1
|
Durand S, Lian Q, Solier V, Fernandes J, Mercier R. MutLγ enforces meiotic crossovers in Arabidopsis thaliana. Nucleic Acids Res 2025; 53:gkaf157. [PMID: 40105241 PMCID: PMC11920796 DOI: 10.1093/nar/gkaf157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
During meiosis, each chromosome pair experiences at least one crossover (CO), which directs their balanced segregation in addition to shuffling genetic information. COs tend to be away from each other, a phenomenon known as CO interference. The main biochemical pathway for CO formation, which is conserved in distant eukaryotes, involves the ZMM proteins together with the MLH1-MLH3 complex (MutLγ). Here, we aim to clarify the role of MutLγ in CO formation in Arabidopsis thaliana. We show that AtMutLγ is partially dispensable for ZMM-dependent CO formation. HEI10 large foci-that mark CO sites in wild-type-form at a normal level in mlh1 and mlh3 mutants, but are inefficiently maturated into COs. Mutating the MUS81 nuclease in either mlh1 or mlh3 leads to chromosome fragmentation, which is suppressed by further mutating the zmm msh5. This suggests that in the absence of MutLγ, recombination intermediates produced by ZMMs are resolved by MUS81, which does not ensure CO formation. Finally, CO interference is marginally affected in mlh1, which is compatible with a random sub-sampling of normally patterned CO sites. We conclude that AtMutLγ imposes designated recombination intermediates to be resolved exclusively as COs, supporting the view that MutLγ asymmetrically resolves double-Holliday junctions, yielding COs.
Collapse
Affiliation(s)
- Stéphanie Durand
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Victor Solier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Joiselle Blanche Fernandes
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
2
|
Kbiri N, Fernández-Jiménez N, Dziegielewski W, Sáez-Zárate E, Pelé A, Mata-Villanueva A, Dluzewska J, Santos J, Pradillo M, Ziolkowski P. Genetic dissection of MutL complexes in Arabidopsis meiosis. Nucleic Acids Res 2025; 53:gkaf187. [PMID: 40105242 PMCID: PMC11920794 DOI: 10.1093/nar/gkaf187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
During meiosis, homologous chromosomes exchange genetic material through crossing over. The main crossover pathway relies on ZMM proteins, including ZIP4 and HEI10, and is typically resolved by the MLH1/MLH3 heterodimer, MutLγ. Our analysis shows that while MUS81 may partially compensate for MutLγ loss, its role remains uncertain. However, our multiple mutant analysis shows that MUS81 is unlikely to be the sole resolvase of ZMM-protected recombination intermediates when MutLγ is absent. Comparing genome-wide crossover maps of mlh1 mutants with ZMM-deficient mutants and lines with varying HEI10 levels reveals that crossover interference persists in mlh1 but is weakened. The significant crossover reduction in mlh1 also increases aneuploidy in offspring. The loss of MutLγ can be suppressed by eliminating the FANCM helicase. Combined with the lower-than-expected chiasma frequency, this suggests that in MutLγ absence, some ZMM-protected intermediates are ultimately resolved by DNA helicases and/or their complexes with Top3α. Elevated MLH1 or MLH3 expression moderately increases crossover frequency, while their misregulation drastically reduces crossover numbers and plant fertility, highlighting the importance for tight control of MLH1/MLH3 levels. By contrast, PMS1, a component of the MutLα endonuclease, appears uninvolved in crossing over. Together, these findings demonstrate the unique role of MutLγ in ZMM-dependent crossover regulation.
Collapse
Affiliation(s)
- Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Esperanza Sáez-Zárate
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Alexandre Pelé
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ana Mata-Villanueva
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Juan L Santos
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
3
|
Jovanska L, Lin IC, Yao JS, Chen CL, Liu HC, Li WC, Chuang YC, Chuang CN, Yu ACH, Lin HN, Pong WL, Yu CI, Su CY, Chen YP, Chen RS, Hsueh YP, Yuan HS, Timofejeva L, Wang TF. DNA cytosine methyltransferases differentially regulate genome-wide hypermutation and interhomolog recombination in Trichoderma reesei meiosis. Nucleic Acids Res 2024; 52:9551-9573. [PMID: 39021337 PMCID: PMC11381340 DOI: 10.1093/nar/gkae611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Trichoderma reesei is an economically important enzyme producer with several unique meiotic features. spo11, the initiator of meiotic double-strand breaks (DSBs) in most sexual eukaryotes, is dispensable for T. reesei meiosis. T. reesei lacks the meiosis-specific recombinase Dmc1. Rad51 and Sae2, the activator of the Mre11 endonuclease complex, promote DSB repair and chromosome synapsis in wild-type and spo11Δ meiosis. DNA methyltransferases (DNMTs) perform multiple tasks in meiosis. Three DNMT genes (rid1, dim2 and dimX) differentially regulate genome-wide cytosine methylation and C:G-to-T:A hypermutations in different chromosomal regions. We have identified two types of DSBs: type I DSBs require spo11 or rid1 for initiation, whereas type II DSBs do not rely on spo11 and rid1 for initiation. rid1 (but not dim2) is essential for Rad51-mediated DSB repair and normal meiosis. rid1 and rad51 exhibit a locus heterogeneity (LH) relationship, in which LH-associated proteins often regulate interconnectivity in protein interaction networks. This LH relationship can be suppressed by deleting dim2 in a haploid rid1Δ (but not rad51Δ) parental strain, indicating that dim2 and rid1 share a redundant function that acts earlier than rad51 during early meiosis. In conclusion, our studies provide the first evidence of the involvement of DNMTs during meiotic initiation and recombination.
Collapse
Affiliation(s)
| | - I-Chen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Jhong-Syuan Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ling Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hou-Cheng Liu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Chen Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Hsin-Nan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Li Pong
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-I Yu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Yuan Su
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ruey-Shyang Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ljudmilla Timofejeva
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Centre of Estonian Rural Research and Knowledge, J. Aamisepa 1, Jõgeva 48309, Estonia
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
4
|
Pannafino G, Chen JJ, Mithani V, Payero L, Gioia M, Brooks Crickard J, Alani E. The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566911. [PMID: 38014100 PMCID: PMC10680668 DOI: 10.1101/2023.11.13.566911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates and whether it interacts with other meiotic factors prior to its role in crossover resolution. We performed a haploinsufficiency screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3 using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. We identified several genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and at times in meiotic prophase when Dmc1 acts as a recombinase. Interestingly, restricting MLH3 expression to roughly the time of crossover resolution resulted in a mlh3 null-like phenotype for crossing over. Our data are consistent with a model in which Dmc1 nucleates a polymer of Mlh1-Mlh3 to promote crossing over.
Collapse
Affiliation(s)
- Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Viraj Mithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA 14853
| |
Collapse
|
5
|
Stefan-van Staden RI, Bratei AA, Ilie-Mihai RM, Gheorghe DC, Tuchiu BM, Gurzu S. Miniplatforms for Screening Biological Samples for KRAS and Four Mismatch Repair Proteins as New Tools for Fast Screening for Gastric and Colon Cancers. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 170:057510. [DOI: 10.1149/1945-7111/acd358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Two miniplatforms based on stochastic microsensors designed using Nitrogen (9.3%) and Boron (2.4%) - dopped graphene (NB-DG) modified with frutafit HD and frutafit TEX were designed and validated for the assay of MLH1, MSH2, MSH6, PMS2, and of KRAS in whole blood, urine, saliva, and tumoral tissues. The sensitivities recorded using the miniplatform based on frutafit TEX were higher (MLH1:1.07 × 104, MSH2: 5.31; MSH6: 1.58 × 103; KRAS: 1.36 × 10−2 s−1
μg−1 ml) than those recorded when frutafit HD was used. A lower value of the limit of determination (0.32 fg ml−1) was recorded for the frutafit HD based miniplatform when used for the assay of MLH1, while the lowest value of the limit of determination for the assay of KRAS (2.2 fg ml−1) was recorded when the frutafit TEX was used in the design of the miniplatform. The % recoveries of MLH1, MSH2, MSH6, PMS2, and of KRAS in whole blood, urine, saliva, and tumoral tissues were higher than 99.00 with RSD (%) values lower than 0.08%.
Collapse
|
6
|
Li Y, Wu Y, Khan I, Zhou J, Lu Y, Ye J, Liu J, Xie X, Hu C, Jiang H, Fan S, Zhang H, Zhang Y, Jiang X, Xu B, Ma H, Shi Q. M1AP interacts with the mammalian ZZS complex and promotes male meiotic recombination. EMBO Rep 2023; 24:e55778. [PMID: 36440627 PMCID: PMC9900333 DOI: 10.15252/embr.202255778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Following meiotic recombination, each pair of homologous chromosomes acquires at least one crossover, which ensures accurate chromosome segregation and allows reciprocal exchange of genetic information. Recombination failure often leads to meiotic arrest, impairing fertility, but the molecular basis of recombination remains elusive. Here, we report a homozygous M1AP splicing mutation (c.1074 + 2T > C) in patients with severe oligozoospermia owing to meiotic metaphase I arrest. The mutation abolishes M1AP foci on the chromosome axes, resulting in decreased recombination intermediates and crossovers in male mouse models. M1AP interacts with the mammalian ZZS (an acronym for yeast proteins Zip2-Zip4-Spo16) complex components, SHOC1, TEX11, and SPO16. M1AP localizes to chromosomal axes in a SPO16-dependent manner and colocalizes with TEX11. Ablation of M1AP does not alter SHOC1 localization but reduces the recruitment of TEX11 to recombination intermediates. M1AP shows cytoplasmic localization in fetal oocytes and is dispensable for fertility and crossover formation in female mice. Our study provides the first evidence that M1AP acts as a copartner of the ZZS complex to promote crossover formation and meiotic progression in males.
