1
|
Khan AA, Dewald HD. Nitric oxide and peroxynitrite as new biomarkers for early diagnosis of autism. Brain Res 2025; 1850:149438. [PMID: 39793916 DOI: 10.1016/j.brainres.2024.149438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/05/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
Autism spectrum disorder, or autism, is a neurodevelopmental disorder of the developing child's brain with a genetic causality. It can be diagnosed at about three years after birth when it begins to present itself via a range of neuropsychiatric symptoms. Nitric oxide is a crucial small molecule of life synthesized within cells of our body systems, including cells of our brain. Peroxynitrite is the product of reaction between superoxide anion and nitric oxide. It normally isomerizes into harmless nitrates or nitrites. However, when excessive superoxide anion is present, the cellular concentration of peroxynitrite can increase to a toxic level. Autism has been suggested to cause oxidative damage to brain cells. Until now, it is impossible to sample tissue from a live brain. Instead, stem cells can be derived (from an autism patient's somatic cells) which can then be differentiated and chemically directed to grow into miniature 3-dimensional tissue masses resembling specific brain regions (e.g., the cortex) called brain organoids. This review discusses utilizing nitric oxide and peroxynitrite as biomarkers and comparing their relative concentrations in stem cells and stem cell derived brain organoids of healthy and autistic individuals to develop a bioanalytical process for early diagnosis of autism.
Collapse
Affiliation(s)
- Abdullah Asif Khan
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States
| | - Howard D Dewald
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States.
| |
Collapse
|
2
|
Mueller BJ, Roberts MD, Mobley CB, Judd RL, Kavazis AN. Nitric oxide in exercise physiology: past and present perspectives. Front Physiol 2025; 15:1504978. [PMID: 39850450 PMCID: PMC11754211 DOI: 10.3389/fphys.2024.1504978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule known to modulate various physiological processes, with specific implications in skeletal muscle and broader applications in exercise performance. This review focuses on the modulation of skeletal muscle function, mitochondrial adaptation and function, redox state by NO, and the effect of nitrate supplementation on exercise performance. In skeletal muscle function, NO is believed to increase the maximal shortening velocity and peak power output of muscle fibers. However, its effect on submaximal contraction is still undetermined. In mitochondria, NO may stimulate biogenesis and affect respiratory efficiency. NO also plays a role in the redox state within the skeletal muscle, partially through its interaction with respiratory chain enzymes and transcriptional regulators of antioxidant production. Nitrate supplementation leads to an increased bioavailability of NO in skeletal muscle. Thus, nitrate supplementation has been investigated for its ability to impact performance outcomes in endurance and resistance exercise. The effect of nitrate supplementation on endurance exercise is currently indecisive, although evidence indicates that it may extend the time to exhaustion in endurance exercise. Alternatively, the effect of nitrate supplementation on resistance exercise performance has been less studied. Limited research indicates that nitrate supplementation may improve repetitions to failure. Further research is needed to investigate the influence of training status, age, sex, and duration of supplementation to further elucidate the impact of nitrate supplementation on exercise performance.
Collapse
Affiliation(s)
| | | | | | - Robert L. Judd
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
3
|
Sakaguchi R, Takahashi N, Yoshida T, Ogawa N, Ueda Y, Hamano S, Yamaguchi K, Sawamura S, Yamamoto S, Hara Y, Kawamoto T, Suzuki R, Nakao A, Mori MX, Furukawa T, Shimizu S, Inoue R, Mori Y. Dynamic remodeling of TRPC5 channel-caveolin-1-eNOS protein assembly potentiates the positive feedback interaction between Ca 2+ and NO signals. J Biol Chem 2024; 300:107705. [PMID: 39178948 PMCID: PMC11420454 DOI: 10.1016/j.jbc.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Nozomi Ogawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yoshifumi Ueda
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Satoshi Hamano
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kaori Yamaguchi
- Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Seishiro Sawamura
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shinichiro Yamamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Yuji Hara
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Integrative Physiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoya Kawamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryosuke Suzuki
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunichi Shimizu
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University, Fukuoka, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan.
| |
Collapse
|
4
|
Payne FM, Dabb AR, Harrison JC, Sammut IA. Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction. Int J Mol Sci 2024; 25:9247. [PMID: 39273196 PMCID: PMC11395567 DOI: 10.3390/ijms25179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Fergus M Payne
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Alisha R Dabb
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joanne C Harrison
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
5
|
Luo S, Ye D, Wang Y, Liu X, Wang X, Xie L, Ji Y. Roles of Protein S-Nitrosylation in Endothelial Homeostasis and Dysfunction. Antioxid Redox Signal 2024; 40:186-205. [PMID: 37742108 DOI: 10.1089/ars.2023.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Significance: Nitric oxide (NO) plays several distinct roles in endothelial homeostasis. Except for activating the guanylyl cyclase enzyme-dependent cyclic guanosine monophosphate signaling pathway, NO can bind reactive cysteine residues in target proteins, a process known as S-nitrosylation (SNO). SNO is proposed to explain the multiple biological functions of NO in the endothelium. Investigating the targets and mechanism of protein SNO in endothelial cells (ECs) can provide new strategies for treating endothelial dysfunction-related diseases. Recent Advances: In response to different environments, proteomics has identified multiple SNO targets in ECs. Functional studies confirm that SNO regulates NO bioavailability, inflammation, permeability, oxidative stress, mitochondrial function, and insulin sensitivity in ECs. It also influences EC proliferation, migration, apoptosis, and transdifferentiation. Critical Issues: Single-cell transcriptomic analysis of ECs isolated from different mouse tissues showed heterogeneous gene signatures. However, litter research focuses on the heterogeneous properties of SNO proteins in ECs derived from different tissues. Although metabolism reprogramming plays a vital role in endothelial functions, little is known about how protein SNO regulates metabolism reprogramming in ECs. Future Directions: Precisely deciphering the effects of protein SNO in ECs isolated from different tissues under different conditions is necessary to further characterize the relationship between protein SNO and endothelial dysfunction-related diseases. In addition, identifying SNO targets that can influence endothelial metabolic reprogramming and the underlying mechanism can offer new views on the crosstalk between metabolism and post-translational protein modification. Antioxid. Redox Signal. 40, 186-205.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danyu Ye
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xingeng Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiaoqian Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
6
|
Dugbartey GJ. Nitric oxide in kidney transplantation. Biomed Pharmacother 2023; 167:115530. [PMID: 37722191 DOI: 10.1016/j.biopha.2023.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with kidney failure. Compared to dialysis therapy, it provides better quality of life and confers significant survival advantage at a relatively lower cost. However, the long-term success of this life-saving intervention is severely hampered by an inexorable clinical problem referred to as ischemia-reperfusion injury (IRI), and increases the incidence of post-transplant complications including loss of renal graft function and death of transplant recipients. Burgeoning evidence shows that nitric oxide (NO), a poisonous gas at high concentrations, and with a historic negative public image as an environmental pollutant, has emerged as a potential candidate that holds clinical promise in mitigating IRI and preventing acute and chronic graft rejection when it is added to kidney preservation solutions at low concentrations or when administered to the kidney donor prior to kidney procurement and to the recipient or to the reperfusion circuit at the start and during reperfusion after renal graft preservation. Interestingly, dysregulated or abnormal endogenous production and metabolism of NO is associated with IRI in kidney transplantation. From experimental and clinical perspectives, this review presents endogenous enzymatic production of NO as well as its exogenous sources, and then discusses protective effects of constitutive nitric oxide synthase (NOS)-derived NO against IRI in kidney transplantation via several signaling pathways. The review also highlights a few isolated studies of renal graft protection by NO produced by inducible NOS.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; Accra College of Medicine, Magnolia St, JVX5+FX9, East Legon, Accra, Ghana.
