1
|
Leventhal L, Ruffley M, Exposito-Alonso M. Planting Genomes in the Wild: Arabidopsis from Genetics History to the Ecology and Evolutionary Genomics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:605-635. [PMID: 39971350 DOI: 10.1146/annurev-arplant-071123-095146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The genetics model system Arabidopsis thaliana (L.) Heynh. lives across a vast geographic range with contrasting climates, in response to which it has evolved diverse life histories and phenotypic adaptations. In the last decade, the cataloging of worldwide populations, DNA sequencing of whole genomes, and conducting of outdoor field experiments have transformed it into a powerful evolutionary ecology system to understand the genomic basis of adaptation. Here, we summarize new insights on Arabidopsis following the coordinated efforts of the 1001 Genomes Project, the latest reconstruction of biogeographic and demographic history, and the systematic genomic mapping of trait natural variation through 15 years of genome-wide association studies. We then put this in the context of local adaptation across climates by summarizing insights from 73 Arabidopsis outdoor common garden experiments conducted to date. We conclude by highlighting how molecular and genomic knowledge of adaptation can help us to understand species' (mal)adaptation under ongoing climate change.
Collapse
Affiliation(s)
- Laura Leventhal
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Megan Ruffley
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Moises Exposito-Alonso
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA;
| |
Collapse
|
2
|
Ramasamy U, Elizur A, Subramanian S. Deleterious mutation load in the admixed mice population. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Deleterious mutation loads are known to correlate negatively with effective population size (Ne). Due to this reason, previous studies observed a higher proportion of harmful mutations in small populations than that in large populations. However, the mutational load in an admixed population that derived from introgression between individuals from two populations with vastly different Ne is not known. We investigated this using the whole genome data from two subspecies of the mouse (Mus musculus castaneus and Mus musculus musculus) with significantly different Ne. We used the ratio of diversities at nonsynonymous and synonymous sites (dN/dS) to measure the harmful mutation load. Our results showed that this ratio observed for the admixed population was intermediate between those of the parental populations. The dN/dS ratio of the hybrid population was significantly higher than that of M. m. castaneus but lower than that of M. m. musculus. Our analysis revealed a significant positive correlation between the proportion of M. m. musculus ancestry in admixed individuals and their dN/dS ratio. This suggests that the admixed individuals with high proportions of M. m. musculus ancestry have large dN/dS ratios. We also used the proportion of deleterious nonsynonymous SNVs as a proxy for deleterious mutation load, which also produced similar results. The observed results were in concordance with those expected by theory. We also show a shift in the distribution of fitness effects of nonsynonymous SNVs in the admixed genomes compared to the parental populations. These findings suggest that the deleterious mutation load of the admixed population is determined by the proportion of the ancestries of the subspecies. Therefore, it is important to consider the status and the level of genetic admixture of the populations whilst estimating the mutation loads.
Collapse
|
3
|
Analysis of the leaf metabolome in Arabidopsis thaliana mutation accumulation lines reveals association of metabolic disruption and fitness consequence. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Bao K, Melde RH, Sharp NP. Are mutations usually deleterious? A perspective on the fitness effects of mutation accumulation. Evol Ecol 2022; 36:753-766. [DOI: 10.1007/s10682-022-10187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Effect of Salt Stress on Mutation and Genetic Architecture for Fitness Components in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:3831-3842. [PMID: 32847816 PMCID: PMC7534429 DOI: 10.1534/g3.120.401593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations shape genetic architecture and thus influence the evolvability, adaptation and diversification of populations. Mutations may have different and even opposite effects on separate fitness components, and their rate of origin, distribution of effects and variance-covariance structure may depend on environmental quality. We performed an approximately 1,500-generation mutation-accumulation (MA) study in diploids of the yeast Saccharomyces cerevisiae in stressful (high-salt) and normal environments (50 lines each) to investigate the rate of input of mutational variation (Vm) as well as the mutation rate and distribution of effects on diploid and haploid fitness components, assayed in the normal environment. All four fitness components in both MA treatments exhibited statistically significant mutational variance and mutational heritability. Compared to normal-MA, salt stress increased the mutational variance in growth rate by more than sevenfold in haploids derived from the MA lines. This increase was not detected in diploid growth rate, suggesting masking of mutations in the heterozygous state. The genetic architecture arising from mutation (M-matrix) differed between normal and salt conditions. Salt stress also increased environmental variance in three fitness components, consistent with a reduction in canalization. Maximum-likelihood analysis indicated that stress increased the genomic mutation rate by approximately twofold for maximal growth rate and sporulation rate in diploids and for viability in haploids, and by tenfold for maximal growth rate in haploids, but large confidence intervals precluded distinguishing these values between MA environments. We discuss correlations between fitness components in diploids and haploids and compare the correlations between the two MA environmental treatments.
Collapse
|
6
|
Hodač L, Klatt S, Hojsgaard D, Sharbel TF, Hörandl E. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol Biol 2019; 19:170. [PMID: 31412772 PMCID: PMC6694583 DOI: 10.1186/s12862-019-1495-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/08/2019] [Indexed: 01/30/2023] Open
Abstract
Background In the absence of sex and recombination, genomes are expected to accumulate deleterious mutations via an irreversible process known as Muller’s ratchet, especially in the case of polyploidy. In contrast, no genome-wide mutation accumulation was detected in a transcriptome of facultative apomictic, hexaploid plants of the Ranunculus auricomus complex. We hypothesize that mutations cannot accumulate in flowering plants with facultative sexuality because sexual and asexual development concurrently occurs within the same generation. We assume a strong effect of purging selection on reduced gametophytes in the sexual developmental pathway because previously masked recessive deleterious mutations would be exposed to selection. Results We test this hypothesis by modeling mutation elimination using apomictic hexaploid plants of the R. auricomus complex. To estimate mean recombination rates, the mean number of recombinants per generation was calculated by genotyping three F1 progeny arrays with six microsatellite markers and character incompatibility analyses. We estimated the strength of purging selection in gametophytes by calculating abortion rates of sexual versus apomictic development at the female gametophyte, seed and offspring stage. Accordingly, we applied three selection coefficients by considering effects of purging selection against mutations on (1) male and female gametophytes in the sexual pathway (additive, s = 1.000), (2) female gametophytes only (s = 0.520), and (3) on adult plants only (sporophytes, s = 0.212). We implemented recombination rates into a mathematical model considering the three different selection coefficients, and a genomic mutation rate calculated from genome size of our plants and plant-specific mutation rates. We revealed a mean of 6.05% recombinants per generation. This recombination rate eliminates mutations after 138, 204 or 246 generations, depending on the respective selection coefficients (s = 1.000, 0.520, and 0.212). Conclusions Our results confirm that the empirically observed frequencies of facultative recombination suffice to prevent accumulation of deleterious mutations via Muller’s ratchet even in a polyploid genome. The efficiency of selection is in flowering plants strongly increased by acting on the haplontic (reduced) gametophyte stage. Electronic supplementary material The online version of this article (10.1186/s12862-019-1495-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Timothy F Sharbel
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
7
|
Shaw RG. From the Past to the Future: Considering the Value and Limits of Evolutionary Prediction. Am Nat 2019; 193:1-10. [DOI: 10.1086/700565] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Katju V, Bergthorsson U. Old Trade, New Tricks: Insights into the Spontaneous Mutation Process from the Partnering of Classical Mutation Accumulation Experiments with High-Throughput Genomic Approaches. Genome Biol Evol 2019; 11:136-165. [PMID: 30476040 PMCID: PMC6330053 DOI: 10.1093/gbe/evy252] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations spawn genetic variation which, in turn, fuels evolution. Hence, experimental investigations into the rate and fitness effects of spontaneous mutations are central to the study of evolution. Mutation accumulation (MA) experiments have served as a cornerstone for furthering our understanding of spontaneous mutations for four decades. In the pregenomic era, phenotypic measurements of fitness-related traits in MA lines were used to indirectly estimate key mutational parameters, such as the genomic mutation rate, new mutational variance per generation, and the average fitness effect of mutations. Rapidly emerging next-generating sequencing technology has supplanted this phenotype-dependent approach, enabling direct empirical estimates of the mutation rate and a more nuanced understanding of the relative contributions of different classes of mutations to the standing genetic variation. Whole-genome sequencing of MA lines bears immense potential to provide a unified account of the evolutionary process at multiple levels-the genetic basis of variation, and the evolutionary dynamics of mutations under the forces of selection and drift. In this review, we have attempted to synthesize key insights into the spontaneous mutation process that are rapidly emerging from the partnering of classical MA experiments with high-throughput sequencing, with particular emphasis on the spontaneous rates and molecular properties of different mutational classes in nuclear and mitochondrial genomes of diverse taxa, the contribution of mutations to the evolution of gene expression, and the rate and stability of transgenerational epigenetic modifications. Future advances in sequencing technologies will enable greater species representation to further refine our understanding of mutational parameters and their functional consequences.