Collapse
Affiliation(s)
- Yang Li
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yufan Wu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Ihsan Khan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Jianteng Zhou
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yue Lu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Jingwei Ye
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Junyan Liu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xuefeng Xie
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Congyuan Hu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Hanwei Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Suixing Fan
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Huan Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Yuanwei Zhang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xiaohua Jiang
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Bo Xu
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Hui Ma
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
7
|
Palmer N, Talib SZA, Goh CMF, Biswas K, Sharan SK, Kaldis P. Identification PMS1 and PMS2 as potential meiotic substrates of CDK2 activity. PLoS One 2023; 18:e0283590. [PMID: 36952545 PMCID: PMC10035876 DOI: 10.1371/journal.pone.0283590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
Cyclin dependent-kinase 2 (CDK2) plays important functions during the mitotic cell cycle and also facilitates several key events during germ cell development. The majority of CDK2's known meiotic functions occur during prophase of the first meiotic division. Here, CDK2 is involved in the regulation of meiotic transcription, the pairing of homologous chromosomes, and the maturation of meiotic crossover sites. Despite that some of the CDK2 substrates are known, few of them display functions in meiosis. Here, we investigate potential meiotic CDK2 substrates using in silico and in vitro approaches. We find that CDK2 phosphorylates PMS2 at Thr337, PMS1 at Thr331, and MLH1 in vitro. Phosphorylation of PMS2 affects its interaction with MLH1 to some degree. In testis extracts from mice lacking Cdk2, there are changes in expression of PMS2, MSH2, and HEI10, which may be reflective of the loss of CDK2 phosphorylation. Our work has uncovered a few CDK2 substrates with meiotic functions, which will have to be verified in vivo. A better understanding of the CDK2 substrates will help us to gain deeper insight into the functions of this universal kinase.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - S Zakiah A Talib
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department Biologie II, Biozentrum der LMU München, Zell- und Entwicklungsbiologie, Planegg-Martinsried, Germany
| | - Christine M F Goh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States of America
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Republic of Singapore
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Malmö, Sweden
- Lund University Diabetes Centre, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
8
|
Wyrwoll MJ, Wabschke R, Röpke A, Wöste M, Ruckert C, Perrey S, Rotte N, Hardy J, Astica L, Lupiáñez DG, Wistuba J, Westernströer B, Schlatt S, Berman AJ, Müller AM, Kliesch S, Yatsenko AN, Tüttelmann F, Friedrich C. Analysis of copy number variation in men with non-obstructive azoospermia. Andrology 2022; 10:1593-1604. [PMID: 36041235 PMCID: PMC9605881 DOI: 10.1111/andr.13267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent findings demonstrate that single nucleotide variants can cause non-obstructive azoospermia (NOA). In contrast, copy number variants (CNVs) were only analysed in few studies in infertile men. Some have reported a higher prevalence of CNVs in infertile versus fertile men. OBJECTIVES This study aimed to elucidate if CNVs are associated with NOA. MATERIALS AND METHODS We performed array-based comparative genomic hybridisation (aCGH) in 37 men with meiotic arrest, 194 men with Sertoli cell-only phenotype, and 21 control men. We filtered our data for deletions affecting genes and prioritised the affected genes according to the literature search. Prevalence of CNVs was compared between all groups. Exome data of 2,030 men were screened to detect further genetic variants in prioritised genes. Modelling was performed for the protein encoded by the novel candidate gene TEKT5 and we stained for TEKT5 in human testicular tissue. RESULTS We determined the cause of infertility in two individuals with homozygous deletions of SYCE1 and in one individual with a heterozygous deletion of SYCE1 combined with a likely pathogenic missense variant on the second allele. We detected heterozygous deletions affecting MLH3, EIF2B2, SLX4, CLPP and TEKT5, in one subject each. CNVs were not detected more frequently in infertile men compared with controls. DISCUSSION While SYCE1 and MLH3 encode known meiosis-specific proteins, much less is known about the proteins encoded by the other identified candidate genes, warranting further analyses. We were able to identify the cause of infertility in one out of the 231 infertile men by aCGH and in two men by using exome sequencing data. CONCLUSION As aCGH and exome sequencing are both expensive methods, combining both in a clinical routine is not an effective strategy. Instead, using CNV calling from exome data has recently become more precise, potentially making aCGH dispensable.
Collapse
Affiliation(s)
- M. J. Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - R. Wabschke
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - A. Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - M. Wöste
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - C. Ruckert
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - S. Perrey
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - N. Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - J. Hardy
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women Research Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - L. Astica
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - D. G. Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - J. Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - B. Westernströer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - S. Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - A. J. Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - A. M. Müller
- Practice for Pathology and Centre for Pediatric Pathology, University Hospital of Cologne, Cologne, Germany
| | - S. Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - A. N. Yatsenko
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women Research Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - F. Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - C. Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Liu K, Chen E, Gu Z, Dai B, Wang A, Zhu Z, Feng Q, Zhou C, Zhu J, Shangguan Y, Wang Y, Li Z, Hou Q, Lv D, Wang C, Huang T, Wang Z, Huang X, Han B. A retrotransposon insertion in MUTL-HOMOLOG 1 affects wild rice seed set and cultivated rice crossover rate. PLANT PHYSIOLOGY 2022; 190:1747-1762. [PMID: 35976143 PMCID: PMC9614510 DOI: 10.1093/plphys/kiac378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 06/06/2023]
Abstract
Wild rice (Oryza rufipogon) has a lower panicle seed setting rate (PSSR) and gamete fertility than domesticated rice (Oryza sativa), but the genetic mechanisms of this phenomenon remain unknown. Here, we cloned a null allele of OsMLH1, an ortholog of MutL-homolog 1 to yeast and mammals, from wild rice O. rufipogon W1943 and revealed a 5.4-kb retrotransposon insertion in OsMLH1 is responsible for the low PSSR in wild rice. In contrast to the wild-type, a near isogenic line NIL-mlh1 exhibits defective crossover (CO) formation during meiosis, resulting in reduced pollen viability, partial embryo lethality, and low PSSR. Except for the mutant of mismatch repair gene postmeiotic segregation 1 (Ospms1), all other MutL mutants from O. sativa indica subspecies displayed male and female semi-sterility similar to NIL-mlh1, but less severe than those from O. sativa japonica subspecies. MLH1 and MLH3 did not contribute in an additive fashion to fertility. Two types of MutL heterodimers, MLH1-PMS1 and MLH1-MLH3, were identified in rice, but only the latter functions in promoting meiotic CO formation. Compared to japonica varieties, indica cultivars had greater numbers of CO events per meiosis. Our results suggest that low fertility in wild rice may be caused by different gene defects, and indica and japonica subspecies have substantially different CO rates responsible for the discrepancy between the fertility of mlh1 and mlh3 mutants.
Collapse
Affiliation(s)
- Kun Liu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Erwang Chen
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhoulin Gu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Bingxin Dai
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Ahong Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhou Zhu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qi Feng
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Congcong Zhou
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Jingjie Zhu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yingying Shangguan
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongchun Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhen Li
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qingqing Hou
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Danfeng Lv
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Changsheng Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Tao Huang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zixuan Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
10
|
Daniels HG, Knicely BG, Miller AK, Thompson A, Plattner R, Goellner EM. Inhibition of ABL1 by tyrosine kinase inhibitors leads to a downregulation of MLH1 by Hsp70-mediated lysosomal protein degradation. Front Genet 2022; 13:940073. [PMID: 36338985 PMCID: PMC9631443 DOI: 10.3389/fgene.2022.940073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023] Open
Abstract
The DNA mismatch repair (MMR) pathway and its regulation are critical for genomic stability. Mismatch repair (MMR) follows replication and repairs misincorporated bases and small insertions or deletions that are not recognized and removed by the proofreading polymerase. Cells deficient in MMR exhibit an increased overall mutation rate and increased expansion and contraction of short repeat sequences in the genome termed microsatellite instability (MSI). MSI is often a clinical measure of genome stability in tumors and is used to determine the course of treatment. MMR is also critical for inducing apoptosis after alkylation damage from environmental agents or DNA-damaging chemotherapy. MLH1 is essential for MMR, and loss or mutation of MLH1 leads to defective MMR, increased mutation frequency, and MSI. In this study, we report that tyrosine kinase inhibitors, imatinib and nilotinib, lead to decreased MLH1 protein expression but not decreased MLH1 mRNA levels. Of the seven cellular targets of Imatinib and nilotinib, we show that silencing of ABL1 also reduces MLH1 protein expression. Treatment with tyrosine kinase inhibitors or silencing of ABL1 results in decreased apoptosis after treatment with alkylating agents, suggesting the level of MLH1 reduction is sufficient to disrupt MMR function. We also report MLH1 is tyrosine phosphorylated by ABL1. We demonstrate that MLH1 downregulation by ABL1 knockdown or inhibition requires chaperone protein Hsp70 and that MLH1 degradation can be abolished with the lysosomal inhibitor bafilomycin. Taken together, we propose that ABL1 prevents MLH1 from being targeted for degradation by the chaperone Hsp70 and that in the absence of ABL1 activity at least a portion of MLH1 is degraded through the lysosome. This study represents an advance in understanding MMR pathway regulation and has important clinical implications as MMR status is used in the clinic to inform patient treatment, including the use of immunotherapy.