| |
Collapse
|
7
|
Quantitative aspects of nitric oxide production in the heart. Mol Biol Rep 2022; 49:11113-11122. [DOI: 10.1007/s11033-022-07889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
|
8
|
Solanki K, Rajpoot S, Bezsonov EE, Orekhov AN, Saluja R, Wary A, Axen C, Wary K, Baig MS. The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 2022; 10:e13651. [PMID: 35821897 PMCID: PMC9271274 DOI: 10.7717/peerj.13651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
The nitric oxide synthases (NOS; EC 1.14.13.39) use L-arginine as a substrate to produce nitric oxide (NO) as a by-product in the tissue microenvironment. NOS1 represents the predominant NO-producing enzyme highly enriched in the brain and known to mediate multiple functions, ranging from learning and memory development to maintaining synaptic plasticity and neuronal development, Alzheimer's disease (AD), psychiatric disorders and behavioral deficits. However, accumulating evidence indicate both canonical and non-canonical roles of NOS1-derived NO in several other tissues and chronic diseases. A better understanding of NOS1-derived NO signaling, and identification and characterization of NO-metabolites in non-neuronal tissues could become useful in diagnosis and prognosis of diseases associated with NOS1 expression. Continued investigation on the roles of NOS1, therefore, will synthesize new knowledge and aid in the discovery of small molecules which could be used to titrate the activities of NOS1-derived NO signaling and NO-metabolites. Here, we address the significance of NOS1 and its byproduct NO in modifying pathophysiological events, which could be beneficial in understanding both the disease mechanisms and therapeutics.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Rohit Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Anita Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Cassondra Axen
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kishore Wary
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| |
Collapse
|
9
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
10
|
A NOS1AP gene variant is associated with a paradoxical increase of the QT-interval shortening effect of digoxin. THE PHARMACOGENOMICS JOURNAL 2022; 22:55-61. [PMID: 34616002 DOI: 10.1038/s41397-021-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Digoxin is characterized by a small therapeutic window and a QT-interval shortening effect. Moreover, it has been shown that the genetic variants of the nitric oxide synthase-1 adaptor protein (NOS1AP) gene are associated with QT-interval prolongation. We investigated whether the rs10494366 variant of the NOS1AP gene decreases the QT-interval shortening effect of digoxin in patients using this drug. We included 10,057 individuals from the prospective population-based cohort of the Rotterdam Study during a median of 12.2 (interquartile range (IQR) 6.7-18.1) years of follow-up. At study entry, the mean age was 64 years and almost 59% of participants were women. A total of 23,179 ECGs were longitudinally recorded, of which 334 ECGs were from 249 individuals on digoxin therapy. The linear mixed model analysis was used to estimate the effect of the rs10494366 variant on the association between digoxin use and QT-interval duration, adjusted for age, sex, RR interval, diabetes, heart failure, and history of myocardial infarction. In non-users of digoxin, the GG genotype was associated with a significant 6.5 ms [95% confidence interval (CI) 5.5; 7.5] longer QT-interval duration than the TT variant. In current digoxin users, however, the GG variant was associated with a significantly -23.9 [95%CI -29.5; -18.5] ms shorter mean QT-interval duration than in those with the TT variant with -15.9 [95%CI -18.7; -13.1]. This reduction was strongest in the high digoxin dose category [≥0.250 mg/day] with the GG genotype group, with -40.8 [95%CI -52.5; -29.2] ms changes compared to non-users. Our study suggests that the minor homozygous GG genotype group of the NOS1AP gene rs10494366 variant is associated with a paradoxical increase of the QT-interval shortening effect of digoxin in a population of European ancestry.
Collapse
|
11
|
Toral M, de la Fuente-Alonso A, Campanero MR, Redondo JM. The NO signalling pathway in aortic aneurysm and dissection. Br J Pharmacol 2021; 179:1287-1303. [PMID: 34599830 DOI: 10.1111/bph.15694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that NO is a central mediator in diseases associated with thoracic aortic aneurysm, such as Marfan syndrome. The progressive dilation of the aorta in thoracic aortic aneurysm ultimately leads to aortic dissection. Unfortunately, current medical treatments have neither halt aortic enlargement nor prevented rupture, leaving surgical repair as the only effective treatment. There is therefore a pressing need for effective therapies to delay or even avoid the need for surgical repair in thoracic aortic aneurysm patients. Here, we summarize the mechanisms through which NO signalling dysregulation causes thoracic aortic aneurysm, particularly in Marfan syndrome. We discuss recent advances based on the identification of new Marfan syndrome mediators related to pathway overactivation that represent potential disease biomarkers. Likewise, we propose iNOS, sGC and PRKG1, whose pharmacological inhibition reverses aortopathy in Marfan syndrome mice, as targets for therapeutic intervention in thoracic aortic aneurysm and are candidates for clinical trials.
Collapse
Affiliation(s)
- Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea de la Fuente-Alonso
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
12
|
Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021; 171:345-364. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Heart failure is a growing health burden worldwide characterized by alterations in excitation-contraction coupling, cardiac energetic deficit and oxidative stress. While current treatments are mostly limited to antagonization of neuroendocrine activation, more recent data suggest that also targeting metabolism may provide substantial prognostic benefit. However, although in a broad spectrum of preclinical models, oxidative stress plays a causal role for the development and progression of heart failure, no treatment that targets reactive oxygen species (ROS) directly has entered the clinical arena yet. In the heart, ROS derive from various sources, such as NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase and mitochondria. While mitochondria are the primary source of ROS in the heart, communication between different ROS sources may be relevant for physiological signalling events as well as pathologically elevated ROS that deteriorate excitation-contraction coupling, induce hypertrophy and/or trigger cell death. Here, we review the sources of ROS in the heart, the modes of pathological activation of ROS formation as well as therapeutic approaches that may target ROS specifically in mitochondria.
Collapse
Affiliation(s)
- David Weissman
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany; Department of Internal Medicine 1, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
13
|
Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem 2021; 476:4045-4059. [PMID: 34244974 DOI: 10.1007/s11010-021-04219-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Heart failure (HF) is considered as a severe health problem worldwide, while cardiac fibrosis is one of the main driving factors for the progress of HF. Cardiac fibrosis was characterized by changes in cardiomyocytes, cardiac fibroblasts, ratio of collagen (COL) I/III, and the excessive production and deposition of extracellular matrix (ECM), thus forming a scar tissue, which leads to pathological process of cardiac structural changes and systolic as well as diastolic dysfunction. Cardiac fibrosis is a common pathological change of many advanced cardiovascular diseases including ischemic heart disease, hypertension, and HF. Accumulated studies have proven that phosphoinositol-3 kinase (PI3K)/Akt signaling pathway is involved in regulating the occurrence, progression and pathological formation of cardiac fibrosis via regulating cell survival, apoptosis, growth, cardiac contractility and even the transcription of related genes through a series of molecules including mammalian target of rapamycin (mTOR), glycogen synthase kinase 3 (GSK-3), forkhead box proteins O1/3 (FoxO1/3), and nitric oxide synthase (NOS). Thus, the review focuses on the role of PI3K/Akt signaling pathway in the cardiac fibrosis. The information reviewed here should be significant in understanding the role of PI3K/Akt in cardiac fibrosis and contribute to the design of further studies related to PI3K/Akt and the cardiac fibrotic response, as well as sought to shed light on a potential treatment for cardiac fibrosis.
Collapse
|
14
|
Florczyk-Soluch U, Polak K, Dulak J. The multifaceted view of heart problem in Duchenne muscular dystrophy. Cell Mol Life Sci 2021; 78:5447-5468. [PMID: 34091693 PMCID: PMC8257522 DOI: 10.1007/s00018-021-03862-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Dystrophin is a large protein serving as local scaffolding repetitively bridging cytoskeleton and the outside of striated muscle cell. As such dystrophin is a critical brick primarily in dystrophin-associated protein complex (DAGC) and in a larger submembranous unit, costamere. Accordingly, the lack of functional dystrophin laying at the root of Duchenne muscular dystrophy (DMD) drives sarcolemma instability. From this point on, the cascade inevitably leading to the death of myocyte begins. In cardiomyocytes, intracellular calcium overload and related mitochondrial-mediated cell death mainly contribute to myocardial dysfunction and dilation while other protein dysregulation and/or mislocalization may affect electrical conduction system and favor arrhythmogenesis. Although clinically DMD manifests as progressive muscle weakness and skeletal muscle symptoms define characteristic of DMD, it is the heart problem the biggest challenge that most often develop in the form of dilated cardiomyopathy (DCM). Current standards of treatment and recent progress in respiratory care, introduced in most settings in the 1990s, have improved quality of life and median life expectancy to 4th decade of patient's age. At the same time, cardiac causes of death related to DMD increases. Despite preventive and palliative cardiac treatments available, the prognoses remain poor. Direct therapeutic targeting of dystrophin deficiency is critical, however, hindered by the large size of the dystrophin cDNA and/or stochastic, often extensive genetic changes in DMD gene. The correlation between cardiac involvement and mutations affecting specific dystrophin isoforms, may provide a mutation-specific cardiac management and novel therapeutic approaches for patients with CM. Nonetheless, the successful cardiac treatment poses a big challenge and may require combined therapy to combat dystrophin deficiency and its after-effects (critical in DMD pathogenesis). This review locates the multifaceted heart problem in the course of DMD, balancing the insights into basic science, translational efforts and clinical manifestation of dystrophic heart disease.
