1
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz A, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. d-Serine Inhibits Non-ionotropic NMDA Receptor Signaling. J Neurosci 2024; 44:e0140242024. [PMID: 38942470 PMCID: PMC11308331 DOI: 10.1523/jneurosci.0140-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.
Collapse
Affiliation(s)
- Eden V Barragan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Vishnu Vijayakumar
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Deborah K Park
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Raghava Jagadeesh Salaka
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
| | - Atheer F K Nisan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Samuel Petshow
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - John A Gray
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
- Psychiatry and Behavioral Sciences, University of California, Davis, California 95618
| |
Collapse
|
2
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz AC, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. D-Serine inhibits non-ionotropic NMDA receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596266. [PMID: 38854020 PMCID: PMC11160797 DOI: 10.1101/2024.05.29.596266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g. d -serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results can be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of LTD induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker, MK801. Conversely, a saturating concentration of d -serine completely inhibited both LTD and spine shrinkage induced by glutamate binding in the presence of MK801. Using a FRET-based assay in cultured neurons, we further found that d -serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d -serine inhibits ion flux-independent NMDAR signaling and plasticity, and thus d -serine availability could serve to modulate NMDAR signaling even when the NMDAR is blocked by magnesium. Significance Statement NMDARs are glutamate-gated cation channels that are key regulators of neurodevelopment and synaptic plasticity and unique in their requirement for binding of a co-agonist (e.g. d -serine) in order for the channel to open. NMDARs have been found to drive synaptic plasticity via non-ionotropic (ion flux-independent) signaling upon the binding of glutamate in the absence of co-agonist, though conflicting results have led to controversy. Here, we found that d -serine inhibits non-ionotropic NMDAR-mediated LTD and LTD-associated spine shrinkage. Thus, a major source of the contradictory findings might be attributed to experimental variability in d -serine availability. In addition, the developmental regulation of d -serine levels suggests a role for non-ionotropic NMDAR plasticity during critical periods of plasticity.
Collapse
|
3
|
Kleinjan MS, Buchta WC, Ogelman R, Hwang IW, Kuwajima M, Hubbard DD, Kareemo DJ, Prikhodko O, Olah SL, Gomez Wulschner LE, Abraham WC, Franco SJ, Harris KM, Oh WC, Kennedy MJ. Dually innervated dendritic spines develop in the absence of excitatory activity and resist plasticity through tonic inhibitory crosstalk. Neuron 2023; 111:362-371.e6. [PMID: 36395772 PMCID: PMC9899020 DOI: 10.1016/j.neuron.2022.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
Dendritic spines can be directly connected to both inhibitory and excitatory presynaptic terminals, resulting in nanometer-scale proximity of opposing synaptic functions. While dually innervated spines (DiSs) are observed throughout the central nervous system, their developmental timeline and functional properties remain uncharacterized. Here we used a combination of serial section electron microscopy, live imaging, and local synapse activity manipulations to investigate DiS development and function in rodent hippocampus. Dual innervation occurred early in development, even on spines where the excitatory input was locally silenced. Synaptic NMDA receptor currents were selectively reduced at DiSs through tonic GABAB receptor signaling. Accordingly, spine enlargement normally associated with long-term potentiation on singly innervated spines (SiSs) was blocked at DiSs. Silencing somatostatin interneurons or pharmacologically blocking GABABRs restored NMDA receptor function and structural plasticity to levels comparable to neighboring SiSs. Thus, hippocampal DiSs are stable structures where function and plasticity are potently regulated by nanometer-scale GABAergic signaling.
Collapse
Affiliation(s)
- Mason S Kleinjan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - William C Buchta
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Masaaki Kuwajima
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Dusten D Hubbard
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Dean J Kareemo
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Olga Prikhodko
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samantha L Olah
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luis E Gomez Wulschner
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Santos J Franco
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen M Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Matthew J Kennedy
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Haddow K, Kind PC, Hardingham GE. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease. Int J Mol Sci 2022; 23:ijms231911392. [PMID: 36232696 PMCID: PMC9570437 DOI: 10.3390/ijms231911392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kirsty Haddow
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter C. Kind
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Correspondence:
| |
Collapse
|
5
|
Zong P, Feng J, Yue Z, Li Y, Wu G, Sun B, He Y, Miller B, Yu AS, Su Z, Xie J, Mori Y, Hao B, Yue L. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron 2022; 110:1944-1958.e8. [PMID: 35421327 DOI: 10.1016/j.neuron.2022.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
Excitotoxicity induced by NMDA receptor (NMDAR) activation is a major cause of neuronal death in ischemic stroke. However, past efforts of directly targeting NMDARs have unfortunately failed in clinical trials. Here, we reveal an unexpected mechanism underlying NMDAR-mediated neurotoxicity, which leads to the identification of a novel target and development of an effective therapeutic peptide for ischemic stroke. We show that NMDAR-induced excitotoxicity is enhanced by physical and functional coupling of NMDAR to an ion channel TRPM2 upon ischemic insults. TRPM2-NMDAR association promotes the surface expression of extrasynaptic NMDARs, leading to enhanced NMDAR activity and increased neuronal death. We identified a specific NMDAR-interacting motif on TRPM2 and designed a membrane-permeable peptide to uncouple the TRPM2-NMDAR interaction. This disrupting peptide protects neurons against ischemic injury in vitro and protects mice against ischemic stroke in vivo. These findings provide an unconventional strategy to mitigate excitotoxic neuronal death without directly targeting NMDARs.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Zhichao Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Gongxiong Wu
- Department of Medicine, Brigham and Women's Hospital, Laboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139, USA
| | - Baonan Sun
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Yanlin He
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Barbara Miller
- Departments of Pediatrics and Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - Albert S Yu
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Zhongping Su
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Jia Xie
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan; The World Premier International Research Initiative, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 615-8510, Japan
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA.
| |
Collapse
|
6
|
Zhou MH, Chen SR, Wang L, Huang Y, Deng M, Zhang J, Zhang J, Chen H, Yan J, Pan HL. Protein Kinase C-Mediated Phosphorylation and α2δ-1 Interdependently Regulate NMDA Receptor Trafficking and Activity. J Neurosci 2021; 41:6415-6429. [PMID: 34252035 PMCID: PMC8318084 DOI: 10.1523/jneurosci.0757-21.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with Gӧ6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Li Wang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Yuying Huang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Meichun Deng
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jixiang Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
7
|
Gardoni F, Di Luca M. Protein-protein interactions at the NMDA receptor complex: From synaptic retention to synaptonuclear protein messengers. Neuropharmacology 2021; 190:108551. [PMID: 33819458 DOI: 10.1016/j.neuropharm.2021.108551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that support essential functions throughout the brain. NMDARs are tetramers composed of the GluN1 subunit in complex with GluN2- and GluN3-type regulatory subunits, resulting in the formation of various receptor subtypes throughout the central nervous system (CNS), characterised by different kinetics, biophysical and pharmacological properties, and the abilities to interact with specific partners at dendritic spines. NMDARs are expressed at high levels, are widely distributed throughout the brain, and are involved in several physiological and pathological conditions. Here, we will focus on the GluN2A- and GluN2B-containing NMDARs found at excitatory synapses and their interactions with plasticity-relevant proteins, such as the postsynaptic density family of membrane-associated guanylate kinases (PSD-MAGUKs), Ca2+/calmodulin-dependent kinase II (CaMKII) and synaptonuclear protein messengers. The dynamic interactions between NMDAR subunits and various proteins regulating synaptic receptor retention and synaptonuclear signalling mediated by protein messengers suggest that the NMDAR serves as a key molecular player that coordinates synaptic activity and cell-wide events that require gene transcription. Importantly, protein-protein interactions at the NMDAR complex can also contribute to synaptic dysfunction in several brain disorders. Therefore, the modulation of the molecular composition of the NMDAR complex might represent a novel pharmacological approach for the treatment of certain disease states.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
8
|
Lutzu S, Castillo PE. Modulation of NMDA Receptors by G-protein-coupled receptors: Role in Synaptic Transmission, Plasticity and Beyond. Neuroscience 2020; 456:27-42. [PMID: 32105741 DOI: 10.1016/j.neuroscience.2020.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 01/11/2023]
Abstract
NMDA receptors (NMDARs) play a critical role in excitatory synaptic transmission, plasticity and in several forms of learning and memory. In addition, NMDAR dysfunction is believed to underlie a number of neuropsychiatric conditions. Growing evidence has demonstrated that NMDARs are tightly regulated by several G-protein-coupled receptors (GPCRs). Ligands that bind to GPCRs, such as neurotransmitters and neuromodulators, activate intracellular pathways that modulate NMDAR expression, subcellular localization and/or functional properties in a short- or a long-term manner across many synapses throughout the central nervous system. In this review article we summarize current knowledge on the molecular and cellular mechanisms underlying NMDAR modulation by GPCRs, and we discuss the implications of this modulation spanning from synaptic transmission and plasticity to circuit function and brain disease.
