1
|
Kostygov AY, Skýpalová K, Kraeva N, Kalita E, McLeod C, Yurchenko V, Field MC, Lukeš J, Butenko A. Comprehensive analysis of the Kinetoplastea intron landscape reveals a novel intron-containing gene and the first exclusively trans-splicing eukaryote. BMC Biol 2024; 22:281. [PMID: 39627879 PMCID: PMC11613528 DOI: 10.1186/s12915-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND In trypanosomatids, a group of unicellular eukaryotes that includes numerous important human parasites, cis-splicing has been previously reported for only two genes: a poly(A) polymerase and an RNA helicase. Conversely, trans-splicing, which involves the attachment of a spliced leader sequence, is observed for nearly every protein-coding transcript. So far, our understanding of splicing in this protistan group has stemmed from the analysis of only a few medically relevant species. In this study, we used an extensive dataset encompassing all described trypanosomatid genera to investigate the distribution of intron-containing genes and the evolution of splice sites. RESULTS We identified a new conserved intron-containing gene encoding an RNA-binding protein that is universally present in Kinetoplastea. We show that Perkinsela sp., a kinetoplastid endosymbiont of Amoebozoa, represents the first eukaryote completely devoid of cis-splicing, yet still preserving trans-splicing. We also provided evidence for reverse transcriptase-mediated intron loss in Kinetoplastea, extensive conservation of 5' splice sites, and the presence of non-coding RNAs within a subset of retained trypanosomatid introns. CONCLUSIONS All three intron-containing genes identified in Kinetoplastea encode RNA-interacting proteins, with a potential to fine-tune the expression of multiple genes, thus challenging the perception of cis-splicing in these protists as a mere evolutionary relic. We suggest that there is a selective pressure to retain cis-splicing in trypanosomatids and that this is likely associated with overall control of mRNA processing. Our study provides new insights into the evolution of introns and, consequently, the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Karolína Skýpalová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Natalia Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Elora Kalita
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Cameron McLeod
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, 710 00, Czech Republic.
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic.
| |
Collapse
|
2
|
Gao P, Zhao Y, Xu G, Zhong Y, Sun C. Unique features of conventional and nonconventional introns in Euglena gracilis. BMC Genomics 2024; 25:595. [PMID: 38872102 PMCID: PMC11170887 DOI: 10.1186/s12864-024-10495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nuclear introns in Euglenida have been understudied. This study aimed to investigate nuclear introns in Euglenida by identifying a large number of introns in Euglena gracilis (E. gracilis), including cis-spliced conventional and nonconventional introns, as well as trans-spliced outrons. We also examined the sequence characteristics of these introns. RESULTS A total of 28,337 introns and 11,921 outrons were identified. Conventional and nonconventional introns have distinct splice site features; the former harbour canonical GT/C-AG splice sites, whereas the latter are capable of forming structured motifs with their terminal sequences. We observed that short introns had a preference for canonical GT-AG introns. Notably, conventional introns and outrons in E. gracilis exhibited a distinct cytidine-rich polypyrimidine tract, in contrast to the thymidine-rich tracts observed in other organisms. Furthermore, the SL-RNAs in E. gracilis, as well as in other trans-splicing species, can form a recently discovered motif called the extended U6/5' ss duplex with the respective U6s. We also describe a novel type of alternative splicing pattern in E. gracilis. The tandem repeat sequences of introns in this protist were determined, and their contents were comparable to those in humans. CONCLUSIONS Our findings highlight the unique features of E. gracilis introns and provide insights into the splicing mechanism of these introns, as well as the genomics and evolution of Euglenida.