Collapse
Affiliation(s)
- Urszula Florczyk-Soluch
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Katarzyna Polak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Mosqueira M, Konietzny R, Andresen C, Wang C, H A Fink R. Cardiomyocyte depolarization triggers NOS-dependent NO transient after calcium release, reducing the subsequent calcium transient. Basic Res Cardiol 2021; 116:18. [PMID: 33728868 PMCID: PMC7966140 DOI: 10.1007/s00395-021-00860-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Cardiac excitation-contraction coupling and metabolic and signaling activities are centrally modulated by nitric oxide (NO), which is produced by one of three NO synthases (NOSs). Despite the significant role of NO in cardiac Ca2+ homeostasis regulation under different pathophysiological conditions, such as Duchenne muscular dystrophy (DMD), no precise method describes the production, source or effect of NO through two NO signaling pathways: soluble guanylate cyclase-protein kinase G (NO-sGC-PKG) and S-nitrosylation (SNO). Using a novel strategy involving isolated murine cardiomyocytes loaded with a copper-based dye highly specific for NO, we observed a single transient NO production signal after each electrical stimulation event. The NO transient signal started 67.5 ms after the beginning of Rhod-2 Ca2+ transient signal and lasted for approximately 430 ms. Specific NOS isoform blockers or NO scavengers significantly inhibited the NO transient, suggesting that wild-type (WT) cardiomyocytes produce nNOS-dependent NO transients. Conversely, NO transient in mdx cardiomyocyte, a mouse model of DMD, was dependent on inducible NOS (iNOS) and endothelial (eNOS). In a consecutive stimulation protocol, the nNOS-dependent NO transient in WT cardiomyocytes significantly reduced the next Ca2+ transient via NO-sGC-PKG. In mdx cardiomyocytes, this inhibitory effect was iNOS- and eNOS-dependent and occurred through the SNO pathway. Basal NO production was nNOS- and iNOS-dependent in WT cardiomyocytes and eNOS- and iNOS-dependent in mdx cardiomyocytes. These results showed cardiomyocyte produces NO isoform-dependent transients upon membrane depolarization at the millisecond time scale activating a specific signaling pathway to negatively modulate the subsequent Ca2+ transient.
Collapse
Affiliation(s)
- Matias Mosqueira
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany.
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Roland Konietzny
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Carolin Andresen
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chao Wang
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Cardiovascular Department, Wuhan No. 1 Hospital, Hubei, China
| | - Rainer H A Fink
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Saini R, Azam Z, Sapra L, Srivastava RK. Neuronal Nitric Oxide Synthase (nNOS) in Neutrophils: An Insight. Rev Physiol Biochem Pharmacol 2021; 180:49-83. [PMID: 34115206 DOI: 10.1007/112_2021_61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NO (nitric oxide) is an important regulator of neutrophil functions and has a key role in diverse pathophysiological conditions. NO production by nitric oxide synthases (NOS) is under tight control at transcriptional, translational, and post-translational levels including interactions with heterologous proteins owing to its potent chemical reactivity and high diffusibility; this limits toxicity to other cellular components and promotes signaling specificity. The protein-protein interactions govern the activity and spatial distribution of NOS isoform to regulatory proteins and to their intended targets. In comparison with the vast literature available for endothelial, macrophages, and neuronal cells, demonstrating neuronal NOS (nNOS) interaction with other proteins through the PDZ domain, neutrophil nNOS, however, remains unexplored. Neutrophil's key role in both physiological and pathological conditions necessitates the need for further studies in delineating the NOS mediated NO modulations in signaling pathways operational in them. nNOS has been linked to depression, schizophrenia, and Parkinson's disease, suggesting the importance of exploring nNOS/NO-mediated neutrophil physiology in relation to such neuronal disorders. The review thus presents the scenario of neutrophil nNOS from the genetics to the functional level, including protein-protein interactions governing its intracellular sequestration in diverse cell types, besides speculating possible regulation in neutrophils and also addressing their clinical implications.
Collapse
Affiliation(s)
- Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India.
| | - Zaffar Azam
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, MP, India
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
17
|
Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M. Nitric Oxide and Hydrogen Sulfide: A Nice Pair in the Respiratory System. Curr Med Chem 2020; 27:7136-7148. [DOI: 10.2174/0929867327666200310120550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
Nitric Oxide (NO) is internationally regarded as a signal molecule involved in several
functions in the respiratory tract under physiological and pathogenic conditions. Hydrogen Sulfide
(H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions
similar to those of NO.
Depending on their respective concentrations, both these molecules act synergistically or antagonistically
as signals or damage promoters. Nevertheless, available evidence shows that the complex
biological connections between NO and H2S involve multiple pathways and depend on the site of
action in the respiratory tract, as well as on experimental conditions. This review will provide an
update on these two gasotransmitters in physiological and pathological processes.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, (NA), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| |
Collapse
|
18
|
Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020; 11:606740. [PMID: 33384614 PMCID: PMC7770138 DOI: 10.3389/fphys.2020.606740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.
Collapse
Affiliation(s)
- Hannah E. Boycott
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Abstract
There is increasing evidence for the health benefits of dietary nitrates including lowering blood pressure and enhancing cardiovascular health. Although commensal oral bacteria play an important role in converting dietary nitrate to nitrite, very little is known about the potential role of these bacteria in blood pressure regulation and maintenance of vascular tone. The main purpose of this review is to present the current evidence on the involvement of the oral microbiome in mediating the beneficial effects of dietary nitrate on vascular function and to identify sources of inter-individual differences in bacterial composition. A systematic approach was used to identify the relevant articles published on PubMed and Web of Science in English from January 1950 until September 2019 examining the effects of dietary nitrate on oral microbiome composition and association with blood pressure and vascular tone. To date, only a limited number of studies have been conducted, with nine in human subjects and three in animals focusing mainly on blood pressure. In general, elimination of oral bacteria with use of a chlorhexidine-based antiseptic mouthwash reduced the conversion of nitrate to nitrite and was accompanied in some studies by an increase in blood pressure in normotensive subjects. In conclusion, our findings suggest that oral bacteria may play an important role in mediating the beneficial effects of nitrate-rich foods on blood pressure. Further human intervention studies assessing the potential effects of dietary nitrate on oral bacteria composition and relationship to real-time measures of vascular function are needed, particularly in individuals with hypertension and those at risk of developing CVD.
Collapse
|
20
|
Wang WL, Ge TY, Chen X, Mao Y, Zhu YZ. Advances in the Protective Mechanism of NO, H 2S, and H 2 in Myocardial Ischemic Injury. Front Cardiovasc Med 2020; 7:588206. [PMID: 33195476 PMCID: PMC7661694 DOI: 10.3389/fcvm.2020.588206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/28/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial ischemic injury is among the top 10 leading causes of death from cardiovascular diseases worldwide. Myocardial ischemia is caused mainly by coronary artery occlusion or obstruction. It usually occurs when the heart is insufficiently perfused, oxygen supply to the myocardium is reduced, and energy metabolism in the myocardium is abnormal. Pathologically, myocardial ischemic injury generates a large number of inflammatory cells, thus inducing a state of oxidative stress. This sharp reduction in the number of normal cells as a result of apoptosis leads to organ and tissue damage, which can be life-threatening. Therefore, effective methods for the treatment of myocardial ischemic injury and clarification of the underlying mechanisms are urgently required. Gaseous signaling molecules, such as NO, H2S, H2, and combined gas donors, have gradually become a focus of research. Gaseous signaling molecules have shown anti-apoptotic, anti-oxidative and anti-inflammatory effects as potential therapeutic agents for myocardial ischemic injury in a large number of studies. In this review, we summarize and discuss the mechanism underlying the protective effect of gaseous signaling molecules on myocardial ischemic injury.