Collapse
Affiliation(s)
- Vaishali Katju
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458
| |
Collapse
|
9
|
Spatial Vulnerabilities of the Escherichia coli Genome to Spontaneous Mutations Revealed with Improved Duplex Sequencing. Genetics 2018; 210:547-558. [PMID: 30076202 DOI: 10.1534/genetics.118.301345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Investigation of spontaneous mutations by next-generation sequencing technology has attracted extensive attention lately due to the fundamental roles of spontaneous mutations in evolution and pathological processes. However, these studies only focused on the mutations accumulated through many generations during long-term (possibly be years of) culturing, but not the freshly generated mutations that occur at very low frequencies. In this study, we established a molecularly barcoded deep sequencing strategy to detect low abundant spontaneous mutations in genomes of bacteria cell cultures. Genome-wide spontaneous mutations in 15 Escherichia coli cell culture samples were defined with a high confidence (P < 0.01). We also developed a hotspot-calling approach based on the run-length encoding algorithm to find the genomic regions that are vulnerable to the spontaneous mutations. The hotspots for the mutations appeared to be highly conserved across the bacteria samples. Further biological annotation of these regions indicated that most of the spontaneous mutations were located at the repeat domains or nonfunctional domains of the genomes, suggesting the existence of mechanisms that could somehow prevent the occurrence of mutations in crucial genic areas. This study provides a more faithful picture of mutation occurrence and spectra in a single expansion process without long-term culturing.
Collapse
|
10
|
The Fitness Effects of Spontaneous Mutations Nearly Unseen by Selection in a Bacterium with Multiple Chromosomes. Genetics 2016; 204:1225-1238. [PMID: 27672096 DOI: 10.1534/genetics.116.193060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Mutation accumulation (MA) experiments employ the strategy of minimizing the population size of evolving lineages to greatly reduce effects of selection on newly arising mutations. Thus, most mutations fix within MA lines independently of their fitness effects. This approach, more recently combined with genome sequencing, has detailed the rates, spectra, and biases of different mutational processes. However, a quantitative understanding of the fitness effects of mutations virtually unseen by selection has remained an untapped opportunity. Here, we analyzed the fitness of 43 sequenced MA lines of the multi-chromosome bacterium Burkholderia cenocepacia that had each undergone 5554 generations of MA and accumulated an average of 6.73 spontaneous mutations. Most lineages exhibited either neutral or deleterious fitness in three different environments in comparison with their common ancestor. The only mutational class that was significantly overrepresented in lineages with reduced fitness was the loss of the plasmid, though nonsense mutations, missense mutations, and coding insertion-deletions were also overrepresented in MA lineages whose fitness had significantly declined. Although the overall distribution of fitness effects was similar between the three environments, the magnitude and even the sign of the fitness of a number of lineages changed with the environment, demonstrating that the fitness of some genotypes was environmentally dependent. These results present an unprecedented picture of the fitness effects of spontaneous mutations in a bacterium with multiple chromosomes and provide greater quantitative support for the theory that the vast majority of spontaneous mutations are neutral or deleterious.
Collapse
|
11
|
Kono TJY, Fu F, Mohammadi M, Hoffman PJ, Liu C, Stupar RM, Smith KP, Tiffin P, Fay JC, Morrell PL. The Role of Deleterious Substitutions in Crop Genomes. Mol Biol Evol 2016; 33:2307-17. [PMID: 27301592 PMCID: PMC4989107 DOI: 10.1093/molbev/msw102] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Populations continually incur new mutations with fitness effects ranging from lethal to adaptive. While the distribution of fitness effects of new mutations is not directly observable, many mutations likely either have no effect on organismal fitness or are deleterious. Historically, it has been hypothesized that a population may carry many mildly deleterious variants as segregating variation, which reduces the mean absolute fitness of the population. Recent advances in sequencing technology and sequence conservation-based metrics for inferring the functional effect of a variant permit examination of the persistence of deleterious variants in populations. The issue of segregating deleterious variation is particularly important for crop improvement, because the demographic history of domestication and breeding allows deleterious variants to persist and reach moderate frequency, potentially reducing crop productivity. In this study, we use exome resequencing of 15 barley accessions and genome resequencing of 8 soybean accessions to investigate the prevalence of deleterious single nucleotide polymorphisms (SNPs) in the protein-coding regions of the genomes of two crops. We conclude that individual cultivars carry hundreds of deleterious SNPs on average, and that nonsense variants make up a minority of deleterious SNPs. Our approach identifies known phenotype-altering variants as deleterious more frequently than the genome-wide average, suggesting that putatively deleterious variants are likely to affect phenotypic variation. We also report the implementation of a SNP annotation tool BAD_Mutations that makes use of a likelihood ratio test based on alignment of all currently publicly available Angiosperm genomes.
Collapse
Affiliation(s)
- Thomas J Y Kono
- Department of Agronomy and Plant Genetics, University of Minnesota
| | - Fengli Fu
- Department of Agronomy and Plant Genetics, University of Minnesota
| | - Mohsen Mohammadi
- Department of Agronomy and Plant Genetics, University of Minnesota Department of Agronomy, Purdue University
| | - Paul J Hoffman
- Department of Agronomy and Plant Genetics, University of Minnesota
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota
| | - Peter Tiffin
- Department of Plant Biology, University of Minnesota
| | | | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota
| |
Collapse
|
12
|
Roles AJ, Rutter MT, Dworkin I, Fenster CB, Conner JK. Field measurements of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana. Evolution 2016; 70:1039-50. [PMID: 27061194 DOI: 10.1111/evo.12913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 12/24/2022]
Abstract
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations-that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype-environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype-environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype-environment interaction would increase the amount of genetic variation maintained by mutation-selection balance.