Collapse
Affiliation(s)
- Pingwei Gao
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yali Zhao
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Guangjie Xu
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yujie Zhong
- Clinical Laboratory Department, Zigong Hospital of Women's and Children's Healthcare, Zigong, 643002, China.
| | - Chengfu Sun
- Scientific Research Center, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
3
|
Gao P, Zhong Y, Sun C. Transcriptomic and genomic identification of spliceosomal genes from Euglena gracilis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1740-1748. [PMID: 37705346 PMCID: PMC10679874 DOI: 10.3724/abbs.2023143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 09/15/2023] Open
Abstract
Diverse splicing types in nuclear and chloroplast genes of protist Euglena gracilis have been recognized for decades. However, the splicing machinery responsible for processing nuclear precursor messenger RNA introns, including trans-splicing of the 5' terminal outron and spliced leader (SL) RNA, remains elusive. Here, we identify 166 spliceosomal protein genes and two snRNA genes from E. gracilis by performing bioinformatics analysis from a combination of next-generation and full-length transcriptomic RNA sequencing (RNAseq) data as well as draft genomic data. With the spliceosomal proteins we identified in hand, the insensitivity of E. gracilis to some splicing modulators is revealed at the sequence level. The prevalence of SL RNA-mediated trans-splicing is estimated to be more than 70% from our full-length RNAseq data. Finally, the splicing proteomes between E. gracilis and its three evolutionary cousins within the same Excavata group are compared. In conclusion, our study characterizes the spliceosomal components in E. gracilis and provides the molecular basis for further exploration of underlying splicing mechanisms.
Collapse
Affiliation(s)
- Pingwei Gao
- />Scientific Research CenterChengdu Medical CollegeChengdu610500China
| | - Yujie Zhong
- />Scientific Research CenterChengdu Medical CollegeChengdu610500China
| | - Chengfu Sun
- />Scientific Research CenterChengdu Medical CollegeChengdu610500China
| |
Collapse
|
4
|
Heterotrophic euglenid Rhabdomonas costata resembles its phototrophic relatives in many aspects of molecular and cell biology. Sci Rep 2021; 11:13070. [PMID: 34158556 PMCID: PMC8219788 DOI: 10.1038/s41598-021-92174-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Euglenids represent a group of protists with diverse modes of feeding. To date, only a partial genomic sequence of Euglena gracilis and transcriptomes of several phototrophic and secondarily osmotrophic species are available, while primarily heterotrophic euglenids are seriously undersampled. In this work, we begin to fill this gap by presenting genomic and transcriptomic drafts of a primary osmotroph, Rhabdomonas costata. The current genomic assembly length of 100 Mbp is 14× smaller than that of E. gracilis. Despite being too fragmented for comprehensive gene prediction it provided fragments of the mitochondrial genome and comparison of the transcriptomic and genomic data revealed features of its introns, including several candidates for nonconventional types. A set of 39,456 putative R. costata proteins was predicted from the transcriptome. Annotation of the mitochondrial core metabolism provides the first data on the facultatively anaerobic mitochondrion of R. costata, which in most respects resembles the mitochondrion of E. gracilis with a certain level of streamlining. R. costata can synthetise thiamine by enzymes of heterogenous provenances and haem by a mitochondrial-cytoplasmic C4 pathway with enzymes orthologous to those found in E. gracilis. The low percentage of green algae-affiliated genes supports the ancestrally osmotrophic status of this species.
Collapse
|
5
|
Gumińska N, Zakryś B, Milanowski R. A New Type of Circular RNA derived from Nonconventional Introns in Nuclear Genes of Euglenids. J Mol Biol 2020; 433:166758. [PMID: 33316270 DOI: 10.1016/j.jmb.2020.166758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Nuclear protein-coding genes of euglenids (Discoba, Euglenozoa, Euglenida) contain conventional (spliceosomal) and nonconventional introns. The latter have been found only in euglenozoans. A unique feature of nonconventional introns is the ability to form a stable and slightly conserved RNA secondary structure bringing together intron ends and placing adjacent exons in proximity. To date, little is known about the mechanism of their excision (e.g. whether it involves the spliceosome or not). The tubA gene of Euglena gracilis harbors three conventional and three nonconventional introns. While the conventional introns are excised as lariats, nonconventional introns are present in the cell solely as circular RNAs with full-length ends. Based on this discovery as well as on previous observations indicating that nonconventional introns are observed frequently at unique positions of genes, we suggest that this new type of intronic circRNA might play a role in intron mobility.
