "Federico II" , via D. Montesano 49, Naples I-80131, Italy
| | - Pratyush Tiwary
- Department of Chemistry, Columbia University , New York, New York, 10027, United States
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich , Jülich 52425, Germany
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich, and Faculty of Informatics, Institute of Computational Science, Università della Svizzera Italiana , via G. Buffi 13, Lugano CH-6900, Switzerland
| |
Collapse
|
9
|
Wu SC, Wang C, Hansen D, Wong SL. A simple approach for preparation of affinity matrices: Simultaneous purification and reversible immobilization of a streptavidin mutein to agarose matrix. Sci Rep 2017; 7:42849. [PMID: 28220817 PMCID: PMC5318860 DOI: 10.1038/srep42849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/18/2017] [Indexed: 11/09/2022] Open
Abstract
SAVSBPM18 is an engineered streptavidin for affinity purification of both biotinylated biomolecules and recombinant proteins tagged with streptavidin binding peptide (SBP) tags. To develop a user-friendly approach for the preparation of the SAVSBPM18-based affinity matrices, a designer fusion protein containing SAVSBPM18 and a galactose binding domain was engineered. The galactose binding domain derived from the earthworm lectin EW29 was genetically modified to eliminate a proteolytic cleavage site located at the beginning of the domain. This domain was fused to the C-terminal end of SAVSBPM18. It allows the SAVSBPM18 fusions to bind reversibly to agarose and can serve as an affinity handle for purification of the fusion. Fluorescently labeled SAVSBPM18 fusions were found to be stably immobilized on Sepharose 6B-CL. The enhanced immobilization capability of the fusion to the agarose beads results from the avidity effect mediated by the tetrameric nature of SAVSBPM18. This approach allows the consolidation of purification and immobilization of SAVSBPM18 fusions to Sepharose 6B-CL in one step for affinity matrix preparation. The resulting affinity matrix has been successfully applied to purify both SBP tagged β-lactamase and biotinylated proteins. No significant reduction in binding capacity of the column was observed for at least six months.
Collapse
Affiliation(s)
- Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| | - Chris Wang
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| | - Sui-Lam Wong
- Department of Biological Sciences, University of Calgary, 2500 University Dr., N.W. Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
10
|
Baugh L, Le Trong I, Stayton PS, Stenkamp RE, Lybrand TP. A Streptavidin Binding Site Mutation Yields an Unexpected Result: An Ionized Asp128 Residue Is Not Essential for Strong Biotin Binding. Biochemistry 2016; 55:5201-3. [PMID: 27603565 DOI: 10.1021/acs.biochem.6b00698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a detailed study of a point mutation of the crucial binding site residue, D128, in the biotin-streptavidin complex. The conservative substitution, D128N, preserves the detailed structure observed for the wild-type complex but has an only minimal impact on biotin binding, even though previous experimental and computational studies suggested that a charged D128 residue was crucial for high-affinity binding. These results show clearly that the fundamental basis for streptavidin's extremely strong biotin binding affinity is more complex than assumed and illustrate some of the challenges that may arise when analyzing extremely strong ligand-protein binding interactions.
Collapse
Affiliation(s)
| | | | | | | | - Terry P Lybrand
- Center for Structural Biology and Department of Chemistry, Vanderbilt University , Nashville, Tennessee 37235-1822, United States
| |
Collapse
|
11
|
Liu F, Zhang JZH, Mei Y. The origin of the cooperativity in the streptavidin-biotin system: A computational investigation through molecular dynamics simulations. Sci Rep 2016; 6:27190. [PMID: 27249234 PMCID: PMC4888747 DOI: 10.1038/srep27190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/13/2016] [Indexed: 11/17/2022] Open
Abstract
Previous experimental study measuring the binding affinities of biotin to the wild type streptavidin (WT) and three mutants (S45A, D128A and S45A/D128A double mutant) has shown that the loss of binding affinity from the double mutation is larger than the direct sum of those from two single mutations. The origin of this cooperativity has been investigated in this work through molecular dynamics simulations and the end-state free energy method using the polarized protein-specific charge. The results show that this cooperativity comes from both the enthalpy and entropy contributions. The former contribution mainly comes from the alternations of solvation free energy. Decomposition analysis shows that the mutated residues nearly have no contributions to the cooperativity. Instead, N49 and S88, which are located at the entry of the binding pocket and interact with the carboxyl group of biotin, make the dominant contribution among all the residues in the first binding shell around biotin.
Collapse
Affiliation(s)
- Fengjiao Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - John Z. H. Zhang
- Department of Physics, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
12
|
Konkle ME, Blobaum AL, Moth CW, Prusakiewicz JJ, Xu S, Ghebreselasie K, Akingbade D, Jacobs AT, Rouzer CA, Lybrand TP, Marnett LJ. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics. Biochemistry 2015; 55:348-59. [PMID: 26704937 PMCID: PMC4721528 DOI: 10.1021/acs.biochem.5b01222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings.
Collapse
Affiliation(s)
- Mary E Konkle
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Anna L Blobaum
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Christopher W Moth
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Jeffery J Prusakiewicz
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Shu Xu
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Kebreab Ghebreselasie
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Dapo Akingbade
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Aaron T Jacobs
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Carol A Rouzer
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Terry P Lybrand
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| | - Lawrence J Marnett
- Departments of Biochemistry, ‡Chemistry, and §Pharmacology, Vanderbilt Institute of Chemical Biology, Center for Structural Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville Tennessee 37232-0146, United States
| |
Collapse
|
13
|
Cerutti DS, Case DA. Multi-Level Ewald: A hybrid multigrid / Fast Fourier Transform approach to the electrostatic particle-mesh problem. J Chem Theory Comput 2015; 6:443-58. [PMID: 22039358 DOI: 10.1021/ct900522g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new method for decomposing the one convolution required by standard Particle-Particle Particle-Mesh (P(3)M) electrostatic methods into a series of convolutions over slab-shaped subregions of the original simulation cell. Most of the convolutions derive data from separate regions of the cell and can thus be computed independently via FFTs, in some cases with a small amount of zero padding so that the results of these sub-problems may be reunited with minimal error. A single convolution over the entire cell is also performed, but using a much coarser mesh than the original problem would have required. This "Multi-Level Ewald" (MLE) method therefore requires moderately more FFT work plus the tasks of interpolating between different sizes of mesh and accumulating the results from neighboring sub-problems, but we show that the added expense can be less than 10% of the total simulation cost. We implement MLE as an approximation to the Smooth Particle Mesh Ewald (SPME) style of P(3)M, and identify a number of tunable parameters in MLE. With reasonable settings pertaining to the degree of overlap between the various sub-problems and the accuracy of interpolation between meshes, the errors obtained by MLE can be smaller than those obtained in molecular simulations with typical SPME settings. We compare simulations of a box of water molecules performed with MLE and SPME, and show that the energy conservation, structural, and dynamical properties of the system are more affected by the accuracy of the SPME calculation itself than by the additional MLE approximation. We anticipate that the MLE method's ability to break a single convolution into many independent sub-problems will be useful for extending the parallel scaling of molecular simulations.