Collapse
Affiliation(s)
- Angela J Roles
- Biology Department, Oberlin College, Oberlin, Ohio, 44074. .,Kellogg Biological Station, Michigan State University, East Lansing, Michigan, 48824. .,Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824.
| | - Matthew T Rutter
- Department of Biology, College of Charleston, Charleston, South Carolina, 29401.,Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Ian Dworkin
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824.,Department of Biology, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Charles B Fenster
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Jeffrey K Conner
- Kellogg Biological Station, Michigan State University, East Lansing, Michigan, 48824.,Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
13
|
Dubrovina AS, Kiselev KV. Age-associated alterations in the somatic mutation and DNA methylation levels in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:185-196. [PMID: 26211365 DOI: 10.1111/plb.12375] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/21/2015] [Indexed: 05/18/2023]
Abstract
Somatic mutations of the nuclear and mitochondrial DNA and alterations in DNA methylation levels in mammals are well known to play important roles in ageing and various diseases, yet their specific contributions await further investigation. For plants, it has also been proposed that unrepaired DNA damage and DNA polymerase errors accumulate in plant cells and lead to increased somatic mutation rate and alterations in transcription, which eventually contribute to plant ageing. A number of studies also show that DNA methylation levels vary depending on the age of plant tissue and chronological age of a whole plant. Recent studies reveal that prolonged cultivation of plant cells in vitro induces single nucleotide substitutions and increases global DNA methylation level in a time-dependent fashion. Changes in DNA methylation are known to influence DNA repair and can lead to altered mutation rates, and, therefore, it is interesting to investigate both the genetic and epigenetic integrity in relationship to ageing in plants. This review will summarise and discuss the current studies investigating somatic DNA mutation and DNA methylation levels in relation to plant ageing and senescence. The analysis has shown that there still remains a lack of clarity concerning plant biological ageing and the role of the genetic and epigenetic instabilities in this process.
Collapse
Affiliation(s)
- A S Dubrovina
- Laboratory of Biotechnology, Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - K V Kiselev
- Laboratory of Biotechnology, Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
- Department of Biochemistry, Microbiology and Biotechnology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
14
|
Etterson JR, Franks SJ, Mazer SJ, Shaw RG, Gorden NLS, Schneider HE, Weber JJ, Winkler KJ, Weis AE. Project Baseline: An unprecedented resource to study plant evolution across space and time. AMERICAN JOURNAL OF BOTANY 2016; 103:164-173. [PMID: 26772308 DOI: 10.3732/ajb.1500313] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Project Baseline is a seed bank that offers an unprecedented opportunity to examine spatial and temporal dimensions of microevolution during an era of rapid environmental change. Over the upcoming 50 years, biologists will withdraw genetically representative samples of past populations from this time capsule of seeds and grow them contemporaneously with modern samples to detect any phenotypic and molecular evolution that has occurred during the intervening time. METHODS We carefully developed this living genome bank using protocols to enhance its experimental value by collecting from multiple populations and species across a broad geographical range in sites that are likely to be preserved into the future. Seeds are accessioned with site and population data and are stored by maternal line under conditions that maximize seed longevity. This open-access resource will be available to researchers at regular intervals to evaluate contemporary evolution. KEY RESULTS To date, the Project Baseline collection includes 100-200 maternal lines of each of 61 species collected from over 831 populations on sites that are likely to be preserved into the future across the United States (∼78,000 maternal lines). Our strategically designed collection circumvents some problems that can cloud the results of "resurrection" studies involving naturally preserved or existing seed collections that are available fortuitously. CONCLUSIONS The resurrection approach can be coupled with long-established and newer techniques over the next five decades to elucidate genetic change and thereby vastly improve our understanding of temporal and spatial changes in phenotype and the evolutionary processes underlying it.
Collapse
Affiliation(s)
- Julie R Etterson
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, 1035 Kirby Drive, Duluth, Minnesota 55812 USA
| | - Steven J Franks
- Department of Biological Sciences, 441 East Fordham Road, Fordham University, Bronx, New York 10458 USA
| | - Susan J Mazer
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106 USA
| | - Ruth G Shaw
- Department of Ecology, Evolution and Behavior, 1479 Gortner Avenue, University of Minnesota Twin Cities, St. Paul, Minnesota 55108 USA
| | - Nicole L Soper Gorden
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, 1035 Kirby Drive, Duluth, Minnesota 55812 USA
| | - Heather E Schneider
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106 USA
| | - Jennifer J Weber
- Department of Biological Sciences, 441 East Fordham Road, Fordham University, Bronx, New York 10458 USA
| | - Katharine J Winkler
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, 1035 Kirby Drive, Duluth, Minnesota 55812 USA
| | - Arthur E Weis
- Department of Ecology and Evolutionary Biology, and Koffler Scientific Reserve at Jokers Hill, 25 Willcocks Street, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
15
|
Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLoS Genet 2015; 11:e1005588. [PMID: 26492483 PMCID: PMC4619661 DOI: 10.1371/journal.pgen.1005588] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/16/2015] [Indexed: 12/27/2022] Open
Abstract
Plants integrate seasonal cues such as temperature and day length to optimally adjust their flowering time to the environment. Compared to the control of flowering before and after winter by the vernalization and day length pathways, mechanisms that delay or promote flowering during a transient cool or warm period, especially during spring, are less well understood. Due to global warming, understanding this ambient temperature pathway has gained increasing importance. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) is a critical flowering regulator of the ambient temperature pathway. FLM is alternatively spliced in a temperature-dependent manner and the two predominant splice variants, FLM-ß and FLM-δ, can repress and activate flowering in the genetic background of the A. thaliana reference accession Columbia-0. The relevance of this regulatory mechanism for the environmental adaptation across the entire range of the species is, however, unknown. Here, we identify insertion polymorphisms in the first intron of FLM as causative for accelerated flowering in many natural A. thaliana accessions, especially in cool (15°C) temperatures. We present evidence for a potential adaptive role of this structural variation and link it specifically to changes in the abundance of FLM-ß. Our results may allow predicting flowering in response to ambient temperatures in the Brassicaceae.
Collapse
|
16
|
Morgan AD, Ness RW, Keightley PD, Colegrave N. Spontaneous mutation accumulation in multiple strains of the green alga, Chlamydomonas reinhardtii. Evolution 2014; 68:2589-602. [PMID: 24826801 PMCID: PMC4277324 DOI: 10.1111/evo.12448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
Estimates of mutational parameters, such as the average fitness effect of a new mutation and the rate at which new genetic variation for fitness is created by mutation, are important for the understanding of many biological processes. However, the causes of interspecific variation in mutational parameters and the extent to which they vary within species remain largely unknown. We maintained multiple strains of the unicellular eukaryote Chlamydomonas reinhardtii, for approximately 1000 generations under relaxed selection by transferring a single cell every ∼10 generations. Mean fitness of the lines tended to decline with generations of mutation accumulation whereas mutational variance increased. We did not find any evidence for differences among strains in any of the mutational parameters estimated. The overall change in mean fitness per cell division and rate of input of mutational variance per cell division were more similar to values observed in multicellular organisms than to those in other single-celled microbes. However, after taking into account differences in genome size among species, estimates from multicellular organisms and microbes, including our new estimates from C. reinhardtii, become substantially more similar. Thus, we suggest that variation in genome size is an important determinant of interspecific variation in mutational parameters.
Collapse
Affiliation(s)
- Andrew D Morgan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JT, United Kingdom
| | | | | | | |
Collapse
|
17
|
The rate and effects of spontaneous mutation on fitness traits in the social amoeba, Dictyostelium discoideum. G3-GENES GENOMES GENETICS 2013; 3:1115-27. [PMID: 23665876 PMCID: PMC3704240 DOI: 10.1534/g3.113.005934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We performed a mutation accumulation (MA) experiment in the social amoeba Dictyostelium discoideum to estimate the rate and distribution of effects of spontaneous mutations affecting eight putative fitness traits. We found that the per-generation mutation rate for most fitness components is 0.0019 mutations per haploid genome per generation or larger. This rate is an order of magnitude higher than estimates for fitness components in the unicellular eukaryote Saccharomyces cerevisiae, even though the base-pair substitution rate is two orders of magnitude lower. The high rate of fitness-altering mutations observed in this species may be partially explained by a large mutational target relative to S. cerevisiae. Fitness-altering mutations also may occur primarily at simple sequence repeats, which are common throughout the genome, including in coding regions, and may represent a target that is particularly likely to give fitness effects upon mutation. The majority of mutations had deleterious effects on fitness, but there was evidence for a substantial fraction, up to 40%, being beneficial for some of the putative fitness traits. Competitive ability within the multicellular slug appears to be under weak directional selection, perhaps reflecting the fact that slugs are sometimes, but not often, comprised of multiple clones in nature. Evidence for pleiotropy among fitness components across MA lines was absent, suggesting that mutations tend to act on single fitness components.