Collapse
Affiliation(s)
| | | | - Xu Chen
- Guilin Medical College, Guilin, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Zhun Zhu
- Guilin Medical College, Guilin, China.,Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
21
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
22
|
Gerdes HJ, Yang M, Heisner JS, Camara AKS, Stowe DF. Modulation of peroxynitrite produced via mitochondrial nitric oxide synthesis during Ca 2+ and succinate-induced oxidative stress in cardiac isolated mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148290. [PMID: 32828729 DOI: 10.1016/j.bbabio.2020.148290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023]
Abstract
We hypothesized that NO• is generated in isolated cardiac mitochondria as the source for ONOO- production during oxidative stress. We monitored generation of ONOO- from guinea pig isolated cardiac mitochondria subjected to excess Ca2+ uptake before adding succinate and determined if ONOO- production was dependent on a nitric oxide synthase (NOS) located in cardiac mitochondria (mtNOS). Mitochondria were suspended in experimental buffer at pH 7.15, and treated with CaCl2 and then the complex II substrate Na-succinate, followed by menadione, a quinone redox cycler, to generate O2•-. L-tyrosine was added to the mitochondrial suspension where it is oxidized by ONOO- to form dityrosine (diTyr) in proportion to the ONOO- present. We found that exposing mitochondria to excess CaCl2 before succinate resulted in an increase in diTyr and amplex red fluorescence (H2O2) signals, indicating that mitochondrial oxidant stress, induced by elevated mtCa2+ and succinate, increased mitochondrial ONOO- production via NO• and O2•-. Changes in mitochondrial ONOO- production dependent on NOS were evidenced by using NOS inhibitors L-NAME/L-NNA, TEMPOL, a superoxide dismutase (SOD) mimetic, and PTIO, a potent global NO• scavenger. L-NAME and L-NNA decreased succinate and menadione-mediated ONOO- production, PTIO decreased production of ONOO-, and TEMPOL decreased ONOO- levels by converting more O2•- to H2O2. Electron microscopy showed immuno-gold labeled iNOS and nNOS in mitochondria isolated from cardiomyocytes and heart tissue. Western blots demonstrated iNOS and nNOS bands in total heart tissue, bands for both iNOS and nNOS in β-tubulin-free non-purified (crude) mitochondrial preparations, and a prominent iNOS band, but no nNOS band, in purified (Golgi and ER-free) mitochondria. Prior treatment of guinea pigs with lipopolysacharride (LPS) enhanced expression of iNOS in liver mitochondria but not in heart mitochondria. Our results indicate that release of ONOO- into the buffer is dependent both on O2•- released from mitochondria and NO• derived from a mtCa2+-inducible nNOS isoform, possibly attached to mitochondria, and a mtNOS isoform like iNOS that is non-inducible.
Collapse
Affiliation(s)
- Harrison J Gerdes
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meiying Yang
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S Heisner
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David F Stowe
- Anesthesiology Research Division, Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA; Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Beghi S, Cavaliere F, Buschini A. Gene polymorphisms in calcium-calmodulin pathway: Focus on cardiovascular disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108325. [PMID: 33339582 DOI: 10.1016/j.mrrev.2020.108325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease is the leading cause of death in industrialized countries and affects an increasing number of people. Several risk factors play an important role in the etiology of this disease, such as an unhealthy lifestyle. It is increasingly clear that genetic factors influencing the molecular basis of excitation-contraction mechanisms in the heart could contribute to modify the individual's risk. Thanks to the progress that has been made in understanding calcium signaling in the heart, it is assumed that calmodulin can play a crucial role in the excitation-contraction coupling. In fact, calmodulin (CaM) binds calcium and consequently regulates calcium channels. Several works show how some polymorphic variants can be considered predisposing factors to complex pathologies. Therefore, we hypothesize that the identification of polymorphic variants of proteins involved in the CaM pathway could be important for understanding how genetic traits can influence predisposition to myocardial infarction. This review considers each pathway of the three different isoforms of calmodulin (CaM1; CaM2; CaM3) and focuses on some common proteins involved in the three pathways, with the aim of analyzing the polymorphisms studied in the literature and understanding if they are associated with cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Beghi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy
| | - Francesca Cavaliere
- University of Parma, Department of Food and Drug, Parco Area Delle Scienze 17A, 43124, Parma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy.
| |
Collapse
|
24
|
Filice M, Mazza R, Leo S, Gattuso A, Cerra MC, Imbrogno S. The Hypoxia Tolerance of the Goldfish ( Carassius auratus) Heart: The NOS/NO System and Beyond. Antioxidants (Basel) 2020; 9:antiox9060555. [PMID: 32604810 PMCID: PMC7346152 DOI: 10.3390/antiox9060555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The extraordinary capacity of the goldfish (Carassius auratus) to increase its cardiac performance under acute hypoxia is crucial in ensuring adequate oxygen supply to tissues and organs. However, the underlying physiological mechanisms are not yet completely elucidated. By employing an ex vivo working heart preparation, we observed that the time-dependent enhancement of contractility, distinctive of the hypoxic goldfish heart, is abolished by the Nitric Oxide Synthase (NOS) antagonist L-NMMA, the Nitric Oxide (NO) scavenger PTIO, as well as by the PI3-kinase (PI3-K) and sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) pumps’ inhibition by Wortmannin and Thapsigargin, respectively. In goldfish hearts exposed to hypoxia, an ELISA test revealed no changes in cGMP levels, while Western Blotting analysis showed an enhanced expression of the phosphorylated protein kinase B (pAkt) and of the NADPH oxidase catalytic subunit Nox2 (gp91phox). A significant decrease of protein S-nitrosylation was observed by Biotin Switch assay in hypoxic hearts. Results suggest a role for a PI3-K/Akt-mediated activation of the NOS-dependent NO production, and SERCA2a pumps in the mechanisms conferring benefits to the goldfish heart under hypoxia. They also propose protein denitrosylation, and the possibility of nitration, as parallel intracellular events.
Collapse
|
25
|
Bergmann A, Schilling T, Perchiazzi G, Kretzschmar M, Hedenstierna G, Hachenberg T, Larsson A. Effect of remote ischemic preconditioning on exhaled nitric oxide concentration in piglets during and after one-lung ventilation. Respir Physiol Neurobiol 2020; 276:103426. [DOI: 10.1016/j.resp.2020.103426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/26/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
|
26
|
Lambden S. Bench to bedside review: therapeutic modulation of nitric oxide in sepsis-an update. Intensive Care Med Exp 2019; 7:64. [PMID: 31792745 PMCID: PMC6888802 DOI: 10.1186/s40635-019-0274-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide is a signalling molecule with an extensive range of functions in both health and disease. Discovered in the 1980s through work that earned the Nobel prize, nitric oxide is an essential factor in regulating cardiovascular, immune, neurological and haematological function in normal homeostasis and in response to infection. Early work implicated exaggerated nitric oxide synthesis as a potentially important driver of septic shock; however, attempts to modulate production through global inhibition of nitric oxide synthase were associated with increased mortality. Subsequent work has shown that regulation of nitric oxide production is determined by numerous factors including substrate and co-factor availability and expression of endogenous regulators. In sepsis, nitric oxide synthesis is dysregulated with exaggerated production leading to cardiovascular dysfunction, bioenergetic failure and cellular toxicity whilst at the same time impaired microvascular function may be driven in part by reduced nitric oxide synthesis by the endothelium. This bench to bedside review summarises our current understanding of the ways in which nitric oxide production is regulated on a tissue and cellular level before discussing progress in translating these observations into novel therapeutic strategies for patients with sepsis.