Collapse
Affiliation(s)
- Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
9
|
Carrano N, Samaddar T, Brunialti E, Franchini L, Marcello E, Ciana P, Mauceri D, Di Luca M, Gardoni F. The Synaptonuclear Messenger RNF10 Acts as an Architect of Neuronal Morphology. Mol Neurobiol 2019; 56:7583-7593. [DOI: 10.1007/s12035-019-1631-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
10
|
Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res 2016; 38:301-8. [PMID: 27092987 DOI: 10.1080/01616412.2015.1133024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stroke is a leading cause of long-term disability and death in the United States. Currently, tissue plasminogen activator (tPA), is the only Food and Drug Administration-approved treatment for acute ischemic stroke. However, the use of tPA is restricted to a small subset of acute stroke patients due to its limited 3-h therapeutic time window. Given the limited therapeutic options at present and the multi-factorial progression of ischemic stroke, emphasis has been placed on the discovery and use of combination therapies aimed at various molecular targets contributing to ischemic cell death. Protein kinase C (PKC) and Akt (protein kinase B) are serine/threonine kinases that play a critical role in mediating ischemic-reperfusion injury and cellular growth and survival, respectively. The present review will examine the role of PKC and Akt in the cellular response to ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Ethan Y Zhao
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA
| | - Aslan Efendizade
- b Michigan State University College of Osteopathic Medicine , East Lansing , MI 48825 , USA
| | - Lipeng Cai
- c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA.,c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
11
|
Bu Y, Wang N, Wang S, Sheng T, Tian T, Chen L, Pan W, Zhu M, Luo J, Lu W. Myosin IIb-dependent Regulation of Actin Dynamics Is Required for N-Methyl-D-aspartate Receptor Trafficking during Synaptic Plasticity. J Biol Chem 2015; 290:25395-410. [PMID: 26330558 DOI: 10.1074/jbc.m115.644229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 12/21/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR) synaptic incorporation changes the number of NMDARs at synapses and is thus critical to various NMDAR-dependent brain functions. To date, the molecules involved in NMDAR trafficking and the underlying mechanisms are poorly understood. Here, we report that myosin IIb is an essential molecule in NMDAR synaptic incorporation during PKC- or θ burst stimulation-induced synaptic plasticity. Moreover, we demonstrate that myosin light chain kinase (MLCK)-dependent actin reorganization contributes to NMDAR trafficking. The findings from additional mutual occlusion experiments demonstrate that PKC and MLCK share a common signaling pathway in NMDAR-mediated synaptic regulation. Because myosin IIb is the primary substrate of MLCK and can regulate actin dynamics during synaptic plasticity, we propose that the MLCK- and myosin IIb-dependent regulation of actin dynamics is required for NMDAR trafficking during synaptic plasticity. This study provides important insights into a mechanical framework for understanding NMDAR trafficking associated with synaptic plasticity.
Collapse
Affiliation(s)
- Yunfei Bu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Ning Wang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Shaoli Wang
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Tao Sheng
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China
| | - Tian Tian
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Linlin Chen
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Weiwei Pan
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Minsheng Zhu
- the Key Laboratory of Model Animal for Disease Study of the Ministry of Education of China, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu Province 210063, China, and
| | - Jianhong Luo
- the Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Wei Lu
- From the Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China, the Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu Province 210096, China, the Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China,
| |
Collapse
|
12
|
Hahn J, Wang X, Margeta M. Astrocytes increase the activity of synaptic GluN2B NMDA receptors. Front Cell Neurosci 2015; 9:117. [PMID: 25941471 PMCID: PMC4400914 DOI: 10.3389/fncel.2015.00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/15/2015] [Indexed: 11/13/2022] Open
Abstract
Astrocytes regulate excitatory synapse formation and surface expression of glutamate AMPA receptors (AMPARs) during development. Less is known about glial modulation of glutamate NMDA receptors (NMDARs), which mediate synaptic plasticity and regulate neuronal survival in a subunit- and subcellular localization-dependent manner. Using primary hippocampal cultures with mature synapses, we found that the density of NMDA-evoked whole-cell currents was approximately twice as large in neurons cultured in the presence of glia compared to neurons cultured alone. The glial effect was mediated by (an) astrocyte-secreted soluble factor(s), was Mg(2+) and voltage independent, and could not be explained by a significant change in the synaptic density. Instead, we found that the peak amplitudes of total and NMDAR miniature excitatory postsynaptic currents (mEPSCs), but not AMPAR mEPSCs, were significantly larger in mixed than neuronal cultures, resulting in a decreased synaptic AMPAR/NMDAR ratio. Astrocytic modulation was restricted to synaptic NMDARs that contain the GluN2B subunit, did not involve an increase in the cell surface expression of NMDAR subunits, and was mediated by protein kinase C (PKC). Taken together, our findings indicate that astrocyte-secreted soluble factor(s) can fine-tune synaptic NMDAR activity through the PKC-mediated regulation of GluN2B NMDAR channels already localized at postsynaptic sites, presumably on a rapid time scale. Given that physiologic activation of synaptic NMDARs is neuroprotective and that an increase in the synaptic GluN2B current is associated with improved learning and memory, the astrocyte-induced potentiation of synaptic GluN2B receptor activity is likely to enhance cognitive function while simultaneously strengthening neuroprotective signaling pathways.
Collapse
Affiliation(s)
- Junghyun Hahn
- Department of Pathology, University of California San Francisco San Francisco, CA, USA
| | - Xianhong Wang
- Department of Pathology, University of California San Francisco San Francisco, CA, USA
| | - Marta Margeta
- Department of Pathology, University of California San Francisco San Francisco, CA, USA
| |
Collapse
|
13
|
Coupling of serotonergic input to NMDA receptor-phosphorylation following peripheral nerve injury via rapid, synaptic up-regulation of ND2. Exp Neurol 2014; 255:86-95. [DOI: 10.1016/j.expneurol.2014.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
|
14
|
Recent progress in understanding subtype specific regulation of NMDA receptors by G Protein Coupled Receptors (GPCRs). Int J Mol Sci 2014; 15:3003-24. [PMID: 24562329 PMCID: PMC3958896 DOI: 10.3390/ijms15023003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/30/2013] [Accepted: 02/12/2014] [Indexed: 12/24/2022] Open
Abstract
G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity.
Collapse
|
15
|
Reneau J, Reyland ME, Popp RL. Acute ethanol exposure prevents PMA-mediated augmentation of N-methyl-D-aspartate receptor function in primary cultured cerebellar granule cells. Alcohol 2011; 45:595-605. [PMID: 21624785 DOI: 10.1016/j.alcohol.2011.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/06/2023]
Abstract
Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-D-aspartate receptors (NMDARs). One putative protein is the serine/threonine kinase, protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (I(NMDA)) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50, or 100 mM ethanol of NMDA-induced steady-state current amplitudes (I(SS)) or peak current amplitudes (I(Pk)) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37°C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of I(Pk) in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol coapplied with agonists, and this suppression of enhanced receptor function was observed for up to 8 min post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of I(NMDA) of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50, and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of I(NMDA) may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved.
Collapse
|
16
|
Xu M, Smothers CT, Woodward JJ. Effects of ethanol on phosphorylation site mutants of recombinant N-methyl-D-aspartate receptors. Alcohol 2011; 45:373-80. [PMID: 21163614 DOI: 10.1016/j.alcohol.2010.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by the neurotransmitter glutamate. These channels are highly expressed by brain neurons and are critically involved in excitatory synaptic transmission. Results from previous studies show that both native and recombinant NMDA receptors are inhibited by ethanol at concentrations associated with signs of behavioral impairment and intoxication. Given the important role that NMDA receptors play in synaptic transmission and brain function, it is important to understand the factors that regulate the ethanol inhibition of these receptors. One dynamic mechanism for regulating ethanol action may be via phosphorylation of NMDA subunits by serine-threonine and tyrosine kinases. Both NR1 and NR2 subunits contain multiple sites of phosphorylation; and in the NR1 subunit, most of these are contained within the C1 domain, a carboxy-terminal cassette that is subject to alternative splicing. Although results from our previous studies suggest that single phosphorylation sites do not greatly affect ethanol sensitivity of NMDA receptors, it is likely that in vivo, these subunits are phosphorylated at multiple sites by different kinases. In the present study, we constructed a series of NMDA receptor mutants at serine (S) or threonine (T) residues proposed to be sites of phosphorylation by protein kinase A and various isoforms of protein kinase C. Ethanol (100mM) inhibited currents from wild-type NR1/2A and NR1/2B receptors expressed in human embryonic kidney 293 cells by approximately 25 and 30%, respectively. This inhibition was not different in single-site mutants expressing alanine (A) or aspartate/glutamate (D/E) at positions T879, S896, or T900. The mutant NR1(S890D) showed greater ethanol inhibition than NR1(890A) containing receptors, although this was only observed when it was combined with the NR2A subunit. Ethanol inhibition was not altered by aspartate substitution at four serines (positions 889, 890, 896, and 897) or when T879D was added to the four serine-substituted mutant. Ethanol inhibition was increased when T900E was added to the five serine-/threonine-substituted mutants, but again this was selective for NR2A containing receptors. Together with previously published data, these findings suggest that modification of putative phosphorylation sites could contribute to the overall acute ethanol sensitivity of recombinant NMDA receptors. Supported by R37AA009986.