Collapse
Affiliation(s)
- Hannah G. Daniels
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Breanna G. Knicely
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Anna Kristin Miller
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Ana Thompson
- Berea College, Berea, KY, United States,University of Kentucky Markey Cancer Center, Lexington, KY, United States
| | - Rina Plattner
- University of Kentucky Markey Cancer Center, Lexington, KY, United States,University of Kentucky, College of Medicine Department of Pharmacology and Nutritional Sciences, Lexington, KY, United States
| | - Eva M. Goellner
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States,University of Kentucky Markey Cancer Center, Lexington, KY, United States,*Correspondence: Eva M. Goellner,
| |
Collapse
|
11
|
DuPrie ML, Palacio T, Calil FA, Kolodner RD, Putnam CD. Mlh1 interacts with both Msh2 and Msh6 for recruitment during mismatch repair. DNA Repair (Amst) 2022; 119:103405. [PMID: 36122480 PMCID: PMC9639671 DOI: 10.1016/j.dnarep.2022.103405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Eukaryotic DNA mismatch repair (MMR) initiates through mispair recognition by the MutS homologs Msh2-Msh6 and Msh2-Msh3 and subsequent recruitment of the MutL homologs Mlh1-Pms1 (human MLH1-PMS2). In bacteria, MutL is recruited by interactions with the connector domain of one MutS subunit and the ATPase and core domains of the other MutS subunit. Analysis of the S. cerevisiae and human homologs have only identified an interaction between the Msh2 connector domain and Mlh1. Here we investigated whether a conserved Msh6 ATPase/core domain-Mlh1 interaction and an Msh2-Msh6 interaction with Pms1 also act in MMR. Mutations in MLH1 affecting interactions with both the Msh2 and Msh6 interfaces caused MMR defects, whereas equivalent pms1 mutations did not cause MMR defects. Mutant Mlh1-Pms1 complexes containing Mlh1 amino acid substitutions were defective for recruitment to mispaired DNA by Msh2-Msh6, did not support MMR in reconstituted Mlh1-Pms1-dependent MMR reactions in vitro, but were proficient in Msh2-Msh6-independent Mlh1-Pms1 endonuclease activity. These results indicate that Mlh1, the common subunit of the Mlh1-Pms1, Mlh1-Mlh2, and Mlh1-Mlh3 complexes, but not Pms1, is recruited by Msh2-Msh6 through interactions with both of its subunits.
Collapse
Affiliation(s)
- Matthew L DuPrie
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Tatiana Palacio
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Felipe A Calil
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Cellular and Molecular Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Moores-UCSD Cancer Center University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Institute of Genomic Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA
| | - Christopher D Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA; Department of Medicine University of California School of Medicine, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0660, USA.
| |
Collapse
|
12
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Firlej M, Weir JR. Unwinding during stressful times: Mechanisms of helicases in meiotic recombination. Curr Top Dev Biol 2022; 151:191-215. [PMID: 36681470 DOI: 10.1016/bs.ctdb.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Successful meiosis I requires that homologous chromosomes be correctly linked before they are segregated. In most organisms this physical linkage is achieved through the generation of crossovers between the homologs. Meiotic recombination co-opts and modifies the canonical homologous recombination pathway to successfully generate crossovers One of the central components of this pathway are a number of conserved DNA helicases. Helicases couple nucleic acid binding to nucleotide hydrolysis and use this activity to modify DNA or protein-DNA substrates. During meiosis I it is necessary for the cell to modulate the canonical DNA repair pathways in order to facilitate the generation of interhomolog crossovers. Many of these meiotic modulations take place in pathways involving DNA helicases, or with a meiosis specific helicase. This short review explores what is currently understood about these helicases, their interaction partners, and the role of regulatory modifications during meiosis I. We focus in particular on the molecular structure and mechanisms of these helicases.
Collapse
Affiliation(s)
- Magdalena Firlej
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany
| | - John R Weir
- Structural Biochemistry of Meiosis Group, Friedrich Miescher Laboratory of the Max Planck Society, Tuebingen, Germany.
| |
Collapse
|
14
|
Mas-Ponte D, McCullough M, Supek F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin Sci (Lond) 2022; 136:383-404. [PMID: 35274136 PMCID: PMC8919091 DOI: 10.1042/cs20210682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Genome sequencing can be used to detect DNA repair failures in tumors and learn about underlying mechanisms. Here, we synthesize findings from genomic studies that examined deficiencies of the DNA mismatch repair (MMR) pathway. The impairment of MMR results in genome-wide hypermutation and in the 'microsatellite instability' (MSI) phenotype-occurrence of indel mutations at short tandem repeat (microsatellite) loci. The MSI status of tumors was traditionally assessed by molecular testing of a selected set of MS loci or by measuring MMR protein expression levels. Today, genomic data can provide a more complete picture of the consequences on genomic instability. Multiple computational studies examined somatic mutation distributions that result from failed DNA repair pathways in tumors. These include analyzing the commonly studied trinucleotide mutational spectra of single-nucleotide variants (SNVs), as well as of other features such as indels, structural variants, mutation clusters and regional mutation rate redistribution. The identified mutation patterns can be used to rigorously measure prevalence of MMR failures across cancer types, and potentially to subcategorize the MMR deficiencies. Diverse data sources, genomic and pre-genomic, from human and from experimental models, suggest there are different ways in which MMR can fail, and/or that the cell-type or genetic background may result in different types of MMR mutational patterns. The spectrum of MMR failures may direct cancer evolution, generating particular sets of driver mutations. Moreover, MMR affects outcomes of therapy by DNA damaging drugs, antimetabolites, nonsense-mediated mRNA decay (NMD) inhibitors, and immunotherapy by promoting either resistance or sensitivity, depending on the type of therapy.
Collapse
Affiliation(s)
- David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marcel McCullough
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
15
|
Voelkel-Meiman K, Oke A, Feil A, Shames A, Fung J, MacQueen AJ. A role for synaptonemal complex in meiotic mismatch repair. Genetics 2022; 220:iyab230. [PMID: 35100397 PMCID: PMC9097268 DOI: 10.1093/genetics/iyab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 11/14/2022] Open
Abstract
A large subset of meiotic recombination intermediates form within the physical context of synaptonemal complex (SC), but the functional relationship between SC structure and homologous recombination remains obscure. Our prior analysis of strains deficient for SC central element proteins demonstrated that tripartite SC is dispensable for interhomolog recombination in Saccharomyces cerevisiae. Here, we report that while dispensable for recombination per se, SC proteins promote efficient mismatch repair at interhomolog recombination sites. Failure to repair mismatches within heteroduplex-containing meiotic recombination intermediates leads to genotypically sectored colonies (postmeiotic segregation events). We discovered increased postmeiotic segregation at THR1 in cells lacking Ecm11 or Gmc2, or in the SC-deficient but recombination-proficient zip1[Δ21-163] mutant. High-throughput sequencing of octad meiotic products furthermore revealed a genome-wide increase in recombination events with unrepaired mismatches in ecm11 mutants relative to wildtype. Meiotic cells missing Ecm11 display longer gene conversion tracts, but tract length alone does not account for the higher frequency of unrepaired mismatches. Interestingly, the per-nucleotide mismatch frequency is elevated in ecm11 when analyzing all gene conversion tracts, but is similar between wildtype and ecm11 if considering only those events with unrepaired mismatches. Thus, in both wildtype and ecm11 strains a subset of recombination events is susceptible to a similar degree of inefficient mismatch repair, but in ecm11 mutants a larger fraction of events fall into this inefficient repair category. Finally, we observe elevated postmeiotic segregation at THR1 in mutants with a dual deficiency in MutSγ crossover recombination and SC assembly, but not in the mlh3 mutant, which lacks MutSγ crossovers but has abundant SC. We propose that SC structure promotes efficient mismatch repair of joint molecule recombination intermediates, and that absence of SC is the molecular basis for elevated postmeiotic segregation in both MutSγ crossover-proficient (ecm11, gmc2) and MutSγ crossover-deficient (msh4, zip3) strains.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Ashwini Oke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arden Feil
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Alexander Shames
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Jennifer Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
16
|
Li P, Ji Z, Zhi E, Zhang Y, Han S, Zhao L, Tian R, Chen H, Huang Y, Zhang J, Chen H, Zhao F, Zhou Z, Li Z, Yao C. Novel bi-allelic MSH4 variants causes meiotic arrest and non-obstructive azoospermia. Reprod Biol Endocrinol 2022; 20:21. [PMID: 35090489 PMCID: PMC8796546 DOI: 10.1186/s12958-022-00900-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is one of the most severe type in male infertility, and the genetic causes of NOA with meiotic arrest remain elusive. METHODS Four Chinese families with NOA participated in the study. We performed whole-exome sequencing (WES) for the four NOA-affected patients in four pedigrees. The candidate causative gene was further verified by Sanger sequencing. Hematoxylin and eosin staining (H&E) and immunohistochemistry (IHC) were carried out to evaluate the stage of spermatogenesis arrested in the patients with NOA. RESULTS We identified two novel homozygous frameshift mutations of MSH4 and two novel compound heterozygous variants in MSH4 in four pedigrees with NOA. Homozygous loss of function (LoF) variants in MSH4 was identified in the NOA-affected patient (P9359) in a consanguineous Chinese family (NM_002440.4: c.805_812del: p.V269Qfs*15) and one patient with NOA (P21504) in another Chinese family (NM_002440.4: c.2220_2223del:p.K741Rfs*2). Also, compound heterozygous variants in MSH4 were identified in two NOA-affected siblings (P9517 and P9517B) (NM_002440.4: c.G1950A: p.W650X and c.2179delG: p.D727Mfs*11), and the patient with NOA (P9540) (NM_002440.4: c.G244A: p.G82S and c.670delT: p.L224Cfs*3). Histological analysis demonstrated lack of spermatozoa in seminiferous tubules of all patients and IHC showed the spermatogenesis arrested at the meiotic prophase I stage. Consistent with the autosomal recessive mode of inheritance, all of these mutations were inherited from heterozygous parental carriers. CONCLUSIONS We identified that six novel mutations in MSH4 responsible for meiotic arrest and NOA. And these results provide researchers with a new insight to understand the genetic etiology of NOA and to identify new loci for genetic counselling of NOA.