Collapse
|
18
|
Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, Dewar K, Stinchcombe JR, Schoen DJ, Wang X, Schmutz J, Town CD, Edger PP, Pires JC, Schumaker KS, Jarvis DE, Mandáková T, Lysak MA, van den Bergh E, Schranz ME, Harrison PM, Moses AM, Bureau TE, Wright SI, Blanchette M. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet 2013; 45:891-8. [PMID: 23817568 DOI: 10.1038/ng.2684] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 06/04/2013] [Indexed: 12/17/2022]
Abstract
Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species.
Collapse
Affiliation(s)
- Annabelle Haudry
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schaack S, Allen DE, Latta LC, Morgan KK, Lynch M. The effect of spontaneous mutations on competitive ability. J Evol Biol 2013; 26:451-6. [PMID: 23252614 PMCID: PMC3548015 DOI: 10.1111/jeb.12058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/11/2022]
Abstract
Understanding the impact of spontaneous mutations on fitness has many theoretical and practical applications in biology. Although mutational effects on individual morphological or life-history characters have been measured in several classic genetic model systems, there are few estimates of the rate of decline due to mutation for complex fitness traits. Here, we estimate the effects of mutation on competitive ability, an important complex fitness trait, in a model system for ecological and evolutionary genomics, Daphnia. Competition assays were performed to compare fitness between mutation-accumulation (MA) lines and control lines from eight different genotypes from two populations of Daphnia pulicaria after 30 and 65 generations of mutation accumulation. Our results show a fitness decline among MA lines relative to controls as expected, but highlight the influence of genomic background on this effect. In addition, in some assays, MA lines outperform controls providing insight into the frequency of beneficial mutations.
Collapse
Affiliation(s)
- S Schaack
- Department of Biology, Reed College, Portland, OR 97202, USA.
| | | | | | | | | |
Collapse
|
20
|
Schiffers K, Bourne EC, Lavergne S, Thuiller W, Travis JMJ. Limited evolutionary rescue of locally adapted populations facing climate change. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120083. [PMID: 23209165 PMCID: PMC3538450 DOI: 10.1098/rstb.2012.0083] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dispersal is a key determinant of a population's evolutionary potential. It facilitates the propagation of beneficial alleles throughout the distributional range of spatially outspread populations and increases the speed of adaptation. However, when habitat is heterogeneous and individuals are locally adapted, dispersal may, at the same time, reduce fitness through increasing maladaptation. Here, we use a spatially explicit, allelic simulation model to quantify how these equivocal effects of dispersal affect a population's evolutionary response to changing climate. Individuals carry a diploid set of chromosomes, with alleles coding for adaptation to non-climatic environmental conditions and climatic conditions, respectively. Our model results demonstrate that the interplay between gene flow and habitat heterogeneity may decrease effective dispersal and population size to such an extent that substantially reduces the likelihood of evolutionary rescue. Importantly, even when evolutionary rescue saves a population from extinction, its spatial range following climate change may be strongly narrowed, that is, the rescue is only partial. These findings emphasize that neglecting the impact of non-climatic, local adaptation might lead to a considerable overestimation of a population's evolvability under rapid environmental change.
Collapse
Affiliation(s)
- Katja Schiffers
- Laboratoire d'Ecologie Alpine, Université Joseph Fourier, Grenoble 1, UMR-CNRS 5553, BP 53, 38041 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
21
|
Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci U S A 2012; 109:E2774-83. [PMID: 22991466 DOI: 10.1073/pnas.1210309109] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ~1 × 10(-3) per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5'ApC3'/3'TpG5' sites (where bases 5'A and 3'T are mutated) and, to a lesser extent, at 5'GpC3'/3'CpG5' sites (where bases 5'G and 3'C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.
Collapse
|
22
|
Stevens KE, Sebert ME. Frequent beneficial mutations during single-colony serial transfer of Streptococcus pneumoniae. PLoS Genet 2011; 7:e1002232. [PMID: 21876679 PMCID: PMC3158050 DOI: 10.1371/journal.pgen.1002232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
The appearance of new mutations within a population provides the raw material for evolution. The consistent decline in fitness observed in classical mutation accumulation studies has provided support for the long-held view that deleterious mutations are more common than beneficial mutations. Here we present results of a study using a mutation accumulation design with the bacterium Streptococcus pneumoniae in which the fitness of the derived populations increased. This rise in fitness was associated specifically with adaptation to survival during brief stationary phase periods between single-colony population bottlenecks. To understand better the population dynamics behind this unanticipated adaptation, we developed a maximum likelihood model describing the processes of mutation and stationary-phase selection in the context of frequent population bottlenecks. Using this model, we estimate that the rate of beneficial mutations may be as high as 4.8×10−4 events per genome for each time interval corresponding to the pneumococcal generation time. This rate is several orders of magnitude higher than earlier estimates of beneficial mutation rates in bacteria but supports recent results obtained through the propagation of small populations of Escherichia coli. Our findings indicate that beneficial mutations may be relatively frequent in bacteria and suggest that in S. pneumoniae, which develops natural competence for transformation, a steady supply of such mutations may be available for sampling by recombination. Beneficial mutations have long been considered extremely rare events and were thought to occur with a frequency of approximately one out of a billion times that a bacterium replicates its genome. Rare beneficial mutations would then be amplified by natural selection from the more frequent background of harmful mutations. Mutation accumulation experiments probe the nature of these spontaneous mutations by monitoring changes in fitness of model organisms propagated in the laboratory through numerous generations under conditions where the effects of selection are minimal. Previous mutation accumulation experiments have shown that organisms under study have declined in fitness as random mutations accrue in their genomes, consistent with a predominance of deleterious mutations. We conducted a mutation accumulation study with the bacterial pathogen S. pneumoniae in which a broad measure of fitness instead rose. We demonstrate that this unexpected adaptation was due to frequent beneficial mutations that were further amplified by selection in stationary-phase bacterial colonies. Together with recent work using E. coli, these results demonstrate that beneficial mutations can be common in bacteria and may contribute to our understanding of the evolution of traits such as antibiotic resistance and virulence.
Collapse
Affiliation(s)
- Kathleen E. Stevens
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael E. Sebert
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Brito PH, Guilherme E, Soares H, Gordo I. Mutation accumulation in Tetrahymena. BMC Evol Biol 2010; 10:354. [PMID: 21078144 PMCID: PMC2998532 DOI: 10.1186/1471-2148-10-354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 11/15/2010] [Indexed: 12/01/2022] Open
Abstract
Background The rate and fitness effects of mutations are key in understanding the evolution of every species. Traditionally, these parameters are estimated in mutation accumulation experiments where replicate lines are propagated in conditions that allow mutations to randomly accumulate without the purging effect of natural selection. These experiments have been performed with many model organisms but we still lack empirical estimates of the rate and effects of mutation in the protists. Results We performed a mutation accumulation (MA) experiment in Tetrahymena thermophila, a species that can reproduce sexually and asexually in nature, and measured both the mean decline and variance increase in fitness of 20 lines. The results obtained with T. thermophila were compared with T. pyriformis that is an obligate asexual species. We show that MA lines of T. thermophila go to extinction at a rate of 1.25 clonal extinctions per bottleneck. In contrast, populations of T. pyriformis show a much higher resistance to extinction. Variation in gene copy number is likely to be a key factor in explaining these results, and indeed we show that T. pyriformis has a higher mean copy number per cell than T. thermophila. From fitness measurements during the MA experiment, we infer a rate of mutation to copy number variation of 0.0333 per haploid MAC genome of T. thermophila and a mean effect against copy number variation of 0.16. A strong effect of population size in the rate of fitness decline was also found, consistent with the increased power of natural selection. Conclusions The rate of clonal extinction measured for T. thermophila is characteristic of a mutational degradation and suggests that this species must undergo sexual reproduction to avoid the deleterious effects detected in the laboratory experiments. We also suggest that an increase in chromosomal copy number associated with the phenotypic assortment of amitotic divisions can provide an alternative mechanism to escape the deleterious effect of random chromosomal copy number variation in species like T. pyriformis that lack the resetting mechanism of sexual reproduction. Our results are relevant to the understanding of cell line longevity and senescence in ciliates.