Collapse
|
17
|
Yan JZ, Xu Z, Ren SQ, Hu B, Yao W, Wang SH, Liu SY, Lu W. Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation. J Biol Chem 2011; 286:25187-200. [PMID: 21606495 DOI: 10.1074/jbc.m110.192708] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.
Collapse
Affiliation(s)
- Jing-Zhi Yan
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ryu HJ, Kim JE, Yeo SI, Kim DS, Kwon OS, Choi SY, Kang TC. Potential roles of D-serine and serine racemase in experimental temporal lobe epilepsy. J Neurosci Res 2010; 88:2469-82. [PMID: 20623543 DOI: 10.1002/jnr.22415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To confirm the roles of D-serinergic gliotransmission in epilepsy, we investigated the relationship between spatiotemporally specific glial responses and the D-serine/serine racemase system in mesial temporal structures following status epilepticus (SE). In control animals, D-serine and serine racemase immunoreactivities were detected mainly in astrocytes. After SE, D-serine and serine racemase immunoreactivities were increased in astrocytes. Double-immunofluorescence study revealed that up-regulation of serine racemase immunoreactivity was relevant not to D-serine immunoreactivity but to nestin or vimentin immunoreactivity. Neither D-serine nor serine racemase was found in naïve or reactive microglia. In addition, phosphorylated N-methyl-D-aspartate (NMDA) receptor subunit 1 (pNR1-Ser896) immunoreactivity in the hippocampus was increased compared with controls. Increased D-serine immunoreactivity showed direct correlation with the phosphorylation of Ser896 of NR1. Given the findings of our previous study, these findings suggest that D-serine and serine racemase in astrocytes may play roles in neuronal hyperexcitability via a cooperative activation of NMDA receptors. Furthermore, serine racemase may be involved in migration and differentiation of immature astrocytes, which is relevant to reactive astrogliosis.
Collapse
Affiliation(s)
- H J Ryu
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Daulhac L, Maffre V, Mallet C, Etienne M, Privat AM, Kowalski-Chauvel A, Seva C, Fialip J, Eschalier A. Phosphorylation of spinal N-methyl-d-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. Eur J Pain 2010; 15:169.e1-169.e12. [PMID: 20594879 DOI: 10.1016/j.ejpain.2010.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/10/2010] [Accepted: 06/01/2010] [Indexed: 01/15/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) contributes to central sensitization in the spinal cord, a phenomenon which comprises various pathophysiological mechanisms responsible for neuropathic pain-like signs in animal models. NMDAR function is modulated by post-translational modifications including phosphorylation, and this is proposed to underlie its involvement in the production of pain hypersensitivity. As in diabetic patients, streptozotocin-induced diabetic rats exhibit or not somatic mechanical hyperalgesia; these rats were named DH and DNH respectively. At three weeks of diabetes, we present evidence that somatic mechanical hyperalgesia was correlated with an enhanced phosphorylation of the NMDAR NR1 subunit (pNR1) in the rat spinal cord. This increase was not found in normal and DNH rats, suggesting that this regulation was specific to hyperalgesia. Double immunofluorescence studies revealed that the numbers of pNR1-immunoreactive neurons and microglial cells were significantly increased in all laminae (I-II and III-VI) of the dorsal horn from DH animals. Western-blots analysis showed no change in NR1 protein levels, whatever the behavioural and glycemic status of the animals. Chronic intrathecal treatment (5μg/rat/day for 7days) by U0126 and MK801, which blocked MEK (an upstream kinase of extracellular signal-regulated protein kinase: ERK) and the NMDAR respectively, simultaneously suppressed somatic mechanical hyperalgesia developed by diabetic rats and decreased pNR1. These results indicate for the first time that increased expression of pNR1 is regulated by ERK and the NMDAR via a feedforward mechanism in spinal neurons and microglia and represents one mechanism involved in central sensitization and somatic mechanical hyperalgesia after diabetes.
Collapse
Affiliation(s)
- Laurence Daulhac
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, Laboratoire de Pharmacologie, Faculté de Pharmacie, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Recio-Pinto E, Castillo C. Peripheral N-methyl-D-aspartate receptors as possible targets for chronic pain treatment. ACTA ACUST UNITED AC 2010. [DOI: 10.1053/j.trap.2010.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Sasabe T, Ishiura S. Alcoholism and alternative splicing of candidate genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1448-66. [PMID: 20617039 PMCID: PMC2872348 DOI: 10.3390/ijerph7041448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.
Collapse
Affiliation(s)
- Toshikazu Sasabe
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
22
|
SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci 2010; 30:242-54. [PMID: 20053906 DOI: 10.1523/jneurosci.4933-08.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein kinase C (PKC) enhances NMDA receptor (NMDAR)-mediated currents and promotes NMDAR delivery to the cell surface via SNARE-dependent exocytosis. Although the mechanisms of PKC potentiation are established, the molecular target of PKC is unclear. Here we show that synaptosomal-associated protein of 25 kDa (SNAP-25), a SNARE protein, is functionally relevant to PKC-dependent NMDAR insertion, and identify serine residue-187 as the molecular target of PKC phosphorylation. Constitutively active PKC delivered via the patch pipette potentiated NMDA (but not AMPA) whole-cell currents in hippocampal neurons. Expression of RNAi targeting SNAP-25 or mutant SNAP-25(S187A) and/or acute disruption of the SNARE complex by treatment with BoNT A, BoNT B or SNAP-25 C-terminal blocking peptide abolished NMDAR potentiation. A SNAP-25 peptide and function-blocking antibody suppressed PKC potentiation of NMDA EPSCs at mossy fiber-CA3 synapses. These findings identify SNAP-25 as the target of PKC phosphorylation critical to PKC-dependent incorporation of synaptic NMDARs and document a postsynaptic action of this major SNARE protein relevant to synaptic plasticity.
Collapse
|
23
|
Reneau JC, Reyland ME, Phillips J, Kindy C, Popp RL. Phorbol 12-myristate 13-acetate potentiation of N-methyl-D-aspartate-induced currents in primary cultured cerebellar granule cells is mediated by protein kinase C alpha. J Pharmacol Exp Ther 2009; 330:641-9. [PMID: 19429793 PMCID: PMC2713095 DOI: 10.1124/jpet.109.153163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/07/2009] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) results in potentiation of N-methyl-D-aspartate-induced currents (I(NMDA))of receptors contained in primary cultured cerebellar granule cells (CGCs). The purpose of this study was to identify which PKC isoform(s) was responsible for this effect by using the whole-cell patch-clamp technique. Experiments were conducted on CGCs that expressed both the NR2A and NR2B NMDA receptor subunits as well as the PMA-sensitive PKC isoforms alpha, betaI, betaII, delta, epsilon, gamma, and . As observed previously, N-methyl-D-aspartate-induced peak currents (I(Pk)) were enhanced by a 12.5-min, 100 nM PMA exposure at 37 degrees C under normal recording conditions. Potentiation of receptor function was not observed when extracellular Ca(2+) was removed and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid was present inside the cell. PMA-induced potentiation of I(Pk) did not occur when PKCalpha-specific antibody was introduced into the cell via the recording electrode. However, in similar experiments with antibodies specific for PKCbetaII, delta, epsilon, gamma, and , PMA potentiation of I(Pk) was observed. Down-regulation of PMA-sensitive PKC isoforms by an overnight exposure of 100 nM PMA resulted in lack of potentiation by PMA that was rescued when catalytically active PKCalpha was introduced into the cell via the patch electrode. PMA potentiation of I(Pk) was not recovered when catalytically active PKCbetaI, PKCbetaII, or PKCgamma was introduced into the cell via the patch electrode. Collectively, our data provide strong evidence that PMA-enhanced function of native NMDA receptors expressed in primary cultured CGCs is mediated by activation of PKCalpha.