Collapse
Affiliation(s)
- David S Cerutti
- Department of Chemistry and Chemical Biology, and BioMaPS Institute, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8066
| | | |
Collapse
|
14
|
Krishna KV, Ghosh S, Sharma B, Singh L, Mukherjee S, Verma S. Fluorescent Biotin Analogues for Microstructure Patterning and Selective Protein Immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12573-12578. [PMID: 26559028 DOI: 10.1021/acs.langmuir.5b03476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Benzyl substitution on ureido nitrogens of biotin led to manifestation of aggregation-induced emission, which was studied by steady-state fluorescence, microscopy, and TD-DFT, providing a rationale into the observed photophysical behavior. Besides exhibiting solvatochromism, the biotin derivatives revealed emission peaks centered at ∼430 and 545 nm, which has been attributed to the π-π stacking interactions. Our TD-DFT results also correlate the spectroscopic data and quantify the nature of transitions involved. The isothermal titration calorimetry data substantiates that the binding of the biotin derivatives with avidin are pretty strong. These derivatives on lithographic patterning present a platform for site specific strept(avidin) immobilization, thus opening avenues for potential applications exploiting these interactions. The fluorescent biotin derivatives can thus find applications in cellular biology and imaging.
Collapse
Affiliation(s)
| | - Subhadip Ghosh
- Department of Chemistry, IISER-Bhopal , Bhopal-462066 Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
15
|
Fairhead M, Shen D, Chan LKM, Lowe ED, Donohoe TJ, Howarth M. Love-Hate ligands for high resolution analysis of strain in ultra-stable protein/small molecule interaction. Bioorg Med Chem 2014; 22:5476-86. [PMID: 25128469 DOI: 10.1016/j.bmc.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
The pathway of ligand dissociation and how binding sites respond to force are not well understood for any macromolecule. Force effects on biological receptors have been studied through simulation or force spectroscopy, but not by high resolution structural experiments. To investigate this challenge, we took advantage of the extreme stability of the streptavidin-biotin interaction, a paradigm for understanding non-covalent binding as well as a ubiquitous research tool. We synthesized a series of biotin-conjugates having an unchanged strong-binding biotin moiety, along with pincer-like arms designed to clash with the protein surface: 'Love-Hate ligands'. The Love-Hate ligands contained various 2,6-di-ortho aryl groups, installed using Suzuki coupling as the last synthetic step, making the steric repulsion highly modular. We determined binding affinity, as well as solving 1.1-1.6Å resolution crystal structures of streptavidin bound to Love-Hate ligands. Striking distortion of streptavidin's binding contacts was found for these complexes. Hydrogen bonds to biotin's ureido and thiophene rings were preserved for all the ligands, but biotin's valeryl tail was distorted from the classic conformation. Streptavidin's L3/4 loop, normally forming multiple energetically-important hydrogen bonds to biotin, was forced away by clashes with Love-Hate ligands, but Ser45 from L3/4 could adapt to hydrogen-bond to a different part of the ligand. This approach of preparing conflicted ligands represents a direct way to visualize strained biological interactions and test protein plasticity.
Collapse
Affiliation(s)
- Michael Fairhead
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Di Shen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Louis K M Chan
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Ed D Lowe
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Timothy J Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK.
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
16
|
Zeng J, Jia X, Zhang JZH, Mei Y. The F130L mutation in streptavidin reduces its binding affinity to biotin through electronic polarization effect. J Comput Chem 2013; 34:2677-86. [PMID: 24000160 DOI: 10.1002/jcc.23421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 11/06/2022]
Abstract
Recently, Baugh et al. discovered that a distal point mutation (F130L) in streptavidin causes no distinct variation to the structure of the binding pocket but a 1000-fold reduction in biotin binding affinity. In this work, we carry out molecular dynamics simulations and apply an end-state free energy method to calculate the binding free energies of biotin to wild type streptavidin and its F130L mutant. The absolute binding affinities based on AMBER charge are repulsive, and the mutation induced binding loss is underestimated. When using the polarized protein-specific charge, the absolute binding affinities are significantly enhanced. In particular, both the absolute and relative binding affinities are in line with the experimental measurements. Further investigation indicates that polarization effect is indispensable in both the generation of structural ensembles and the calculation of interaction energies. This work verifies Baugh's conjecture that electrostatic polarization effect plays an essential role in modulating the binding affinity of biotin to the streptavidin through F130L mutation.
Collapse
Affiliation(s)
- Juan Zeng
- State Key Laboratory of Precision Spectroscopy, Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai, 200062, China
| | | | | | | |
Collapse
|
17
|
Le Trong I, Chu V, Xing Y, Lybrand TP, Stayton PS, Stenkamp RE. Structural consequences of cutting a binding loop: two circularly permuted variants of streptavidin. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:968-77. [PMID: 23695241 PMCID: PMC3663120 DOI: 10.1107/s0907444913003855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 02/08/2013] [Indexed: 11/10/2022]
Abstract
Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing the biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide-biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the β-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin-biotin complex.
Collapse
Affiliation(s)
- Isolde Le Trong
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195-7420, USA
- Biomolecular Structure Center, University of Washington, Box 357742, Seattle, WA 98195-7742, USA
| | - Vano Chu
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, USA
| | - Yi Xing
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195-7420, USA
| | - Terry P. Lybrand
- Center for Structural Biology, Department of Chemistry, Vanderbilt University, 5142 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8725, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, USA
| | - Ronald E. Stenkamp
- Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195-7420, USA
- Biomolecular Structure Center, University of Washington, Box 357742, Seattle, WA 98195-7742, USA
- Department of Biochemistry, University of Washington, Box 357430, Seattle, WA 98195-7430, USA
| |
Collapse
|
18
|
Kinetic Stability of the Streptavidin–Biotin Interaction Enhanced in the Gas Phase. J Am Chem Soc 2012; 134:16586-96. [DOI: 10.1021/ja305213z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Development of a tetrameric streptavidin mutein with reversible biotin binding capability: engineering a mobile loop as an exit door for biotin. PLoS One 2012; 7:e35203. [PMID: 22536357 PMCID: PMC3334968 DOI: 10.1371/journal.pone.0035203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/10/2012] [Indexed: 12/01/2022] Open
Abstract
A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible.