Collapse
Affiliation(s)
- Natalia Gumińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Bożena Zakryś
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Center, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
6
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
7
|
Lax G, Lee WJ, Eglit Y, Simpson A. Ploeotids Represent Much of the Phylogenetic Diversity of Euglenids. Protist 2019; 170:233-257. [PMID: 31102975 DOI: 10.1016/j.protis.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/19/2019] [Accepted: 03/01/2019] [Indexed: 11/26/2022]
Abstract
Ploeotids are an assemblage of rigid phagotrophic euglenids that have 10-12 pellicular strips and glide on their posterior flagellum. Molecular phylogenies place them as a poorly resolved, likely paraphyletic assemblage outside the Spirocuta clade of flexible euglenids, which includes the well-known phototrophs and primary osmotrophs. Here, we report SSU rRNA gene sequences from 38 ploeotids, using both single-cell and culture-based methods. Several contain group I or non-canonical introns. Our phylogenetic analyses place ploeotids in 8 distinct clades: Olkasia n. gen., Hemiolia n. gen., Liburna n. gen., Lentomonas, Decastava, Keelungia, Ploeotiidae, and Entosiphon. Ploeotia vitrea, the type of Ploeotia, is closely related to P. oblonga and Serpenomonas costata, but not to Lentomonas. Ploeotia cf. vitrea sensu Lax and Simpson 2013 is not related to P. vitrea and has a different pellicle strip architecture (as imaged by scanning electron microscopy): it instead represents a novel genus and species, Olkasia polycarbonata. We also describe new genera, Hemiolia and Liburna, for the morphospecies Anisonema trepidum and A. glaciale. A recent system proposing 13 suprafamilial taxa that include ploeotids is not supported by our phylogenies. The exact relationships between ploeotid groups remain unresolved and multigene phylogenetics or phylogenomics are needed to address this uncertainty.
Collapse
Affiliation(s)
- Gordon Lax
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Won Je Lee
- Department of Environment and Energy Engineering, Kyungnam University, Changwon, Republic of Korea
| | - Yana Eglit
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Alastair Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
8
|
Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis. PLoS Genet 2018; 14:e1007761. [PMID: 30365503 PMCID: PMC6221363 DOI: 10.1371/journal.pgen.1007761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 10/12/2018] [Indexed: 11/27/2022] Open
Abstract
Nuclear genes of euglenids and marine diplonemids harbor atypical, nonconventional introns which are not observed in the genomes of other eukaryotes. Nonconventional introns do not have the conserved borders characteristic for spliceosomal introns or the sequence complementary to U1 snRNA at the 5' end. They form a stable secondary structure bringing together both exon/intron junctions, nevertheless, this conformation does not resemble the form of self-splicing or tRNA introns. In the genes studied so far, frequent nonconventional introns insertions at new positions have been observed, whereas conventional introns have been either found at the conserved positions, or simply lost. In this work, we examined the order of intron removal from Euglena gracilis transcripts of the tubA and gapC genes, which contain two types of introns: nonconventional and spliceosomal. The relative order of intron excision was compared for pairs of introns belonging to different types. Furthermore, intermediate products of splicing were analyzed using the PacBio Next Generation Sequencing system. The analysis led to the main conclusion that nonconventional introns are removed in a rapid way but later than spliceosomal introns. Moreover, the observed accumulation of transcripts with conventional introns removed and nonconventional present may suggest the existence of a time gap between the two types of splicing. The existence of conventional spliceosomal introns in genes of eukaryotic organisms is a well-known theorem. However, genes of the unicellular algae group, euglenids, contain also another type of introns, so-called nonconventional ones. They lack canonical borders, a feature most characteristic for conventional introns and form a stable secondary structure bringing together their ends. Along with the increasing popularity of whole genome studies, nonconventional introns were also disclosed in the genes of other protists, diplonemids. In this study we were particularly interested which introns–conventional or nonconventional–are removed earlier from euglenids’ pre-mRNA. To track this process we analyzed transcripts of the two Euglena gracilis genes. The relative order of intron excision was compared for pairs of introns belonging to different types. We also surveyed thousands of intermediate products of splicing using the Next-Generation Sequencing system. Summarizing the results of both experiments, we proved that spliceosomal introns are removed at an earlier stage of pre-mRNA maturation than nonconventional ones.