Collapse
Affiliation(s)
- Jason C Reneau
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, STOP 6592, Lubbock, Texas 79430, USA
| | | | | | | | | |
Collapse
|
24
|
Ferraiuolo L, De Bono JP, Heath PR, Holden H, Kasher P, Channon KM, Kirby J, Shaw PJ. Transcriptional response of the neuromuscular system to exercise training and potential implications for ALS. J Neurochem 2009; 109:1714-24. [PMID: 19344372 DOI: 10.1111/j.1471-4159.2009.06080.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcriptional adaptive response of motoneurons and muscles to voluntary exercise has been investigated by using laser capture microdissection and microarray analysis. Our results show that motoneurons respond to physical activity by activating a complex transcriptional plan, with changes involved in neurotrophic factor signalling, electrophysiological changes and synaptic reorganization. Gastrocnemius muscle shows increases in transcripts responsible for neovascularization and new myogenesis. Both tissues show transcriptional changes involved in the growth and reinforcement of the neuromuscular junction. This study indicates that the neuromuscular system undergoes significant structural and functional alterations, aiming to optimize the transmission of both chemical and electrical stimuli, thus prompting axonal outgrowth and mechanisms similar to long-term potentiation in hippocampal neurons. Understanding the response of these cells during exercise has potentially important implications for human neuromuscular disease, including amyotrophic lateral sclerosis, by highlighting candidate genes pivotal for the balance between the physiology and the pathology of the neuromuscular system in terms of the stress response to physical exercise.
Collapse
Affiliation(s)
- Laura Ferraiuolo
- Academic Neurology Unit, Department of Neuroscience, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Different mechanisms of NMDA-mediated protection against neuronal apoptosis: a stimuli-dependent effect. Neurochem Res 2009; 34:2040-54. [PMID: 19462233 DOI: 10.1007/s11064-009-9991-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/06/2009] [Indexed: 01/11/2023]
Abstract
The mechanisms of protective effect of N-methyl-D-aspartate (NMDA) receptor stimulation on apoptosis of neurons at their early stage of development are poorly understood. In the present study, we investigated the effects of NMDA on staurosporine (St)- and low-potassium (LP)-evoked apoptotic cell death in primary cerebellar granule cell (CGC) cultures at 7 days in vitro (DIV). We found that NMDA (200 microM) attenuated the St (0.5 microM)- and LP (5 mM KCl)-induced neuronal cell death in 7 but not 12 DIV CGC as confirmed by LDH release and MTT reduction assays. Moreover, NMDA attenuated St-and LP-evoked DNA fragmentation and cytosolic apoptosis inducing factor (AIF) protein level but not caspase-3 activation induced by both pro-apoptotic factors. Neuroprotective effects of NMDA on St-induced apoptosis in CGC were attenuated by inhibitors of ERK/MAPK-signaling, PD 98059 and U0126 but not by NMDA receptor antagonists, AP-5 (100 microM) and MK-801 (1 microM) or by inhibitors of PI3-K/Akt pathway (LY 294002 and wortmannin). In contrast to staurosporine model of apoptosis, AP-5 and MK-801 but not inhibitors of PI3-K/Akt and MAPK/ERK1/2 prevented the NMDA-mediated neuroprotection in LP-induced apoptosis of CGC. In separate experiments, we observed also the anti-apoptotic action of NMDA on St (0.5 microM)- and salsolinol (250 microM)-evoked cell death in human neuroblastoma SH-SY5Y cells without its influence on caspase-3 activity, induced by these pro-apoptotic factors. These data indicate that neuroprotection evoked by NMDA in CGC strongly depends on used pro-apoptotic agent and could engage NMDA channel function or be connected with the activation of pro-survival MAPK/ERK1/2 pathway. It is also suggested that anti-apoptotic effects of NMDA is connected with inhibition of fragmentation of DNA via caspase-3-independent mechanism.
Collapse
|
26
|
Petrovic M, Sedlacek M, Cais O, Horak M, Chodounska H, Vyklicky L. Pregnenolone sulfate modulation of N-methyl-D-aspartate receptors is phosphorylation dependent. Neuroscience 2009; 160:616-28. [PMID: 19272423 DOI: 10.1016/j.neuroscience.2009.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/24/2022]
Abstract
Pregnenolone sulfate (PS), an endogenously occurring neurosteroid, has been shown to modulate the activity of several neurotransmitter-gated channels, including the N-methyl-D-aspartate receptor (NMDAR). NMDARs are glutamate-gated ion channels involved in excitatory synaptic transmission, synaptic plasticity, and excitotoxicity. To determine the mechanism that controls PS sensitivity of NMDARs, we measured NMDAR responses induced by exogenous agonist application in voltage-clamped HEK293 cells expressing NR1/NR2B NMDARs and cultured rat hippocampal neurons. We report that PS potentiates the amplitude of whole-cell recorded NMDAR responses in cultured hippocampal neurons and HEK293 cells; however, the potentiating effect of PS on NMDAR in outside-out patches isolated from cultured hippocampal neurons and HEK293 cells was lost within 2 min after patch isolation in a neurosteroid-specific manner. The rate of diminution of the PS potentiating effect was slowed by protein phosphatase inhibitors. Treatment of cultured hippocampal neurons with a nonspecific protein kinase inhibitor and a specific protein kinase A (PKA) inhibitor diminished PS-induced potentiation, which was recovered by adding a PKA, but not a protein kinase C (PKC), activator. These results suggest that the effect of PS on NMDARs is controlled by cellular mechanisms that are mediated by dephosphorylation/phosphorylation pathways.
Collapse
Affiliation(s)
- M Petrovic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska, Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Activation of protein kinase C enhances NMDA-induced currents in primary cultured cerebellar granule cells: Effect of temperature and NMDA NR2 subunit composition. Eur J Pharmacol 2008; 599:1-10. [DOI: 10.1016/j.ejphar.2008.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/28/2008] [Accepted: 08/08/2008] [Indexed: 11/23/2022]
|
28
|
Schumann J, Michaeli A, Yaka R. Src-protein tyrosine kinases are required for cocaine-induced increase in the expression and function of the NMDA receptor in the ventral tegmental area. J Neurochem 2008; 108:697-706. [PMID: 19046409 DOI: 10.1111/j.1471-4159.2008.05794.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine-induced long-term potentiation of glutamatergic synapses in the ventral tegmental area (VTA) has been proposed as a key process that contributes to the development of addictive behaviors. In particular, the activation of ionotrophic glutamate NMDA receptor (NMDAR) in the VTA is critical for the initiation of cocaine sensitization. Here we show that application of cocaine both in slices and in vivo induced an increase in tyrosine phosphorylation of the NR2A, but not the NR2B subunit of the NMDAR in juvenile rats. Cocaine induced an increase in the activity of both Fyn and Src kinases, and the Src-protein tyrosine kinase (Src-PTKs) inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), abolished both cocaine-induced increase in tyrosine phosphorylation of the NR2A subunit and the increase in the expression of NR1, NR2A, and NR2B in the VTA. Moreover, cocaine-induced enhancement in NMDAR-mediated excitatory post-synaptic currents was completely abolished by PP2. Taken together, these results suggest that acute cocaine induced an increase in the expression of NMDAR subunits and enhanced tyrosine phosphorylation of NR2A-containing NMDAR through members of the Src-PTKs. This in turn, increased NMDAR-mediated currents in VTA dopamine neurons. These results provide a potential cellular mechanism by which cocaine triggers NMDAR-dependent synaptic plasticity of VTA neurons that may underlie the development of behavioral sensitization.
Collapse
Affiliation(s)
- Johanna Schumann
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
29
|
Horak M, Al-Hallaq RA, Chang K, Wenthold RJ. Role of the fourth membrane domain of the NR2B subunit in the assembly of the NMDA receptor. Channels (Austin) 2008; 2:159-60. [PMID: 18836292 DOI: 10.4161/chan.2.3.6188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play crucial roles in excitatory synaptic transmission as well as in excitotoxicity. A growing body of evidence suggests that the regulation of both subunit composition and the number of NMDA receptors reaching the surface membrane are tightly regulated. Recently, we have shown that the third membrane domains (M3) of both NR1 and NR2B subunits contain endoplasmic reticulum (ER) retention signals that prevent the unassembled subunits from leaving the ER. Furthermore, these membrane domains together with NR1 M4 are necessary for negating the ER retention signals found in M3 of NR1 and NR2B. In this addendum, we present new electrophysiological data showing that mutation of the HLFY motif, located immediately after M4 of the NR2B subunit, abolishes the surface trafficking of full-length NR1/NR2B complexes (supporting previous immunofluorescent experiments from our lab); however, the deletion of the NR2B C-terminus including the HLFY motif did not affect the formation of functional receptors when two pieces of the NR2B subunit, NR2B truncated before M4 and NR2B M4, were co-expressed together with the NR1 subunit. These observations will help to uncover the processes involved in the assembly of NR1 and NR2 subunits into functional NMDA receptors.