Collapse
|
20
|
Baugh L, Le Trong I, Cerutti DS, Mehta N, Gülich S, Stayton PS, Stenkamp RE, Lybrand TP. Second-contact shell mutation diminishes streptavidin-biotin binding affinity through transmitted effects on equilibrium dynamics. Biochemistry 2012; 51:597-607. [PMID: 22145986 DOI: 10.1021/bi201221j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a point mutation in the second contact shell of the high-affinity streptavidin-biotin complex that appears to reduce binding affinity through transmitted effects on equilibrium dynamics. The Y54F streptavidin mutation causes a 75-fold loss of binding affinity with 73-fold faster dissociation, a large loss of binding enthalpy (ΔΔH = 3.4 kcal/mol at 37 °C), and a small gain in binding entropy (TΔΔS = 0.7 kcal/mol). The removed Y54 hydroxyl is replaced by a water molecule in the bound structure, but there are no observable changes in structure in the first contact shell and no additional changes surrounding the mutation. Molecular dynamics simulations reveal a large increase in the atomic fluctuation amplitudes for W79, a key biotin contact residue, compared to the fluctuation amplitudes in the wild-type. The increased W79 atomic fluctuation amplitudes are caused by loss of water-mediated hydrogen bonds between the Y54 hydroxyl group and peptide backbone atoms in and near W79. We propose that the increased atomic fluctuation amplitudes diminish the integrity of the W79-biotin interaction and represents a loosening of the "tryptophan collar" that is critical to the slow dissociation and high affinity of streptavidin-biotin binding. These results illustrate how changes in protein dynamics distal to the ligand binding pocket can have a profound impact on ligand binding, even when equilibrium structure is unperturbed.
Collapse
Affiliation(s)
- Loren Baugh
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schmidtke P, Luque FJ, Murray JB, Barril X. Shielded Hydrogen Bonds as Structural Determinants of Binding Kinetics: Application in Drug Design. J Am Chem Soc 2011; 133:18903-10. [DOI: 10.1021/ja207494u] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Schmidtke
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - F. Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - James B. Murray
- Vernalis (R&D) Ltd., Granta Park, Great Abington, Cambridge CB21 6GB, United Kingdom
| | - Xavier Barril
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
22
|
Köhler V, Mao J, Heinisch T, Pordea A, Sardo A, Wilson YM, Knörr L, Creus M, Prost JC, Schirmer T, Ward TR. OsO4⋅Streptavidin: A Tunable Hybrid Catalyst for the Enantioselective cis-Dihydroxylation of Olefins. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103632] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Köhler V, Mao J, Heinisch T, Pordea A, Sardo A, Wilson YM, Knörr L, Creus M, Prost JC, Schirmer T, Ward TR. OsO4⋅Streptavidin: A Tunable Hybrid Catalyst for the Enantioselective cis-Dihydroxylation of Olefins. Angew Chem Int Ed Engl 2011; 50:10863-6. [PMID: 21948623 DOI: 10.1002/anie.201103632] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/29/2011] [Indexed: 11/11/2022]
|
24
|
How the biotin-streptavidin interaction was made even stronger: investigation via crystallography and a chimaeric tetramer. Biochem J 2011; 435:55-63. [PMID: 21241253 PMCID: PMC3062853 DOI: 10.1042/bj20101593] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction between SA (streptavidin) and biotin is one of the strongest non-covalent interactions in Nature. SA is a widely used tool and a paradigm for protein–ligand interactions. We previously developed a SA mutant, termed Tr (traptavidin), possessing a 10-fold lower off-rate for biotin, with increased mechanical and thermal stability. In the present study, we determined the crystal structures of apo-Tr and biotin–Tr at 1.5 Å resolution. In apo-SA the loop (L3/4), near biotin's valeryl tail, is typically disordered and open, but closes upon biotin binding. In contrast, L3/4 was shut in both apo-Tr and biotin–Tr. The reduced flexibility of L3/4 and decreased conformational change on biotin binding provide an explanation for Tr's reduced biotin off- and on-rates. L3/4 includes Ser45, which forms a hydrogen bond to biotin consistently in Tr, but erratically in SA. Reduced breakage of the biotin–Ser45 hydrogen bond in Tr is likely to inhibit the initiating event in biotin's dissociation pathway. We generated a Tr with a single biotin-binding site rather than four, which showed a simi-larly low off-rate, demonstrating that Tr's low off-rate was governed by intrasubunit effects. Understanding the structural features of this tenacious interaction may assist the design of even stronger affinity tags and inhibitors.
Collapse
|
25
|
Leppiniemi J, Määttä JAE, Hammaren H, Soikkeli M, Laitaoja M, Jänis J, Kulomaa MS, Hytönen VP. Bifunctional avidin with covalently modifiable ligand binding site. PLoS One 2011; 6:e16576. [PMID: 21305032 PMCID: PMC3029397 DOI: 10.1371/journal.pone.0016576] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022] Open
Abstract
The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.
Collapse
Affiliation(s)
- Jenni Leppiniemi
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Juha A. E. Määttä
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Henrik Hammaren
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mikko Soikkeli
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Mikko Laitaoja
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu, Finland
| | - Markku S. Kulomaa
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Vesa P. Hytönen
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
- * E-mail:
| |
Collapse
|
26
|
Optimisation of a multivalent Strep tag for protein detection. Biophys Chem 2010; 152:170-7. [PMID: 20970240 DOI: 10.1016/j.bpc.2010.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 02/05/2023]
Abstract
The Strep tag is a peptide sequence that is able to mimic biotin's ability to bind to streptavidin. Sequences of Strep tags from 0 to 5 have been appended to the N-terminus of a model protein, the Stefin A Quadruple Mutant (SQM) peptide aptamer scaffold, and the recombinant fusion proteins expressed. The affinities of the proteins for streptavidin have been assessed as a function of the number of tags inserted using a variety of labelled and label-free bioanalytical and surface based methods (Western blots, microarray assays and surface plasmon resonance spectroscopy). The binding affinity increases with the number of tags across all assays, reaching nanomolar levels with 5 inserts, an observation assigned to a progressive increase in the probability of a binding interaction occurring. In addition a novel interfacial FRET based assay has been developed for generic Strep tag interactions, which utilises a conventional microarray scanner and bypasses the requirement for expensive lifetime imaging equipment. By labelling both the tagged StrepX-SQM(2) and streptavidin targets, the conjugate is primed for label-free FRET based displacement assays.