Collapse
|
9
|
Morphological Identification and Single-Cell Genomics of Marine Diplonemids. Curr Biol 2016; 26:3053-3059. [DOI: 10.1016/j.cub.2016.09.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 11/19/2022]
|
10
|
Bicudo CEDM, Menezes M. Phylogeny and Classification of Euglenophyceae: A Brief Review. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. Intermediate introns in nuclear genes of euglenids - are they a distinct type? BMC Evol Biol 2016; 16:49. [PMID: 26923034 PMCID: PMC4770533 DOI: 10.1186/s12862-016-0620-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/15/2016] [Indexed: 02/05/2023] Open
Abstract
Background Nuclear genes of euglenids contain two major types of introns: conventional spliceosomal and nonconventional introns. The latter are characterized by variable non-canonical borders, RNA secondary structure that brings intron ends together, and an unknown mechanism of removal. Some researchers also distinguish intermediate introns, which combine features of both types. They form a stable RNA secondary structure and are classified into two subtypes depending on whether they contain one (intermediate/nonconventional subtype) or both (conventional/intermediate subtype) canonical spliceosomal borders. However, it has been also postulated that most introns classified as intermediate could simply be special cases of conventional or nonconventional introns. Results Sequences of tubB, hsp90 and gapC genes from six strains of Euglena agilis were obtained. They contain four, six, and two or three introns, respectively (the third intron in the gapC gene is unique for just one strain). Conventional introns were present at three positions: two in the tubB gene (at one position conventional/intermediate introns were also found) and one in the gapC gene. Nonconventional introns are present at ten positions: two in the tubB gene (at one position intermediate/nonconventional introns were also found), six in hsp90 (at four positions intermediate/nonconventional introns were also found), and two in the gapC gene. Conclusions Sequence and RNA secondary structure analyses of nonconventional introns confirmed that their most strongly conserved elements are base pairing nucleotides at positions +4, +5 and +6/ -8, −7 and −6 (in most introns CAG/CTG nucleotides were observed). It was also confirmed that the presence of the 5' GT/C end in intermediate/nonconventional introns is not the result of kinship with conventional introns, but is due to evolutionary pressure to preserve the purine at the 5' end. However, an example of a nonconventional intron with GC-AG ends was shown, suggesting the possibility of intron type conversion between nonconventional and conventional. Furthermore, an analysis of conventional introns revealed that the ability to form a stable RNA secondary structure by some introns is probably not a result of their relationship with nonconventional introns. It was also shown that acquisition of new nonconventional introns is an ongoing process and can be observed at the level of a single species. In the recently acquired intron in the gapC gene an extended direct repeats at the intron-exon junctions are present, suggesting that double-strand break repair process could be the source of new nonconventional introns. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0620-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafał Milanowski
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Natalia Gumińska
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Department of Botany, University of British Columbia, Vancouver, Canada.
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Bożena Zakryś
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
12
|
Milanowski R, Karnkowska A, Ishikawa T, Zakryś B. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Mol Biol Evol 2013; 31:584-93. [PMID: 24296662 PMCID: PMC3935182 DOI: 10.1093/molbev/mst227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns--positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism--intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns--because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns.