Collapse
Affiliation(s)
- Martin Horak
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
30
|
Masking of the endoplasmic reticulum retention signals during assembly of the NMDA receptor. J Neurosci 2008; 28:3500-9. [PMID: 18367616 DOI: 10.1523/jneurosci.5239-07.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors are glutamate-gated ion channels that play important roles in synaptic transmission and excitotoxicity. The functional NMDA receptor is thought to be a heterotetramer composed mainly of two NR1 and two NR2 subunits. Although it is generally accepted that only correctly assembled NMDA receptors can pass the ER quality control, the mechanism underlying this process is not well understood. Using truncated and chimeric NMDA receptor subunits expressed in heterologous cells and cortical neurons, we found that the third membrane domains (M3) of both NR1 and NR2B contain signals that cause the unassembled subunits to be retained in the ER. M3 of both NR1 and NR2B and, M4 of NR1, are necessary for masking ER retention signals found in M3. Thus, our data reveal a critical role of the membrane domains in the assembly of functional NMDA receptors.
Collapse
|
31
|
Spatiotemporal patterns of SSeCKS expression after rat spinal cord injury. Neurochem Res 2008; 33:1735-48. [PMID: 18307037 DOI: 10.1007/s11064-008-9617-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
Src suppressed C kinase substrate (SSeCKS) was identified as a PKC substrate/PKC-binding protein, which plays a role in mitogenic regulatory activity and has a function in the control of cell signaling and cytoskeletal arrangement. However its distribution and function in the central nervous system (CNS) lesion remain unclear. In this study, we mainly investigated the mRNA and protein expression and cellular localization of SSeCKS during spinal cord injury (SCI). Real-time PCR and Western blot analysis revealed that SSeCKS was present in normal whole spinal cord. It gradually increased, reached a peak at 3 days for its mRNA level and 5 days for its protein level after SCI, and then declined during the following days. In ventral horn, the expression of SSeCKS underwent a temporal pattern that was similar with the whole spinal cord in both mRNA and protein level. However, in dorsal horn, the mRNA and protein for SSeCKS expression were significantly increased at 1 day for its mRNA level and 3 days for its protein level, and then gradually declined to the baseline level, ultimately up-regulated again from 7 to 14 days. The protein expression of SSeCKS was further analysed by immunohistochemistry. The positively stained areas for SSeCKS changed with the similar pattern to that of protein expression detected by immunoblotting analysis. Double immunofluorescence staining showed that SSeCKS immunoreactivity (IR) was found in neurons, astrocytes, oligodendrocytes of spinal cord tissues within 5 mm from the lesion site. Importantly, injury-induced expression of SSeCKS was co-labeled by active caspase-3 (apoptotic marker), Tau-1 (the marker for pathological oligodendrocyte) and beta-1,4-galactosyltransferase 1 (GalT). All the results suggested that SSeCKS might play important roles in spinal cord pathophysiology and further research is needed to have a good understanding of its function and mechanism.
Collapse
|
32
|
The NMDA receptor NR1 C1 region bound to calmodulin: structural insights into functional differences between homologous domains. Structure 2008; 15:1603-17. [PMID: 18073110 DOI: 10.1016/j.str.2007.10.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 10/01/2007] [Accepted: 10/05/2007] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) regulates tetrameric N-methyl-D-aspartate receptors (NMDARs) by binding tightly to the C0 and C1 regions of its NR1 subunit. A crystal structure (2HQW; 1.96 A) of calcium-saturated CaM bound to NR1C1 (peptide spanning 875-898) showed that NR1 S890, whose phosphorylation regulates membrane localization, was solvent protected, whereas the endoplasmic reticulum retention motif was solvent exposed. NR1 F880 filled the CaM C-domain pocket, whereas T886 was closest to the N-domain pocket. This 1-7 pattern was most similar to that in the CaM-MARCKS complex. Comparison of CaM-ligand wrap-around conformations identified a core tetrad of CaM C-domain residues (FLMM(C)) that contacted all ligands consistently. An identical tetrad of N-domain residues (FLMM(N)) made variable sets of contacts with ligands. This CaM-NR1C1 structure provides a foundation for designing mutants to test the role of CaM in NR1 trafficking as well as insights into how the homologous CaM domains have different roles in molecular recognition.
Collapse
|
33
|
Miraucourt LS, Dallel R, Voisin DL. Glycine inhibitory dysfunction turns touch into pain through PKCgamma interneurons. PLoS One 2007; 2:e1116. [PMID: 17987109 PMCID: PMC2043493 DOI: 10.1371/journal.pone.0001116] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 10/09/2007] [Indexed: 11/19/2022] Open
Abstract
Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. During tactile allodynia, activation of the sensory fibers which normally detect touch elicits pain. Here we provide a new behavioral investigation into the dynamic component of tactile allodynia that developed in rats after segmental removal of glycine inhibition. Using in vivo electrophysiological recordings, we show that in this condition innocuous mechanical stimuli could activate superficial dorsal horn nociceptive specific neurons. These neurons do not normally respond to touch. We anatomically show that the activation was mediated through a local circuit involving neurons expressing the gamma isoform of protein kinase C (PKCγ). Selective inhibition of PKCγ as well as selective blockade of glutamate NMDA receptors in the superficial dorsal horn prevented both activation of the circuit and allodynia. Thus, our data demonstrates that a normally inactive circuit in the dorsal horn can be recruited to convert touch into pain. It also provides evidence that glycine inhibitory dysfunction gates tactile input to nociceptive specific neurons through PKCγ-dependent activation of a local, excitatory, NMDA receptor-dependent, circuit. As a consequence of these findings, we suggest that pharmacological inhibition of PKCγ might provide a new tool for alleviating allodynia in the clinical setting.
Collapse
Affiliation(s)
- Loïs S. Miraucourt
- INSERM, E216, Clermont-Ferrand, F-63000 France
- Université Auvergne-Clermont1, Clermont-Ferrand, F-63000 France
- CHU Clermont-Ferrand, Clermont-Ferrand, F-63000 France
| | - Radhouane Dallel
- INSERM, E216, Clermont-Ferrand, F-63000 France
- Université Auvergne-Clermont1, Clermont-Ferrand, F-63000 France
- CHU Clermont-Ferrand, Clermont-Ferrand, F-63000 France
- * To whom correspondence should be addressed. E-mail: (RD); (DLV)
| | - Daniel L. Voisin
- INSERM, E216, Clermont-Ferrand, F-63000 France
- Université Auvergne-Clermont1, Clermont-Ferrand, F-63000 France
- CHU Clermont-Ferrand, Clermont-Ferrand, F-63000 France
- * To whom correspondence should be addressed. E-mail: (RD); (DLV)
| |
Collapse
|
34
|
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007; 8:413-26. [PMID: 17514195 DOI: 10.1038/nrn2153] [Citation(s) in RCA: 876] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number and subunit composition of synaptic N-methyl-D-aspartate receptors (NMDARs) are not static, but change in a cell- and synapse-specific manner during development and in response to neuronal activity and sensory experience. Neuronal activity drives not only NMDAR synaptic targeting and incorporation, but also receptor retrieval, differential sorting into the endosomal-lysosomal pathway and lateral diffusion between synaptic and extrasynaptic sites. An emerging concept is that activity-dependent, bidirectional regulation of NMDAR trafficking provides a dynamic and potentially powerful mechanism for the regulation of synaptic efficacy and remodelling, which, if dysregulated, can contribute to neuropsychiatric disorders such as cocaine addiction, Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- C Geoffrey Lau
- Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
35
|
Chen BS, Roche KW. Regulation of NMDA receptors by phosphorylation. Neuropharmacology 2007; 53:362-8. [PMID: 17644144 PMCID: PMC2001266 DOI: 10.1016/j.neuropharm.2007.05.018] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/21/2007] [Indexed: 11/18/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are critical for neuronal development and synaptic plasticity. The molecular mechanisms underlying the synaptic localization and functional regulation of NMDA receptors have been the subject of extensive studies. In particular, phosphorylation has emerged as a fundamental mechanism that regulates NMDA receptor trafficking and can alter the channel properties of NMDA receptors. Here we summarize recent advances in the characterization of NMDA receptor phosphorylation, emphasizing subunit-specific phosphorylation, which differentially controls the trafficking and surface expression of NMDA receptors.