Collapse
|
27
|
Baugh L, Le Trong I, Cerutti DS, Gülich S, Stayton PS, Stenkamp RE, Lybrand TP. A distal point mutation in the streptavidin-biotin complex preserves structure but diminishes binding affinity: experimental evidence of electronic polarization effects? Biochemistry 2010; 49:4568-70. [PMID: 20462252 PMCID: PMC2885148 DOI: 10.1021/bi1005392] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed. Molecular dynamics simulations reveal a reduced mobility of biotin binding residues but no observable destabilization of protein-ligand interactions. Our combined structural and computational studies suggest that the additional water molecule may affect binding affinity through an electronic polarization effect that impacts the highly cooperative hydrogen bonding network in the biotin binding pocket.
Collapse
Affiliation(s)
| | - Isolde Le Trong
- Departments of Bioengineering, Biological Structure, and Biochemistry, University of Washington, Seattle, Washington 98195, and Center for Structural Biology and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822
| | | | | | | | | | - Terry P. Lybrand
- To whom correspondence should be addressed. . Phone: (615) 343-1247. Fax: (615) 936-2211
| |
Collapse
|
28
|
Wang L, Sigworth FJ. Liposomes on a streptavidin crystal: a system to study membrane proteins by cryo-EM. Methods Enzymol 2010; 481:147-64. [PMID: 20887857 PMCID: PMC3903115 DOI: 10.1016/s0076-6879(10)81007-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this chapter, we describe the preparation of cryo-EM specimens for random spherically constrained (RSC) single-particle reconstruction of membrane proteins. The specimen consists of liposomes into which the purified membrane protein is reconstituted at low density. The substrate is a 2D streptavidin crystal, which serves as an affinity surface that tethers the liposomes, which are doped with biotinylated lipids; the crystal can also serve as an image-quality and image-calibration reference. After subtraction of the crystal and lipid membrane contributions to the image, the remaining particle images can be used for 3D reconstruction.
Collapse
|
29
|
Grunwald C. A Brief Introduction to the Streptavidin-Biotin System and its Usage in Modern Surface Based Assays. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2008.6009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review presents the molecular basis of the high affinity between (strept)avidin and biotin as it was discovered from different protein crystal structures using wild type and mutant streptavidin. Optimization strategies for further improving the applicability of the (strept)avidin-biotin system and prospects for modulating the affinity are discussed. The characterization and the application of the streptavidin-biotin system in surface-based biosensing assays are demonstrated with selected examples focussing on surface plasmon resonance (SPR) and atomic force microscopy (AFM). Recent trends to further enhance the utility of convential SPR e.g. parallel detection of biological molecules and sensitivity enhancement towards small molecules are covered as well.
Collapse
|
30
|
Cerutti DS, Duke RE, Darden TA, Lybrand TP. Staggered Mesh Ewald: An extension of the Smooth Particle-Mesh Ewald method adding great versatility. J Chem Theory Comput 2009; 5:2322. [PMID: 20174456 PMCID: PMC2822383 DOI: 10.1021/ct9001015] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We draw on an old technique for improving the accuracy of mesh-based field calculations to extend the popular Smooth Particle Mesh Ewald (SPME) algorithm as the Staggered Mesh Ewald (StME) algorithm. StME improves the accuracy of computed forces by up to 1.2 orders of magnitude and also reduces the drift in system momentum inherent in the SPME method by averaging the results of two separate reciprocal space calculations. StME can use charge mesh spacings roughly 1.5× larger than SPME to obtain comparable levels of accuracy; the one mesh in an SPME calculation can therefore be replaced with two separate meshes, each less than one third of the original size. Coarsening the charge mesh can be balanced with reductions in the direct space cutoff to optimize performance: the efficiency of StME rivals or exceeds that of SPME calculations with similarly optimized parameters. StME may also offer advantages for parallel molecular dynamics simulations because it permits the use of coarser meshes without requiring higher orders of charge interpolation and also because the two reciprocal space calculations can be run independently if that is most suitable for the machine architecture. We are planning other improvements to the standard SPME algorithm, and anticipate that StME will work synergistically will all of them to dramatically improve the efficiency and parallel scaling of molecular simulations.
Collapse
Affiliation(s)
- David S. Cerutti
- Center for Structural Biology, Department of Chemistry, Vanderbilt University 5142 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8725
| | - Robert E. Duke
- Department of Chemistry, University of North Carolina Campus Box 3290, Chapel Hill, NC 27599-0001
- Laboratory of Structural Biology, National Institute of Environmental Health Science Research Triangle Park, 12 Davis Drive, Chapel Hill, NC 27709-5900
| | - Thomas A. Darden
- Open Eye Scientific Software, 9 Bisbee Court, Suite D, Santa Fe, NM 87508-1338
| | - Terry P. Lybrand
- Center for Structural Biology, Department of Chemistry, Vanderbilt University 5142 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8725
| |
Collapse
|
31
|
Cerutti DS, Trong IL, Stenkamp RE, Lybrand TP. Dynamics of the streptavidin-biotin complex in solution and in its crystal lattice: distinct behavior revealed by molecular simulations. J Phys Chem B 2009; 113:6971-85. [PMID: 19374419 PMCID: PMC2791092 DOI: 10.1021/jp9010372] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a 250 ns simulation of the wild-type, biotin-liganded streptavidin tetramer in the solution phase and compare the trajectory to two previously published simulations of the protein in its crystal lattice. By performing both types of simulations, we are able to interpret the protein's behavior in solution in the context of its X-ray structure. We find that the rate of conformational sampling is increased in solution over the lattice environment, although the relevant conformational space in solution is also much larger, as indicated by overall fluctuations in the positions of backbone atoms. We also compare the distributions of chi1 angles sampled by side chains exposed to solvent in the lattice and in the solution phase, obtaining overall good agreement between the distributions obtained in our most rigorous lattice simulation and the crystallographic chi1 angles. We observe changes in the chi1 distributions in the solution phase, and note an apparent progression of the distributions as the environment changes from a tightly packed lattice filled with crystallization media to a bath of pure water. Finally, we examine the interaction of biotin and streptavidin in each simulation, uncovering a possible alternate conformation of the biotin carboxylate tail. We also note that a hydrogen bond observed to break transiently in previous solution-phase simulations is predominantly broken in this much longer solution-phase trajectory; in the lattice simulations, the lattice environment appears to help maintain the hydrogen bond, but more sampling will be needed to confirm whether the simulation model truly gives good agreement with the X-ray data in the lattice simulations. We expect that pairing solution-phase biomolecular simulations with crystal lattice simulations will help to validate simulation models and improve the interpretation of experimentally determined structures.