Collapse
Affiliation(s)
- Rafał Milanowski
- Department of Plant Systematics and Geography, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
13
|
Genomic characterization of Neoparamoeba pemaquidensis (Amoebozoa) and its kinetoplastid endosymbiont. EUKARYOTIC CELL 2011; 10:1143-6. [PMID: 21666073 DOI: 10.1128/ec.05027-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have performed a genomic characterization of a kinetoplastid protist living within the amoebozoan Neoparamoeba pemaquidensis. The genome of this "Ichthyobodo-related organism" was found to be unexpectedly large, with at least 11 chromosomes between 1.0 and 3.5 Mbp and a total genome size of at least 25 Mbp.
Collapse
|
14
|
Vesteg M, Vacula R, Steiner JM, Mateásiková B, Löffelhardt W, Brejová B, Krajcovic J. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 2010; 17:223-31. [PMID: 20587589 PMCID: PMC2920757 DOI: 10.1093/dnares/dsq015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41–93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45–50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5′-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids.
Collapse
Affiliation(s)
- Matej Vesteg
- Institute of Cell Biology and Biotechnology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
15
|
Charette JM, Gray MW. U3 snoRNA genes are multi-copy and frequently linked to U5 snRNA genes in Euglena gracilis. BMC Genomics 2009; 10:528. [PMID: 19917113 PMCID: PMC2784804 DOI: 10.1186/1471-2164-10-528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022] Open
Abstract
Background U3 snoRNA is a box C/D small nucleolar RNA (snoRNA) involved in the processing events that liberate 18S rRNA from the ribosomal RNA precursor (pre-rRNA). Although U3 snoRNA is present in all eukaryotic organisms, most investigations of it have focused on fungi (particularly yeasts), animals and plants. Relatively little is known about U3 snoRNA and its gene(s) in the phylogenetically broad assemblage of protists (mostly unicellular eukaryotes). In the euglenozoon Euglena gracilis, a distant relative of the kinetoplastid protozoa, Southern analysis had previously revealed at least 13 bands hybridizing with U3 snoRNA, suggesting the existence of multiple copies of U3 snoRNA genes. Results Through screening of a λ genomic library and PCR amplification, we recovered 14 U3 snoRNA gene variants, defined by sequence heterogeneities that are mostly located in the U3 3'-stem-loop domain. We identified three different genomic arrangements of Euglena U3 snoRNA genes: i) stand-alone, ii) linked to tRNAArg genes, and iii) linked to a U5 snRNA gene. In arrangement ii), the U3 snoRNA gene is positioned upstream of two identical tRNAArg genes that are convergently transcribed relative to the U3 gene. This scenario is reminiscent of a U3 snoRNA-tRNA gene linkage previously described in trypanosomatids. We document here twelve different U3 snoRNA-U5 snRNA gene arrangements in Euglena; in each case, the U3 gene is linked to a downstream and convergently oriented U5 gene, with the intergenic region differing in length and sequence among the variants. Conclusion The multiple U3 snoRNA-U5 snRNA gene linkages, which cluster into distinct families based on sequence similarities within the intergenic spacer, presumably arose by genome, chromosome, and/or locus duplications. We discuss possible reasons for the existence of the unusually large number of U3 snoRNA genes in the Euglena genome. Variability in the signal intensities of the multiple Southern hybridization bands raises the possibility that Euglena contains a naturally aneuploid chromosome complement.