Collapse
Affiliation(s)
- Bo-Shiun Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
36
|
Lin Y, Jover-Mengual T, Wong J, Bennett MVL, Zukin RS. PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating. Proc Natl Acad Sci U S A 2006; 103:19902-7. [PMID: 17179037 PMCID: PMC1750863 DOI: 10.1073/pnas.0609924104] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuronal NMDA receptors (NMDARs) colocalize with postsynaptic density protein-95 (PSD-95), a putative NMDAR anchoring protein and core component of the PSD, at excitatory synapses. PKC activation and PSD-95 expression each enhance NMDAR channel opening rate and number of functional channels at the cell surface. Here we show in Xenopus oocytes that PSD-95 and PKC potentiate NMDA gating and trafficking in a nonadditive manner. PSD-95 and PKC each enhance NMDA channel activity, with no change in single-channel conductance, reversal potential or mean open time. PSD-95 and PKC each potentiate NMDA channel opening rate (k(beta)) and number of functional channels at the cell surface (N), as indicated by more rapid current decay and enhanced charge transfer in the presence of the open channel blocker MK-801. PSD-95 and PKC each increase NMDAR surface expression, as indicated by immunofluorescence. PKC potentiates NMDA channel function and NMDAR surface expression to the same final absolute values in the absence or presence of PSD-95. Thus, PSD-95 partially occludes PKC potentiation. We further show that Ser-1462, a putative phosphorylation target within the PDZ-binding motif of the NR2A subunit, is required for PSD-95-induced potentiation and partial occlusion of PKC potentiation. Coimmunoprecipitation experiments with cortical neurons in culture indicate that PKC activation promotes assembly of NR2 with NR1, and that the newly assembled NMDARs are not associated with PSD-95. These findings predict that synaptic scaffolding proteins and protein kinases convergently modulate NMDAR gating and trafficking at synaptic sites.
Collapse
Affiliation(s)
- Ying Lin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Teresa Jover-Mengual
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Judy Wong
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Michael V. L. Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- *To whom correspondence may be addressed. E-mail:
or
| | - R. Suzanne Zukin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
37
|
Park JY, Kang HW, Moon HJ, Huh SU, Jeong SW, Soldatov NM, Lee JH. Activation of protein kinase C augments T-type Ca2+ channel activity without changing channel surface density. J Physiol 2006; 577:513-23. [PMID: 17008378 PMCID: PMC1890444 DOI: 10.1113/jphysiol.2006.117440] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 09/25/2006] [Indexed: 11/08/2022] Open
Abstract
T-type Ca2+ channels play essential roles in numerous cellular processes. Recently, we reported that phorbol-12-myristate-13-acetate (PMA) potently enhanced the current amplitude of Cav3.2 T-type channels reconstituted in Xenopus oocytes. Here, we have compared PMA modulation of the activities of Cav3.1, Cav3.2 and Cav3.3 channels, and have investigated the underlying mechanism. PMA augmented the current amplitudes of the three T-type channel isoforms, but the fold stimulations and time courses differed. The augmentation effects were not mimicked by 4alpha-PMA, an inactive stereoisomer of PMA, but were abolished by preincubation with protein kinase C (PKC) inhibitors, indicating that PMA augmented T-type channel currents via activation of oocyte PKC. The stimulation effect on Cav3.1 channel activity by PKC was mimicked by endothelin when endothelin receptor type A was coexpressed with Cav3.1 in the Xenopus oocyte system. Pharmacological studies combined with fluorescence imaging revealed that the surface density of Cav3.1 T-type channels was not significantly changed by activation of PKC. The PKC effect on Cav3.1 was localized to the cytoplasmic II-III loop using chimeric channels with individual cytoplasmic loops of Cav3.1 replaced by those of Cav2.1.
Collapse
Affiliation(s)
- Jin-Yong Park
- Department of Life Science, Sogang University, Shinsu-dong, Seoul 121-742, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
AIM N-methyl-D-aspartate receptors (NMDAR) are heteromeric complexes primarily assembled from NR1 and NR2 subunits. In normal conditions, NR2 subunits assemble into homodimers in the endoplasmic reticulum (ER). These homodimers remain in the ER until they coassemble with NR1 dimers and are trafficked to the cell surface. However, it still remains unclear whether functional homomeric NMDAR exist in physiological or pathological conditions. METHODS We transfected GFP-NR2A alone into HEK293 cells, treated the cells with PKC activator 12-myristate-13 acetate (PMA), and then detected surface NR2A subunits with a live cell immunostaining method. We also used a series of NR2A mutants with a partial deletion of its C-terminus to identify the regions that are involved in the PMA-mediated surface expression of NR2A subunits. RESULTS NR2A subunits were expressed on the cell membrane after incubation with PMA (200 nmol/L, 30 min), although no functional NMDA channels were detected after PMA-induced membrane trafficking. Immunostaining with an ER marker also revealed that NR2A subunits were exported from the ER after PMA treatment. Furthermore, the deletion of amino acids between 1149-1347 or 1354-1464 of NR2A inhibited PMA-induced surface expression of NR2A subunits. CONCLUSION First, our data suggests that PMA treatment can induce the surface expression of homomeric NR2A subunits. Furthermore, this process is probably mediated by the NR2A C-terminal region between positions 1149 and 1464.
Collapse
Affiliation(s)
- Chan-ying Zheng
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310031, China
| | | | | | | |
Collapse
|
39
|
Abstract
A number of neuronal functions, including synaptic plasticity, depend on proper regulation of synaptic proteins, many of which can be rapidly regulated by phosphorylation. Neuronal activity controls the function of these synaptic proteins by exquisitely regulating the balance of various protein kinase and protein phosphatase activity. Recent understanding of synaptic plasticity mechanisms underscores important roles that these synaptic phosphoproteins play in regulating both pre- and post-synaptic functions. This review will focus on key postsynaptic phosphoproteins that have been implicated to play a role in synaptic plasticity.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- Department of Biology, Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
40
|
Jantas-Skotniczna D, Kajta M, Lasoń W. Memantine attenuates staurosporine-induced activation of caspase-3 and LDH release in mouse primary neuronal cultures. Brain Res 2006; 1069:145-53. [PMID: 16386235 DOI: 10.1016/j.brainres.2005.11.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 01/19/2023]
Abstract
Developmental aspects of pro- and antiapoptotic action of some NMDA receptor antagonists in the central nervous system have been postulated. In order to further elucidate this problem, we investigated effect of memantine, an uncompetitive NMDA receptor antagonist and staurosporine alone and in combination on caspase-3 activity and lactate dehydrogenase (LDH) release in primary hippocampal, neocortical and striatal cell cultures on 7 and 12 days in vitro. The data showed that the vulnerability of neuronal cells to induction of caspase-3 activity by staurosporine was higher on 7 DIV than on 12 DIV, whereas staurosporine-mediated LDH release increased with days in vitro in striatal culture only. A specific inhibitor of caspase-3, AcDEVDCHO (60 microM), completely abolished the effect of staurosporine on this enzyme's activity, but only partially attenuated staurosporine-induced LDH release in hippocampal cells. Memantine alone (0.05-2.0 microM) did not induce any cytotoxic effect but attenuated the staurosporine-induced caspase-3 activity and LDH release in hippocampal cultured neurons on each investigated day in vitro. In striatal culture, memantine had a moderate inhibitory effect on staurosporine-evoked LDH release only on 7 DIV with no significant influence on caspase-3 activity. As for neocortical cultures, memantine partially inhibited staurosporine-induced neuronal injury only on 7 DIV. These data showed that the induction of caspase-3 activity by staurosporine was more profound in immature cells, however, the staurosporine neurotoxicity, as reflected by LDH release, only partially depended on caspase-3 activation and stage of cell development. Furthermore, memantine attenuated staurosporine-induced apoptosis more efficiently in hippocampal cultures than in neocortical and striatal ones, which points to tissue specificity of effects of this neuroprotectant.
Collapse
Affiliation(s)
- Danuta Jantas-Skotniczna
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | | | | |
Collapse
|
41
|
Abstract
Background and Purpose—
Stroke is a leading cause of disability and death in the United States, yet limited therapeutic options exist. The need for novel neuroprotective agents has spurred efforts to understand the intracellular signaling pathways that mediate cellular response to stroke. Protein kinase C (PKC) plays a central role in mediating ischemic and reperfusion damage in multiple tissues, including the brain. However, because of conflicting reports, it remains unclear whether PKC is involved in cell survival signaling, or mediates detrimental processes.
Summary of Review—
This review will examine the role of PKC activity in stroke. In particular, we will focus on more recent insights into the PKC isozyme-specific responses in neuronal preconditioning and in ischemia and reperfusion-induced stress.