Collapse
|
24
|
Abstract
From bacteria to multicellular animals, most organisms exhibit declines in survivorship or reproductive performance with increasing age ("senescence"). Evidence for senescence in clonal plants, however, is scant. During asexual growth, we expect that somatic mutations, which negatively impact sexual fitness, should accumulate and contribute to senescence, especially among long-lived clonal plants. We tested whether older clones of Populus tremuloides (trembling aspen) from natural stands in British Columbia exhibited significantly reduced reproductive performance. Coupling molecular-based estimates of clone age with male fertility data, we observed a significant decline in the average number of viable pollen grains per catkin per ramet with increasing clone age in trembling aspen. We found that mutations reduced relative male fertility in clonal aspen populations by about 5.8 x 10(-5) to 1.6 x 10(-3) per year, leading to an 8% reduction in the number of viable pollen grains, on average, among the clones studied. The probability that an aspen lineage ultimately goes extinct rises as its male sexual fitness declines, suggesting that even long-lived clonal organisms are vulnerable to senescence.
Collapse
|
25
|
Kronholm I, Loudet O, de Meaux J. Influence of mutation rate on estimators of genetic differentiation--lessons from Arabidopsis thaliana. BMC Genet 2010; 11:33. [PMID: 20433762 PMCID: PMC2888750 DOI: 10.1186/1471-2156-11-33] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 05/01/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The analysis of molecular variation within and between populations is crucial to establish strategies for conservation as well as to detect the footprint of spatially heterogeneous selection. The traditional estimator of genetic differentiation (F(ST)) has been shown to be misleading if genetic diversity is high. Alternative estimators of F(ST) have been proposed, but their robustness to variation in mutation rate is not clearly established. We first investigated the effect of mutation and migration rate using computer simulations and examined their joint influence on Q(ST), a measure of genetic differentiation for quantitative traits. We further used experimental data in natural populations of Arabidopsis thaliana to characterize the effect of mutation rate on various estimates of population differentiation. Since natural species exhibit various degrees of self-fertilisation, we also investigated the effect of mating system on the different estimators. RESULTS If mutation rate is high and migration rate low, classical measures of genetic differentiation are misleading. Only Phi(ST), an estimator that takes the mutational distances between alleles into account, is independent of mutation rate, for all migration rates. However, the performance of Phi(ST) depends on the underlying mutation model and departures from this model cause its performance to degrade. We further show that Q(ST) has the same bias. We provide evidence that, in A. thaliana, microsatellite variation correlates with mutation rate. We thereby demonstrate that our results on estimators of genetic differentiation have important implications, even for species that are well established models in population genetics and molecular biology. CONCLUSIONS We find that alternative measures of differentiation like F'(ST) and D are not suitable for estimating effective migration rate and should not be used in studies of local adaptation. Genetic differentiation should instead be measured using an estimator that takes mutation rate into account, such as Phi(ST). Furthermore, in systems where migration between populations is low, such as A. thaliana, Q(ST) < F(ST) cannot be taken as evidence for homogenising selection as has been traditionally thought.
Collapse
Affiliation(s)
- Ilkka Kronholm
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, F-78000 Versailles, France
| | - Juliette de Meaux
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
26
|
Kondrashov FA, Kondrashov AS. Measurements of spontaneous rates of mutations in the recent past and the near future. Philos Trans R Soc Lond B Biol Sci 2010; 365:1169-76. [PMID: 20308091 PMCID: PMC2871817 DOI: 10.1098/rstb.2009.0286] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rate of spontaneous mutation in natural populations is a fundamental parameter for many evolutionary phenomena. Because the rate of mutation is generally low, most of what is currently known about mutation has been obtained through indirect, complex and imprecise methodological approaches. However, in the past few years genome-wide sequencing of closely related individuals has made it possible to estimate the rates of mutation directly at the level of the DNA, avoiding most of the problems associated with using indirect methods. Here, we review the methods used in the past with an emphasis on next generation sequencing, which may soon make the accurate measurement of spontaneous mutation rates a matter of routine.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, , C/Dr. Aiguader 88, Barcelona Biomedical Research Park Building 08003, Barcelona, Spain.
| | | |
Collapse
|
27
|
Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 2010; 327:92-4. [PMID: 20044577 PMCID: PMC3878865 DOI: 10.1126/science.1180677] [Citation(s) in RCA: 776] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To take complete advantage of information on within-species polymorphism and divergence from close relatives, one needs to know the rate and the molecular spectrum of spontaneous mutations. To this end, we have searched for de novo spontaneous mutations in the complete nuclear genomes of five Arabidopsis thaliana mutation accumulation lines that had been maintained by single-seed descent for 30 generations. We identified and validated 99 base substitutions and 17 small and large insertions and deletions. Our results imply a spontaneous mutation rate of 7 x 10(-9) base substitutions per site per generation, the majority of which are G:C-->A:T transitions. We explain this very biased spectrum of base substitution mutations as a result of two main processes: deamination of methylated cytosines and ultraviolet light-induced mutagenesis.
Collapse
Affiliation(s)
- Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Korbinian Schneeberger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | - Norman Warthmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Richard M. Clark
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Rutter MT, Shaw FH, Fenster CB. Spontaneous mutation parameters for Arabidopsis thaliana measured in the wild. Evolution 2009; 64:1825-35. [PMID: 20030706 DOI: 10.1111/j.1558-5646.2009.00928.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations are the ultimate source of genetic diversity and their contributions to evolutionary process depend critically on their rate and their effects on traits, notably fitness. Mutation rate and mutation effect can be measured simultaneously through the use of mutation accumulation lines, and previous mutation accumulation studies measuring these parameters have been performed in laboratory conditions. However, estimation of mutation parameters for fitness in wild populations requires assays in environments where mutations are exposed to natural selection and natural environmental variation. Here we quantify mutation parameters in both the wild and greenhouse environments using 100 25th generation Arabidopsis thaliana mutation accumulation lines. We found significantly greater mutational variance and a higher mutation rate for fitness under field conditions relative to greenhouse conditions. However, our field estimates were low when scaled to natural environmental variation. Many of the mutation accumulation lines have increased fitness, counter to the expectation that nearly all mutations decrease fitness. A high mutation rate and a low mutational contribution to phenotypic variation may explain observed levels of natural genetic variation. Our findings indicate that mutation parameters are not fixed, but are variables whose values may reflect the specific environment in which mutations are tested.