Collapse
Affiliation(s)
- Peng Li
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhiyong Ji
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211116, China
| | - Erlei Zhi
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuxiang Zhang
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Sha Han
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Liangyu Zhao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ruhui Tian
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Huixing Chen
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuhua Huang
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing Zhang
- The Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510620, China
| | - Huirong Chen
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fujun Zhao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Chencheng Yao
- Department of Andrology, Center for Men's Health, Department of ART, Institute of Urology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
17
|
DNA Repair in Haploid Context. Int J Mol Sci 2021; 22:ijms222212418. [PMID: 34830299 PMCID: PMC8620282 DOI: 10.3390/ijms222212418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
DNA repair is a well-covered topic as alteration of genetic integrity underlies many pathological conditions and important transgenerational consequences. Surprisingly, the ploidy status is rarely considered although the presence of homologous chromosomes dramatically impacts the repair capacities of cells. This is especially important for the haploid gametes as they must transfer genetic information to the offspring. An understanding of the different mechanisms monitoring genetic integrity in this context is, therefore, essential as differences in repair pathways exist that differentiate the gamete’s role in transgenerational inheritance. Hence, the oocyte must have the most reliable repair capacity while sperm, produced in large numbers and from many differentiation steps, are expected to carry de novo variations. This review describes the main DNA repair pathways with a special emphasis on ploidy. Differences between Saccharomyces cerevisiae and Schizosaccharomyces pombe are especially useful to this aim as they can maintain a diploid and haploid life cycle respectively.
Collapse
|
18
|
Mao B, Zheng W, Huang Z, Peng Y, Shao Y, Liu C, Tang L, Hu Y, Li Y, Hu L, Zhang D, Yuan Z, Luo W, Yuan L, Liu Y, Zhao B. Rice MutLγ, the MLH1-MLH3 heterodimer, participates in the formation of type I crossovers and regulation of embryo sac fertility. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1443-1455. [PMID: 33544956 PMCID: PMC8313138 DOI: 10.1111/pbi.13563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 05/23/2023]
Abstract
The development of embryo sacs is crucial for seed production in plants, but the genetic basis regulating the meiotic crossover formation in the macrospore and microspore mother cells remains largely unclear. Here, we report the characterization of a spontaneous rice female sterile variation 1 mutant (fsv1) that showed severe embryo sacs abortion with low seed-setting rate. Through map-based cloning and functional analyses, we isolated the causal gene of fsv1, OsMLH3 encoding a MutL-homolog 3 protein, an ortholog of HvMLH3 in barley and AtMLH3 in Arabidopsis. OsMLH3 and OsMLH1 (MutL-homolog 1) interact to form a heterodimer (MutLγ) to promote crossover formation in the macrospore and microspore mother cells and development of functional megaspore during meiosis, defective OsMLH3 or OsMLH1 in fsv1 and CRISPR/Cas9-based knockout lines results in reduced type I crossover and bivalent frequency. The fsv1 and OsMLH3-knockout lines are valuable germplasms for development of female sterile restorer lines for mechanized seed production of hybrid rice.
Collapse
Affiliation(s)
- Bigang Mao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Wenjie Zheng
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Zhen Huang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yan Peng
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Ye Shao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Citao Liu
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| | - Li Tang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Yuanyi Hu
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaokui Li
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Liming Hu
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
| | - Dan Zhang
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Zhicheng Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Wuzhong Luo
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Longping Yuan
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Bingran Zhao
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- Long Ping BranchGraduate School of Hunan UniversityChangshaChina
- College of AgriculturalHunan Agricultural UniversityChangshaChina
| |
Collapse
|
19
|
Strand discrimination in DNA mismatch repair. DNA Repair (Amst) 2021; 105:103161. [PMID: 34171627 DOI: 10.1016/j.dnarep.2021.103161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) corrects non-Watson-Crick basepairs generated by replication errors, recombination intermediates, and some forms of chemical damage to DNA. In MutS and MutL homolog-dependent MMR, damaged bases do not identify the error-containing daughter strand that must be excised and resynthesized. In organisms like Escherichia coli that use methyl-directed MMR, transient undermethylation identifies the daughter strand. For other organisms, growing in vitro and in vivo evidence suggest that strand discrimination is mediated by DNA replication-associated daughter strand nicks that direct asymmetric loading of the replicative clamp (the β-clamp in bacteria and the proliferating cell nuclear antigen, PCNA, in eukaryotes). Structural modeling suggests that replicative clamps mediate strand specificity either through the ability of MutL homologs to recognize the fixed orientation of the daughter strand relative to one face of the replicative clamps or through parental strand-specific diffusion of replicative clamps on DNA, which places the daughter strand in the MutL homolog endonuclease active site. Finally, identification of bacteria that appear to lack strand discrimination mediated by a replicative clamp and a pre-existing nick suggest that other strand discrimination mechanisms exist or that these organisms perform MMR by generating a double-stranded DNA break intermediate, which may be analogous to NucS-mediated MMR.
Collapse
|
20
|
OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice. J Genet Genomics 2021; 48:485-496. [PMID: 34257043 DOI: 10.1016/j.jgg.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the MutL-homolog family, which are required for normal level of crossovers (COs) in some eukaryotes. However, their functions in plants need to be further elucidated. Here, we report the identification of OsMLH1 and reveal its functions during meiosis in rice. Using CRISPR-Cas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, OsMLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution, indicating that OsMLH1 is essential for the formation of interference-sensitive COs (class I COs). OsMLH1 interacts with OsMLH3 through their C-terminal domains. Mutation in OsMLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer MutLγ (OsMLH1-OsMLH3) is essential for the formation of class I COs in rice.
Collapse
|
21
|
Molecular basis of the dual role of the Mlh1-Mlh3 endonuclease in MMR and in meiotic crossover formation. Proc Natl Acad Sci U S A 2021; 118:2022704118. [PMID: 34088835 DOI: 10.1073/pnas.2022704118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.