Conclusion—
Examination of PKC isozyme activities during stroke demonstrates the clinical promise of PKC isozyme-specific modulators for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Rachel Bright
- Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
42
|
Toscano CD, Guilarte TR. Lead neurotoxicity: From exposure to molecular effects. ACTA ACUST UNITED AC 2005; 49:529-54. [PMID: 16269318 DOI: 10.1016/j.brainresrev.2005.02.004] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 02/11/2005] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
The effects of lead (Pb(2+)) on human health have been recognized since antiquity. However, it was not until the 1970s that seminal epidemiological studies provided evidence on the effects of Pb(2+) intoxication on cognitive function in children. During the last two decades, advances in behavioral, cellular and molecular neuroscience have provided the necessary experimental tools to begin deciphering the many and complex effects of Pb(2+) on neuronal processes and cell types that are essential for synaptic plasticity and learning and memory in the mammalian brain. In this review, we concentrate our efforts on the effects of Pb(2+) on glutamatergic synapses and specifically on the accumulating evidence that the N-methyl-D-aspartate type of excitatory amino acid receptor (NMDAR) is a direct target for Pb(2+) effects in the brain. Our working hypothesis is that disruption of the ontogenetically defined pattern of NMDAR subunit expression and NMDAR-mediated calcium signaling in glutamatergic synapses is a principal mechanism for Pb(2+)-induced deficits in synaptic plasticity and in learning and memory documented in animal models of Pb(2+) neurotoxicity. We provide an introductory overview of the magnitude of the problem of Pb(2+) exposure to bring forth the reality that childhood Pb(2+) intoxication remains a major public health problem not only in the United States but worldwide. Finally, the latest research offers some hope that the devastating effects of childhood Pb(2+) intoxication in a child's ability to learn may be reversible if the appropriate stimulatory environment is provided.
Collapse
MESH Headings
- Animals
- Child
- Humans
- Lead/toxicity
- Lead Poisoning, Nervous System/metabolism
- Lead Poisoning, Nervous System/pathology
- Lead Poisoning, Nervous System/psychology
- Lead Poisoning, Nervous System, Childhood/epidemiology
- Lead Poisoning, Nervous System, Childhood/metabolism
- Lead Poisoning, Nervous System, Childhood/pathology
- Lead Poisoning, Nervous System, Childhood/psychology
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Christopher D Toscano
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | |
Collapse
|
43
|
Zhang GR, Wang X, Kong L, Lu XG, Lee B, Liu M, Sun M, Franklin C, Cook RG, Geller AI. Genetic enhancement of visual learning by activation of protein kinase C pathways in small groups of rat cortical neurons. J Neurosci 2005; 25:8468-81. [PMID: 16162929 PMCID: PMC2581869 DOI: 10.1523/jneurosci.2271-05.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 07/10/2005] [Accepted: 07/11/2005] [Indexed: 11/21/2022] Open
Abstract
Although learning and memory theories hypothesize that memories are encoded by specific circuits, it has proven difficult to localize learning within a cortical area. Neural network theories predict that activation of a small fraction of the neurons in a circuit can activate that circuit. Consequently, altering the physiology of a small group of neurons might potentiate a specific circuit and enhance learning, thereby localizing learning to that circuit. In this study, we activated protein kinase C (PKC) pathways in small groups of neurons in rat postrhinal (POR) cortex. We microinjected helper virus-free herpes simplex virus vectors that expressed a constitutively active PKC into POR cortex. This PKC was expressed predominantly in glutamatergic and GABAergic neurons in POR cortex. This intervention increased phosphorylation of five PKC substrates that play critical roles in neurotransmitter release (GAP-43 and dynamin) or glutamatergic neurotransmission (specific subunits of AMPA or NMDA receptors and myristoylated alanine-rich C kinase substrate). Additionally, activation of PKC pathways in cultured cortical neurons supported activation-dependent increases in release of glutamate and GABA. This intervention enhanced the learning rate and accuracy of visual object discriminations. In individual rats, the numbers of transfected neurons positively correlated with this learning. During learning, neuronal activity was increased in neurons proximal to the transfected neurons. These results demonstrate that potentiating small groups of glutamatergic and GABAergic neurons in POR cortex enhances visual object learning. More generally, these results suggest that learning can be mediated by specific cortical circuits.
Collapse
Affiliation(s)
- Guo-Rong Zhang
- Department of Neurology, West Roxbury Veterans Affairs Hospital, Harvard Medical School, West Roxbury, Massachusetts 02132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vij S, Vannucci SJ, Gurd JW. Differential effects of hypoxia-ischemia on phosphorylation of the N-methyl-D-aspartate receptor in one- and three-week-old rats. Dev Neurosci 2005; 27:211-9. [PMID: 16046856 DOI: 10.1159/000085994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/21/2004] [Indexed: 12/31/2022] Open
Abstract
The effects of transient cerebral hypoxia-ischemia (HI) on phosphorylation of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor were investigated in 7 (P7)- and 21 (P21)-day-old rats. Unilateral HI was induced by ligation of the right common carotid artery and exposure to 8% O(2)/92% N(2) for 120 (P7) or 90 (P21) min. Phosphorylation by protein kinase A (PKA; S897) and PKC (S896 and S890) was depressed in the ipsilateral hemisphere relative to both naïve controls and the contralateral hemisphere immediately following HI at both ages. At P7, but not P21, reperfusion resulted in an initial recovery to control phosphorylation levels at all 3 sites followed by a secondary decline. At both ages, pS896 was less than control values after 24 h of recovery, whereas pS890 had returned to control levels by this time. pS897 recovered to control levels by 24 h in P21 animals but not in P7 animals. Differential effects of HI on phosphorylation of the NMDA receptor at P7 and P21 may contribute to age-related changes in sensitivity to HI.
Collapse
Affiliation(s)
- Shilpa Vij
- Center for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Toronto, Canada
| | | | | |
Collapse
|
45
|
Huang KP, Huang FL, Jäger T, Li J, Reymann KG, Balschun D. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci 2005; 24:10660-9. [PMID: 15564582 PMCID: PMC6730132 DOI: 10.1523/jneurosci.2213-04.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In neurons, neurogranin (Ng) binds calmodulin (CaM), and its binding affinity is reduced by increasing Ca2+, phosphorylation by PKC, or oxidation by oxidants. Ng concentration in the hippocampus of adult mice varied broadly (Ng+/+, 160-370 and Ng+/-, approximately 70-230 pmol/mg); the level in Ng+/+ mice is one of the highest among all neuronal CaM-binding proteins. Among Ng+/- mice, but less apparent in Ng+/+, a significant relationship existed between their hippocampal levels of Ng and performances in the Morris water maze. Ng-/- mice performed poorly in this task; they also displayed deficits in high-frequency-induced long-term potentiation (LTP) in area CA1 of hippocampal slices, whereas low-frequency-induced long-term depression was enhanced. Thus, compared with Ng+/+ mice, the frequency-response curve of Ng-/- shifted to the right. Paired-pulse facilitation and synaptic fatigue during prolonged stimulation at 10 Hz (900 pulses) were unchanged in Ng-/- slices, indicating their normal presynaptic function. Measurements of Ca2+ transients in CA1 pyramidal neurons after weak and strong tetanic stimulations (100 Hz, 400 and 1000 msec, respectively) revealed a significantly greater intracellular Ca2+ ([Ca2+]i) response in Ng+/+ compared with Ng-/- mice, but the decay time constants did not differ. The diminished Ca2+ dynamics in Ng-/- mice are a likely cause of their decreased propensity to undergo LTP. Thus, Ng may promote a high [Ca2+]i by a "mass-action" mechanism; namely, the higher the Ng concentration, the more Ng-CaM complexes will be formed, which effectively raises [Ca2+]i at any given Ca2+ influx. This mechanism provides potent signal amplification in enhancing synaptic plasticity as well as learning and memory.
Collapse
Affiliation(s)
- Kuo-Ping Huang
- Section on Metabolic Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Lin Y, Skeberdis VA, Francesconi A, Bennett MVL, Zukin RS. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J Neurosci 2005; 24:10138-48. [PMID: 15537884 PMCID: PMC6730183 DOI: 10.1523/jneurosci.3159-04.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors (NMDARs) colocalize with postsynaptic density protein-95 (PSD-95), a multivalent synaptic scaffolding protein and core component of the postsynaptic density, at excitatory synapses. Although much is known about the identity and properties of scaffolding proteins, little is known about their actions on NMDAR function. Here we show that association of PSD-95 with NMDARs modulates channel gating and surface expression. PSD-95 increases the number of functional channels at the cell surface and channel opening rate of NMDARs, with little or no change in conductance, reversal potential, or mean open time. We show further that PSD-95 increases NMDAR surface expression by increasing the rate of channel insertion and decreasing the rate of channel internalization. The PDZ (PSD-95, discs large, zona occludens-1) binding motif at the distal end of the NR2 C-terminal tail is critical to the actions of PSD-95 on NMDAR function and surface expression. Given that activity bi-directionally modifies synaptic levels of PSD-95, our findings suggest a novel mechanism for activity-dependent regulation of NMDARs at central synapses.