Collapse
Affiliation(s)
- Simon Lambden
- Department of Medicine, Addenbrooke's Hospital, Cambridge University, 5th Floor, Cambridge, CB20QQ, UK.
| |
Collapse
|
27
|
Dowrick JM, Tran K, Loiselle DS, Nielsen PMF, Taberner AJ, Han J, Ward M. The slow force response to stretch: Controversy and contradictions. Acta Physiol (Oxf) 2019; 226:e13250. [PMID: 30614655 DOI: 10.1111/apha.13250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
When exposed to an abrupt stretch, cardiac muscle exhibits biphasic active force enhancement. The initial, instantaneous, force enhancement is well explained by the Frank-Starling mechanism. However, the cellular mechanisms associated with the second, slower phase remain contentious. This review explores hypotheses regarding this "slow force response" with the intention of clarifying some apparent contradictions in the literature. The review is partitioned into three sections. The first section considers pathways that modify the intracellular calcium handling to address the role of the sarcoplasmic reticulum in the mechanism underlying the slow force response. The second section focuses on extracellular calcium fluxes and explores the identity and contribution of the stretch-activated, non-specific, cation channels as well as signalling cascades associated with G-protein coupled receptors. The final section introduces promising candidates for the mechanosensor(s) responsible for detecting the stretch perturbation.
Collapse
Affiliation(s)
- Jarrah M. Dowrick
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Denis S. Loiselle
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Physiology University of Auckland Auckland New Zealand
| | - Poul M. F. Nielsen
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - Andrew J. Taberner
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
- Department of Engineering Science University of Auckland Auckland New Zealand
| | - June‐Chiew Han
- Auckland Bioengineering Institute University of Auckland Auckland New Zealand
| | - Marie‐Louise Ward
- Department of Physiology University of Auckland Auckland New Zealand
| |
Collapse
|
28
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Balke JE, Zhang L, Percival JM. Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle. Nitric Oxide 2018; 82:35-47. [PMID: 30503614 DOI: 10.1016/j.niox.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Defects in neuronal nitric oxide synthase (nNOS) splice variant localization and signaling in skeletal muscle are a firmly established pathogenic characteristic of many neuromuscular diseases, including Duchenne and Becker muscular dystrophy (DMD and BMD, respectively). Therefore, substantial efforts have been made to understand and therapeutically target skeletal muscle nNOS isoform signaling. The purpose of this review is to summarize recent salient advances in understanding of the regulation, targeting, and function of nNOSμ and nNOSβ splice variants in normal and dystrophic skeletal muscle, primarily using findings from mouse models. The first focus of this review is how the differential targeting of nNOS splice variants creates spatially and functionally distinct nitric oxide (NO) signaling compartments at the sarcolemma, Golgi complex, and cytoplasm. Particular attention is given to the functions of sarcolemmal nNOSμ and limitations of current nNOS knockout models. The second major focus is to review current understanding of cGMP-mediated nNOS signaling in skeletal muscle and its emergence as a therapeutic target in DMD and BMD. Accordingly, we address the preclinical and clinical successes and setbacks with the testing of phosphodiesterase 5 inhibitors to redress nNOS signaling defects in DMD and BMD. In summary, this review of nNOS function in normal and dystrophic muscle aims to advance understanding how the messenger NO is harnessed for cellular signaling from a skeletal muscle perspective.
Collapse
Affiliation(s)
- Jordan E Balke
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Ling Zhang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA
| | - Justin M Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, Florida, 33101, USA.
| |
Collapse
|
30
|
Effects of diabetes mellitus on myenteric neuronal density and sodium channel expression in the rat ileum. Brain Res 2018; 1708:1-9. [PMID: 30500400 DOI: 10.1016/j.brainres.2018.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/09/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus (DM) may lead to gastrointestinal motility disorders. Rodent models of DM indicate the presence of morpho-functional abnormalities of the enteric nervous system. Here, we evaluated whether experimental DM can cause changes in the excitatory cholinergic fibers, neuronal density, and voltage-gated sodium channel (Nav) expression in the myenteric plexus of the ileum. After streptozotocin-induced hyperglycemia in female rats progressed for eight weeks, triple immunofluorescence labeling experiments revealed that the neuronal density in DM rats was significantly lower than that in control. On average, the density of total neurons reduced by 52.2% (p = 0.0001), cholinergic neurons by 50.0% (p = 0.0068), and nitrergic neurons by 54.8% (p = 0.0042). The number of neurons per ganglionic area was also significantly reduced (to 28.2% of total neurons, p = 0.0002; 27.7% of cholinergic neurons, p = 0.0002, and 32.1% of nitrergic neurons, p = 0.0016). Furthermore, the density of the cholinergic fibers at the surface of the longitudinal muscle was significantly reduced (DM: 24 ± 3%; p = 0.003, control: 41 ± 2%); however, western-blot analysis did not indicate a reduction in the expression of choline acetyltransferase (ChAT) in the DM group. The Nav1.6 isoform was detected in different myenteric neurons of the ileum. RT-qPCR data did not suggest an alteration of transcripts for ChAT, neuronal nitric oxide synthase, Nav1.3, Nav1.6, or Nav1.7. Our data support the view that chronic DM leads to a reduction of excitatory cholinergic fibers and neuronal density. However, changes in sodium channel expression pattern, which could cause neuronal dysfunction, were not detected.
Collapse
|
31
|
Johnson DM, Antoons G. Arrhythmogenic Mechanisms in Heart Failure: Linking β-Adrenergic Stimulation, Stretch, and Calcium. Front Physiol 2018; 9:1453. [PMID: 30374311 PMCID: PMC6196916 DOI: 10.3389/fphys.2018.01453] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is associated with elevated sympathetic tone and mechanical load. Both systems activate signaling transduction pathways that increase cardiac output, but eventually become part of the disease process itself leading to further worsening of cardiac function. These alterations can adversely contribute to electrical instability, at least in part due to the modulation of Ca2+ handling at the level of the single cardiac myocyte. The major aim of this review is to provide a definitive overview of the links and cross talk between β-adrenergic stimulation, mechanical load, and arrhythmogenesis in the setting of HF. We will initially review the role of Ca2+ in the induction of both early and delayed afterdepolarizations, the role that β-adrenergic stimulation plays in the initiation of these and how the propensity for these may be altered in HF. We will then go onto reviewing the current data with regards to the link between mechanical load and afterdepolarizations, the associated mechano-sensitivity of the ryanodine receptor and other stretch activated channels that may be associated with HF-associated arrhythmias. Furthermore, we will discuss how alterations in local Ca2+ microdomains during the remodeling process associated the HF may contribute to the increased disposition for β-adrenergic or stretch induced arrhythmogenic triggers. Finally, the potential mechanisms linking β-adrenergic stimulation and mechanical stretch will be clarified, with the aim of finding common modalities of arrhythmogenesis that could be targeted by novel therapeutic agents in the setting of HF.
Collapse
Affiliation(s)
- Daniel M Johnson
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Gudrun Antoons
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
32
|
Sun F, Zuo YZ, Ge J, Xia J, Li XN, Lin J, Zhang C, Xu HL, Li JL. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production. Poult Sci 2018; 97:2638-2646. [PMID: 29750253 DOI: 10.3382/ps/pey146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/09/2018] [Indexed: 12/27/2022] Open
Abstract
Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.
Collapse
Affiliation(s)
- F Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Y-Z Zuo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding 071001, People's Republic of China
| | - J Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - J Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - X-N Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - J Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - C Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - H-L Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - J-L Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
33
|
An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4579140. [PMID: 30271527 PMCID: PMC6151216 DOI: 10.1155/2018/4579140] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as important regulators in the cardiovascular system, although they were historically considered as toxic gases. As gaseous transmitters, H2S and NO share a wide range of physical properties and physiological functions: they penetrate into the membrane freely; they are endogenously produced by special enzymes, they stimulate endothelial cell angiogenesis, they regulate vascular tone, they protect against heart injury, and they regulate target protein activity via posttranslational modification. Growing evidence has determined that these two gases are not independent regulators but have substantial overlapping pathophysiological functions and signaling transduction pathways. H2S and NO not only affect each other's biosynthesis but also produce novel species through chemical interaction. They play a regulatory role in the cardiovascular system involving similar signaling mechanisms or molecular targets. However, the natural precise mechanism of the interactions between H2S and NO remains unclear. In this review, we discuss the current understanding of individual and interactive regulatory functions of H2S and NO in biosynthesis, angiogenesis, vascular one, cardioprotection, and posttranslational modification, indicating the importance of their cross-talk in the cardiovascular system.