Collapse
Affiliation(s)
- Matthew T Rutter
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
29
|
Halligan DL, Keightley PD. Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2009. [DOI: 10.1146/annurev.ecolsys.39.110707.173437] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel L. Halligan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| | - Peter D. Keightley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; ,
| |
Collapse
|
30
|
Schultz ST, Scofield DG. Mutation accumulation in real branches: fitness assays for genomic deleterious mutation rate and effect in large-statured plants. Am Nat 2009; 174:163-75. [PMID: 19548838 DOI: 10.1086/600100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The genomic deleterious mutation rate and mean effect are central to the biology and evolution of all species. Large-statured plants, such as trees, are predicted to have high mutation rates due to mitotic mutation and the absence of a sheltered germ line, but their size and generation time has hindered genetic study. We develop and test approaches for estimating deleterious mutation rates and effects from viability comparisons within the canopy of large-statured plants. Our methods, inspired by E. J. Klekowski, are a modification of the classic Bateman-Mukai mutation-accumulation experiment. Within a canopy, cell lineages accumulate mitotic mutations independently. Gametes or zygotes produced at more distal points by these cell lineages contain more mitotic mutations than those at basal locations, and within-flower selfs contain more homozygous mutations than between-flower selfs. The resulting viability differences allow demonstration of lethal mutation with experiments similar in size to assays of genetic load and allow estimates of the rate and effect of new mutations with moderate precision and bias similar to that of classic mutation-accumulation experiments in small-statured organisms. These methods open up new possibilities with the potential to provide valuable new insights into the evolutionary genetics of plants.
Collapse
Affiliation(s)
- Stewart T Schultz
- Department of Maritime Science, University of Zadar, 23000 Zadar, Croatia.
| | | |
Collapse
|
31
|
Abstract
High-throughput DNA analyses are increasingly being used to detect rare mutations in moderately sized genomes. These methods have yielded genome mutation rates that are markedly higher than those obtained using pre-genomic strategies. Recent work in a variety of organisms has shown that mutation rate is strongly affected by sequence context and genome position. These observations suggest that high-throughput DNA analyses will ultimately allow researchers to identify trans-acting factors and cis sequences that underlie mutation rate variation. Such work should provide insights on how mutation rate variability can impact genome organization and disease progression.
Collapse
Affiliation(s)
- Koodali T Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | |
Collapse
|
32
|
Díaz Arenas C, Lehman N. Darwin’s concepts in a test tube: Parallels between organismal and in vitro evolution. Int J Biochem Cell Biol 2009; 41:266-73. [PMID: 18809507 DOI: 10.1016/j.biocel.2008.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/13/2008] [Accepted: 08/20/2008] [Indexed: 11/27/2022]
|
33
|
Spontaneous mutations in diploid Saccharomyces cerevisiae: another thousand cell generations. Genet Res (Camb) 2008; 90:229-41. [PMID: 18593510 DOI: 10.1017/s0016672308009324] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we performed a 1012-generation mutation accumulation (MA) study in yeast and found that a surprisingly large proportion of fitness-altering mutations were beneficial. To verify this result and assess the impact of sampling error in our previous study, we have continued the MA experiment for an additional 1050 cell generations and re-estimated mutation parameters. After correcting for biases due to selection, we estimate that 13% of the mutations accumulated during this study are beneficial. We conclude that the high proportions of beneficial mutations observed in this and our previous study cannot be explained by sampling error. We also estimate the genome-wide mutation rate to be 13.7x10-5 mutations per haploid genome per cell generation and the absolute value of the average heterozygous effect of a mutation to be 7.3%.
Collapse
|
34
|
Malik MR, Wang F, Dirpaul JM, Zhou N, Hammerlindl J, Keller W, Abrams SR, Ferrie AMR, Krochko JE. Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2857-73. [PMID: 18552352 PMCID: PMC2486481 DOI: 10.1093/jxb/ern149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/25/2008] [Accepted: 04/29/2008] [Indexed: 05/18/2023]
Abstract
Brassica napus cultivar Westar is non-embryogenic under all standard protocols for induction of microspore embryogenesis; however, the rare embryos produced in Westar microspore cultures, induced with added brassinosteroids, were found to develop into heritably stable embryogenic lines after chromosome doubling. One of the Westar-derived doubled haploid (DH) lines, DH-2, produced up to 30% the number of embryos as the highly embryogenic B. napus line, Topas DH4079. Expression analysis of marker genes for embryogenesis in Westar and the derived DH-2 line, using real-time reverse transcription-PCR, revealed that the timely expression of embryogenesis-related genes such as LEAFY COTYLEDON1 (LEC1), LEC2, ABSCISIC ACID INSENSITIVE3, and BABY BOOM1, and an accompanying down-regulation of pollen-related transcripts, were associated with commitment to embryo development in Brassica microspores. Microarray comparisons of 7 d cultures of Westar and Westar DH-2, using a B. napus seed-focused cDNA array (10 642 unigenes), identified highly expressed genes related to protein synthesis, translation, and response to stimulus (Gene Ontology) in the embryogenic DH-2 microspore-derived cell cultures. In contrast, transcripts for pollen-expressed genes were predominant in the recalcitrant Westar microspores. Besides being embryogenic, DH-2 plants showed alterations in morphology and architecture as compared with Westar, for example epinastic leaves, non-abscised petals, pale flower colour, and longer lateral branches. Auxin, cytokinin, and abscisic acid (ABA) profiles in young leaves, mature leaves, and inflorescences of Westar and DH-2 revealed no significant differences that could account for the alterations in embryogenic potential or phenotype. Various mechanisms accounting for the increased capacity for embryogenesis in Westar-derived DH lines are considered.
Collapse
Affiliation(s)
- Meghna R. Malik
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Feng Wang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Joan M. Dirpaul
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Ning Zhou
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Joe Hammerlindl
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Wilf Keller
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Suzanne R. Abrams
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Alison M. R. Ferrie
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| | - Joan E. Krochko
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9
| |
Collapse
|
35
|
Sordino P, Andreakis N, Brown ER, Leccia NI, Squarzoni P, Tarallo R, Alfano C, Caputi L, D'Ambrosio P, Daniele P, D'Aniello E, D'Aniello S, Maiella S, Miraglia V, Russo MT, Sorrenti G, Branno M, Cariello L, Cirino P, Locascio A, Spagnuolo A, Zanetti L, Ristoratore F. Natural variation of model mutant phenotypes in Ciona intestinalis. PLoS One 2008; 3:e2344. [PMID: 18523552 PMCID: PMC2391289 DOI: 10.1371/journal.pone.0002344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/17/2008] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.
Collapse
Affiliation(s)
- Paolo Sordino
- Laboratory of Biochemistry and Molecular Biology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pannebakker BA, Halligan DL, Reynolds KT, Ballantyne GA, Shuker DM, Barton NH, West SA. Effects of spontaneous mutation accumulation on sex ratio traits in a parasitoid wasp. Evolution 2008; 62:1921-35. [PMID: 18522711 DOI: 10.1111/j.1558-5646.2008.00434.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sex allocation theory has proved extremely successful at predicting when individuals should adjust the sex of their offspring in response to environmental conditions. However, we know rather little about the underlying genetics of sex ratio or how genetic architecture might constrain adaptive sex-ratio behavior. We examined how mutation influenced genetic variation in the sex ratios produced by the parasitoid wasp Nasonia vitripennis. In a mutation accumulation experiment, we determined the mutability of sex ratio, and compared this with the amount of genetic variation observed in natural populations. We found that the mutability (h(2)(m)) ranges from 0.001 to 0.002, similar to estimates for life-history traits in other organisms. These estimates suggest one mutation every 5-60 generations, which shift the sex ratio by approximately 0.01 (proportion males). In this and other studies, the genetic variation in N. vitripennis sex ratio ranged from 0.02 to 0.17 (broad-sense heritability, H(2)). If sex ratio is maintained by mutation-selection balance, a higher genetic variance would be expected given our mutational parameters. Instead, the observed genetic variance perhaps suggests additional selection against sex-ratio mutations with deleterious effects on other fitness traits as well as sex ratio (i.e., pleiotropy), as has been argued to be the case more generally.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
37
|
Roles AJ, Conner JK. Fitness effects of mutation accumulation in a natural outbred population of wild radish (Raphanus raphanistrum): comparison of field and greenhouse environments. Evolution 2008; 62:1066-75. [PMID: 18298643 DOI: 10.1111/j.1558-5646.2008.00354.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spontaneous deleterious mutation has been measured in a handful of organisms, always under laboratory conditions and usually employing inbred species or genotypes. We report the results of a mutation accumulation experiment with an outbred annual plant, Raphanus raphanistrum, with lifetime fitness measured in both the field and the greenhouse. This is the first study to report the effects of spontaneous mutation measured under field conditions. Two large replicate populations (N(e) approximately 600) were maintained with random mating in the greenhouse under relaxed selection for nine generations before the field assay was performed and ten generations before the greenhouse assay. Each generation, every individual was mated twice, once as a pollen donor and once as a pollen recipient, and a single seed from each plant was chosen randomly to create the next generation. The ancestral population was maintained as seeds at 4 degrees C. Declines in lifetime fitness were observed in both the field (1.7% per generation; P= 0.27) and the greenhouse (0.6% per generation; P= 0.07). Significant increases in additive genetic variance for fitness were found for stems per day, flowers per stem, fruits per flower and seeds per fruit in the field as well as for fruits per flower in the greenhouse. Lack of significance of the fitness decline may be due to the short period of mutation accumulation, the use of outbred populations, or both. The percent declines in fitness are at the high end of the range observed in other mutation accumulation experiments and give some support to the idea that mutational effects may be magnified under harsher field conditions. Thus, measurement of mutational parameters under laboratory conditions may underestimate the effects of mutations in natural populations.