Collapse
Affiliation(s)
- David S. Cerutti
- Center for Structural Biology and Department of Chemistry, Vanderbilt University; 5142 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8725
| | - Isolde Le Trong
- Department of Biological Structure, University of Washington, Seattle; Box 357420, Seattle, WA 98195-7420
- Biomolecular Structure Center, Univ. of Washington, Seattle; Seattle, WA 98195-7742
| | - Ronald E. Stenkamp
- Department of Biological Structure, University of Washington, Seattle; Box 357420, Seattle, WA 98195-7420
- Department of Biochemistry, University of Washington, Seattle; Box 357350, Seattle, WA 98195-7350
- Biomolecular Structure Center, Univ. of Washington, Seattle; Seattle, WA 98195-7742
| | - Terry P. Lybrand
- Center for Structural Biology and Department of Chemistry, Vanderbilt University; 5142 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8725
| |
Collapse
|
32
|
Krishnan R, Walton EB, Van Vliet KJ. Characterizing rare-event property distributions via replicate molecular dynamics simulations of proteins. J Mol Model 2009; 15:1383-9. [PMID: 19418077 DOI: 10.1007/s00894-009-0504-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 03/09/2009] [Indexed: 11/26/2022]
Abstract
As computational resources increase, molecular dynamics simulations of biomolecules are becoming an increasingly informative complement to experimental studies. In particular, it has now become feasible to use multiple initial molecular configurations to generate an ensemble of replicate production-run simulations that allows for more complete characterization of rare events such as ligand-receptor unbinding. However, there are currently no explicit guidelines for selecting an ensemble of initial configurations for replicate simulations. Here, we use clustering analysis and steered molecular dynamics simulations to demonstrate that the configurational changes accessible in molecular dynamics simulations of biomolecules do not necessarily correlate with observed rare-event properties. This informs selection of a representative set of initial configurations. We also employ statistical analysis to identify the minimum number of replicate simulations required to sufficiently sample a given biomolecular property distribution. Together, these results suggest a general procedure for generating an ensemble of replicate simulations that will maximize accurate characterization of rare-event property distributions in biomolecules.
Collapse
Affiliation(s)
- Ranjani Krishnan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
33
|
Streptavidin crystals as nanostructured supports and image-calibration references for cryo-EM data collection. J Struct Biol 2008; 164:190-8. [PMID: 18707004 DOI: 10.1016/j.jsb.2008.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 11/22/2022]
Abstract
For cryo-EM structural studies, we seek to image membrane proteins as single particles embedded in proteoliposomes. One technical difficulty has been the low density of liposomes that can be trapped in the approximately 100nm ice layer that spans holes in the perforated carbon support film of EM grids. Inspired by the use of two-dimensional (2D) streptavidin crystals as an affinity surface for biotinylated DNA (Crucifix et al., 2004), we propose to use the crystals to tether liposomes doped with biotinylated lipids. The 2D crystal image also serves as a calibration of the image formation process, providing an absolute conversion from electrostatic potentials in the specimen to the EM image intensity, and serving as a quality control of acquired cryo-EM images. We were able to grow streptavidin crystals covering more than 90% of the holes in an EM grid, and which remained stable even under negative stain. The liposome density in the resulting cryo-EM sample was uniform and high due to the high-affinity binding of biotin to streptavidin. Using computational methods, the 2D crystal background can be removed from images without noticeable effect on image properties.
Collapse
|
34
|
Pordea A, Creus M, Panek J, Duboc C, Mathis D, Novic M, Ward TR. Artificial Metalloenzyme for Enantioselective Sulfoxidation Based on Vanadyl-Loaded Streptavidin. J Am Chem Soc 2008; 130:8085-8. [DOI: 10.1021/ja8017219] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anca Pordea
- Institute of Chemistry, University of Neuchâtel, Avenue Bellevaux 51, CP 158,2009 Neuchâtel, Switzerland, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, and Département de Chimie Moléculaire UMR 5250, ICMG FR 2607, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Marc Creus
- Institute of Chemistry, University of Neuchâtel, Avenue Bellevaux 51, CP 158,2009 Neuchâtel, Switzerland, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, and Département de Chimie Moléculaire UMR 5250, ICMG FR 2607, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Jaroslaw Panek
- Institute of Chemistry, University of Neuchâtel, Avenue Bellevaux 51, CP 158,2009 Neuchâtel, Switzerland, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, and Département de Chimie Moléculaire UMR 5250, ICMG FR 2607, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Carole Duboc
- Institute of Chemistry, University of Neuchâtel, Avenue Bellevaux 51, CP 158,2009 Neuchâtel, Switzerland, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, and Département de Chimie Moléculaire UMR 5250, ICMG FR 2607, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Déborah Mathis
- Institute of Chemistry, University of Neuchâtel, Avenue Bellevaux 51, CP 158,2009 Neuchâtel, Switzerland, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, and Département de Chimie Moléculaire UMR 5250, ICMG FR 2607, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Marjana Novic
- Institute of Chemistry, University of Neuchâtel, Avenue Bellevaux 51, CP 158,2009 Neuchâtel, Switzerland, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, and Département de Chimie Moléculaire UMR 5250, ICMG FR 2607, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | - Thomas R. Ward
- Institute of Chemistry, University of Neuchâtel, Avenue Bellevaux 51, CP 158,2009 Neuchâtel, Switzerland, Laboratory of Chemometrics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia, and Département de Chimie Moléculaire UMR 5250, ICMG FR 2607, CNRS, Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
35
|
Krishnan R, Oommen B, Walton EB, Maloney JM, Van Vliet KJ. Modeling and simulation of chemomechanics at the cell-matrix interface. Cell Adh Migr 2008; 2:83-94. [PMID: 19262102 DOI: 10.4161/cam.2.2.6154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chemomechanical characteristics of the extracellular materials with which cells interact can have a profound impact on cell adhesion and migration. To understand and modulate such complex multiscale processes, a detailed understanding of the feedback between a cell and the adjacent microenvironment is crucial. Here, we use computational modeling and simulation to examine the cell-matrix interaction at both the molecular and continuum lengthscales. Using steered molecular dynamics, we consider how extracellular matrix (ECM) stiffness and extracellular pH influence the interaction between cell surface adhesion receptors and extracellular matrix ligands, and we predict potential consequences for focal adhesion formation and dissolution. Using continuum level finite element simulations and analytical methods to model cell-induced ECM deformation as a function of ECM stiffness and thickness, we consider the implications toward design of synthetic substrata for cell biology experiments that intend to decouple chemical and mechanical cues.