Collapse
|
34
|
Kerrick WGL, Xu Y, Percival JM. nNOS splice variants differentially regulate myofilament function but are dispensable for intracellular calcium and force transients in cardiac papillary muscles. PLoS One 2018; 13:e0200834. [PMID: 30028847 PMCID: PMC6054407 DOI: 10.1371/journal.pone.0200834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Cardiac muscle expresses three neuronal nitric oxide synthase (nNOS) splice variants: nNOSα, nNOSμ and nNOSβ. The functions of these nNOS splice variants in cardiac muscle, particularly myofilament-associated nNOSβ are unclear. To decipher cardiac nNOS splice variant function we investigated myofilament function and intracellular calcium and force transients in demembranated and intact papillary muscles from two lines of nNOS knockout mice. The first line (KN1) lacks nNOSα and nNOSμ. The second line (KN2) lacks active nNOSα, nNOSμ and nNOSβ. Demembranated KN1 papillary muscles exhibited reduced myofilament ATPase activity (-35%) and specific force (-10%) relative to controls. Demembranated KN2 muscles exhibited a smaller decrease in myofilament ATPase activity (-21%), but a greater reduction in specific force (-26%) relative to controls. Myofilament calcium sensitivity in demembranated KN1 and KN2 papillary muscles was similar to controls. Thus, papillary muscle-expressed nNOS splice variants are necessary for control levels of myofilament ATPase activity and force generation, but dispensable for myofilament calcium sensitivity. The greater reduction in myofilament ATPase relative to specific force in KN1, but not KN2 muscle, reduced the energy cost of muscle contraction, suggesting that nNOSβ increased the energetic efficiency of contraction in the absence of nNOSμ and nNOSα. Analyses of intact KN1 and KN2 papillary muscles showed that both intracellular calcium transients and their evoked force transients were similar to controls at stimulation frequencies between 1 and 3 Hz. Therefore, nNOS was dispensable for baseline excitation-contraction coupling. In summary, these data suggest that nNOS splice variants differentially regulate myofilament function, but not baseline calcium handling in papillary muscles. More importantly, they suggest that nNOSβ is a novel modulator of myofilament function, and ultimately the energetic efficiency of cardiac papillary muscle contraction.
Collapse
Affiliation(s)
- W Glenn L Kerrick
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Yuanyuan Xu
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Justin M Percival
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
35
|
Hofmann F. A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology. Basic Res Cardiol 2018; 113:31. [PMID: 29934662 DOI: 10.1007/s00395-018-0690-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.
Collapse
Affiliation(s)
- Franz Hofmann
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802, Munich, Germany.
| |
Collapse
|
36
|
Imbrogno S, Filice M, Cerra MC, Gattuso A. NO, CO and H 2 S: What about gasotransmitters in fish and amphibian heart? Acta Physiol (Oxf) 2018; 223:e13035. [PMID: 29338122 DOI: 10.1111/apha.13035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
The gasotransmitters nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H2 S), long considered only toxicant, are produced in vivo during the catabolism of common biological molecules and are crucial for a large variety of physiological processes. Mounting evidence is emerging that in poikilotherm vertebrates, as in mammals, they modulate the basal performance of the heart and the response to stress challenges. In this review, we will focus on teleost fish and amphibians to highlight the evolutionary importance in vertebrates of the cardiac control elicited by NO, CO and H2 S, and the conservation of the intracellular cascades they activate. Although many gaps are still present due to discontinuous information, we will use examples obtained by studies from our and other laboratories to illustrate the complexity of the mechanisms that, by involving gasotransmitters, allow beat-to-beat, short-, medium- and long-term cardiac homoeostasis. By presenting the latest data, we will also provide a framework in which the peculiar morpho-functional arrangement of the teleost and amphibian heart can be considered as a reference tool to decipher cardiac regulatory networks which are difficult to explore using more conventional vertebrates, such as mammals.
Collapse
Affiliation(s)
- S. Imbrogno
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. Filice
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. C. Cerra
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - A. Gattuso
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| |
Collapse
|
37
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
38
|
S-nitrosylation of transglutaminase 2 impairs fatty acid-stimulated contraction in hypertensive cardiomyocytes. Exp Mol Med 2018; 50:1-11. [PMID: 29622788 PMCID: PMC5938015 DOI: 10.1038/s12276-017-0021-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 01/27/2023] Open
Abstract
The myocardium in hypertensive heart exhibits decreased fatty acid utilization and contractile dysfunction, leading to cardiac failure. However, the causal relationship between metabolic remodeling and cardiomyocyte contractility remains unestablished. Transglutaminase 2 (TG2) has been known to promote ATP production through the regulation of mitochondrial function. In this study, we investigated the involvement of TG2 in cardiomyocyte contraction under fatty acid supplementation. Using TG2 inhibitor and TG2-deficient mice, we demonstrated that fatty acid supplementation activated TG2 and increased ATP level and contractility of cardiac myocyte from the normal heart. By contrast, in cardiac myocytes from angiotensin-II-treated rats and mice, the effects of fatty acid supplementation on TG2 activity, ATP level, and myocyte contraction were abolished. We found that TG2 was inhibited by S-nitrosylation and its level increased in hypertensive myocytes. Treatment with inhibitor for neuronal NOS restored fatty acid-induced increase of TG2 activity and myocyte contraction. Moreover, intracellular Ca2+ levels were increased by fatty acid supplementation in both normal and hypertensive myocytes, showing that S-nitrosylation of TG2 but not alteration of intracellular Ca2+ levels is responsible for contractile dysfunction. These results indicate that TG2 plays a critical role in the regulation of myocyte contractility by promoting fatty acid metabolism and provide a novel target for preventing contractile dysfunction in heart with high workload. Enhancing activity of an enzyme that promotes healthy heart contraction could benefit patients at risk of serious heart conditions. Chronic high blood pressure can cause excessive thickening of heart muscle tissue, reducing the heart’s ability to contract correctly and leading to heart failure. A healthy heart fuels itself by oxidizing fatty acids to trigger production of the key energy transfer molecule ATP. Yin Hua Zhang and In-Gyu Kim at Seoul National University College of Medicine, Korea and co-workers have highlighted how S-nitrosylation, addition of nitric oxide, affects transglutaminase 2 (TG2), an enzyme that promotes ATP production. Experiments on rats and mice showed that fatty acids activate TG2, increasing ATP production and maintaining contractibility in healthy hearts. However, in pressure-overloaded hearts, TG2 activity is inhibited by S-nitrosylation, which stops heart muscle cells contracting properly.
Collapse
|
39
|
Wasala NB, Shin JH, Lai Y, Yue Y, Montanaro F, Duan D. Cardiac-Specific Expression of ΔH2-R15 Mini-Dystrophin Normalized All Electrocardiogram Abnormalities and the End-Diastolic Volume in a 23-Month-Old Mouse Model of Duchenne Dilated Cardiomyopathy. Hum Gene Ther 2018; 29:737-748. [PMID: 29433343 DOI: 10.1089/hum.2017.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heart disease is a major health threat for Duchenne/Becker muscular dystrophy patients and carriers. Expression of a 6-8 kb mini-dystrophin gene in the heart holds promise to change the disease course dramatically. However, the mini-dystrophin gene cannot be easily studied with adeno-associated virus (AAV) gene delivery because the size of the minigene exceeds AAV packaging capacity. Cardiac protection of the ΔH2-R19 minigene was previously studied using the cardiac-specific transgenic approach. Although this minigene fully normalized skeletal muscle force, it only partially corrected electrocardiogram and heart hemodynamics in dystrophin-null mdx mice that had moderate cardiomyopathy. This study evaluated the ΔH2-R15 minigene using the same transgenic approach in mdx mice that had more severe cardiomyopathy. In contrast to the ΔH2-R19 minigene, the ΔH2-R15 minigene carries dystrophin spectrin-like repeats 16 to 19 (R16-19), a region that has been suggested to protect the heart in clinical studies. Cardiac expression of the ΔH2-R15 minigene normalized all aberrant electrocardiogram changes and improved hemodynamics. Importantly, it corrected the end-diastolic volume, an important diastolic parameter not rescued by ΔH2-R19 mini-dystrophin. It is concluded that that ΔH2-R15 mini-dystrophin is a superior candidate gene for heart protection. This finding has important implications in the design of the mini/micro-dystrophin gene for Duchenne cardiomyopathy therapy.