Collapse
|
22
|
Smits MAJ, Janssens GE, Goddijn M, Hamer G, Houtkooper RH, Mastenbroek S. Longevity pathways are associated with human ovarian ageing. Hum Reprod Open 2021; 2021:hoab020. [PMID: 34027130 PMCID: PMC8126403 DOI: 10.1093/hropen/hoab020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION Are genes known to be involved in somatic cell ageing, particularly related to longevity pathways, associated with the accelerated ageing process of the ovary? SUMMARY ANSWER Growth, metabolism, and cell-cycle progression-related pathways that are involved in somatic cell ageing are also associated with ovarian ageing. WHAT IS KNOWN ALREADY Ovarian ageing is characterized by a gradual decline in ovarian follicle quantity, a decline in oocyte quality, and lower chances of pregnancy. Genetic pathways modulating the rate of somatic cell ageing have been researched intensively. Ovarian ageing does not follow the same timeline as somatic cell ageing, as signs of ovarian ageing occur at a younger female age, while the somatic cells are still relatively young. It is not known whether the generally recognized somatic cell longevity genes also play a role during ovarian ageing. Looking at somatic cell longevity genes can lead to new hypotheses and possible treatment options for subfertility caused by ovarian ageing. STUDY DESIGN, SIZE, DURATION In this observational study, we analysed a dataset of individual gene expression profiles of 38 germinal vesicle (GV) oocytes from 38 women aged between 25 and 43 years. We correlated female age (calendar age in years) and biological age (factors known to be associated with ovarian ageing such as dosage of FSH needed for ovarian hyperstimulation, and antral follicle count (AFC)) with gene expression signatures of longevity pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS Transcripts of 38 GV oocytes were used for individual gene expression analysis. R version 3.5.1 was used to process and analyse data. The GeneAge database (build 19) was used to obtain mouse ageing-related genes. Human to mouse orthologues were obtained using the R package biomaRt. Correlations and significance between gene expression data and age were tested for using Pearson's product moment correlation coefficient using ranked expression data. Distributions were compared with an ANOVA, and the Tukey Honest Significant Difference method was used to control for the Type I error rate across multiple comparisons. MAIN RESULTS AND THE ROLE OF CHANCE Of the 136 genes in the GeneAge database, the expression of 15 anti-longevity genes identified in oocytes showed a positive correlation with female calendar age and FSH dosage administered during ICSI treatment, and a negative correlation with AFC. Expression of 32 pro-longevity genes was negatively correlated with calendar age and FSH dosage, and positively correlated with AFC. In general, anti- and pro-longevity genes changed in opposing directions with advancing maternal age in oocytes. Notably, the anti-longevity genes include many ‘growth’-related genes involved in the mechanistic target of rapamycin (mTOR) Complex 1 pathway, such as EIF5A2, EIF3H, EIF4E, and mTOR. The pro-longevity genes include many cell-cycle progression-related genes involved in DNA damage repair (e.g. XRCC6, ERCC2, and MSH2) or cell-cycle checkpoint regulation genes (e.g. ATM, BRCA1, TP53, TP63, TP73, and BUB1B). LIMITATIONS, REASONS FOR CAUTION Using mature oocytes instead of GV-stage oocytes discarded from ICSI treatments may provide different results. No correction for multiple testing was carried out on individual genes because a small set of longevity-related genes was selected a priori for the analysis. The global trend was corrected for multiple testing and remained significant. This work was an observational study and, as no additional experimental work was performed, the associations described do not directly demonstrate the involvement of such genes in oocyte ageing. WIDER IMPLICATIONS OF THE FINDINGS Growth, metabolism, and cell-cycle progression-related pathways that are known to be involved in somatic cell ageing were associated with ovarian ageing. If experimental data are obtained to support these associations, we suggest that interventions known to modulate these processes could benefit women suffering from ovarian ageing. STUDY FUNDING/COMPETING INTEREST(S) G.E.J. is supported by a VENI grant from ZonMw (https://www.zonmw.nl). Work in the Houtkooper group is financially supported by an ERC Starting grant (No. 638290), a VIDI grant from ZonMw (No. 91715305), and the Velux Stiftung (No. 1063). M.G. declares several research and educational grants from Guerbet, Merck and Ferring (all location VUmc), outside the scope of the submitted work. The other authors report no competing interest TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Myrthe A J Smits
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëtte Goddijn
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Geert Hamer
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Pannafino G, Alani E. Coordinated and Independent Roles for MLH Subunits in DNA Repair. Cells 2021; 10:cells10040948. [PMID: 33923939 PMCID: PMC8074049 DOI: 10.3390/cells10040948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
The MutL family of DNA mismatch repair proteins (MMR) acts to maintain genomic integrity in somatic and meiotic cells. In baker’s yeast, the MutL homolog (MLH) MMR proteins form three heterodimeric complexes, MLH1-PMS1, MLH1-MLH2, and MLH1-MLH3. The recent discovery of human PMS2 (homolog of baker’s yeast PMS1) and MLH3 acting independently of human MLH1 in the repair of somatic double-strand breaks questions the assumption that MLH1 is an obligate subunit for MLH function. Here we provide a summary of the canonical roles for MLH factors in DNA genomic maintenance and in meiotic crossover. We then present the phenotypes of cells lacking specific MLH subunits, particularly in meiotic recombination, and based on this analysis, propose a model for an independent early role for MLH3 in meiosis to promote the accurate segregation of homologous chromosomes in the meiosis I division.
Collapse
|
24
|
Rahman MM, Mohiuddin M, Shamima Keka I, Yamada K, Tsuda M, Sasanuma H, Andreani J, Guerois R, Borde V, Charbonnier JB, Takeda S. Genetic evidence for the involvement of mismatch repair proteins, PMS2 and MLH3, in a late step of homologous recombination. J Biol Chem 2021; 295:17460-17475. [PMID: 33453991 DOI: 10.1074/jbc.ra120.013521] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks using intact homologous sequences as template DNA. Broken DNA and intact homologous sequences form joint molecules (JMs), including Holliday junctions (HJs), as HR intermediates. HJs are resolved to form crossover and noncrossover products. A mismatch repair factor, MLH3 endonuclease, produces the majority of crossovers during meiotic HR, but it remains elusive whether mismatch repair factors promote HR in nonmeiotic cells. We disrupted genes encoding the MLH3 and PMS2 endonucleases in the human B cell line, TK6, generating null MLH3-/- and PMS2-/- mutant cells. We also inserted point mutations into the endonuclease motif of MLH3 and PMS2 genes, generating endonuclease death MLH3DN/DN and PMS2EK/EK cells. MLH3-/- and MLH3DN/DN cells showed a very similar phenotype, a 2.5-fold decrease in the frequency of heteroallelic HR-dependent repair of restriction enzyme-induced double-strand breaks. PMS2-/- and PMS2EK/EK cells showed a phenotype very similar to that of the MLH3 mutants. These data indicate that MLH3 and PMS2 promote HR as an endonuclease. The MLH3DN/DN and PMS2EK/EK mutations had an additive effect on the heteroallelic HR. MLH3DN/DN/PMS2EK/EK cells showed normal kinetics of γ-irradiation-induced Rad51 foci but a significant delay in the resolution of Rad51 foci and a 3-fold decrease in the number of cisplatin-induced sister chromatid exchanges. The ectopic expression of the Gen1 HJ re-solvase partially reversed the defective heteroallelic HR of MLH3DN/DN/PMS2EK/EK cells. Taken together, we propose that MLH3 and PMS2 promote HR as endonucleases, most likely by processing JMs in mammalian somatic cells.
Collapse
Affiliation(s)
- Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mohiuddin Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Islam Shamima Keka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kousei Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valerie Borde
- Institut Curie, CNRS, UMR3244, PSL Research University, Paris, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique (CEA), CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
25
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 DOI: 10.33892/ffpls.2021.631323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
26
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
27
|
A loss-of-function variant in DNA mismatch repair gene MLH3 underlies severe oligozoospermia. J Hum Genet 2021; 66:725-730. [PMID: 33517345 DOI: 10.1038/s10038-021-00907-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Male infertility pertains to male's inability to cause pregnancy in a fertile female. It accounts for 40-50% of infertility in human. In the study, presented here, a large consanguineous family of Pakistani origin segregating male infertility in autosomal recessive manner was investigated. Exome sequencing revealed a homozygous frameshift variant [NM_001040108: c.3632delA, p.(Asn1211Metfs*49)] in DNA mismatch repair gene MLH3 (MutL Homolog) that segregated with male infertility within the family. This is the first loss-of-function homozygous variant in the MLH3 gene causing severe oligozoospermia leading to male infertility. Previous studies have demonstrated association of infertility with gene knockout in the mice.
Collapse
|
28
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 PMCID: PMC7928317 DOI: 10.3389/fpls.2021.631323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/09/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Kim Osman
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Eugenio Sanchez-Moran
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Eugenio Sanchez-Moran
| |
Collapse
|
29
|
Verma P, Tandon R, Yadav G, Gaur V. Structural Aspects of DNA Repair and Recombination in Crop Improvement. Front Genet 2020; 11:574549. [PMID: 33024442 PMCID: PMC7516265 DOI: 10.3389/fgene.2020.574549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The adverse effects of global climate change combined with an exponentially increasing human population have put substantial constraints on agriculture, accelerating efforts towards ensuring food security for a sustainable future. Conventional plant breeding and modern technologies have led to the creation of plants with better traits and higher productivity. Most crop improvement approaches (conventional breeding, genome modification, and gene editing) primarily rely on DNA repair and recombination (DRR). Studying plant DRR can provide insights into designing new strategies or improvising the present techniques for crop improvement. Even though plants have evolved specialized DRR mechanisms compared to other eukaryotes, most of our insights about plant-DRRs remain rooted in studies conducted in animals. DRR mechanisms in plants include direct repair, nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), non-homologous end joining (NHEJ) and homologous recombination (HR). Although each DRR pathway acts on specific DNA damage, there is crosstalk between these. Considering the importance of DRR pathways as a tool in crop improvement, this review focuses on a general description of each DRR pathway, emphasizing on the structural aspects of key DRR proteins. The review highlights the gaps in our understanding and the importance of studying plant DRR in the context of crop improvement.