Collapse
Affiliation(s)
- Ranjani Krishnan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | |
Collapse
|
36
|
Extending Bell's model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophys J 2008; 94:2621-30. [PMID: 18178658 DOI: 10.1529/biophysj.107.114454] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Forced unbinding of complementary macromolecules such as ligand-receptor complexes can reveal energetic and kinetic details governing physiological processes ranging from cellular adhesion to drug metabolism. Although molecular-level experiments have enabled sampling of individual ligand-receptor complex dissociation events, disparities in measured unbinding force F(R) among these methods lead to marked variation in inferred binding energetics and kinetics at equilibrium. These discrepancies are documented for even the ubiquitous ligand-receptor pair, biotin-streptavidin. We investigated these disparities and examined atomic-level unbinding trajectories via steered molecular dynamics simulations, as well as via molecular force spectroscopy experiments on biotin-streptavidin. In addition to the well-known loading rate dependence of F(R) predicted by Bell's model, we find that experimentally accessible parameters such as the effective stiffness of the force transducer k can significantly perturb the energy landscape and the apparent unbinding force of the complex for sufficiently stiff force transducers. Additionally, at least 20% variation in unbinding force can be attributed to minute differences in initial atomic positions among energetically and structurally comparable complexes. For force transducers typical of molecular force spectroscopy experiments and atomistic simulations, this energy barrier perturbation results in extrapolated energetic and kinetic parameters of the complex that depend strongly on k. We present a model that explicitly includes the effect of k on apparent unbinding force of the ligand-receptor complex, and demonstrate that this correction enables prediction of unbinding distances and dissociation rates that are decoupled from the stiffness of actual or simulated molecular linkers.
Collapse
|
37
|
DeChancie J, Houk K. The origins of femtomolar protein-ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site. J Am Chem Soc 2007; 129:5419-29. [PMID: 17417839 PMCID: PMC2527462 DOI: 10.1021/ja066950n] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unusually strong reversible binding of biotin by avidin and streptavidin has been investigated by density functional and MP2 ab initio quantum mechanical methods. The solvation of biotin by water has also been studied through QM/MM/MC calculations. The ureido moiety of biotin in the bound state hydrogen bonds to five residues, three to the carbonyl oxygen and one for each--NH group. These five hydrogen bonds act cooperatively, leading to stabilization that is larger than the sum of individual hydrogen-bonding energies. The charged aspartate is the key residue that provides the driving force for cooperativity in the hydrogen-bonding network for both avidin and streptavidin by greatly polarizing the urea of biotin. If the residue is removed, the network is disrupted, and the attenuation of the energetic contributions from the neighboring residues results in significant reduction of cooperative interactions. Aspartate is directly hydrogen-bonded with biotin in streptavidin and is one residue removed in avidin. The hydrogen-bonding groups in streptavidin are computed to give larger cooperative hydrogen-bonding effects than avidin. However, the net gain in electrostatic binding energy is predicted to favor the avidin-bicyclic urea complex due to the relatively large penalty for desolvation of the streptavidin binding site (specifically expulsion of bound water molecules). QM/MM/MC calculations involving biotin and the ureido moiety in aqueous solution, featuring PDDG/PM3, show that water interactions with the bicyclic urea are much weaker than (strept)avidin interactions due to relatively low polarization of the urea group in water.
Collapse
Affiliation(s)
- Jason DeChancie
- Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - K.N. Houk
- Contribution from the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| |
Collapse
|
38
|
Repo S, Paldanius TA, Hytönen VP, Nyholm TKM, Halling KK, Huuskonen J, Pentikäinen OT, Rissanen K, Slotte JP, Airenne TT, Salminen TA, Kulomaa MS, Johnson MS. Binding Properties of HABA-Type Azo Derivatives to Avidin and Avidin-Related Protein 4. ACTA ACUST UNITED AC 2006; 13:1029-39. [PMID: 17052607 DOI: 10.1016/j.chembiol.2006.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/11/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The chicken genome encodes several biotin-binding proteins, including avidin and avidin-related protein 4 (AVR4). In addition to D-biotin, avidin binds an azo dye compound, 4-hydroxyazobenzene-2-carboxylic acid (HABA), but the HABA-binding properties of AVR4 are not yet known. Differential scanning calorimetry, UV/visible spectroscopy, and molecular modeling were used to analyze the binding of 15 azo molecules to avidin and AVR4. Significant differences are seen in azo compound preferences for the two proteins, emphasizing the importance of the loop between strands beta3 and beta4 for azo ligand recognition; information on these loops is provided by the high-resolution (1.5 A) X-ray structure for avidin reported here. These results may be valuable in designing improved tools for avidin-based life science and nanobiotechnology applications.
Collapse
Affiliation(s)
- Susanna Repo
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6, FI-20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chau PL. Simulations of biomolecule unbinding from protein using DL_POLY. MOLECULAR SIMULATION 2006. [DOI: 10.1080/08927020600835640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Le Trong I, Humbert N, Ward TR, Stenkamp RE. Crystallographic Analysis of a Full-length Streptavidin with Its C-terminal Polypeptide Bound in the Biotin Binding Site. J Mol Biol 2006; 356:738-45. [PMID: 16384581 DOI: 10.1016/j.jmb.2005.11.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 11/25/2005] [Accepted: 11/28/2005] [Indexed: 11/24/2022]
Abstract
The structure of a full-length streptavidin has been determined at 1.7 A resolution and shows that the 20 residue extension at the C terminus forms a well-ordered polypeptide loop on the surface of the tetramer. Residues 150-153 of the extension are bound to the ligand-binding site, possibly competing with exogenous ligands. The binding mode of these residues is compared with that of biotin and peptidic ligands. The observed structure helps to rationalize the observations that full-length mature streptavidin binds biotinylated macromolecules with reduced affinity.
Collapse
Affiliation(s)
- Isolde Le Trong
- Departments of Biological Structure and Biochemistry and the Biomolecular Structure Center, University of Washington, Box 357420, Seattle, WA 98195-7420, USA
| | | | | | | |
Collapse
|
41
|
Hyre DE, Le Trong I, Merritt EA, Eccleston JF, Green NM, Stenkamp RE, Stayton PS. Cooperative hydrogen bond interactions in the streptavidin-biotin system. Protein Sci 2006; 15:459-67. [PMID: 16452627 PMCID: PMC2249767 DOI: 10.1110/ps.051970306] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The thermodynamic and structural cooperativity between the Ser45- and D128-biotin hydrogen bonds was measured by calorimetric and X-ray crystallographic studies of the S45A/D128A double mutant of streptavidin. The double mutant exhibits a binding affinity approximately 2x10(7) times lower than that of wild-type streptavidin at 25 degrees C. The corresponding reduction in binding free energy (DeltaDeltaG) of 10.1 kcal/mol was nearly completely due to binding enthalpy losses at this temperature. The loss of binding affinity is 11-fold greater than that predicted by a linear combination of the single-mutant energetic perturbations (8.7 kcal/mol), indicating that these two mutations interact cooperatively. Crystallographic characterization of the double mutant and comparison with the two single mutant structures suggest that structural rearrangements at the S45 position, when the D128 carboxylate is removed, mask the true energetic contribution of the D128-biotin interaction. Taken together, the thermodynamic and structural analyses support the conclusion that the wild-type hydrogen bond between D128-OD and biotin-N2 is thermodynamically stronger than that between S45-OG and biotin-N1.