Collapse
Affiliation(s)
- Angela J Roles
- Biology Department, Oberlin College, Oberlin, OH 44074, USA.
| | | |
Collapse
|
38
|
Silander OK, Tenaillon O, Chao L. Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol 2007; 5:e94. [PMID: 17407380 PMCID: PMC1845161 DOI: 10.1371/journal.pbio.0050094] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 02/06/2007] [Indexed: 11/22/2022] Open
Abstract
The most consistent result in more than two decades of experimental evolution is that the fitness of populations adapting to a constant environment does not increase indefinitely, but reaches a plateau. Using experimental evolution with bacteriophage, we show here that the converse is also true. In populations small enough such that drift overwhelms selection and causes fitness to decrease, fitness declines down to a plateau. We demonstrate theoretically that both of these phenomena must be due either to changes in the ratio of beneficial to deleterious mutations, the size of mutational effects, or both. We use mutation accumulation experiments and molecular data from experimental evolution to show that the most significant change in mutational effects is a drastic increase in the rate of beneficial mutation as fitness decreases. In contrast, the size of mutational effects changes little even as organismal fitness changes over several orders of magnitude. These findings have significant implications for the dynamics of adaptation. In any population, two factors determine whether the average fitness of individuals will increase (adaptation) or decrease: the size of the population and the distribution of mutational effects (i.e., the relative rates and effect sizes of beneficial and deleterious mutations). Although it is relatively simple to get quantitative information on population size, it is much harder to gain insight into the distribution of mutational effects. Very little information exists on the relative rates of beneficial versus deleterious effects, on the shapes of mutational distributions, or on whether the distributions change over time. Thus, it remains difficult to even speculate whether a given population will adapt over time. Here, we use laboratory evolution of a bacterial virus to quantify the distribution of mutational effects. Our results reveal that the average impact of a mutation is approximately constant with respect to fitness, that most mutations have small effects, and that the rate of beneficial mutation depends on the fitness of the organism. Our study demonstrates the simple, but perhaps underappreciated fact that mutational effects are dynamic. It also proposes and tests an explicit model of adaptation in which organismal fitness specifies both the rate and distribution of deleterious and beneficial mutations, and it presents specific and testable predictions of the circumstances under which populations will adapt. Experimental evolution of bacteriophage reveals that mutational effects are dynamic and dependent on genetic background, thus providing fundamental and testable insights into the nature of adaptation.
Collapse
Affiliation(s)
- Olin K Silander
- Division of Biology, University of California San Diego, La Jolla, California, United States of America.
| | | | | |
Collapse
|
39
|
Glémin S. Mating systems and the efficacy of selection at the molecular level. Genetics 2007; 177:905-16. [PMID: 17954924 PMCID: PMC2034653 DOI: 10.1534/genetics.107.073601] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/28/2007] [Indexed: 11/18/2022] Open
Abstract
Mating systems are thought to play a key role in molecular evolution through their effects on effective population size (N(e)) and effective recombination rate. Because of reduced N(e), selection in self-fertilizing species is supposed to be less efficient, allowing fixation of weakly deleterious alleles or lowering adaptation, which may jeopardize their long-term evolution. Relaxed selection pressures in selfers should be detectable at the molecular level through the analyses of the ratio of nonsynonymous and synonymous divergence, D(n)/D(s), or the ratio of nonsynonymous and synonymous polymorphism, pi(n)/pi(s). On the other hand, selfing reveals recessive alleles to selection (homozygosity effect), which may counterbalance the reduction in N(e). Through population genetics models, this study investigates which process may prevail in natural populations and which conditions are necessary to detect evidence for relaxed selection signature at the molecular level in selfers. Under a wide range of plausible population and mutation parameters, relaxed selection against deleterious mutations should be detectable, but the differences between the two mating systems can be weak. At equilibrium, differences between outcrossers and selfers should be more pronounced using divergence measures (D(n)/D(s) ratio) than using polymorphism data (pi(n)/pi(s) ratio). The difference in adaptive substitution rates between outcrossers and selfers is much less predictable because it critically depends on the dominance levels of new advantageous mutations, which are poorly known. Different ways of testing these predictions are suggested, and implications of these results for the evolution of self-fertilizing species are also discussed.
Collapse
Affiliation(s)
- Sylvain Glémin
- Institut des Sciences de l'Evolution (UM2-CNRS), Université Montpellier II, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
40
|
Baer CF, Miyamoto MM, Denver DR. Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 2007; 8:619-31. [PMID: 17637734 DOI: 10.1038/nrg2158] [Citation(s) in RCA: 312] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A basic knowledge about mutation rates is central to our understanding of a myriad of evolutionary phenomena, including the maintenance of sex and rates of molecular evolution. Although there is substantial evidence that mutation rates vary among taxa, relatively little is known about the factors that underlie this variation at an empirical level, particularly in multicellular eukaryotes. Here we integrate several disparate lines of theoretical and empirical inquiry into a unified framework to guide future studies that are aimed at understanding why and how mutation rates evolve in multicellular species.
Collapse
Affiliation(s)
- Charles F Baer
- Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
41
|
Kysela DT, Turner PE. Optimal bacteriophage mutation rates for phage therapy. J Theor Biol 2007; 249:411-21. [PMID: 17904162 DOI: 10.1016/j.jtbi.2007.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 08/10/2007] [Accepted: 08/10/2007] [Indexed: 11/29/2022]
Abstract
The mutability of bacteriophages offers a particular advantage in the treatment of bacterial infections not afforded by other antimicrobial therapies. When phage-resistant bacteria emerge, mutation may generate phage capable of exploiting and thus limiting population expansion among these emergent types. However, while mutation potentially generates beneficial variants, it also contributes to a genetic load of deleterious mutations. Here, we model the influence of varying phage mutation rate on the efficacy of phage therapy. All else being equal, phage types with historical mutation rates of approximately 0.1 deleterious mutations per genome per generation offer a reasonable balance between beneficial mutational diversity and deleterious mutational load. We determine that increasing phage inoculum density can undesirably increase the peak density of a mutant bacterial class by limiting the in situ production of mutant phage variants. For phage populations with minimal genetic load, engineering mutation rate increases beyond the mutation-selection balance optimum may provide even greater protection against emergent bacterial types, but only with very weak selective coefficients for de novo deleterious mutations (below approximately 0.01). Increases to the mutation rate beyond the optimal value at mutation-selection balance may therefore prove generally undesirable.
Collapse
Affiliation(s)
- David T Kysela
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520-8106, USA.
| | | |
Collapse
|
42
|
|
43
|
de Visser JAGM, Elena SF. The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 2007; 8:139-49. [PMID: 17230200 DOI: 10.1038/nrg1985] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite many years of theoretical and experimental work, the explanation for why sex is so common as a reproductive strategy continues to resist understanding. Recent empirical work has addressed key questions in this field, especially regarding rates of mutation accumulation in sexual and asexual organisms, and the roles of negative epistasis and drift as sources of adaptive constraint in asexually reproducing organisms. At the same time, new ideas about the evolution of sexual recombination are being tested, including intriguing suggestions of an important interplay between sex and genetic architecture, which indicate that sex and recombination could have affected their own evolution.
Collapse
|
44
|
Soll SJ, Díaz Arenas C, Lehman N. Accumulation of deleterious mutations in small abiotic populations of RNA. Genetics 2006; 175:267-75. [PMID: 17110480 PMCID: PMC1774997 DOI: 10.1534/genetics.106.066142] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accumulation of slightly deleterious mutations in populations leads to the buildup of a genetic load and can cause the extinction of populations of small size. Mutation-accumulation experiments have been used to study this process in a wide variety of organisms, yet the exact mutational underpinnings of genetic loads and their fitness consequences remain poorly characterized. Here, we use an abiotic system of RNA populations evolving continuously in vitro to examine the molecular events that can instigate a genetic load. By tracking the fitness decline of ligase ribozyme populations with bottleneck sizes between 100 and 3000 molecules, we detected the appearance and subsequent fixation of both slightly deleterious mutations and advantageous mutations. Smaller populations went extinct in significantly fewer generations than did larger ones, supporting the notion of a mutational meltdown. These data suggest that mutation accumulation was an important evolutionary force in the prebiotic RNA world and that mechanisms such as recombination to ameliorate genetic loads may have been in place early in the history of life.
Collapse
Affiliation(s)
- Steven J Soll
- Department of Chemistry, Portland State University, Portland, Oregon 97207, USA
| | | | | |
Collapse
|
45
|
Abstract
Phenotypic variation is traditionally parsed into components that are directed by genetic and environmental variation. The line between these two components is blurred by inherited epigenetic variation, which is potentially sensitive to environmental inputs. Chromatin and DNA methylation-based mechanisms mediate a semi-independent epigenetic inheritance system at the interface between genetic control and the environment. Should the existence of inherited epigenetic variation alter our thinking about evolutionary change?
Collapse
Affiliation(s)
- Eric J Richards
- Department of Biology, Washington University, 1 Brookings Drive, St Louis, Missouri 63130, USA.
| |
Collapse
|
46
|
Scofield DG, Schultz ST. Mitosis, stature and evolution of plant mating systems: low-Phi and high-Phi plants. Proc Biol Sci 2006; 273:275-82. [PMID: 16543169 PMCID: PMC1560042 DOI: 10.1098/rspb.2005.3304] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2005] [Accepted: 08/26/2005] [Indexed: 11/12/2022] Open
Abstract
There is a long-recognized association in plants between small stature and selfing, and large stature and outcrossing. Inbreeding depression is central to several hypotheses for this association, but differences in the evolutionary dynamics of inbreeding depression associated with differences in stature are rarely considered. Here, we propose and test the Phi model of plant mating system evolution, which assumes that the per-generation mutation rate of a plant is a function of the number of mitoses (Phi) that occur from zygote to gamete, and predicts fundamental differences between low-Phi (small-statured) and high-Phi (large-statured) plants in the outcomes of the joint evolution of outcrossing rate and inbreeding depression. Using a large dataset of published population genetic studies of angiosperms and conifers, we compute fitted values of inbreeding depression and deleterious mutation rates for small- and large-statured plants. Consistent with our Phi model, we find that populations of small-statured plants exhibit a range of mating systems, significantly lower mutation rates, and intermediate inbreeding depression, while large-statured plants exhibit very high mutation rates and the maximum inbreeding depression of unity. These results indicate that (i) inbred progeny typically observed in large-statured plant populations are completely lost prior to maturity in nearly all populations; (ii) evolutionary shifts from outcrossing to selfing are generally not possible in large-statured species, rather, large-statured species are more likely to evolve mating systems that avoid selfing such as self-incompatibility and dioecy; (iii) destabilization of the mating system-high selfing rate with high-inbreeding depression-might be a common occurrence in large-statured species; and (iv) large-statured species in fragmented populations might be at higher risk of extinction than previously thought. Our results help to unify and simplify a large and diverse field of research, and serve to emphasize the importance that developmental and genetic constraints play in the evolution of plant mating systems.
Collapse
Affiliation(s)
- Douglas G Scofield
- Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, USA.
| | | |
Collapse
|
47
|
Schoen DJ. DELETERIOUS MUTATION IN RELATED SPECIES OF THE PLANT GENUS AMSINCKIA WITH CONTRASTING MATING SYSTEMS. Evolution 2005. [DOI: 10.1111/j.0014-3820.2005.tb00947.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
MacKenzie JL, Saadé FE, Le QH, Bureau TE, Schoen DJ. Genomic mutation in lines of Arabidopsis thaliana exposed to ultraviolet-B radiation. Genetics 2005; 171:715-23. [PMID: 15998725 PMCID: PMC1456782 DOI: 10.1534/genetics.105.042002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies that have attempted to estimate the rate of deleterious mutation have typically been conducted under low levels of ultraviolet-B (UV-B) radiation, a naturally occurring mutagen. We conducted experiments to test whether the inclusion of natural levels of UV-B radiation in mutation-accumulation (MA) experiments influences the rate and effects of mildly deleterious mutation in the plant Arabidopsis thaliana. Ten generations of MA proved insufficient to observe significant changes in means or among-line variances in experimental lines maintained either with or without supplemental UV-B radiation. Maximum-likelihood estimates of mutation rate for total flower number revealed a small but significant rate of mutation for MA lines propagated under supplemental UV-B exposure, but not for those in which supplemental UV-B was omitted. A fraction of the flower number mutations under UV-B (approximately 25-30%) are estimated to increase flower number. Results from the application of transposon display to plant materials obtained after MA, in both the presence and absence of supplemental UV-B, suggest that the average rate of transposition for the class I and II transposable elements (TEs) surveyed was no more than 10(-4). Overall, the estimates of mutation parameters are qualitatively similar to what has been observed in other MA experiments with this species in which supplemental UV-B levels have not been used. As well, it appears that naturally occurring levels of UV-B do not lead to detectable increases in levels of transposable element activity.
Collapse
|
49
|
Joseph SB, Hall DW. Spontaneous mutations in diploid Saccharomyces cerevisiae: more beneficial than expected. Genetics 2005; 168:1817-25. [PMID: 15611159 PMCID: PMC1448740 DOI: 10.1534/genetics.104.033761] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed a 1012-generation mutation-accumulation (MA) experiment in the yeast, Saccharomyces cerevisiae. The MA lines exhibited a significant reduction in mean fitness and a significant increase in variance in fitness. We found that 5.75% of the fitness-altering mutations accumulated were beneficial. This finding contradicts the widely held belief that nearly all fitness-altering mutations are deleterious. The mutation rate was estimated as 6.3 x 10(-5) mutations per haploid genome per generation and the average heterozygous fitness effect of a mutation as 0.061. These estimates are compatible with previous estimates in yeast.
Collapse
Affiliation(s)
- Sarah B Joseph
- Section of Integrative Biology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
50
|
|