Collapse
Affiliation(s)
- Nalinda B Wasala
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Jin-Hong Shin
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Yi Lai
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Yongping Yue
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri
| | - Federica Montanaro
- 2 Dubowitz Neuromuscular Centre, Molecular Neurosciences Section, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | - Dongsheng Duan
- 1 Department of Molecular Microbiology and Immunology, The University of Missouri , Columbia, Missouri.,3 Department of Neurology, School of Medicine, The University of Missouri , Columbia, Missouri.,4 Department of Bioengineering, The University of Missouri , Columbia, Missouri.,5 Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri
| |
Collapse
|
40
|
Abstract
Nitric oxide (NO) signalling has pleiotropic roles in biology and a crucial function in cardiovascular homeostasis. Tremendous knowledge has been accumulated on the mechanisms of the nitric oxide synthase (NOS)-NO pathway, but how this highly reactive, free radical gas signals to specific targets for precise regulation of cardiovascular function remains the focus of much intense research. In this Review, we summarize the updated paradigms on NOS regulation, NO interaction with reactive oxidant species in specific subcellular compartments, and downstream effects of NO in target cardiovascular tissues, while emphasizing the latest developments of molecular tools and biomarkers to modulate and monitor NO production and bioavailability.
Collapse
Affiliation(s)
- Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, UCL-FATH Tour Vésale 5th Floor, 52 Avenue Mounier B1.53.09, 1200 Brussels, Belgium
| |
Collapse
|
41
|
Hutfless EH, Chaudhari SS, Thomas VC. Emerging Roles of Nitric Oxide Synthase in Bacterial Physiology. Adv Microb Physiol 2018; 72:147-191. [PMID: 29778214 DOI: 10.1016/bs.ampbs.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a potent inhibitor of diverse cellular processes in bacteria. Therefore, it was surprising to discover that several bacterial species, primarily Gram-positive organisms, harboured a gene encoding nitric oxide synthase (NOS). Recent attempts to characterize bacterial NOS (bNOS) have resulted in the discovery of structural features that may allow it to function as a NO dioxygenase and produce nitrate in addition to NO. Consistent with this characterization, investigations into the biological function of bNOS have also emphasized a role for NOS-dependent nitrate and nitrite production in aerobic and microaerobic respiration. In this review, we aim to compare, contrast, and summarize the structure, biochemistry, and biological role of bNOS with mammalian NOS and discuss how recent advances in our understanding of bNOS have enabled efforts at designing inhibitors against it.
Collapse
Affiliation(s)
| | | | - Vinai C Thomas
- University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
42
|
Shim AL, Mitrokhin VM, Gorbacheva LR, Savinkova IG, Pustovit KB, Mladenov MI, Kamkin AG. Kinetics of Mechanical Stretch-Induced Nitric Oxide Production in Rat Ventricular Cardiac Myocytes. Bull Exp Biol Med 2017; 163:583-585. [PMID: 28948553 DOI: 10.1007/s10517-017-3853-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 11/30/2022]
Abstract
Discrete mechanical stretch of isolated spontaneously contracting cardiac myocytes was employed to examine the kinetics of NO production in these cells. NO oscillations were detected with fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. The mechanisms underlying stretch-induced changes in NO concentration remain unclear and further studies are needed to evaluate the role of NO oscillation in the regulation of cardiomyocyte function.
Collapse
Affiliation(s)
- A L Shim
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V M Mitrokhin
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - L R Gorbacheva
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I G Savinkova
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K B Pustovit
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M I Mladenov
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Kamkin
- Department of Physiology, N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
43
|
|
44
|
Tsuda T, Fitzgerald KK. Dystrophic Cardiomyopathy: Complex Pathobiological Processes to Generate Clinical Phenotype. J Cardiovasc Dev Dis 2017; 4:jcdd4030014. [PMID: 29367543 PMCID: PMC5715712 DOI: 10.3390/jcdd4030014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and X-linked dilated cardiomyopathy (XL-DCM) consist of a unique clinical entity, the dystrophinopathies, which are due to variable mutations in the dystrophin gene. Dilated cardiomyopathy (DCM) is a common complication of dystrophinopathies, but the onset, progression, and severity of heart disease differ among these subgroups. Extensive molecular genetic studies have been conducted to assess genotype-phenotype correlation in DMD, BMD, and XL-DCM to understand the underlying mechanisms of these diseases, but the results are not always conclusive, suggesting the involvement of complex multi-layers of pathological processes that generate the final clinical phenotype. Dystrophin protein is a part of dystrophin-glycoprotein complex (DGC) that is localized in skeletal muscles, myocardium, smooth muscles, and neuronal tissues. Diversity of cardiac phenotype in dystrophinopathies suggests multiple layers of pathogenetic mechanisms in forming dystrophic cardiomyopathy. In this review article, we review the complex molecular interactions involving the pathogenesis of dystrophic cardiomyopathy, including primary gene mutations and loss of structural integrity, secondary cellular responses, and certain epigenetic and other factors that modulate gene expressions. Involvement of epigenetic gene regulation appears to lead to specific cardiac phenotypes in dystrophic hearts.
Collapse
Affiliation(s)
- Takeshi Tsuda
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, 1600 Rockland Rd, DE 19803, USA.
| | - Kristi K Fitzgerald
- Nemours Cardiac Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, 1600 Rockland Rd, DE 19803, USA.
| |
Collapse
|
45
|
Schönleitner P, Schotten U, Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648626 DOI: 10.1016/j.pbiomolbio.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In cardiac myocytes, calcium (Ca2+) signalling is tightly controlled in dedicated microdomains. At the dyad, i.e. the narrow cleft between t-tubules and junctional sarcoplasmic reticulum (SR), many signalling pathways combine to control Ca2+-induced Ca2+ release during contraction. Local Ca2+ gradients also exist in regions where SR and mitochondria are in close contact to regulate energetic demands. Loss of microdomain structures, or dysregulation of local Ca2+ fluxes in cardiac disease, is often associated with oxidative stress, contractile dysfunction and arrhythmias. Ca2+ signalling at these microdomains is highly mechanosensitive. Recent work has demonstrated that increasing mechanical load triggers rapid local Ca2+ releases that are not reflected by changes in global Ca2+. Key mechanisms involve rapid mechanotransduction with reactive oxygen species or nitric oxide as primary signalling molecules targeting SR or mitochondria microdomains depending on the nature of the mechanical stimulus. This review summarizes the most recent insights in rapid Ca2+ microdomain mechanosensitivity and re-evaluates its (patho)physiological significance in the context of historical data on the macroscopic role of Ca2+ in acute force adaptation and mechanically-induced arrhythmias. We distinguish between preload and afterload mediated effects on local Ca2+ release, and highlight differences between atrial and ventricular myocytes. Finally, we provide an outlook for further investigation in chronic models of abnormal mechanics (eg post-myocardial infarction, atrial fibrillation), to identify the clinical significance of disturbed Ca2+ mechanosensitivity for arrhythmogenesis.