Collapse
Affiliation(s)
- Prabha Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Reetika Tandon
- National Institute of Plant Genome Research, New Delhi, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Vineet Gaur
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
30
|
Furman CM, Elbashir R, Alani E. Expanded roles for the MutL family of DNA mismatch repair proteins. Yeast 2020; 38:39-53. [PMID: 32652606 DOI: 10.1002/yea.3512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
The MutL family of DNA mismatch repair proteins plays a critical role in excising and repairing misincorporation errors during DNA replication. In many eukaryotes, members of this family have evolved to modulate and resolve recombination intermediates into crossovers during meiosis. In these organisms, such functions promote the accurate segregation of chromosomes during the meiosis I division. What alterations occurred in MutL homolog (MLH) family members that enabled them to acquire these new roles? In this review, we present evidence that the yeast Mlh1-Mlh3 and Mlh1-Mlh2 complexes have evolved novel enzymatic and nonenzymatic activities and protein-protein interactions that are critical for their meiotic functions. Curiously, even with these changes, these complexes retain backup and accessory roles in DNA mismatch repair during vegetative growth.
Collapse
Affiliation(s)
- Christopher M Furman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Ryan Elbashir
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Hofstatter PG, Ribeiro GM, Porfírio‐Sousa AL, Lahr DJG. The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit”. Bioessays 2020; 42:e2000037. [DOI: 10.1002/bies.202000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paulo G. Hofstatter
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Giulia M. Ribeiro
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Alfredo L. Porfírio‐Sousa
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Daniel J. G. Lahr
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| |
Collapse
|
32
|
Human MutLγ, the MLH1-MLH3 heterodimer, is an endonuclease that promotes DNA expansion. Proc Natl Acad Sci U S A 2020; 117:3535-3542. [PMID: 32015124 PMCID: PMC7035508 DOI: 10.1073/pnas.1914718117] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MutL proteins are ubiquitous and play important roles in DNA metabolism. MutLγ (MLH1-MLH3 heterodimer) is a poorly understood member of the eukaryotic family of MutL proteins that has been implicated in triplet repeat expansion, but its action in this deleterious process has remained unknown. In humans, triplet repeat expansion is the molecular basis for ∼40 neurological disorders. In addition to MutLγ, triplet repeat expansion involves the mismatch recognition factor MutSβ (MSH2-MSH3 heterodimer). We show here that human MutLγ is an endonuclease that nicks DNA. Strikingly, incision of covalently closed, relaxed loop-containing DNA by human MutLγ is promoted by MutSβ and targeted to the strand opposite the loop. The resulting strand break licenses downstream events that lead to a DNA expansion event in human cell extracts. Our data imply that the mammalian MutLγ is a unique endonuclease that can initiate triplet repeat DNA expansions.
Collapse
|
33
|
Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes (Basel) 2020; 11:genes11010071. [PMID: 31936378 PMCID: PMC7017083 DOI: 10.3390/genes11010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The execution of recombinational pathways during the repair of certain DNA lesions or in the meiotic program is associated to the formation of joint molecules that physically hold chromosomes together. These structures must be disengaged prior to the onset of chromosome segregation. Failure in the resolution of these linkages can lead to chromosome breakage and nondisjunction events that can alter the normal distribution of the genomic material to the progeny. To avoid this situation, cells have developed an arsenal of molecular complexes involving helicases, resolvases, and dissolvases that recognize and eliminate chromosome links. The correct orchestration of these enzymes promotes the timely removal of chromosomal connections ensuring the efficient segregation of the genome during cell division. In this review, we focus on the role of different DNA processing enzymes that collaborate in removing the linkages generated during the activation of the homologous recombination machinery as a consequence of the appearance of DNA breaks during the mitotic and meiotic programs. We will also discuss about the temporal regulation of these factors along the cell cycle, the consequences of their loss of function, and their specific role in the removal of chromosomal links to ensure the accurate segregation of the genomic material during cell division.
Collapse
|
34
|
Lorca V, Garre P. Current status of the genetic susceptibility in attenuated adenomatous polyposis. World J Gastrointest Oncol 2019; 11:1101-1114. [PMID: 31908716 PMCID: PMC6937445 DOI: 10.4251/wjgo.v11.i12.1101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/18/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Adenomatous polyposis (AP) is classified according to cumulative adenoma number in classical AP (CAP) and attenuated AP (AAP). Genetic susceptibility is the major risk factor in CAP due to mutations in the known high predisposition genes APC and MUTYH. However, the contribution of genetic susceptibility to AAP is lower and less understood. New predisposition genes have been recently proposed, and some of them have been validated, but their scarcity hinders accurate risk estimations and prevalence calculations. AAP is a heterogeneous condition in terms of severity, clinical features and heritability. Therefore, clinicians do not have strong discriminating criteria for the recommendation of the genetic study of known predisposition genes, and the detection rate is low. Elucidation and knowledge of new AAP high predisposition genes are of great importance to offer accurate genetic counseling to the patient and family members. This review aims to update the genetic knowledge of AAP, and to expound the difficulties involved in the genetic analysis of a highly heterogeneous condition such as AAP.
Collapse
Affiliation(s)
- Víctor Lorca
- Laboratorio de Oncología Molecular, Grupo de Investigación Clínica y Traslacional en Oncología, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - Pilar Garre
- Laboratorio de Oncología Molecular, Servicio de Oncología, Hospital Clínico San Carlos, Madrid 28040, Spain
| |
Collapse
|
35
|
Mutation of the ATPase Domain of MutS Homolog-5 (MSH5) Reveals a Requirement for a Functional MutSγ Complex for All Crossovers in Mammalian Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1839-1850. [PMID: 30944090 PMCID: PMC6553527 DOI: 10.1534/g3.119.400074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During meiosis, induction of DNA double strand breaks (DSB) leads to recombination between homologous chromosomes, resulting in crossovers (CO) and non-crossovers (NCO). In the mouse, only 10% of DSBs resolve as COs, mostly through a class I pathway dependent on MutSγ (MSH4/ MSH5) and MutLγ (MLH1/MLH3), the latter representing the ultimate marker of these CO events. A second Class II CO pathway accounts for only a few COs, but is not thought to involve MutSγ/ MutLγ, and is instead dependent on MUS81-EME1. For class I events, loading of MutLγ is thought to be dependent on MutSγ, however MutSγ loads very early in prophase I at a frequency that far exceeds the final number of class I COs. Moreover, loss of MutSγ in mouse results in apoptosis before CO formation, preventing the analysis of its CO function. We generated a mutation in the ATP binding domain of Msh5 (Msh5GA). While this mutation was not expected to affect MutSγ complex formation, MutSγ foci do not accumulate during prophase I. However, most spermatocytes from Msh5GA/GA mice progress to late pachynema and beyond, considerably further than meiosis in Msh5−/− animals. At pachynema, Msh5GA/GA spermatocytes show persistent DSBs, incomplete homolog pairing, and fail to accumulate MutLγ. Unexpectedly, Msh5GA/GA diakinesis-staged spermatocytes have no chiasmata at all from any CO pathway, indicating that a functional MutSγ complex is critical for all CO events regardless of their mechanism of generation.
Collapse
|
36
|
Toledo M, Sun X, Brieño-Enríquez MA, Raghavan V, Gray S, Pea J, Milano CR, Venkatesh A, Patel L, Borst PL, Alani E, Cohen PE. A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for MutLγ during crossover formation in meiotic prophase I. PLoS Genet 2019; 15:e1008177. [PMID: 31170160 PMCID: PMC6588253 DOI: 10.1371/journal.pgen.1008177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/21/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
During meiotic prophase I, double-strand breaks (DSBs) initiate homologous recombination leading to non-crossovers (NCOs) and crossovers (COs). In mouse, 10% of DSBs are designated to become COs, primarily through a pathway dependent on the MLH1-MLH3 heterodimer (MutLγ). Mlh3 contains an endonuclease domain that is critical for resolving COs in yeast. We generated a mouse (Mlh3DN/DN) harboring a mutation within this conserved domain that is predicted to generate a protein that is catalytically inert. Mlh3DN/DN males, like fully null Mlh3-/- males, have no spermatozoa and are infertile, yet spermatocytes have grossly normal DSBs and synapsis events in early prophase I. Unlike Mlh3-/- males, mutation of the endonuclease domain within MLH3 permits normal loading and frequency of MutLγ in pachynema. However, key DSB repair factors (RAD51) and mediators of CO pathway choice (BLM helicase) persist into pachynema in Mlh3DN/DN males, indicating a temporal delay in repair events and revealing a mechanism by which alternative DSB repair pathways may be selected. While Mlh3DN/DN spermatocytes retain only 22% of wildtype chiasmata counts, this frequency is greater than observed in Mlh3-/- males (10%), suggesting that the allele may permit partial endonuclease activity, or that other pathways can generate COs from these MutLγ-defined repair intermediates in Mlh3DN/DN males. Double mutant mice homozygous for the Mlh3DN/DN and Mus81-/- mutations show losses in chiasmata close to those observed in Mlh3-/- males, indicating that the MUS81-EME1-regulated crossover pathway can only partially account for the increased residual chiasmata in Mlh3DN/DN spermatocytes. Our data demonstrate that mouse spermatocytes bearing the MLH1-MLH3DN/DN complex display the proper loading of factors essential for CO resolution (MutSγ, CDK2, HEI10, MutLγ). Despite these functions, mice bearing the Mlh3DN/DN allele show defects in the repair of meiotic recombination intermediates and a loss of most chiasmata.