Collapse
Affiliation(s)
- David E Hyre
- Box 351721, Department of Bioengineering, University of Washington, Seattle, WA 98195-1721, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlén M. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005; 26:501-10. [PMID: 15690449 DOI: 10.1002/elps.200410070] [Citation(s) in RCA: 311] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biotin-streptavidin system is the strongest noncovalent biological interaction known, having a dissociation constant, K(d), in the order of 4x10(-14) M. The strength and specificity of the interaction has led it to be one of the most widely used affinity pairs in molecular, immunological, and cellular assays. However, it has previously been impossible to re-use any streptavidin solid support, since the conditions needed to break the interaction with biotin has led to the denaturation of the streptavidin. Here, we show that a short incubation in nonionic aqueous solutions at temperatures above 70 degrees C can efficiently break the interaction without denaturing the streptavidin tetramer. Both biotin and the streptavidin remain active after dissociation and both molecules can therefore be re-used. The efficiency of the regeneration allowed solid supports with streptavidin to be used many times, here exemplified with the multiple re-use of streptavidin beads used for sample preparation prior to automated DNA sequencing. The results suggest that streptavidin regeneration can be introduced as an improvement in existing methods and assays based on the streptavidin system as well as emerging solid phase applications in fields, such as microfluidics and nanotechnology.
Collapse
Affiliation(s)
- Anders Holmberg
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Nordlund HR, Laitinen OH, Hytönen VP, Uotila STH, Porkka E, Kulomaa MS. Construction of a dual chain pseudotetrameric chicken avidin by combining two circularly permuted avidins. J Biol Chem 2004; 279:36715-9. [PMID: 15131113 DOI: 10.1074/jbc.m403496200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two distinct circularly permuted forms of chicken avidin were designed with the aim of constructing a fusion avidin containing two biotin-binding sites in one polypeptide. The old N and C termini of wild-type avidin were connected to each other via a glycine/serine-rich linker, and the new termini were introduced into two different loops. This enabled the creation of the desired fusion construct using a short linker peptide between the two different circularly permuted subunits. The circularly permuted avidins (circularly permuted avidin 5 --> 4 and circularly permuted avidin 6 --> 5) and their fusion, pseudotetrameric dual chain avidin, were biologically active, i.e. showed biotin binding, and also displayed structural characteristics similar to those of wild-type avidin. Dual chain avidin facilitates the development of dual affinity avidins by allowing adjustment of the ligand-binding properties in half of the binding sites independent of the other half. In addition, the subunit fusion strategy described in this study can be used, where applicable, to modify oligomeric proteins in general.
Collapse
Affiliation(s)
- Henri R Nordlund
- NanoScience Center (NSC), Department of Biological and Environmental Science, P. O. Box 35, FIN-40014 University of Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|
44
|
Zhang DW, Xiang Y, Zhang JZH. New Advance in Computational Chemistry: Full Quantum Mechanical ab Initio Computation of Streptavidin−Biotin Interaction Energy. J Phys Chem B 2003; 107:12039-41. [DOI: 10.1021/jp0359081] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Da W. Zhang
- Department of Chemistry, New York University, New York, New York 10003
| | - Yun Xiang
- Department of Chemistry, New York University, New York, New York 10003
| | - John Z. H. Zhang
- Department of Chemistry, New York University, New York, New York 10003
| |
Collapse
|
45
|
Kwon K, Streaker ED, Beckett D. Binding specificity and the ligand dissociation process in the E. coli biotin holoenzyme synthetase. Protein Sci 2002; 11:558-70. [PMID: 11847279 PMCID: PMC2373468 DOI: 10.1110/ps.33502] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The binding of the Escherichia coli biotin holoenzyme synthetase to the two ligands, biotin and bio-5'-AMP, is coupled to disorder-to-order transitions in the protein. In the structure of the biotin complex, a "glycine-rich" loop that is disordered in the apo-enzyme is folded over the ligand. Mutations in three residues in this loop result in significant changes in the affinity of the enzyme for both biotin and bio-5'-AMP. The kinetic basis of these losses in the affinity resides primarily in changes in the unimolecular rates of dissociation of the complexes. In this work, isothermal titration calorimetry has been employed to examine the detailed thermodynamics of binding of three loop mutants to biotin and bio-5'-AMP. The energetic features of dissociation of the protein*ligand complexes also have been probed by measuring the temperature dependencies of the unimolecular dissociation rates. Analysis of the data using the Eyring formalism yielded entropic and enthalpic contributions to the energetic barrier to dissociation. The thermodynamic results coupled with the known structures of the apo-enzyme and biotin complex have been used to formulate a model for progression from the ground-state complex to the transition state in biotin dissociation. In this model, the transition-state is characterized by both partial disruption of noncovalent bonds and acquisition of some of the disorder that characterizes the glycine-rich loop in the absence of ligand.
Collapse
Affiliation(s)
- Keehwan Kwon
- Department of Chemistry and Biochemistry, College of Life Sciences, University of Maryland, College Park, Maryland 20472, USA
| | | | | |
Collapse
|
46
|
Qureshi MH, Yeung JC, Wu SC, Wong SL. Development and characterization of a series of soluble tetrameric and monomeric streptavidin muteins with differential biotin binding affinities. J Biol Chem 2001; 276:46422-8. [PMID: 11584006 DOI: 10.1074/jbc.m107398200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The strong biotin-streptavidin interaction limits the application of streptavidin as a reversible affinity matrix for purification of biotinylated biomolecules. To address this concern, a series of single, double, and triple streptavidin muteins with different affinities to biotin were designed. The strategy involves mutating one to three strategically positioned residues (Ser-45, Thr-90, and Asp-128) that interact with biotin and other framework structure-maintaining residues of streptavidin. The muteins were produced in soluble forms via secretion from Bacillus subtilis. The impact of individual residues on the overall structure of streptavidin is reflected by the formation of monomeric streptavidin to different extents. Of the three targeted residues, Asp-128 has the most dramatic effect (Asp-128 > Thr-90 > Ser-45). Conversion of all three targeted residues to alanine results in a soluble biotin binding mutein that exists 100% in the monomeric state. Both wild-type and mutated (monomeric and tetrameric) streptavidin proteins were purified, and their kinetic parameters (on- and off-rates) were determined using a BIAcore biosensor with biotin-conjugated bovine serum albumin immobilized to the sensor chip. This series of muteins shows a wide spectrum of affinity toward biotin (K(d) from 10(-6) to 10(-11) m). Some of them have the potential to serve as reversible biotin binding agents.
Collapse
Affiliation(s)
- M H Qureshi
- Department of Biological Sciences, Division of Cellular, Molecular and Microbial Biology, University of Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
47
|
Petra PH, Adman ET, Orr WR, Woodcock KT, Groff C, Sui LM. Arginine-140 and isoleucine-141 determine the 17beta-estradiol-binding specificity of the sex-steroid-binding protein (SBP, or SHBG) of human plasma. Protein Sci 2001; 10:1811-21. [PMID: 11514672 PMCID: PMC2253199 DOI: 10.1110/ps.02301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Arginine-140 and isoleucine-141 were identified as key determinants of 17beta-estradiol (E(2)) binding affinity of the sex-steroid-binding protein (SBP, or SHBG) of human plasma. Amino acid residues that differ between human and rabbit SBP sequences were replaced in the human protein and the products tested for lowered E(2)binding activity as are seen in the rabbit protein. Only mutants containing either R140K or I141L replacements display an E(2) equilibrium dissociation constant (Kd) higher than the wild type, reaching a value of 30 nM when both were present. The 5alpha-dihydrotestosterone (DHT) equilibrium dissociation constant of these mutants was unaffected. The quadruple mutant M107I/I138V/R140K/I141L yielded an E(2) Kd of 65 nM, significantly closer to the 80 nM rabbit SBP E(2) Kd value. Although mutants containing the M107I and I138V replacements in the absence of R140K and I141L had normal E(2) Kds, the presence of the M107I replacement in the quadruple mutant was necessary to obtain an accurate E(2) Kd value by competitive Scatchard analysis. Molecular modeling using coordinates for the recently determined N-terminal domain of human SBP revealed a significant shift of the F56 phenyl ring away from ring A of E(2) in mutant models containing the R140K and I141L replacements. We conclude that R140 and I141 are required for sustaining the right proximity of the phenyl ring of F56 to ring A of 17beta-estradiol, thus optimizing the E(2)-binding affinity of human SBP.
Collapse
Affiliation(s)
- P H Petra
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Lüdemann SK, Lounnas V, Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. J Mol Biol 2000; 303:813-30. [PMID: 11061977 DOI: 10.1006/jmbi.2000.4155] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three possible channels by which substrates and products can exit from the buried active site of cytochrome P450cam have been identified by means of random expulsion molecular dynamics simulations. In the investigation described here, we computed estimates of the relative probabilities of ligand passage through the three channels using steered molecular dynamics and adiabatic mapping. For comparison, the same techniques are also applied to investigate substrate egress from cytochrome P450-BM3. The channel in cytochrome P450cam, for which there is the most supporting evidence from experiments (which we name pathway 2a), is computed to be the most probable ligand exit channel. It has the smallest computed unbinding work and force. For this channel, the ligand exits between the F/G loop and the B' helix. Two mechanistically distinct, but energetically similar routes through this channel were observed, showing that multiple pathways along one channel are possible. The probability of ligand exit via the next most probable channel (pathway 3), which is located between the I helix and the F and G helices, is estimated to be less than 1/10 of the probability of exit along pathway 2a. Low-frequency modes of the protein extracted from an essential dynamics analysis of a 1 ns duration molecular dynamics simulation of cytochrome P450cam with camphor bound, support the opening of pathway 2a on a longer timescale. On longer timescales, it is therefore expected that this pathway becomes more dominant than estimated from the present computations.
Collapse
Affiliation(s)
- S K Lüdemann
- European Molecular Biology Laboratory, Meyerhofstr.1, Heidelberg, 69117, Germany
| | | | | |
Collapse
|
49
|
Boder ET, Midelfort KS, Wittrup KD. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 2000; 97:10701-5. [PMID: 10984501 PMCID: PMC27086 DOI: 10.1073/pnas.170297297] [Citation(s) in RCA: 492] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.
Collapse
Affiliation(s)
- E T Boder
- Department of Chemical Engineering, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
50
|
Hyre DE, Le Trong I, Freitag S, Stenkamp RE, Stayton PS. Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system. Protein Sci 2000; 9:878-85. [PMID: 10850797 PMCID: PMC2144626 DOI: 10.1110/ps.9.5.878] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The contribution of the Ser45 hydrogen bond to biotin binding activation and equilibrium thermodynamics was investigated by biophysical and X-ray crystallographic studies. The S45A mutant exhibits a 1,700-fold greater dissociation rate and 907-fold lower equilibrium affinity for biotin relative to wild-type streptavidin at 37 degrees C, indicating a crucial role in binding energetics. The crystal structure of the biotin-bound mutant reveals only small changes from the wild-type bound structure, and the remaining hydrogen bonds to biotin retain approximately the same lengths. No additional water molecules are observed to replace the missing hydroxyl, in contrast to the previously studied D128A mutant. The equilibrium deltaG degrees, deltaH degrees, deltaS degrees, deltaC degrees(p), and activation deltaG++ of S45A at 37 degrees C are 13.7+/-0.1 kcal/mol, -21.1+/-0.5 kcal/mol, -23.7+/-1.8 cal/mol K, -223+/-12 cal/mol K, and 20.0+/-2.5 kcal/mol, respectively. Eyring analysis of the large temperature dependence of the S45A off-rate resolves the deltaH++ and deltaS++ of dissociation, 25.8+/-1.2 kcal/mol and 18.7+/-4.3 cal/mol K. The large increases of deltaH++ and deltaS++ in the mutant, relative to wild-type, indicate that Ser45 could form a hydrogen bond with biotin in the wild-type dissociation transition state, enthalpically stabilizing it, and constraining the transition state entropically. The postulated existence of a Ser45-mediated hydrogen bond in the wild-type streptavidin transition state is consistent with potential of mean force simulations of the dissociation pathway and with molecular dynamics simulations of biotin pullout, where Ser45 is seen to form a hydrogen bond with the ureido oxygen as biotin slips past this residue after breaking the native hydrogen bonds.
Collapse
Affiliation(s)
- D E Hyre
- Department of Bioengineering. University of Washington, Seattle 98195-2125, USA
| | | | | | | | | |
Collapse
|