Collapse
Affiliation(s)
- Patrick Schönleitner
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Uli Schotten
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Gudrun Antoons
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| |
Collapse
|
46
|
Abstract
Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation,
S-nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology & Biomedical Sciences, College of Medicine, Seoul National University, 103 Dae Hak Ro, Chong No Gu, 110-799 Seoul, Korea, South.,Yanbian University Hospital, Yanji, Jilin Province, 133000, China.,Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
47
|
Kohlhaas M, Nickel AG, Bergem S, Casadei B, Laufs U, Maack C. Endogenous nitric oxide formation in cardiac myocytes does not control respiration during β-adrenergic stimulation. J Physiol 2017; 595:3781-3798. [PMID: 28229450 DOI: 10.1113/jp273750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS In the heart, endothelial nitric oxide (NO) controls oxygen consumption in the working heart through paracrine mechanisms. While cardiac myocytes contain several isoforms of NO synthases, it is unclear whether these can control respiration in an intracrine fashion. A long-standing controversy is whether a NOS exists within mitochondria. By combining fluorescence technologies with electrical field stimulation or the patch-clamp technique in beating cardiac myocytes, we identified a neuronal NO synthase (nNOS) as the most relevant source of intracellular NO during β-adrenergic stimulation, while no evidence for a mitochondria-located NOS was obtained. The amounts of NO produced by non-mitochondrial nNOS were insufficient to regulate respiration during β-adrenergic stimulation, arguing against intracrine control of respiration by NO within cardiac myocytes. ABSTRACT Endothelial nitric oxide (NO) controls cardiac oxygen (O2 ) consumption in a paracrine way by slowing respiration at the mitochondrial electron transport chain. While NO synthases (NOSs) are also expressed in cardiac myocytes, it is unclear whether they control respiration in an intracrine way. Furthermore, the existence of a mitochondrial NOS is controversial. Here, by combining fluorescence imaging with electrical field stimulation, the patch-clamp method and knock-out technology, we determined the sources and consequences of intracellular NO formation during workload transitions in isolated murine and guinea pig cardiac myocytes and mitochondria. Using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF) as a fluorescent NO-sensor that locates to the cytosol and mitochondria, we observed that NO increased by ∼12% within 3 min of β-adrenergic stimulation in beating cardiac myocytes. This NO stems from neuronal NOS (nNOS), but not endothelial (eNOS). After patch clamp-mediated dialysis of cytosolic DAF, the remaining NO signals (mostly mitochondrial) were blocked by nNOS deletion, but not by inhibiting the mitochondrial Ca2+ uniporter with Ru360. While in isolated mitochondria exogenous NO inhibited respiration and reduced the NAD(P)H redox state, pyridine nucleotide redox states were unaffected by pharmacological or genetic disruption of endogenous nNOS or eNOS during workload transitions in cardiac myoctyes. We conclude that under physiological conditions, nNOS is the most relevant source for NO in cardiac myocytes, but this nNOS is not located in mitochondria and does not control respiration. Therefore, cardiac O2 consumption is controlled by endothelial NO in a paracrine, but not intracrine, fashion.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Stefanie Bergem
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Barbara Casadei
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| |
Collapse
|
48
|
Kaakinen M, Reichelt ME, Ma Z, Ferguson C, Martel N, Porrello ER, Hudson JE, Thomas WG, Parton RG, Headrick JP. Cavin-1 deficiency modifies myocardial and coronary function, stretch responses and ischaemic tolerance: roles of NOS over-activity. Basic Res Cardiol 2017; 112:24. [PMID: 28343262 DOI: 10.1007/s00395-017-0613-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
Caveolae and associated cavin and caveolins may govern myocardial function, together with responses to mechanical and ischaemic stresses. Abnormalities in these proteins are also implicated in different cardiovascular disorders. However, specific roles of the cavin-1 protein in cardiac and coronary responses to mechanical/metabolic perturbation remain unclear. We characterised cardiovascular impacts of cavin-1 deficiency, comparing myocardial and coronary phenotypes and responses to stretch and ischaemia-reperfusion in hearts from cavin-1 +/+ and cavin-1 -/- mice. Caveolae and caveolins 1 and 3 were depleted in cavin-1 -/- hearts. Cardiac ejection properties in situ were modestly reduced in cavin-1 -/- mice. While peak contractile performance in ex vivo myocardium from cavin-1 -/- and cavin-1 +/+ mice was comparable, intrinsic beating rate, diastolic stiffness and Frank-Starling behaviour (stretch-dependent diastolic and systolic forces) were exaggerated in cavin-1 -/- hearts. Increases in stretch-dependent forces were countered by NOS inhibition (100 µM L-NAME), which exposed negative inotropy in cavin-1 -/- hearts, and were mimicked by 100 µM nitroprusside. In contrast, chronotropic differences appeared largely NOS-independent. Cavin-1 deletion also induced NOS-dependent coronary dilatation, ≥3-fold prolongation of reactive hyperaemic responses, and exaggerated pressure-dependence of coronary flow. Stretch-dependent efflux of lactate dehydrogenase and cardiac troponin I was increased and induction of brain natriuretic peptide and c-Fos inhibited in cavin-1 -/- hearts, while ERK1/2 phospho-activation was preserved. Post-ischaemic dysfunction and damage was also exaggerated in cavin-1 -/- hearts. Diverse effects of cavin-1 deletion reveal important roles in both NOS-dependent and -independent control of cardiac and coronary functions, together with governing sarcolemmal fragility and myocardial responses to stretch and ischaemia.
Collapse
Affiliation(s)
- Mika Kaakinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Zhibin Ma
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Charles Ferguson
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nick Martel
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Walter G Thomas
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - John P Headrick
- School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
49
|
Carnicer R, Suffredini S, Liu X, Reilly S, Simon JN, Surdo NC, Zhang YH, Lygate CA, Channon KM, Casadei B. The Subcellular Localisation of Neuronal Nitric Oxide Synthase Determines the Downstream Effects of NO on Myocardial Function. Cardiovasc Res 2017; 113:321-331. [PMID: 28158509 PMCID: PMC5408949 DOI: 10.1093/cvr/cvx002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 10/14/2016] [Accepted: 11/26/2016] [Indexed: 01/12/2023] Open
Abstract
Aims In healthy hearts, the neuronal nitric oxide synthase (nNOS) is predominantly localized to the sarcoplasmic reticulum (SR), where it regulates the ryanodine receptor Ca2+ release channel (RyR2) and phospholamban (PLB) phosphorylation, and to a lesser extent to the sarcolemmal membrane where it inhibits the L-type Ca2+ current (I Ca). However, in failing hearts, impaired relaxation and depressed inotropy are associated with a larger proportion of nNOS being localized to the sarcolemmal membrane. Whether there is a causal relationship between altered myocardial function and subcellular localization of nNOS remains to be assessed. Methods and results Adenoviruses (AdV) encoding for a human nNOS.eGFP fusion protein or eGFP were injected into the left ventricle (LV) of nNOS−/− mice. nNOS.eGFP localized to the sarcolemmal and t-tubular membrane and immunoprecipitated with syntrophin and caveolin-3 but not with RyR2. Myocardial transduction of nNOS.eGFP resulted in a significantly increased NOS activity (10-fold, P < 0.01), a 20% increase in myocardial tetrahydrobiopterin (BH4) (P < 0.05), and a 30% reduction in superoxide production (P < 0.001). LV myocytes transduced with nNOS.eGFP showed a significantly lower basal and β-adrenergic stimulated I Ca, [Ca2+]i transient amplitude and cell shortening (vs. eGFP). All differences between groups were abolished after NOS inhibition. In contrast, nNOS.eGFP had no effect on RyR nitrosylation, PLB phosphorylation or the rate of myocardial relaxation and [Ca2+]i decay. Conclusion Our findings indicate that nNOS-mediated regulation of myocardial excitation–contraction (E–C) coupling is exquisitely dependent on nNOS subcellular localization and suggests a partially adaptive role for sarcolemmal nNOS in the human failing myocardium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6 West Wing, John Radcliffe Hospital, Headley Way, Headington, Oxford. OX3 9DU, UK
| |
Collapse
|
50
|
Finlay M, Harmer SC, Tinker A. The control of cardiac ventricular excitability by autonomic pathways. Pharmacol Ther 2017; 174:97-111. [PMID: 28223225 DOI: 10.1016/j.pharmthera.2017.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Central to the genesis of ventricular cardiac arrhythmia are variations in determinants of excitability. These involve individual ionic channels and transporters in cardiac myocytes but also tissue factors such as variable conduction of the excitation wave, fibrosis and source-sink mismatch. It is also known that in certain diseases and particularly the channelopathies critical events occur with specific stressors. For example, in hereditary long QT syndrome due to mutations in KCNQ1 arrhythmic episodes are provoked by exercise and in particular swimming. Thus not only is the static substrate important but also how this is modified by dynamic signalling events associated with common physiological responses. In this review, we examine the regulation of ventricular excitability by signalling pathways from a cellular and tissue perspective in an effort to identify key processes, effectors and potential therapeutic approaches. We specifically focus on the autonomic nervous system and related signalling pathways.
Collapse
Affiliation(s)
- Malcolm Finlay
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | - Stephen C Harmer
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M6BQ, UK.
| |
Collapse
|