Collapse
Affiliation(s)
- Melissa Toledo
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Xianfei Sun
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Miguel A. Brieño-Enríquez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Stephen Gray
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Jeffrey Pea
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Carolyn R. Milano
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Anita Venkatesh
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lekha Patel
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Peter L. Borst
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
- The Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
37
|
Hofstatter PG, Lahr DJG. All Eukaryotes Are Sexual, unless Proven Otherwise: Many So-Called Asexuals Present Meiotic Machinery and Might Be Able to Have Sex. Bioessays 2019; 41:e1800246. [PMID: 31087693 DOI: 10.1002/bies.201800246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/15/2019] [Indexed: 11/07/2022]
Abstract
Here a wide distribution of meiotic machinery is shown, indicating the occurrence of sexual processes in all major eukaryotic groups, without exceptions, including the putative "asexuals." Meiotic machinery has evolved from archaeal DNA repair machinery by means of ancestral gene duplications. Sex is very conserved and widespread in eukaryotes, even though its evolutionary importance is still a matter of debate. The main processes in sex are plasmogamy, followed by karyogamy and meiosis. Meiosis is fundamentally a chromosomal process, which implies recombination and ploidy reduction. Several eukaryotic lineages are proposed to be asexual because their sexual processes are never observed, but presumed asexuality correlates with lack of study. The authors stress the complete lack of meiotic proteins in nucleomorphs and their almost complete loss in the fungus Malassezia. Inversely, complete sets of meiotic proteins are present in fungal groups Glomeromycotina, Trichophyton, and Cryptococcus. Endosymbiont Perkinsela and endoparasitic Microsporidia also present meiotic proteins.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Departamento de ZoologiaRua do Matão, Instituto de Biociências, Universidade de São Paulo, travessa 14, 101CEP., 05508-090, Sâo Paulo, Brazil
| | - Daniel J G Lahr
- Departamento de ZoologiaRua do Matão, Instituto de Biociências, Universidade de São Paulo, travessa 14, 101CEP., 05508-090, Sâo Paulo, Brazil
| |
Collapse
|
38
|
Noncanonical Contributions of MutLγ to VDE-Initiated Crossovers During Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1647-1654. [PMID: 30902890 PMCID: PMC6505156 DOI: 10.1534/g3.119.400150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Saccharomyces cerevisiae, the meiosis-specific axis proteins Hop1 and Red1 are present nonuniformly across the genome. In a previous study, the meiosis-specific VMA1-derived endonuclease (VDE) was used to examine Spo11-independent recombination in a recombination reporter inserted in a Hop1/Red1-enriched region (HIS4) and in a Hop1/Red1-poor region (URA3). VDE-initiated crossovers at HIS4 were mostly dependent on Mlh3, a component of the MutLγ meiotic recombination intermediate resolvase, while VDE-initiated crossovers at URA3 were mostly Mlh3-independent. These differences were abolished in the absence of the chromosome axis remodeler Pch2, and crossovers at both loci became partly Mlh3-dependent. To test the generality of these observations, we examined inserts at six additional loci that differed in terms of Hop1/Red1 enrichment, chromosome size, and distance from centromeres and telomeres. All six loci behaved similarly to URA3: the vast majority of VDE-initiated crossovers were Mlh3-independent. This indicates that, counter to previous suggestions, levels of meiotic chromosome axis protein enrichment alone do not determine which recombination pathway gives rise to crossovers during VDE-initiated meiotic recombination. In pch2∆ mutants, the fraction of VDE-induced crossovers that were Mlh3-dependent increased to levels previously observed for Spo11-initiated crossovers in pch2∆, indicating that Pch2-dependent processes play an important role in controlling the balance between MutLγ-dependent and MutLγ-independent crossovers.
Collapse
|
39
|
Marsolier-Kergoat MC, Khan MM, Schott J, Zhu X, Llorente B. Mechanistic View and Genetic Control of DNA Recombination during Meiosis. Mol Cell 2019; 70:9-20.e6. [PMID: 29625041 DOI: 10.1016/j.molcel.2018.02.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.
Collapse
Affiliation(s)
- Marie-Claude Marsolier-Kergoat
- CEA/DRF, I2BC/UMR 9198, SBIGeM, Gif-sur-Yvette, France; CNRS-UMR 7206, Éco-anthropologie et Ethnobiologie, Musée de l'Homme, 17, Place du Trocadéro et du 11 Novembre, Paris, France.
| | - Md Muntaz Khan
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Jonathan Schott
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, NY, USA
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France.
| |
Collapse
|
40
|
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V. Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:989. [PMID: 31428113 PMCID: PMC6688120 DOI: 10.3389/fpls.2019.00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Plants are continuously faced with complex environmental conditions which can affect the oxidative metabolism and photosynthetic efficiency, thus leading to the over-production of reactive oxygen species (ROS). Over a certain threshold, ROS can damage DNA. DNA damage, unless repaired, can affect genome stability, thus interfering with cell survival and severely reducing crop productivity. A complex network of pathways involved in DNA damage response (DDR) needs to be activated in order to maintain genome integrity. The expression of specific genes belonging to these pathways can be used as indicators of oxidative DNA damage and effective DNA repair in plants subjected to stress conditions. Managing ROS levels by modulating their production and scavenging systems shifts the role of these compounds from toxic molecules to key messengers involved in plant tolerance acquisition. Oxidative and anti-oxidative signals normally move among the different cell compartments, including the nucleus, cytosol, and organelles. Nuclei are dynamically equipped with different redox systems, such as glutathione (GSH), thiol reductases, and redox regulated transcription factors (TFs). The nuclear redox network participates in the regulation of the DNA metabolism, in terms of transcriptional events, replication, and repair mechanisms. This mainly occurs through redox-dependent regulatory mechanisms comprising redox buffering and post-translational modifications, such as the thiol-disulphide switch, glutathionylation, and S-nitrosylation. The regulatory role of microRNAs (miRNAs) is also emerging for the maintenance of genome stability and the modulation of antioxidative machinery under adverse environmental conditions. In fact, redox systems and DDR pathways can be controlled at a post-transcriptional level by miRNAs. This review reports on the interconnections between the DDR pathways and redox balancing systems. It presents a new dynamic picture by taking into account the shared regulatory mechanism mediated by miRNAs in plant defense responses to stress.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Vittoria Locato,
| |
Collapse
|
41
|
Hofstatter PG, Brown MW, Lahr DJG. Comparative Genomics Supports Sex and Meiosis in Diverse Amoebozoa. Genome Biol Evol 2018; 10:3118-3128. [PMID: 30380054 PMCID: PMC6263441 DOI: 10.1093/gbe/evy241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 12/30/2022] Open
Abstract
Sex and reproduction are often treated as a single phenomenon in animals and plants, as in these organisms reproduction implies mixis and meiosis. In contrast, sex and reproduction are independent biological phenomena that may or may not be linked in the majority of other eukaryotes. Current evidence supports a eukaryotic ancestor bearing a mating type system and meiosis, which is a process exclusive to eukaryotes. Even though sex is ancestral, the literature regarding life cycles of amoeboid lineages depicts them as asexual organisms. Why would loss of sex be common in amoebae, if it is rarely lost, if ever, in plants and animals, as well as in fungi? One way to approach the question of meiosis in the "asexuals" is to evaluate the patterns of occurrence of genes for the proteins involved in syngamy and meiosis. We have applied a comparative genomic approach to study the occurrence of the machinery for plasmogamy, karyogamy, and meiosis in Amoebozoa, a major amoeboid supergroup. Our results support a putative occurrence of syngamy and meiotic processes in all major amoebozoan lineages. We conclude that most amoebozoans may perform mixis, recombination, and ploidy reduction through canonical meiotic processes. The present evidence indicates the possibility of sexual cycles in many lineages traditionally held as asexual.