Collapse
Affiliation(s)
- J Michael Charette
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
16
|
Artamonova II, Gelfand MS. Comparative Genomics and Evolution of Alternative Splicing: The Pessimists' Science. Chem Rev 2007; 107:3407-30. [PMID: 17645315 DOI: 10.1021/cr068304c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irena I Artamonova
- Group of Bioinformatics, Vavilov Institute of General Genetics, RAS, Gubkina 3, Moscow 119991, Russia
| | | |
Collapse
|
17
|
Breglia SA, Slamovits CH, Leander BS. Phylogeny of Phagotrophic Euglenids (Euglenozoa) as Inferred from Hsp90 Gene Sequences. J Eukaryot Microbiol 2007; 54:86-92. [PMID: 17300525 DOI: 10.1111/j.1550-7408.2006.00233.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Molecular phylogenies of euglenids are usually based on ribosomal RNA genes that do not resolve the branching order among the deeper lineages. We addressed deep euglenid phylogeny using the cytosolic form of the heat-shock protein 90 gene (hsp90), which has already been employed with some success in other groups of euglenozoans and eukaryotes in general. Hsp90 sequences were generated from three taxa of euglenids representing different degrees of ultrastructural complexity, namely Petalomonas cantuscygni and wild isolates of Entosiphon sulcatum, and Peranema trichophorum. The hsp90 gene sequence of P. trichophorum contained three short introns (ranging from 27 to 31 bp), two of which had non-canonical borders GG-GG and GG-TG and two 10-bp inverted repeats, suggesting a structure similar to that of the non-canonical introns described in Euglena gracilis. Phylogenetic analyses confirmed a closer relationship between kinetoplastids and diplonemids than to euglenids, and supported previous views regarding the branching order among primarily bacteriovorous, primarily eukaryovorous, and photosynthetic euglenids. The position of P. cantuscygni within Euglenozoa, as well as the relative support for the nodes including it were strongly dependent on outgroup selection. The results were most consistent when the jakobid Reclinomonas americana was used as the outgroup. The most robust phylogenies place P. cantuscygni as the most basal branch within the euglenid clade. However, the presence of a kinetoplast-like mitochondrial inclusion in P. cantuscygni deviates from the currently accepted apomorphy-based definition of the kinetoplastid clade and highlights the necessity of detailed studies addressing the molecular nature of the euglenid and diplonemid mitochondrial genome.
Collapse
Affiliation(s)
- Susana A Breglia
- Program in Evolutionary Biology, Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|
18
|
Mandell KE, Vallone PM, Owczarzy R, Riccelli PV, Benight AS. Studies of DNA dumbbells VIII. Melting analysis of DNA dumbbells with dinucleotide repeat stem sequences. Biopolymers 2006; 82:199-221. [PMID: 16345003 DOI: 10.1002/bip.20425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melting curves and circular dichroism spectra were measured for a number of DNA dumbbell and linear molecules containing dinucleotide repeat sequences of different lengths. To study effects of different sequences on the melting and spectroscopic properties, six DNA dumbbells whose stems contain the central sequences (AA)(10), (AC)(10), (AG)(10), (AT)(10), (GC)(10), and (GG)(10) were prepared. These represent the minimal set of 10 possible dinucleotide repeats. To study effects of dinucleotide repeat length, dumbbells with the central sequences (AG)(n), n = 5 and 20, were prepared. Control molecules, dumbbells with a random central sequence, (RN)(n), n = 5, 10, and 20, were also prepared. The central sequence of each dumbbell was flanked on both sides by the same 12 base pairs and T(4) end-loops. Melting curves were measured by optical absorbance and differential scanning calorimetry in solvents containing 25, 55, 85, and 115 mM Na(+). CD spectra were collected from 20 to 45 degrees C and [Na(+)] from 25 to 115 mM. The spectral database did not reveal any apparent temperature dependence in the pretransition region. Analysis of the melting thermodynamics evaluated as a function of Na(+) provided a means for quantitatively estimating the counterion release with melting for the different sequences. Results show a very definite sequence dependence, indicating the salt-dependent properties of duplex DNA are also sequence dependent. Linear DNA molecules containing the (AG)(n) and (RN)(n), sequences, n = 5, 10, 20, and 30, were also prepared and studied. The linear DNA molecules had the exact sequences of the dumbbell stems. That is, the central repeat sequence in each linear duplex was flanked on both sides by the same 12-bp sequence. Melting and CD studies were also performed on the linear DNA molecules. