1
|
Ziogas M, Drummond I, Todorovic I, Kraczkowsky K, Han Y, Zhang H, Wu H, Spatafora G. SloR-SRE binding to the S. mutans mntH promoter is cooperative. J Bacteriol 2025; 207:e0047024. [PMID: 40162799 PMCID: PMC12096823 DOI: 10.1128/jb.00470-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Streptococcus mutans is a commensal member of the plaque microbiome. It is especially prevalent when dietary sugars are available for S. mutans fermentation, generating acid byproducts that lower plaque pH and foster tooth decay. S. mutans can survive in the transient conditions of the mouth, in part because it can regulate the uptake of manganese and iron during periods of feast when metal ions are available, and famine when they are limited. S. mutans depends on a 25kDa metalloregulatory protein, called SloR, to modulate the uptake of these cations across the bacterial cell surface. When bound to manganese, SloR binds to palindromic recognition elements in the promoter of the sloABC genes that encode the major manganese transporter in S. mutans. Reports in the literature describe MntH, an ancillary manganese transporter in S. mutans, that is also subject to SloR control. In the present study, we performed expression profiling experiments that reveal coordinate regulation of the sloABC and mntH genes at the level of transcription. In addition, we describe a role for the mntH gene product that is redundant with that of the sloABC-encoded metal ion uptake machinery. The results of DNA-binding studies support direct SloR binding to the mntH promoter region which, like that at the sloABC promoter, harbors three palindromic recognition elements to which SloR binds cooperatively to repress downstream transcription. These findings expand our understanding of the SloR metalloregulome and elucidate SloR-DNA binding that is essential for S. mutans metal ion homeostasis and fitness in the oral cavity. IMPORTANCE Dental caries disproportionately impacts low-income socioeconomic groups in the United States and abroad. Research that is focused on S. mutans, the primary causative agent of dental caries in humans, is significant to mitigation efforts aimed at alleviating or preventing dental caries. The SloR protein is a major regulator of the S. mutans metal ion uptake machinery encoded by the sloABC- and mntH genes. This SloR-mediated gene control is essential for maintaining intracellular metal ion homeostasis, and hence S. mutans fitness in the plaque microbiome. An improved understanding of the sloABC and mntH metal ion transporters and their regulation by SloR can guide rational drug design that, by targeting the SloR-DNA-binding interface, can alleviate or prevent S. mutans-induced disease.
Collapse
Affiliation(s)
- Myrto Ziogas
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - India Drummond
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Igor Todorovic
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Katie Kraczkowsky
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Yiran Han
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Hua Zhang
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Hui Wu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Grace Spatafora
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| |
Collapse
|
2
|
Ziogas M, Drummond I, Todorovic I, Kraczkowsky K, Zhang H, Wu H, Spatafora G. SloR-SRE binding to the S. mutans mntH promoter is cooperative. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621577. [PMID: 39554117 PMCID: PMC11566000 DOI: 10.1101/2024.11.02.621577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Streptococcus mutans is a commensal member of the plaque microbiome. It is especially prevalent when dietary sugars are available for S. mutans fermentation, generating acid byproducts that lower plaque pH and foster tooth decay. S. mutans can survive in the transient conditions of the mouth, in part because it can regulate the uptake of manganese and iron during periods of feast when metal ions are available, and famine when they are limiting. S. mutans depends on a 25kDa metalloregulatory protein, called SloR, to modulate uptake of these cations across the bacterial cell surface. When bound to manganese, SloR, binds to palindromic recognition elements in the promoter of the sloABC genes that encode the major manganese transporter in S. mutans. Reports in the literature describ MntH, an ancillary manganese transporter in S. mutans, that is also subject to SloR control. In the present study, we performed expression profiling experiments that reveal coordinate regulation of the sloABC and mntH genes at the level of transcription. In addition, we describe a role for the mntH gene product that is redundant with that of the sloABC-encoded metal ion uptake machinery. The results of DNA binding studies support direct SloR binding to the mntH promoter region which, like that at the sloABC promoter, harbors three palindromic recognition elements to which SloR binds cooperatively to repress downstream transcription. These findings expand our understanding of the SloR metalloregulome and elucidate SloR-DNA binding that is essential for S. mutans metal ion homeostasis and fitness in the oral cavity.
Collapse
Affiliation(s)
- Myrto Ziogas
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - India Drummond
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Igor Todorovic
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Katie Kraczkowsky
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Hua Zhang
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Hui Wu
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Grace Spatafora
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, Vermont, USA
| |
Collapse
|
3
|
Seña AC, Matoga MM, Yang L, Lopez-Medina E, Aghakhanian F, Chen JS, Bettin EB, Caimano MJ, Chen W, Garcia-Luna JA, Hennelly CM, Jere E, Jiang Y, Juliano JJ, Pospíšilová P, Ramirez L, Šmajs D, Tucker JD, Vargas Cely F, Zheng H, Hoffman IF, Yang B, Moody MA, Hawley KL, Salazar JC, Radolf JD, Parr JB. Clinical and genomic diversity of Treponema pallidum subspecies pallidum to inform vaccine research: an international, molecular epidemiology study. THE LANCET. MICROBE 2024; 5:100871. [PMID: 39181152 PMCID: PMC11371664 DOI: 10.1016/s2666-5247(24)00087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We aimed to explore Treponema pallidum subspecies pallidum (TPA) molecular epidemiology essential for vaccine research by analysing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. METHODS In this multicentre, cross-sectional, molecular epidemiology study, we enrolled patients with primary, secondary, or early latent syphilis from clinics in China, Colombia, Malawi, and the USA between Nov 28, 2019, and May 27, 2022. Participants aged 18 years or older with laboratory confirmation of syphilis by direct detection methods or serological testing, or both, were included. Patients were excluded from enrolment if they were unwilling or unable to give informed consent, did not understand the study purpose or nature of their participation, or received antibiotics active against syphilis in the past 30 days. TPA detection and WGS were conducted on lesion swabs, skin biopsies, skin scrapings, whole blood, or rabbit-passaged isolates. We compared our WGS data to publicly available genomes and analysed TPA populations to identify mutations associated with lineage and geography. FINDINGS We screened 2802 patients and enrolled 233 participants, of whom 77 (33%) had primary syphilis, 154 (66%) had secondary syphilis, and two (1%) had early latent syphilis. The median age of participants was 28 years (IQR 22-35); 154 (66%) participants were cisgender men, 77 (33%) were cisgender women, and two (1%) were transgender women. Of the cisgender men, 66 (43%) identified as gay, bisexual, or other sexuality. Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants showed a predominance of SS14-lineage strains with geographical clustering. Phylogenomic analyses confirmed that Nichols-lineage strains were more genetically diverse than SS14-lineage strains and clustered into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models showed population-specific substitutions, some in outer membrane proteins (OMPs) of interest. INTERPRETATION Our study substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains is vital for vaccine development and understanding syphilis pathogenesis on a population level. FUNDING US National Institutes of Health National Institute for Allergy and Infectious Disease, the Bill & Melinda Gates Foundation, Connecticut Children's, and the Czech Republic National Institute of Virology and Bacteriology.
Collapse
Affiliation(s)
- Arlene C Seña
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | - Ligang Yang
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - Eduardo Lopez-Medina
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia; Department of Pediatrics, Universidad del Valle, Cali, Colombia
| | - Farhang Aghakhanian
- Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jane S Chen
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Melissa J Caimano
- Department of Medicine, UConn Health, Farmington, CT, USA; Department of Pediatrics, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China; BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research School of Public Health, Southern Medical University, Guangzhou, China
| | - Jonny A Garcia-Luna
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia; Universidad Icesi, Cali, Colombia; Division of Dermatology, Department of Internal Medicine, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Christopher M Hennelly
- Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edward Jere
- UNC Project Malawi, Tidziwe Centre, Lilongwe, Malawi
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - Jonathan J Juliano
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Petra Pospíšilová
- Department of Biology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Lady Ramirez
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia; Universidad Icesi, Cali, Colombia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University Brno, Czech Republic
| | - Joseph D Tucker
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fabio Vargas Cely
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Campus de la Universidad Icesi, Cali, Colombia
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - Irving F Hoffman
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangdong Provincial Center for Skin Diseases and STD Control, Guangzhou, China
| | - M Anthony Moody
- Department of Pediatrics, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA; Department of Integrative Immunology, Duke University Medical Center, Durham, NC, USA; Duke Human Vaccine Institute, Durham, NC, USA
| | - Kelly L Hawley
- Department of Medicine, UConn Health, Farmington, CT, USA; Department of Pediatrics, UConn Health, Farmington, CT, USA; Department of Immunology, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Juan C Salazar
- Department of Pediatrics, UConn Health, Farmington, CT, USA; Department of Immunology, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, CT, USA; Department of Pediatrics, UConn Health, Farmington, CT, USA; Department of Immunology, UConn Health, Farmington, CT, USA; Connecticut Children's, Hartford, CT, USA
| | - Jonathan B Parr
- Department of Medicine, Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Global Health and Infectious Diseases, Infectious Diseases Epidemiology and Ecology Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Mota C, Webster M, Saidi M, Kapp U, Zubieta C, Giachin G, Manso JA, de Sanctis D. Metal ion activation and DNA recognition by the Deinococcus radiodurans manganese sensor DR2539. FEBS J 2024; 291:3384-3402. [PMID: 38652591 DOI: 10.1111/febs.17140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
The accumulation of manganese ions is crucial for scavenging reactive oxygen species and protecting the proteome of Deinococcus radiodurans (Dr). However, metal homeostasis still needs to be tightly regulated to avoid toxicity. DR2539, a dimeric transcription regulator, plays a key role in Dr manganese homeostasis. Despite comprising three well-conserved domains - a DNA-binding domain, a dimerisation domain, and an ancillary domain - the mechanisms underlying both, metal ion activation and DNA recognition remain elusive. In this study, we present biophysical analyses and the structure of the dimerisation and DNA-binding domains of DR2539 in its holo-form and in complex with the 21 base pair pseudo-palindromic repeat of the dr1709 promoter region, shedding light on these activation and recognition mechanisms. The dimer presents eight manganese binding sites that induce structural conformations essential for DNA binding. The analysis of the protein-DNA interfaces elucidates the significance of Tyr59 and helix α3 sequence in the interaction with the DNA. Finally, the structure in solution as determined by small-angle X-ray scattering experiments and supported by AlphaFold modeling provides a model illustrating the conformational changes induced upon metal binding.