Collapse
Affiliation(s)
- Paulo G Hofstatter
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University
| | - Daniel J G Lahr
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Brazil
| |
Collapse
|
42
|
Arter M, Hurtado-Nieves V, Oke A, Zhuge T, Wettstein R, Fung JC, Blanco MG, Matos J. Regulated Crossing-Over Requires Inactivation of Yen1/GEN1 Resolvase during Meiotic Prophase I. Dev Cell 2018; 45:785-800.e6. [PMID: 29920281 DOI: 10.1016/j.devcel.2018.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/30/2018] [Accepted: 05/16/2018] [Indexed: 01/27/2023]
Abstract
During meiosis, crossover recombination promotes the establishment of physical connections between homologous chromosomes, enabling their bipolar segregation. To ensure that persistent recombination intermediates are disengaged prior to the completion of meiosis, the Yen1(GEN1) resolvase is strictly activated at the onset of anaphase II. Whether controlled activation of Yen1 is important for meiotic crossing-over is unknown. Here, we show that CDK-mediated phosphorylation of Yen1 averts its pervasive recruitment to recombination intermediates during prophase I. Yen1 mutants that are refractory to phosphorylation resolve DNA joint molecules prematurely and form crossovers independently of MutLγ, the central crossover resolvase during meiosis. Despite bypassing the requirement for MutLγ in joint molecule processing and promoting crossover-specific resolution, unrestrained Yen1 impairs the spatial distribution of crossover events, genome-wide. Thus, active suppression of Yen1 function, and by inference also of Mus81-Mms4(EME1) and Slx1-Slx4(BTBD12) resolvases, avoids precocious resolution of recombination intermediates to enable meiotic crossover patterning.
Collapse
Affiliation(s)
- Meret Arter
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Vanesa Hurtado-Nieves
- Departamento de Bioquímica e Bioloxía Molecular, CIMUS, Universidade de Santiago de Compostela - IDIS, 15706 Santiago de Compostela, Spain
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Tangna Zhuge
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Rahel Wettstein
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Jennifer C Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Miguel G Blanco
- Departamento de Bioquímica e Bioloxía Molecular, CIMUS, Universidade de Santiago de Compostela - IDIS, 15706 Santiago de Compostela, Spain.
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5 - ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
43
|
Stringer JM, Winship A, Liew SH, Hutt K. The capacity of oocytes for DNA repair. Cell Mol Life Sci 2018; 75:2777-2792. [PMID: 29748894 PMCID: PMC11105623 DOI: 10.1007/s00018-018-2833-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022]
Abstract
Female fertility and offspring health are critically dependent on the maintenance of an adequate supply of high-quality oocytes. Like somatic cells, oocytes are subject to a variety of different types of DNA damage arising from endogenous cellular processes and exposure to exogenous genotoxic stressors. While the repair of intentionally induced DNA double strand breaks in gametes during meiotic recombination is well characterised, less is known about the ability of oocytes to repair pathological DNA damage and the relative contribution of DNA repair to oocyte quality is not well defined. This review will discuss emerging data suggesting that oocytes are in fact capable of efficient DNA repair and that DNA repair may be an important mechanism for ensuring female fertility, as well as the transmission of high-quality genetic material to subsequent generations.
Collapse
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Amy Winship
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
44
|
Vimal D, Kumar S, Pandey A, Sharma D, Saini S, Gupta S, Ravi Ram K, Chowdhuri DK. Mlh1 is required for female fertility in Drosophila melanogaster: An outcome of effects on meiotic crossing over, ovarian follicles and egg activation. Eur J Cell Biol 2018; 97:75-89. [DOI: 10.1016/j.ejcb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022] Open
|
45
|
Guo J, Chen L, Li GM. DNA mismatch repair in trinucleotide repeat instability. SCIENCE CHINA. LIFE SCIENCES 2017; 60:1087-1092. [PMID: 29075942 DOI: 10.1007/s11427-017-9186-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
Trinucleotide repeat expansions cause over 30 severe neuromuscular and neurodegenerative disorders, including Huntington's disease, myotonic dystrophy type 1, and fragile X syndrome. Although previous studies have substantially advanced the understanding of the disease biology, many key features remain unknown. DNA mismatch repair (MMR) plays a critical role in genome maintenance by removing DNA mismatches generated during DNA replication. However, MMR components, particularly mismatch recognition protein MutSβ and its interacting factors MutLα and MutLγ, have been implicated in trinucleotide repeat instability. In this review, we will discuss the roles of these key MMR proteins in promoting trinucleotide repeat instability.
Collapse
Affiliation(s)
- Jinzhen Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Luping Chen
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
46
|
Al-Sweel N, Raghavan V, Dutta A, Ajith VP, Di Vietro L, Khondakar N, Manhart CM, Surtees JA, Nishant KT, Alani E. mlh3 mutations in baker's yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide. PLoS Genet 2017; 13:e1006974. [PMID: 28827832 PMCID: PMC5578695 DOI: 10.1371/journal.pgen.1006974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/31/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022] Open
Abstract
Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker’s yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3’s enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated. During meiosis, diploid germ cells that become eggs or sperm undergo a single round of DNA replication followed by two consecutive chromosomal divisions. The segregation of chromosomes at the first meiotic division is dependent in most organisms on at least one genetic exchange, or crossover event, between chromosome homologs. Homologs that do not receive a crossover frequently undergo nondisjunction at the first meiotic division, yielding gametes that lack chromosomes or contain additional copies. Such events have been linked to human disease and infertility. Recent studies suggest that the Mlh1-Mlh3 complex is an endonuclease that resolves recombination intermediates into crossovers. Interestingly, this complex also acts as a matchmaker in DNA mismatch repair (MMR) to remove DNA replication errors. How does one complex act in two different processes? We investigated this question by performing a mutational analysis of the baker’s yeast Mlh3 protein. Five mutations were identified that disrupted MMR but not crossing over, and one mutation disrupted crossing over while maintaining MMR. Using a combination of biochemical and genetic analyses to further characterize these mutants we illustrate the importance of protein-protein interactions for Mlh1-Mlh3’s activity. Importantly, our data illustrate how defective meiotic components can alter the outcome of meiotic recombination events. They also provide new insights for the basis of infertility syndromes.
Collapse
Affiliation(s)
- Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Abhishek Dutta
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - V. P. Ajith
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Luigi Di Vietro
- Department of Life Sciences and Systems Biology, University of Turin, Via Verdi, Turin, Italy
| | - Nabila Khondakar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Carol M. Manhart
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jennifer A. Surtees
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - K. T. Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- Center for Computation Modelling and Simulation, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- * E-mail: (EA); (KTN)
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (EA); (KTN)
| |
Collapse
|
47
|
Yin Y, Dominska M, Yim E, Petes TD. High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast. eLife 2017; 6. [PMID: 28714850 PMCID: PMC5531827 DOI: 10.7554/elife.28069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination. DOI:http://dx.doi.org/10.7554/eLife.28069.001
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Eunice Yim
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| |
Collapse
|
48
|
Claeys Bouuaert C, Keeney S. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair. PLoS Genet 2017; 13:e1006722. [PMID: 28505149 PMCID: PMC5448812 DOI: 10.1371/journal.pgen.1006722] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/30/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022] Open
Abstract
Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ) and, surprisingly, single-stranded DNA (ssDNA), which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced formation of crossovers. Taken together, our results offer insights into the structure-function relationships of the MutLγ complex and reveal unanticipated genetic relationships between components of the meiotic recombination machinery.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail: (C.C.B.); (S.K.)
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail: (C.C.B.); (S.K.)
| |
Collapse
|
49
|
Duroc Y, Kumar R, Ranjha L, Adam C, Guérois R, Md Muntaz K, Marsolier-Kergoat MC, Dingli F, Laureau R, Loew D, Llorente B, Charbonnier JB, Cejka P, Borde V. Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion. eLife 2017; 6. [PMID: 28051769 PMCID: PMC5215242 DOI: 10.7554/elife.21900] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Gene conversions resulting from meiotic recombination are critical in shaping genome diversification and evolution. How the extent of gene conversions is regulated is unknown. Here we show that the budding yeast mismatch repair related MutLβ complex, Mlh1-Mlh2, specifically interacts with the conserved meiotic Mer3 helicase, which recruits it to recombination hotspots, independently of mismatch recognition. This recruitment is essential to limit gene conversion tract lengths genome-wide, without affecting crossover formation. Contrary to expectations, Mer3 helicase activity, proposed to extend the displacement loop (D-loop) recombination intermediate, does not influence the length of gene conversion events, revealing non-catalytical roles of Mer3. In addition, both purified Mer3 and MutLβ preferentially recognize D-loops, providing a mechanism for limiting gene conversion in vivo. These findings show that MutLβ is an integral part of a new regulatory step of meiotic recombination, which has implications to prevent rapid allele fixation and hotspot erosion in populations. DOI:http://dx.doi.org/10.7554/eLife.21900.001
Collapse
Affiliation(s)
- Yann Duroc
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Rajeev Kumar
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Lepakshi Ranjha
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Céline Adam
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Raphaël Guérois
- I2BC, iBiTec-S, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France.,Université Paris Sud, Orsay, France
| | - Khan Md Muntaz
- CRCM, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, CNRS UMR7258, Marseille, France
| | - Marie-Claude Marsolier-Kergoat
- I2BC, iBiTec-S, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France.,Université Paris Sud, Orsay, France.,Musée de l'Homme, CNRS UMR 7206, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, PSL Research University, LSMP, Paris, France
| | - Raphaëlle Laureau
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, LSMP, Paris, France
| | - Bertrand Llorente
- CRCM, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, CNRS UMR7258, Marseille, France
| | - Jean-Baptiste Charbonnier
- I2BC, iBiTec-S, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France.,Université Paris Sud, Orsay, France
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS UMR3664, Paris, France.,Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
50
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|