Collapse
Affiliation(s)
- Ying Lin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461-1975, USA
| | | | | | | | | |
Collapse
|
47
|
Waxman EA, Lynch DR. N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 2005; 11:37-49. [PMID: 15632277 DOI: 10.1177/1073858404269012] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors are the major mediator of excitotoxicity. Although physiological activation of the NMDA receptor is necessary for cell survival, overactivation is a signal for cell death. Several pathways are activated through NMDA receptor stimulation, most of which can contribute to excitotoxicity. These include events leading to mitochondrial dysfunction, activation of calcium-dependent enzymes, and activation of mitogen-activated protein kinase pathways. Understanding the role of these mechanisms is important in developing agents that block excitotoxicity without inhibiting functions necessary for survival. NMDA receptor subtypes may be responsible for mediating separate pathways, and subtype-specific inhibition has shown promising results in some neurological models. This review examines the roles of NMDA receptor subtypes in excitotoxicity and neurological disorders.
Collapse
Affiliation(s)
- Elisa A Waxman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | |
Collapse
|
48
|
Pittaluga A, Feligioni M, Longordo F, Arvigo M, Raiteri M. Somatostatin-induced activation and up-regulation of N-methyl-D-aspartate receptor function: mediation through calmodulin-dependent protein kinase II, phospholipase C, protein kinase C, and tyrosine kinase in hippocampal noradrenergic nerve endings. J Pharmacol Exp Ther 2005; 313:242-9. [PMID: 15608072 DOI: 10.1124/jpet.104.079590] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Somatostatin receptors and glutamate N-methyl-D-aspartate (NMDA) receptors coexist on hippocampal noradrenergic axon terminals. Activation of somatostatin receptors was previously found to positively influence the function of NMDA receptors regulating norepinephrine release. The somatostatin receptors involved were pharmacologically characterized as sst5 type in experiments in Mg2+-free solutions. Here, we first confirm the pharmacology of these receptors using selective sst5 ligands in Mg2+-containing solutions. Moreover, we show by Western blot that the sst5 protein exists on purified hippocampal synaptosomal membranes. We then investigated the pathways connecting the two receptors using as a functional response the release of norepinephrine from rat hippocampal synaptosomes in superfusion. The release of norepinephrine evoked by somatostatin-14 plus NMDA/glycine was partly prevented by the protein kinase C inhibitor GF109203X [dihydrochloride3-[1-[3-(dimethylamino)propyl]-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione] and by the nonreceptor tyrosine kinase (Src) inhibitors PP2 [3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-D]pyrimidin-4-amine] and lavendustin A; it was largely and almost totally abolished by the phospholipase C inhibitor U73122 [1-(6-[([17beta]-3-methoxyextra-1,3,5[10]-trien-17-yl)amino]hexyl)-1H-pyrrole-2,5-dione] and by the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 [N-(2-[N-[4-chlorocinnamyl]-N-methyl-amino-methyl]phenyl)-N-(2-hydroxyethyl)-4-methoxy-benzene-sulfonamide-phosphate salt], respectively; and it was unaffected by the protein kinase A inhibitor H89 [N-(2-[p-bromocinnamylamino]ethyl)5-isoquinolinesulfonamide hydrochloride]. The norepinephrine release evoked by somatostatin-14/NMDA/glycine was inhibited when anti-phosphotyrosine antibodies had been entrapped into synaptosomes. Entrapping the recombinant activated tyrosine kinase pp60(c-Src) strongly potentiated the release of norepinephrine elicited by NMDA/glycine in Mg2+-free medium but failed to permit NMDA receptor activation in presence of external Mg2+ ions. The results suggest the involvement of CaMKII in the sst5 receptor-mediated activation of NMDA receptors in presence of Mg2+ and of the PLC/PKC/Src pathway in the up-regulation of the ongoing NMDA receptor activity.
Collapse
Affiliation(s)
- Anna Pittaluga
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa, Italy.
| | | | | | | | | |
Collapse
|
49
|
Wyneken U, Marengo JJ, Orrego F. Electrophysiology and plasticity in isolated postsynaptic densities. ACTA ACUST UNITED AC 2005; 47:54-70. [PMID: 15572163 DOI: 10.1016/j.brainresrev.2004.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The organization and regulation of excitatory synapses in the mammalian CNS entails complex molecular and cellular processes. In the postsynaptic membrane, scaffolding proteins bring together glutamate receptors with multiple regulatory proteins involved in signal transduction. This gives rise to an elaborate postsynaptic structure known as the postsynaptic density (PSD). This protein network plays a critical role in the regulation of glutamate receptor function and thus in synaptic plasticity. To study this regulation, we have developed a system in which ionotropic glutamate receptors (iGluRs) can be recorded, in the steady state, by the patch clamp technique in isolated PSDs incorporated into giant liposomes. In this preparation, ionotropic glutamate receptors maintain their characteristic physiological and pharmacological properties. The recordings reflect the presence of channel clusters, as multiple conductance and subconductance states are observed. Each of the receptor subtypes is activated by a specific set of kinases that are activated differentially by Ca(2+): the "kainate receptor kinases" are active even in the presence of EGTA, i.e. they are not calcium-dependent; the "N-methyl-D-aspartate receptor (NMDAR) channel kinases" are active in the presence of submicromolar calcium concentrations, whereas the "alpha-amino-3- hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor kinases" need microM calcium for activation. The NMDA receptor showed its characteristic voltage-dependent Mg(2+) blockade, and activation by phosphorylation was in part a consequence of a relief of Mg(2+) blockade. These results allow us to propose a model in which phosphorylation of NMDA receptors can contribute to a long-lasting and self-maintained change in synaptic function. The experimental approach we present will allow us to test the functional consequence of activation of the multiple signal transduction pathways thought to regulate excitatory neurotransmission in the adult CNS.
Collapse
Affiliation(s)
- Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago 6782468, Chile.
| | | | | |
Collapse
|
50
|
Bird GC, Lash LL, Han JS, Zou X, Willis WD, Neugebauer V. Protein kinase A-dependent enhanced NMDA receptor function in pain-related synaptic plasticity in rat amygdala neurones. J Physiol 2005; 564:907-21. [PMID: 15760935 PMCID: PMC1464474 DOI: 10.1113/jphysiol.2005.084780] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mechanisms of pain-related plasticity in the amygdala, a key player in emotionality, were studied at the cellular and molecular levels in a model of arthritic pain. The influence of the arthritis pain state induced in vivo on synaptic transmission and N-methyl-d-aspartate (NMDA) receptor function was examined in vitro using whole-cell voltage-clamp recordings of neurones in the latero-capsular part of the central nucleus of the amygdala (CeA), which is now defined as the 'nociceptive amygdala'. Synaptic transmission was evoked by electrical stimulation of afferents from the pontine parabrachial area (part of the spino-parabrachio-amygdaloid pain pathway) in brain slices from control rats and from arthritic rats. This study shows that pain-related synaptic plasticity is accompanied by protein kinase A (PKA)-mediated enhanced NMDA-receptor function and increased phosphorylation of NMDA-receptor 1 (NR1) subunits. Synaptic plasticity in the arthritis pain model, but not normal synaptic transmission in control neurones, was inhibited by a selective NMDA receptor antagonist. Accordingly, an NMDA receptor-mediated synaptic component was recorded in neurones from arthritic animals, but not in control neurones, and was blocked by inhibition of PKA but not protein kinase C (PKC). Exogenous NMDA evoked a larger inward current in neurones from arthritic animals than in control neurones, indicating a postsynaptic effect. Paired-pulse facilitation, a measure of presynaptic mechanisms, was not affected by an NMDA-receptor antagonist. Increased levels of phosphorylated NR1 protein, but not of total NR1, were measured in the CeA of arthritic rats compared to controls. Our results suggest that pain-related synaptic plasticity in the amygdala involves a critical switch of postsynaptic NMDA receptor function through PKA-dependent NR1 phosphorylation.
Collapse
Affiliation(s)
- Gary C Bird
- Department of Neuroscience and Cell Biology, Marine Biomedical Institute, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1069, USA
| | | | | | | | | | | |
Collapse
|