Collapse
Affiliation(s)
- Cristiano Mota
- ESRF - The European Synchrotron, Grenoble, France
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | | | | | - Ulrike Kapp
- ESRF - The European Synchrotron, Grenoble, France
| | | | | | - José Antonio Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | | |
Collapse
|
5
|
Womack E, Alibayov B, Vidal JE, Eichenbaum Z. Endogenously produced H 2O 2 is intimately involved in iron metabolism in Streptococcus pneumoniae. Microbiol Spectr 2024; 12:e0329723. [PMID: 38038454 PMCID: PMC10783112 DOI: 10.1128/spectrum.03297-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Heme degradation provides pathogens with growth essential iron, leveraging on the host heme reservoir. Bacteria typically import and degrade heme enzymatically, and here, we demonstrated a significant deviation from this dogma. We found that Streptococcus pneumoniae liberates iron from met-hemoglobin extracellularly, in a hydrogen peroxide (H2O2)- and cell-dependent manner; this activity serves as a major iron acquisition mechanism for S. pneumoniae. Inhabiting oxygen-rich environments is a major part of pneumococcal biology, and hence, H2O2-mediated heme degradation likely supplies iron during infection. Moreover, H2O2 reaction with ferrous hemoglobin but not with met-hemoglobin is known to result in heme breakdown. Therefore, the ability of pneumococci to degrade heme from met-hemoglobin is a new paradigm. Lastly, this study will inform other research as it demonstrates that extracellular degradation must be considered in the interpretations of experiments in which H2O2-producing bacteria are given heme or hemoproteins as an iron source.
Collapse
Affiliation(s)
- Edroyal Womack
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Babek Alibayov
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Seña AC, Matoga MM, Yang L, Lopez-Medina E, Aghakanian F, Chen JS, Bettin EB, Caimano MJ, Chen W, Garcia-Luna JA, Hennelly CM, Jiang Y, Juliano JJ, Pospíšilová P, Ramirez L, Šmajs D, Tucker JD, Cely FV, Zheng H, Hoffman IF, Yang B, Moody MA, Hawley KL, Salazar JC, Radolf JD, Parr JB. Clinical and genomic diversity of Treponema pallidum subsp. pallidum: A global, multi-center study of early syphilis to inform vaccine research. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.19.23291250. [PMID: 37546832 PMCID: PMC10402240 DOI: 10.1101/2023.07.19.23291250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background The continuing increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We conducted a multi-center, observational study to explore Treponema pallidum subsp. pallidum ( TPA ) molecular epidemiology essential for vaccine research by analyzing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. Methods We enrolled patients with primary (PS), secondary (SS) or early latent (ELS) syphilis from clinics in China, Colombia, Malawi and the United States between November 2019 - May 2022. Inclusion criteria included age ≥18 years, and syphilis confirmation by direct detection methods and/or serological testing. TPA detection and WGS were conducted on lesion swabs, skin biopsies/scrapings, whole blood, and/or rabbit-passaged isolates. We compared our WGS data to publicly available genomes, and analysed TPA populations to identify mutations associated with lineage and geography. Findings We screened 2,820 patients and enrolled 233 participants - 77 (33%) with PS, 154 (66%) with SS, and two (1%) with ELS. Median age of participants was 28; 66% were cis -gender male, of which 43% reported identifying as "gay", "bisexual", or "other sexuality". Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants demonstrated a predominance of SS14-lineage strains with geographic clustering. Phylogenomic analysis confirmed that Nichols-lineage strains are more genetically diverse than SS14-lineage strains and cluster into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models demonstrated population-specific substitutions, some in outer membrane proteins (OMPs) of interest. Interpretation Our study involving participants from four countries substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains will be vital for vaccine development and improved understanding of syphilis pathogenesis on a population level. Funding National Institutes of Health, Bill and Melinda Gates Foundation.
Collapse
|
7
|
Tang Y, Zhou Y, He B, Cao T, Zhou X, Ning L, Chen E, Li Y, Xie X, Peng B, Hu Y, Liu S. Investigation of the immune escape mechanism of Treponema pallidum. Infection 2022; 51:305-321. [PMID: 36260281 DOI: 10.1007/s15010-022-01939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subspecies pallidum (T. pallidum), which is a public health problem that seriously affects human health worldwide. T. pallidum is characterized by early transmission and immune escape and is therefore termed an "invisible pathogen". METHODS This review systematically summarizes the host's innate and adaptive immune responses to T. pallidum infection as well as the escape mechanisms of T. pallidum. PURPOSE To lay the foundation for assessing the pathogenic mechanism and the systematic prevention and treatment of syphilis. CONCLUSION The immune escape mechanism of T. pallidum plays an important role in its survival. Exploring the occurrence and development of these mechanisms has laid the foundation for the development of syphilis vaccine.
Collapse
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yingjie Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Lichang Ning
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Xiaoping Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Binfeng Peng
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, The First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang City, 421000, Hunan, China.
| |
Collapse
|
8
|
Drews SJ. Prevention of transfusion-transmitted syphilis by blood operators: How much is enough when transfusion-transmission has not been identified for decades? Transfusion 2021; 61:3055-3060. [PMID: 34617282 DOI: 10.1111/trf.16696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Steven J Drews
- Microbiology Department, Donation Policy and Studies, Canadian Blood Services, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, Division of Diagnostic and Applied Microbiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
10
|
Roles of TroA and TroR in Metalloregulated Growth and Gene Expression in Treponema denticola. J Bacteriol 2020; 202:JB.00770-19. [PMID: 31932313 DOI: 10.1128/jb.00770-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The availability of divalent metal cations required as cofactors for microbial metabolism is severely limited in the host environment. Bacteria have evolved highly regulated uptake systems to maintain essential metal homeostasis to meet cellular demands while preventing toxicity. The Tro operon (troABCDR), present in all sequenced Treponema spp., is a member of a highly conserved family of ATP-binding cassette transporters involved in metal cation uptake whose expression is controlled by TroR, a DtxR-like cation-responsive regulatory protein. Transcription of troA responds to divalent manganese and iron (T. denticola) or manganese and zinc (T. pallidum), and metal-dependent TroR binding to the troA promoter represses troA transcription. We report here the construction and complementation of defined T. denticola ΔtroR and ΔtroA strains to characterize (i) the role of TroA in metal-dependent T. denticola growth and (ii) the role of TroR in T. denticola gene expression. We show that TroA expression is required for T. denticola growth under iron- and manganese-limited conditions. Furthermore, TroR is required for the transcriptional regulation of troA in response to iron or manganese, and deletion of troR results in significant differential expression of more than 800 T. denticola genes in addition to troA These results suggest that (i) TroA-mediated cation uptake is important in metal homeostasis in vitro and may be important for Treponema survival in the host environment and (ii) the absence of TroR results in significant dysregulation of nearly one-third of the T. denticola genome. These effects may be direct (as with troA) or indirect due to dysregulation of metal homeostasis.IMPORTANCE Treponema denticola is one of numerous host-associated spirochetes, a group including commensals, pathobionts, and at least one frank pathogen. While most T. denticola research concerns its role in periodontitis, its relative tractability for growth and genetic manipulation make it a useful model for studying Treponema physiology, metabolism, and host-microbe interactions. Metal micronutrient acquisition and homeostasis are highly regulated both in microbial cells and by host innate defense mechanisms that severely limit metal cation bioavailability. Here, we characterized the T. denticola troABCDR operon, the role of TroA-mediated iron and manganese uptake in growth, and the effects of TroR on global gene expression. This study contributes to our understanding of the mechanisms involved in cellular metal homeostasis required for survival in the host environment.
Collapse
|
11
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
12
|
Structure and Metal Binding Properties of Chlamydia trachomatis YtgA. J Bacteriol 2019; 202:JB.00580-19. [PMID: 31611288 DOI: 10.1128/jb.00580-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis is a globally significant cause of sexually transmitted bacterial infections and the leading etiological agent of preventable blindness. The first-row transition metal iron (Fe) plays critical roles in chlamydial cell biology, and acquisition of this nutrient is essential for the survival and virulence of the pathogen. Nevertheless, how C. trachomatis acquires Fe from host cells is not well understood, since it lacks genes encoding known siderophore biosynthetic pathways, receptors for host Fe storage proteins, and the Fe acquisition machinery common to many bacteria. Recent studies have suggested that C. trachomatis directly acquires host Fe via the ATP-binding cassette permease YtgABCD. Here, we characterized YtgA, the periplasmic solute binding protein component of the transport pathway, which has been implicated in scavenging Fe(III) ions. The structure of Fe(III)-bound YtgA was determined at 2.0-Å resolution with the bound ion coordinated via a novel geometry (3 Ns, 2 Os [3N2O]). This unusual coordination suggested a highly plastic metal binding site in YtgA capable of interacting with other cations. Biochemical analyses showed that the metal binding site of YtgA was not restricted to interaction with only Fe(III) ions but could bind all transition metal ions examined. However, only Mn(II), Fe(II), and Ni(II) ions bound reversibly to YtgA, with Fe being the most abundant cellular transition metal in C. trachomatis Collectively, these findings show that YtgA is the metal-recruiting component of the YtgABCD permease and is most likely involved in the acquisition of Fe(II) and Mn(II) from host cells.IMPORTANCE Chlamydia trachomatis is the most common bacterial sexually transmitted infection in developed countries, with an estimated global prevalence of 4.2% in the 15- to 49-year age group. Although infection is asymptomatic in more than 80% of infected women, about 10% of cases result in serious disease. Infection by C. trachomatis is dependent on the ability to acquire essential nutrients, such as the transition metal iron, from host cells. In this study, we show that iron is the most abundant transition metal in C. trachomatis and report the structural and biochemical properties of the iron-recruiting protein YtgA. Knowledge of the high-resolution structure of YtgA will provide a platform for future structure-based antimicrobial design approaches.
Collapse
|
13
|
Párraga Solórzano PK, Yao J, Rock CO, Kehl-Fie TE. Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus. mBio 2019; 10:e01321-19. [PMID: 31387906 PMCID: PMC6686040 DOI: 10.1128/mbio.01321-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
During infection, bacteria use two-component signal transduction systems to sense and adapt to the dynamic host environment. Despite critically contributing to infection, the activating signals of most of these regulators remain unknown. This also applies to the Staphylococcus aureus ArlRS two-component system, which contributes to virulence by coordinating the production of toxins, adhesins, and a metabolic response that enables the bacterium to overcome host-imposed manganese starvation. Restricting the availability of essential transition metals, a strategy known as nutritional immunity, constitutes a critical defense against infection. In this work, expression analysis revealed that manganese starvation imposed by the immune effector calprotectin or by the absence of glycolytic substrates activates ArlRS. Manganese starvation imposed by calprotectin also activated the ArlRS system even when glycolytic substrates were present. A combination of metabolomics, mutational analysis, and metabolic feeding experiments revealed that ArlRS is activated by alterations in metabolic flux occurring in the latter half of the glycolytic pathway. Moreover, calprotectin was found to induce expression of staphylococcal leukocidins in an ArlRS-dependent manner. These studies indicated that ArlRS is a metabolic sensor that allows S. aureus to integrate multiple environmental stresses that alter glycolytic flux to coordinate an antihost response and to adapt to manganese starvation. They also established that the latter half of glycolysis represents a checkpoint to monitor metabolic state in S. aureus Altogether, these findings contribute to understanding how invading pathogens, such as S. aureus, adapt to the host during infection and suggest the existence of similar mechanisms in other bacterial species.IMPORTANCE Two-component regulatory systems enable bacteria to adapt to changes in their environment during infection by altering gene expression and coordinating antihost responses. Despite the critical role of two-component systems in bacterial survival and pathogenesis, the activating signals for most of these regulators remain unidentified. This is exemplified by ArlRS, a Staphylococcus aureus global regulator that contributes to virulence and to resisting host-mediated restriction of essential nutrients, such as manganese. In this report, we demonstrate that manganese starvation and the absence of glycolytic substrates activate ArlRS. Further investigations revealed that ArlRS is activated when the latter half of glycolysis is disrupted, suggesting that S. aureus monitors flux through the second half of this pathway. Host-imposed manganese starvation also induced the expression of pore-forming toxins in an ArlRS-dependent manner. Cumulatively, this work reveals that ArlRS acts as a sensor that links nutritional status, cellular metabolism, and virulence regulation.
Collapse
Affiliation(s)
- Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Kalidasan V, Joseph N, Kumar S, Hamat RA, Neela VK. The 'Checkmate' for Iron Between Human Host and Invading Bacteria: Chess Game Analogy. Indian J Microbiol 2018; 58:257-267. [PMID: 30013269 PMCID: PMC6023815 DOI: 10.1007/s12088-018-0740-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/05/2018] [Indexed: 12/13/2022] Open
Abstract
Iron is an essential nutrient for all living organisms with critical roles in many biological processes. The mammalian host maintains the iron requirements by dietary intake, while the invading pathogenic bacteria compete with the host to obtain those absorbed irons. In order to limit the iron uptake by the bacteria, the human host employs numerous iron binding proteins and withholding defense mechanisms that capture iron from the microbial invaders. To counteract, the bacteria cope with the iron limitation imposed by the host by expressing various iron acquisition systems, allowing them to achieve effective iron homeostasis. The armamentarium used by the human host and invading bacteria, leads to the dilemma of who wins the ultimate war for iron.
Collapse
Affiliation(s)
- V. Kalidasan
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (43400 UPM), Serdang, Selangor Darul Ehsan, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (43400 UPM), Serdang, Selangor Darul Ehsan, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (43400 UPM), Serdang, Selangor Darul Ehsan, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (43400 UPM), Serdang, Selangor Darul Ehsan, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (43400 UPM), Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
15
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
16
|
Min BE, Hwang HG, Lim HG, Jung GY. Optimization of industrial microorganisms: recent advances in synthetic dynamic regulators. ACTA ACUST UNITED AC 2017; 44:89-98. [DOI: 10.1007/s10295-016-1867-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/04/2016] [Indexed: 12/27/2022]
Abstract
Abstract
Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.
Collapse
Affiliation(s)
- Byung Eun Min
- grid.49100.3c 0000000107424007 Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| | - Hyun Gyu Hwang
- grid.49100.3c 0000000107424007 School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| | - Hyun Gyu Lim
- grid.49100.3c 0000000107424007 Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| | - Gyoo Yeol Jung
- grid.49100.3c 0000000107424007 Department of Chemical Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
- grid.49100.3c 0000000107424007 School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu 37673 Pohang Gyeongbuk Korea
| |
Collapse
|
17
|
Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 2016; 14:744-759. [PMID: 27721440 DOI: 10.1038/nrmicro.2016.141] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation 'the stealth pathogen'. Despite the many hurdles to studying syphilis pathogenesis, most notably the inability to culture and to genetically manipulate T. pallidum, in recent years, considerable progress has been made in elucidating the structural, physiological, and regulatory facets of T. pallidum pathogenicity. In this Review, we integrate this eclectic body of information to garner fresh insights into the highly successful parasitic lifestyles of the syphilis spirochete and related pathogenic treponemes.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Genetics and Genomic Science, Molecular Biology and Biophysics, and Immunology, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - Arvind Anand
- Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
18
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
19
|
Zhang L, Butler CA, Khan HSG, Dashper SG, Seers CA, Veith PD, Zhang JG, Reynolds EC. Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue. PLoS One 2016; 11:e0151407. [PMID: 27007570 PMCID: PMC4805248 DOI: 10.1371/journal.pone.0151407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10(-11) M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10(-10) M and Kd2 ≤ 6.0 x 10(-8) M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.
Collapse
Affiliation(s)
- Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine A. Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hasnah S. G. Khan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Butler CA, Dashper SG, Khan HS, Zhang L, Reynolds EC. The interplay between iron, haem and manganese in Porphyromonas gingivalis. J Oral Biosci 2015. [DOI: 10.1016/j.job.2014.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Liu Y, Li W, Wei Y, Jiang Y, Tan X. Efficient preparation and metal specificity of the regulatory protein TroR from the human pathogen Treponema pallidum. Metallomics 2014; 5:1448-57. [PMID: 23945957 DOI: 10.1039/c3mt00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TroR is a putative metal-dependent regulatory protein that has been linked to the virulence of the human pathogen Treponema pallidum. It shares high homology with the well-known iron-dependent regulatory protein DtxR from Corynebacterium diphtheriae, as well as the manganese-dependent MntR from Bacillus subtilis. However, it has been uncertain whether manganese or zinc is the natural cofactor of TroR to date. Herein, we established an efficient method named "double-fusion tagging" to obtain soluble TroR for the first time. A series of studies, including ICP, CD, fluorescence, ITC, and electrophoresis mobility shift assay (EMSA), were performed to resolve the discrepancies in its metal-binding specificity. In addition, bioinformatic analysis as well as mutation studies were carried out to find the genetic relationships of TroR with its homology proteins. In conclusion, our findings indicate that TroR is a manganese-dependent rather than a zinc-dependent regulatory protein.
Collapse
Affiliation(s)
- Yi Liu
- Institutes of Biomedical Science, Fudan University, Shanghai 200433, China.
| | | | | | | | | |
Collapse
|
22
|
Merchant AT, Spatafora GA. A role for the DtxR family of metalloregulators in gram-positive pathogenesis. Mol Oral Microbiol 2013; 29:1-10. [PMID: 24034418 DOI: 10.1111/omi.12039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
Given the central role of transition metal ions in a variety of biochemical processes, the colonization, survival, and proliferation of a bacterium within a host hinges upon its ability to overcome the metal ion deprivation that characterizes nutritional immunity. Metalloregulatory, or 'metal-sensing' proteins have evolved in bacteria to mediate metal ion homeostasis by activating or repressing the expression of genes encoding metal ion transport systems upon binding their cognate metal ion. Yet increasing evidence in the literature supports an additional role for these metalloregulatory proteins in pathogenesis. Herein, we survey studies on the DtxR family of metalloregulators, namely DtxR (Cornyebacterium diphtheriae), SloR (Streptococcus mutans), MtsR (Streptococcus pyogenes), and MntR (Staphylococcus aureus) to describe how metalloregulation enables adaptive virulence gene expression within the mammalian host. This research has important implications for drug design, as the generation of hyper-repressive metalloregulatory proteins may represent a mechanism by which to attenuate bacterial pathogenicity. The fact that metalloregulators are unique to prokaryotes makes these proteins especially attractive therapeutic targets.
Collapse
Affiliation(s)
- A T Merchant
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | | |
Collapse
|
23
|
Abstract
Borrelia burgdorferi, the causative agent of Lyme disease, must adapt to two diverse niches, an arthropod vector and a mammalian host. RpoS, an alternative sigma factor, plays a central role in spirochetal adaptation to the mammalian host by governing expression of many genes important for mammalian infection. B. burgdorferi is known to be unique in metal utilization, and little is known of the role of biologically available metals in B. burgdorferi. Here, we identified two transition metal ions, manganese (Mn(2+)) and zinc (Zn(2+)), that influenced regulation of RpoS. The intracellular Mn(2+) level fluctuated approximately 20-fold under different conditions and inversely correlated with levels of RpoS and the major virulence factor OspC. Furthermore, an increase in intracellular Mn(2+) repressed temperature-dependent induction of RpoS and OspC; this repression was overcome by an excess of Zn(2+). Conversely, a decrease of intracellular Mn(2+) by deletion of the Mn(2+) transporter gene, bmtA, resulted in elevated levels of RpoS and OspC. Mn(2+) affected RpoS through BosR, a Fur family homolog that is required for rpoS expression: elevated intracellular Mn(2+) levels greatly reduced the level of BosR protein but not the level of bosR mRNA. Thus, Mn(2+) and Zn(2+) appeared to be important in modulation of the RpoS pathway that is essential to the life cycle of the Lyme disease spirochete. This finding supports the emerging notion that transition metals such as Mn(2+) and Zn(2+) play a critical role in regulation of virulence in bacteria.
Collapse
|
24
|
Gruss A, Borezée-Durant E, Lechardeur D. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 2013; 61:69-124. [PMID: 23046952 DOI: 10.1016/b978-0-12-394423-8.00003-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule.
Collapse
Affiliation(s)
- Alexandra Gruss
- INRA, UMR1319 Micalis and AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | | |
Collapse
|
25
|
Cleavage of a putative metal permease in Chlamydia trachomatis yields an iron-dependent transcriptional repressor. Proc Natl Acad Sci U S A 2012; 109:10546-51. [PMID: 22689982 DOI: 10.1073/pnas.1201398109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The regulation of iron homeostasis is essential for most organisms, because iron is required for a variety of conserved biochemical processes, yet can be toxic at high concentrations. Upon experiencing iron starvation in vitro, the obligate intracellular human pathogen Chlamydia trachomatis exhibits elevated expression of a putative iron-transport system encoded by the ytg operon. The third component of the ytg operon, CT069 (YtgCR), encodes a protein with two distinct domains: a membrane-anchored metal ion permease and a diphtheria toxin repressor (DtxR)-like transcriptional repressor. In this report, we demonstrate that the C-terminal domain of CT069 (YtgR) serves as an iron-dependent autorepressor of the ytg operon. Moreover, the nascent full-length metal permease-transcriptional repressor protein was processed during the course of infection, and heterologously when expressed in Escherichia coli. The products produced by heterologous cleavage in E. coli were functional in the repression of a reporter gene downstream of a putative YtgR operator. We report a bona fide mechanism of iron-dependent regulation of transcription in Chlamydia. Moreover, the unusual membrane permease-DNA-binding polypeptide fusion configuration was found in several bacteria. Therefore, the DNA-binding capability and liberation of the YtgR domain from a membrane-anchored permease in C. trachomatis could represent a previously uncharacterized mechanism for prokaryotic regulation of iron-homeostasis.
Collapse
|
26
|
Zhang T, Ding Y, Li T, Wan Y, Li W, Chen H, Zhou R. A Fur-like protein PerR regulates two oxidative stress response related operons dpr and metQIN in Streptococcus suis. BMC Microbiol 2012; 12:85. [PMID: 22646062 PMCID: PMC3458967 DOI: 10.1186/1471-2180-12-85] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 05/02/2012] [Indexed: 01/16/2023] Open
Abstract
Background Metal ions are important micronutrients in cellular metabolism, but excess ions that cause toxic reactive oxygen species are harmful to cells. In bacteria, Fur family proteins such as Fur, Zur and PerR manage the iron and zinc uptake and oxidative stress responses, respectively. The single Fur-like protein (annotated as PerR) in Streptococcus suis has been demonstrated to be involved in zinc and iron uptake in previous studies, but the reports on oxidative stress response and gene regulation are limited. Results In the present study, the perR gene deletion mutant ΔperR was constructed in Streptococcus suis serotype 2 strain SC-19, and the mutant strain ΔperR exhibited less sensitivity to H2O2 stress compared to the wild-type. The dpr and metQIN were found to be upregulated in the ΔperR strain compared with SC-19. Electrophoretic mobility shift assays showed that the promoters of dpr and metQIN could be bound by the PerR protein. These results suggest that dpr and metQIN are members of the PerR regulon of S. suis. dpr encodes a Dps-like peroxide resistance protein, and the dpr knockout strains (Δdpr and ΔdprΔperR) were highly sensitive to H2O2. MetQIN is a methionine transporter, and the increased utilization of methionine in the ΔperR strain indirectly affected the peroxide resistance. Using a promoter–EGFP gene fusion reporting system, we found that the PerR regulon was induced by H2O2, and the induction was modulated by metal ions. Finally, we found that the pathogenicity of the perR mutant was attenuated and easily cleared by mice. Conclusions These data strongly suggest that the Fur-like protein PerR directly regulates dpr and metQIN and plays a crucial role in oxidative stress response in S. suis.
Collapse
Affiliation(s)
- Tengfei Zhang
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Identification and functional analysis of CT069 as a novel transcriptional regulator in Chlamydia. J Bacteriol 2011; 193:6123-31. [PMID: 21908669 DOI: 10.1128/jb.05976-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Only a small number of transcription factors have been predicted in Chlamydia spp., which are obligate intracellular bacteria that include a number of important human pathogens. We used a bioinformatics strategy to identify novel transcriptional regulators from the Chlamydia trachomatis genome by predicting proteins with the general structure and characteristic functional domains of a bacterial transcription factor. With this approach, we identified CT069 as a candidate transcription factor with sequence similarity at its C terminus to Treponema pallidum TroR. Like TroR, the gene for CT069 belongs to an operon that encodes components of a putative ABC transporter for importing divalent metal cations. However, CT069 has been annotated as YtgC because of sequence similarity at its N terminus to TroC, a transmembrane component of this metal ion transporter. Instead, CT069 appears to be a fusion protein composed of YtgC and a TroR ortholog that we have called YtgR. Although it has not been previously reported, a similar YtgC-YtgR fusion protein is predicted to be encoded by other Chlamydia spp. and several other bacteria, including Bacillus subtilis. We show that recombinant YtgR polypeptide bound specifically to an operator sequence upstream of the ytg operon and that binding was enhanced by Zn(2+). We also demonstrate that YtgR repressed transcription from the ytg promoter in a heterologous in vivo reporter assay. These results provide evidence that CT069 is a negative regulator of the ytg operon, which encodes a putative metal ion transporter in C. trachomatis.
Collapse
|
28
|
Osman D, Cavet JS. Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors. Nat Prod Rep 2010; 27:668-80. [PMID: 20442958 DOI: 10.1039/b906682a] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Detecting deficiency and excess of different metal ions is fundamental for every organism. Our understanding of how metals are detected by bacteria is exceptionally well advanced, and multiple families of cytoplasmic DNA-binding, metal-sensing transcriptional regulators have been characterised(ArsR-SmtB, MerR, CsoR-RcnR, CopY, DtxR, Fur, NikR). Some of the sensors regulate a single gene while others act globally controlling transcription of regulons. They not only modulate the expression of genes directly associated with metal homeostasis, but can also alter metabolism to reduce the cellular demand for metals in short supply. Different representatives of each of the sensor families can regulate gene expression in response to different metals, and the residues that form the sensory metal-binding sites have been defined in a number of these proteins. Indeed, in the case of theArsR-SmtB family, multiple distinct metal-sensing motifs (and one non-metal-sensing motif) have been identified which correlate with the detection of different metals. This review summarises the different families of bacterial metal-sensing transcriptional regulators and discusses current knowledge regarding the mechanisms of metal-regulated gene expression and the structural features of sensory metal-binding sites focusing on the ArsR-SmtB family. In addition, recent progress in understanding the principles governing the ability of the sensors to detect specific metals within a cell and the coordination of the different sensors to control cellular metal levels is discussed.
Collapse
Affiliation(s)
- Deenah Osman
- University of Manchester, Manchester, M13 9PT, UK
| | | |
Collapse
|
29
|
Giacani L, Godornes C, Puray-Chavez M, Guerra-Giraldez C, Tompa M, Lukehart SA, Centurion-Lara A. TP0262 is a modulator of promoter activity of tpr Subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol 2009; 72:1087-99. [PMID: 19432808 PMCID: PMC2698047 DOI: 10.1111/j.1365-2958.2009.06712.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcriptional regulation in Treponema pallidum ssp. pallidum is poorly understood, primarily because this organism cannot be cultivated in vitro or genetically manipulated. We have recently shown a phase variation mechanism controlling transcription initiation of Subfamily II tpr (T. pallidumrepeat) genes (tprE, tprG and tprJ), a group of virulence factor candidates. Furthermore, the same study suggested that additional mechanisms might influence the level of transcription of these tprs. The T. pallidum genome sequence has revealed a few open reading frames with similarity to known bacterial transcription factors, including four catabolite activator protein homologues. In this work, sequences matching the Escherichia coli cAMP receptor protein (CRP) binding motif were identified in silico upstream of tprE, tprG and tprJ. Using elecrophoretic mobility shift assay and DNaseI footprinting assay, recombinant TP0262, a T. pallidum CRP homologue, was shown to bind specifically to amplicons obtained from the tpr promoters containing putative CRP binding motifs. Using a heterologous reporter system, binding of TP0262 to these promoters was shown to either increase (tprE and tprJ) or decrease (tprG) tpr promoter activity. This is the first characterization of a T. pallidum transcriptional modulator that influences tpr promoter activity.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle (WA) 98104, USA
| | - Charmie Godornes
- Department of Medicine, University of Washington, Seattle (WA) 98104, USA
| | | | | | - Martin Tompa
- Department of Computer Science and Engineering and Department of Genome Sciences, University of Washington, Seattle (WA) 98195, USA
| | - Sheila A. Lukehart
- Department of Medicine, University of Washington, Seattle (WA) 98104, USA
| | | |
Collapse
|
30
|
The metal homeostasis protein, Lsp, of Streptococcus pyogenes is necessary for acquisition of zinc and virulence. Infect Immun 2009; 77:2840-8. [PMID: 19398546 DOI: 10.1128/iai.01299-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
"Cluster 9" family lipoproteins function as ligand-binding subunits of ABC-type transporters in maintaining transition metal homeostasis and have been implicated in the virulence of several bacteria. While these proteins share high similarity, the specific metal that they recognize and whether their role in virulence directly involves metal homeostasis cannot be reliably predicted. We examined the cluster 9 protein Lsp of Streptococcus pyogenes and found that specific deletion of lsp produced mutants highly attenuated in a murine model of soft tissue infection. Under standard in vitro conditions, growth of the Lsp(-) mutant was indistinguishable from that of the wild type, but growth was defective under zinc-limited conditions. The growth defect could be complemented by plasmids expressing wild-type Lsp but not Lsp engineered to lack its putative lipidation residue. Furthermore, Zn(2+) but not Mn(2+) rescued Lsp(-) growth, implicating Zn(2+) as the physiological ligand for Lsp. Mutation of residues in the putative Zn(2+)-binding pocket generated variants both hypo- and hyper-resistant to zinc starvation, and both mutant classes displayed attenuated virulence. Together, these data suggest that Lsp is a ligand-binding component of an ABC-type zinc permease and that perturbation of zinc homeostasis inhibits the ability of S. pyogenes to cause disease in a zinc-limited host milieu.
Collapse
|
31
|
Brett PJ, Burtnick MN, Fenno JC, Gherardini FC. Treponema denticola TroR is a manganese- and iron-dependent transcriptional repressor. Mol Microbiol 2008; 70:396-409. [PMID: 18761626 PMCID: PMC2628430 DOI: 10.1111/j.1365-2958.2008.06418.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treponema denticola harbours a genetic locus with significant homology to most of the previously characterized Treponema pallidum tro operon. Within this locus are five genes (troABCDR) encoding for the components of an ATP-binding cassette cation-transport system (troABCD) and a DtxR-like transcriptional regulator (troR). In addition, a sigma(70)-like promoter and an 18 bp region of dyad symmetry were identified upstream of the troA start codon. This putative operator sequence demonstrated similarity to the T. pallidum TroR (TroR(Tp)) binding sequence; however, the position of this motif with respect to the predicted tro promoters differed. Interestingly, unlike the T. pallidum orthologue, T. denticola TroR (TroR(Td)) possesses a C-terminal Src homology 3-like domain commonly associated with DtxR family members. In the present study, we show that TroR(Td) is a manganese- and iron-dependent transcriptional repressor using Escherichia coli reporter constructs and in T. denticola. In addition, we demonstrate that although TroR(Td) possessing various C-terminal deletions maintain metal-sensing capacities, these truncated proteins exhibit reduced repressor activities in comparison with full-length TroR(Td). Based upon these findings, we propose that TroR(Td) represents a novel member of the DtxR family of transcriptional regulators and is likely to play an important role in regulating both manganese and iron homeostases in this spirochaete.
Collapse
Affiliation(s)
- Paul J Brett
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
32
|
Functional definition and global regulation of Zur, a zinc uptake regulator in a Streptococcus suis serotype 2 strain causing streptococcal toxic shock syndrome. J Bacteriol 2008; 190:7567-78. [PMID: 18723622 DOI: 10.1128/jb.01532-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential trace element for all living organisms and plays pivotal roles in various cellular processes. However, an excess of zinc is extremely deleterious to cells. Bacteria have evolved complex machineries (such as efflux/influx systems) to control the concentration at levels appropriate for the maintenance of zinc homeostasis in cells and adaptation to the environment. The Zur (zinc uptake regulator) protein is one of these functional members involved in the precise control of zinc homeostasis. Here we identified a zur homologue designated 310 from Streptococcus suis serotype 2, strain 05ZYH33, a highly invasive isolate causing streptococcal toxic shock syndrome. Biochemical analysis revealed that the protein product of gene 310 exists as a dimer form and carries zinc ions. An isogenic gene replacement mutant of gene 310, the Delta310 mutant, was obtained by homologous recombination. Physiological tests demonstrated that the Delta310 mutant is specifically sensitive to Zn(2+), while functional complementation of the Delta310 mutant can restore its duration capability, suggesting that 310 is a functional member of the Zur family. Two-dimensional electrophoresis indicated that nine proteins in the Delta310 mutant are overexpressed in comparison with those in the wild type. DNA microarray analyses suggested that 121 genes in the Delta310 mutant are affected, of which 72 genes are upregulated and 49 are downregulated. The transcriptome of S. suis serotype 2 with high Zn(2+) concentrations also showed 117 differentially expressed genes, with 71 upregulated and 46 downregulated. Surprisingly, more than 70% of the genes differentially expressed in the Delta310 mutant were the same as those in S. suis serotype 2 that were differentially expressed in response to high Zn(2+) concentration, consistent with the notion that 310 is involved in zinc homeostasis. We thus report for the first time a novel zinc-responsive regulator, Zur, from Streptococcus suis serotype 2.
Collapse
|
33
|
Determining the cellular targets of reactive oxygen species in Borrelia burgdorferi. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008. [PMID: 18287759 DOI: 10.1007/978-1-60327-032-8_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The response of Borrelia burgdorferi to the challenge of reactive oxygen species (ROS) is a direct result of its limited biosynthetic capabilities and lack of biologically significant levels of intracellular Fe. In other bacteria, the major target for oxidative damage is DNA as a consequence of the reaction of "free" intracellular with ROS through the Fenton reaction. Therefore, cellular defenses in these bacteria are focused on protecting this essential cellular component. This does not seem to be the case for B. burgdorferi. In this chapter, we describe methods that were used to analyze the potential targets for ROS in B. burgdorferi. Surprisingly, membrane lipids (e.g., linoleic and linolenic acids) derived from host are the major target of ROS in the Lyme disease spirochete.
Collapse
|
34
|
Loisel E, Jacquamet L, Serre L, Bauvois C, Ferrer JL, Vernet T, Di Guilmi AM, Durmort C. AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J Mol Biol 2008; 381:594-606. [PMID: 18632116 DOI: 10.1016/j.jmb.2008.05.068] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/13/2008] [Accepted: 05/20/2008] [Indexed: 11/19/2022]
Abstract
Regulation of metal homeostasis is vital for pathogenic bacteria facing drastic metal concentration changes in various locations within the host during invasion. Metal-binding receptors (MBRs), one of the extracellular components of ATP-binding cassette transporters, have been shown to be essential in this process. Streptococcus pneumoniae expresses two characterized MBRs: PsaA and AdcA, two extracellular lipoproteins encoded by the psaABCD and adcRCBA operons, respectively. The Mn- and Zn-uptake functions of PsaA and AdcA, respectively, have been well established. Here we describe AdcAII as a third putative S. pneumoniae MBR. The analysis of a phylogenetic tree built from the sequence alignment of 68 proteins reveals a subgroup of members displaying an unusual genetic operon organisation. The adcAII gene belongs to a 6670-nucleotide-long transcript spanning the spr0903 to spr0907 loci encoding for the CcdA, thioredoxine, YfnA, AdcAII and PhtD proteins. Two adjacent repeats of imperfect AdcR-binding consensus sequence were identified upstream of the adcAII gene, suggesting a transcriptional co-regulation of adcAII and phtD genes. Biophysical and structural studies of recombinant AdcAII were performed to identify the metal specificity of the protein. Using electrospray mass spectrometry in native conditions, we found that Zn was bound to recombinant AdcAII. Screening of the effect of 10 cationic ions on the thermal stability of AdcAII revealed that Zn had the most pronounced stabilizing effect. The crystal structure of AdcAII has been solved to 2.4 A resolution. One Zn ion is bound to each AdcAII molecule in a symmetrical active site composed of three His and one Glu. The structure almost perfectly superimposed on the known MBR structures. The presence of a flexible 15-residue-long loop close to the metal-binding site is specific to those specialized in Zn transport. Taken together, these functional and structural data provide new perspectives related to the physiological role of AdcAII in pneumococcus Zn homeostasis.
Collapse
Affiliation(s)
- Elodie Loisel
- Institut de Biologie Structurale Jean-Pierre Ebel UMR 5075 (CNRS/CEA/UJF/PSB), Laboratoire d'Ingénierie des Macromolécules, 41 rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mercier A, Watt S, Bähler J, Labbé S. Key function for the CCAAT-binding factor Php4 to regulate gene expression in response to iron deficiency in fission yeast. EUKARYOTIC CELL 2008; 7:493-508. [PMID: 18223116 PMCID: PMC2268518 DOI: 10.1128/ec.00446-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Accepted: 01/18/2008] [Indexed: 12/30/2022]
Abstract
The fission yeast Schizosaccharomyces pombe responds to the deprivation of iron by inducing the expression of the php4+ gene, which encodes a negative regulatory subunit of the heteromeric CCAAT-binding factor. Once formed, the Php2/3/4/5 transcription complex is required to inactivate a subset of genes encoding iron-using proteins. Here, we used a pan-S. pombe microarray to study the transcriptional response to iron starvation and identified 86 genes that exhibit php4+-dependent changes on a genome-wide scale. One of these genes encodes the iron-responsive transcriptional repressor Fep1, whose mRNA levels were decreased after treatment with the permeant iron chelator 2,2'-dipyridyl. In addition, several genes encoding the components of iron-dependent biochemical pathways, including the tricarboxylic acid cycle, mitochondrial respiration, amino acid biosynthesis, and oxidative stress defense, were downregulated in response to iron deficiency. Furthermore, Php4 repressed transcription when brought to a promoter using a yeast DNA-binding domain, and iron deprivation was required for this repression. On the other hand, Php4 was constitutively active when glutathione levels were depleted within the cell. Based on these and previous results, we propose that iron-dependent inactivation of Php4 is regulated at two distinct levels: first, at the transcriptional level by the iron-responsive GATA factor Fep1 and second, at the posttranscriptional level by a mechanism yet to be identified, which inhibits Php4-mediated repressive function when iron is abundant.
Collapse
Affiliation(s)
- Alexandre Mercier
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, 3001, 12e Ave. Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | |
Collapse
|
36
|
Desrosiers DC, Sun YC, Zaidi AA, Eggers CH, Cox DL, Radolf JD. The general transition metal (Tro) and Zn2+ (Znu) transporters in Treponema pallidum: analysis of metal specificities and expression profiles. Mol Microbiol 2007; 65:137-52. [PMID: 17581125 DOI: 10.1111/j.1365-2958.2007.05771.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acquisition of transition metals is central to the struggle between a bacterial pathogen and its mammalian host. Previous studies demonstrated that Treponema pallidum encodes a cluster-9 (C9) ABC transporter (troABCD) whose solute-binding protein component (TroA) ligands Zn(2+) and Mn(2+) with essentially equal affinities. Bioinformatic analysis revealed that T. pallidum encodes an additional C9 transporter (tp0034-36) orthologous to Zn(2+)-uptake (Znu) systems in other bacteria; the binding protein component, ZnuA, contains a His-rich tract characteristic of C9 Zn(2+)-binding proteins. Metal analysis and metal-reconstitution studies demonstrated that ZnuA is a Zn(2+)-binding protein; parallel studies confirmed that TroA binds Zn(2+), Mn(2+) and Fe. Circular dichroism showed that ZnuA, but not TroA, undergoes conformational changes in the presence of Zn(2+). Using isothermal titration calorimetry (ITC), we demonstrated that TroA binds Zn(2+) and Mn(2+) with affinities approximately 100-fold greater than those previously reported. ITC analysis revealed that ZnuA contains multiple Zn(2+)-binding sites, two of which are high-affinity and presumed to be located within the binding pocket and His-rich loop. Quantitative reverse transcription polymerase chain reaction of tro and znu transcripts combined with immunoblot analysis of TroA and ZnuA confirmed that both transporters are simultaneously expressed in T. pallidum and that TroA is expressed at much greater levels than ZnuA. Collectively, our findings indicate that T. pallidum procures transition metals via the concerted utilization of its general metal (Tro) and Zn(2+) (Znu) transporters. Sequestration of periplasmic Zn(2+) by ZnuA may free up TroA binding capacity for the importation of Fe and Mn(2+).
Collapse
Affiliation(s)
- Daniel C Desrosiers
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3715, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hanks TS, Liu M, McClure MJ, Fukumura M, Duffy A, Lei B. Differential regulation of iron- and manganese-specific MtsABC and heme-specific HtsABC transporters by the metalloregulator MtsR of group A Streptococcus. Infect Immun 2006; 74:5132-9. [PMID: 16926405 PMCID: PMC1594851 DOI: 10.1128/iai.00176-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/08/2006] [Accepted: 06/19/2006] [Indexed: 11/20/2022] Open
Abstract
The genome of the human pathogen group A Streptococcus (GAS) encodes the transporters MtsABC, FtsABCD, and HtsABC to take up ferric and manganese ions, ferric ferrichrome, and heme, respectively. The GAS genome also encodes two metalloregulators PerR and MtsR. To understand the regulation of the expression of these transporters, the mtsR and perR deletion mutants of a GAS serotype M1 strain were generated, and the effects of the deletions and Fe(3+), Mn(2+), and Zn(2+) on the expression of mtsA, htsA, and ftsB were examined. Mn(2+) dramatically depresses mtsA transcription and levels of the MtsA protein but does not downregulate the expression of htsA and ftsB. Fe(3+) decreases the expression of mtsA and htsA but has no effect on ftsB expression. Zn(2+) has no effect on the expression of all three genes. The deletion of mtsR abolishes the Mn(2+)- and Fe(3+)-induced depression of mtsA expression and the Fe(3+)-dependent decrease in htsA expression. The deletion of mtsR does not significantly alter GAS virulence in a mouse model of subcutaneous infection. The deletion of perR does not affect the expression of the genes in response to the metal ions. MtsR binds to the mts promoter region in the presence of Mn(2+) or Fe(2+). The results indicate that MtsR differentially regulates the expression of mtsABC and htsABC.
Collapse
Affiliation(s)
- Tracey S Hanks
- Veterinary Molecular Biology, Montana State University, P.O. Box 173610, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Syphilis is a chronic sexually transmitted disease caused by Treponema pallidum subsp. pallidum. Clinical manifestations separate the disease into stages; late stages of disease are now uncommon compared to the preantibiotic era. T. pallidum has an unusually small genome and lacks genes that encode many metabolic functions and classical virulence factors. The organism is extremely sensitive to environmental conditions and has not been continuously cultivated in vitro. Nonetheless, T. pallidum is highly infectious and survives for decades in the untreated host. Early syphilis lesions result from the host's immune response to the treponemes. Bacterial clearance and resolution of early lesions results from a delayed hypersensitivity response, although some organisms escape to cause persistent infection. One factor contributing to T. pallidum's chronicity is the paucity of integral outer membrane proteins, rendering intact organisms virtually invisible to the immune system. Antigenic variation of TprK, a putative surface-exposed protein, is likely to contribute to immune evasion. T. pallidum remains exquisitely sensitive to penicillin, but macrolide resistance has recently been identified in a number of geographic regions. The development of a syphilis vaccine, thus far elusive, would have a significant positive impact on global health.
Collapse
Affiliation(s)
- Rebecca E Lafond
- Department of Medicine, Box 359779, Harborview Medical Center, 325 Ninth Ave., Seattle, WA 98104, USA
| | | |
Collapse
|
39
|
Johnston JW, Briles DE, Myers LE, Hollingshead SK. Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect Immun 2006; 74:1171-80. [PMID: 16428766 PMCID: PMC1360317 DOI: 10.1128/iai.74.2.1171-1180.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The concentration of Mn2+ is 1,000-fold higher in secretions than it is at internal sites of the body, making it a potential signal by which bacteria can sense a shift from a mucosal environment to a more invasive site. PsaR, a metal-dependent regulator in Streptococcus pneumoniae, was found to negatively affect the transcription of psaBCA, pcpA, rrgA, rrgB, rrgC, srtBCD, and rlrA in the presence of Mn2+. psaBCA encode an ABC-type transporter for Mn2+. pcpA, rrgA, rrgB, and rrgC encode several outer surface proteins. srtBCD encode a cluster of sortase enzymes, and rlrA encodes a transcriptional regulator. Steady-state RNA levels are high under low Mn2+ concentrations in the wild-type strain and are elevated under both high and low Mn2+ concentrations in a psaR mutant strain. RlrA is an activator of rrgA, rrgB, rrgC, and srtBCD (D. Hava and A. Camilli, Mol. Microbiol. 45:1389-1406, 2002), suggesting that PsaR may indirectly control these genes through rlrA, while PsaR-dependent repression of psaBCA, pcpA, and rlrA transcription is direct. The impact of Mn2+-dependent regulation on virulence was further examined in mouse models of pneumonia and nasopharyngeal carriage. The abilities of DeltapsaR, pcpA, and DeltapsaR DeltapcpA mutant strains to colonize the lung were reduced compared to those of the wild type, confirming that both PcpA-mediated gene regulation and PsaR-mediated gene regulation are required for full virulence in the establishment of pneumonia. Neither PcpA nor PsaR was found to be required for colonization of the nasopharynx in a carriage model. This is the first demonstration of Mn2+ acting as a signal for the expression of virulence factors within different host sites.
Collapse
Affiliation(s)
- Jason W Johnston
- Department of Microbiology, University of Iowa, BSB 3-401, 51 Newton Road, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
40
|
D'Aquino JA, Tetenbaum-Novatt J, White A, Berkovitch F, Ringe D. Mechanism of metal ion activation of the diphtheria toxin repressor DtxR. Proc Natl Acad Sci U S A 2005; 102:18408-13. [PMID: 16352732 PMCID: PMC1317899 DOI: 10.1073/pnas.0500908102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10(-7), binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10(-4). These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.
Collapse
|
41
|
Bates CS, Toukoki C, Neely MN, Eichenbaum Z. Characterization of MtsR, a new metal regulator in group A streptococcus, involved in iron acquisition and virulence. Infect Immun 2005; 73:5743-53. [PMID: 16113291 PMCID: PMC1231137 DOI: 10.1128/iai.73.9.5743-5753.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococcus (GAS) is a common pathogen of the human skin and mucosal surfaces capable of producing a variety of diseases. In this study, we investigated regulation of iron uptake in GAS and the role of a putative transcriptional regulator named MtsR (for Mts repressor) with homology to the DtxR family of metal-dependent regulatory proteins. An mtsR mutant was constructed in NZ131 (M49 serotype) and analyzed. Western blot and RNA analysis showed that mtsR inactivation results in constitutive transcription of the sia (streptococcal iron acquisition) operon, which was negatively regulated by iron in the parent strain. A recombinant MtsR with C-terminal His(6) tag fusion (rMtsR) was cloned and purified. Electrophoretic mobility gel shift assays demonstrated that rMtsR specifically binds to the sia promoter region in an iron- and manganese-dependent manner. Together, these observations indicate that MtsR directly represses the sia operon during cell growth under conditions of high metal levels. Consistent with deregulation of iron uptake, the mtsR mutant is hypersensitive to streptonigrin and hydrogen peroxide, and (55)Fe uptake assays demonstrate that it accumulates 80% +/- 22.5% more iron than the wild-type strain during growth in complete medium. Studies with a zebrafish infection model revealed that the mtsR mutant is attenuated for virulence in both the intramuscular and the intraperitoneal routes. In conclusion, MtsR, a new regulatory protein in GAS, controls iron homeostasis and has a role in disease production.
Collapse
Affiliation(s)
- Christopher S Bates
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
42
|
Manabe YC, Hatem CL, Kesavan AK, Durack J, Murphy JR. Both Corynebacterium diphtheriae DtxR(E175K) and Mycobacterium tuberculosis IdeR(D177K) are dominant positive repressors of IdeR-regulated genes in M. tuberculosis. Infect Immun 2005; 73:5988-94. [PMID: 16113319 PMCID: PMC1231048 DOI: 10.1128/iai.73.9.5988-5994.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is an important iron-dependent transcriptional regulator of known virulence genes in Corynebacterium diphtheriae. The mycobacterial iron-dependent repressor (IdeR) is phylogenetically closely related to DtxR, with high amino acid similarity in the DNA binding and metal ion binding site domains. We have previously shown that an iron-insensitive, dominant-positive dtxR(E175K) mutant allele from Corynebacterium diphtheriae can be expressed in Mycobacterium tuberculosis and results in an attenuated phenotype in mice. In this paper, we report the M. tuberculosis IdeR(D177K) strain that has the cognate point mutation. We tested four known and predicted IdeR-regulated gene promoters (mbtI, Rv2123, Rv3402c, and Rv1519) using a promoterless green fluorescent protein (GFP) construct. GFP expression from these promoters was abrogated under low-iron conditions in the presence of both IdeR(D177K) and DtxR(E175K), a result confirmed by reverse transcription-PCR. The IdeR regulon can be constitutively repressed in the presence of an integrated copy of ideR containing this point mutation. These data also suggest that mutant IdeR(D177K) has a mechanism similar to that of DtxR(E175K); iron insensitivity occurs as a result of SH3-like domain binding interactions that stabilize the intermediate form of the repressor after ancillary metal ion binding. This construct can be used to elucidate further the IdeR regulon and its virulence genes and to differentiate these from genes regulated by SirR, which does not have this domain.
Collapse
Affiliation(s)
- Yukari C Manabe
- Johns Hopkins University School of Medicine, 1503 E. Jefferson Street, Rm. 108, Baltimore, MD 21231-1004, USA.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Many bacteria use an ABC transporter for high-affinity uptake of zinc with a cluster 9 solute-binding protein. Other members of this protein family transport manganese. At present, it is not always possible to distinguish zinc-specific and manganese-specific transporters on the basis of sequence analysis. Low-affinity ZIP-type zinc transporters in bacteria have also been identified. Most high-affinity zinc uptake systems are regulated by Zur proteins, which form at least three unrelated subgroups of the Fur protein family (regulators of iron transport). High-affinity transport of zinc out of the periplasmic space poses a problem to the cell because zinc is a cofactor of several periplasmic enzymes. Certain zinc-binding proteins in the periplasm might function as chaperones to supply these enzymes with zinc.
Collapse
Affiliation(s)
- Klaus Hantke
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
| |
Collapse
|
45
|
Ducey TF, Carson MB, Orvis J, Stintzi AP, Dyer DW. Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium. J Bacteriol 2005; 187:4865-74. [PMID: 15995201 PMCID: PMC1169496 DOI: 10.1128/jb.187.14.4865-4874.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/11/2005] [Indexed: 11/20/2022] Open
Abstract
To ensure survival, most bacteria must acquire iron, a resource that is sequestered by mammalian hosts. Pathogenic bacteria have therefore evolved intricate systems to sense iron limitation and regulate gene expression appropriately. We used a pan-Neisseria microarray to examine genes regulated in Neisseria gonorrhoeae in response to iron availability in defined medium. Overall, 203 genes varied in expression, 109 up-regulated and 94 down-regulated by iron deprivation. In iron-replete medium, genes essential to rapid bacterial growth were preferentially expressed, while iron transport functions, and predominantly genes of unknown function, were expressed in low-iron medium. Of those TonB-dependent proteins encoded in the FA1090 genome with unknown ligand specificity, expression of three was not controlled by iron availability, suggesting that these receptors may not be high-affinity transporters for iron-containing ligands. Approximately 30% of the operons regulated by iron appeared to be directly under control of Fur. Our data suggest a regulatory cascade where Fur indirectly controls gene expression by affecting the transcription of three secondary regulators. Our data also suggest that a second MerR-like regulator may be directly responding to iron availability and controlling transcription independent of the Fur protein. Comparison of our data with those recently published for Neisseria meningitidis revealed that only a small portion of genes were found to be similarly regulated in these closely related pathogens, while a large number of genes derepressed during iron starvation were unique to each organism.
Collapse
Affiliation(s)
- Thomas F Ducey
- Laboratory for Genomics and Bioinformatics, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City, 73104, USA.
| | | | | | | | | |
Collapse
|
46
|
Ulijasz AT, Andes DR, Glasner JD, Weisblum B. Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J Bacteriol 2004; 186:8123-36. [PMID: 15547286 PMCID: PMC529065 DOI: 10.1128/jb.186.23.8123-8136.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RitR (formerly RR489) is an orphan two-component signal transduction response regulator in Streptococcus pneumoniae that has been shown to be required for lung pathogenicity. In the present study, by using the rough strain R800, inactivation of the orphan response regulator gene ritR by allele replacement reduced pathogenicity in a cyclophosphamide-treated mouse lung model but not in a thigh model, suggesting a role for RitR in regulation of tissue-specific virulence factors. Analysis of changes in genome-wide transcript mRNA levels associated with the inactivation of ritR compared to wild-type cells was performed by the use of high-density DNA microarrays. Genes with a change in transcript abundance associated with inactivation of ritR included piuB, encoding an Fe permease subunit, and piuA, encoding an Fe carrier-binding protein. In addition, a dpr ortholog, encoding an H(2)O(2) resistance protein that has been shown to reduce synthesis of reactive oxygen intermediates, was activated in the wild-type (ritR(+)) strain. Microarray experiments suggested that RitR represses Fe uptake in vitro by negatively regulating the Piu hemin-iron transport system. Footprinting experiments confirmed site-specific DNA-binding activity for RitR and identified three binding sites that partly overlap the +1 site for transcription initiation upstream of piuB. Transcripts belonging to other gene categories found to be differentially expressed in our array studies include those associated with (i) H(2)O(2) resistance, (ii) repair of DNA damage, (iii) sugar transport and capsule biosynthesis, and (iv) two-component signal transduction elements. These observations suggest that RitR is an important response regulator whose primary role is to maintain iron homeostasis in S. pneumoniae. The name ritR (repressor of iron transport) for the orphan response regulator gene, rr489, is proposed.
Collapse
Affiliation(s)
- Andrew T Ulijasz
- Pharmacology Department, University of Wisconsin Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Pathogenic spirochetes are the causative agents of several important diseases including syphilis, Lyme disease, leptospirosis, swine dysentery, periodontal disease and some forms of relapsing fever. Spirochetal bacteria possess two membranes and the proteins present in the outer membrane are at the site of interaction with host tissue and the immune system. This review describes the current knowledge in the field of spirochetal outer membrane protein (OMP) biology. What is known concerning biogenesis and structure of OMPs, with particular regard to the atypical signal peptide cleavage sites observed amongst the spirochetes, is discussed. We examine the functions that have been determined for several spirochetal OMPs including those that have been demonstrated to function as adhesins, porins or to have roles in complement resistance. A detailed description of the role of spirochetal OMPs in immunity, including those that stimulate protective immunity or that are involved in antigenic variation, is given. A final section is included which covers experimental considerations in spirochetal outer membrane biology. This section covers contentious issues concerning cellular localization of putative OMPs, including determination of surface exposure. A more detailed knowledge of spirochetal OMP biology will hopefully lead to the design of new vaccines and a better understanding of spirochetal pathogenesis.
Collapse
Affiliation(s)
- Paul A. Cullen
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
| | - David A. Haake
- School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Division of Infectious Diseases, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Ben Adler
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Melbourne, Vic. 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Vic. 3800, Australia
- Corresponding author. Tel.: +61-3-9905-4815; fax: +61-3-9905-4811. E-mail address: (B. Adler)
| |
Collapse
|
48
|
Abstract
Borrelia burgdorferi contains a gene that codes for a Fur homologue. The function of this Fur protein is unknown; however, spirochetes grown at 23 or 35 degrees C expressed fur as determined by reverse transcriptase PCR. The fur gene (BB0647) was cloned and overexpressed as a His-Fur fusion protein in Escherichia coli. The fusion protein was purified by zinc-chelate chromatography, and the N-terminal His tag was removed to generate recombinant Fur for use in mobility shift studies. Fur bound DNA containing the E. coli Fur box sequence (GATAATGATAATCATTATC) or Bacillus subtilis Per box sequence (TTATAAT-ATTATAA) with an apparent Kd of approximately 20 nM. Fur also bound the upstream sequences of three Borrelia genes: BB0646 (gene encoding a hydrolase of the alpha/beta-fold family), BB0647 (fur), and BB0690 (napA). Addition of metal ions was not required. Binding activity was greatly decreased by either exposure to oxidizing agents (H2O2, t-butyl hydroperoxide, cumene hydroperoxide, or diamide) or by addition of Zn2+. B. burgdorferi NapA is a homologue of Dps. Dps functions in E. coli to protect DNA against damage during periods of redox stress. Fur may function in B. burgdorferi as a repressor and regulate oxidative stress genes. Additional genes (10 chromosomal and 15 plasmid) that may be Fur regulated were identified by in silico analysis.
Collapse
Affiliation(s)
- Laura I Katona
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, State University of New York at Stony Brook, Stony Brook, New York 11794-5120, USA.
| | | | | | | | | |
Collapse
|
49
|
Platero R, Peixoto L, O'Brian MR, Fabiano E. Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl Environ Microbiol 2004; 70:4349-55. [PMID: 15240318 PMCID: PMC444773 DOI: 10.1128/aem.70.7.4349-4355.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fur is a transcriptional regulator involved in iron-dependent control of gene expression in many bacteria. In this work we analyzed the phenotype of a fur mutant in Sinorhizobium meliloti, an alpha-proteobacterium that fixes N(2) in association with host plants. We demonstrated that some functions involved in high-affinity iron transport, siderophore production, and iron-regulated outer membrane protein expression respond to iron in a Fur-independent manner. However, manganese-dependent expression of the MntABCD manganese transport system was lost in a fur strain as discerned by constitutive expression of a mntA::gfp fusion reporter gene in the mutant. Thus, Fur directly or indirectly regulates a manganese-dependent function. The data indicate a novel function for a bacterial Fur protein in mediating manganese-dependent regulation of gene expression.
Collapse
Affiliation(s)
- Raúl Platero
- Laboratorio de Ecología Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Unidad Asociada a la Facultad de Ciencias, Montevideo 11600, Uruguay
| | | | | | | |
Collapse
|
50
|
Chao TC, Becker A, Buhrmester J, Pühler A, Weidner S. The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. J Bacteriol 2004; 186:3609-20. [PMID: 15150249 PMCID: PMC415740 DOI: 10.1128/jb.186.11.3609-3620.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is an alpha-proteobacterium able to induce nitrogen-fixing nodules on roots of specific legumes. In order to propagate in the soil and for successful symbiotic interaction the bacterium needs to sequester metals like iron and manganese from its environment. The metal uptake has to be in turn tightly regulated to avoid toxic effects. In this report we describe the characterization of a chromosomal region of S. meliloti encoding the sitABCD operon and the putative regulatory fur gene. It is generally assumed that the sitABCD operon encodes a metal-type transporter and that the fur gene is involved in iron ion uptake regulation. A constructed S. meliloti sitA deletion mutant was found to be growth dependent on Mn(II) and to a lesser degree on Fe(II). The sitA promoter was strongly repressed by Mn(II), with dependence on Fur, and moderately by Fe(II). Applying a genome-wide S. meliloti microarray it was shown that in the fur deletion mutant 23 genes were up-regulated and 10 genes were down-regulated when compared to the wild-type strain. Among the up-regulated genes only the sitABCD operon could be associated with metal uptake. On the other hand, the complete rhbABCDEF operon, which is involved in siderophore synthesis, was identified among the down-regulated genes. Thus, in S. meliloti Fur is not a global repressor of iron uptake. Under symbiotic conditions the sitA promoter was strongly expressed and the S. meliloti sitA mutant exhibited an attenuated nitrogen fixation activity resulting in a decreased fresh weight of the host plant Medicago sativa.
Collapse
Affiliation(s)
- Tzu-Chiao Chao
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33501 Bielefeld, Germany
| | | | | | | | | |
Collapse
|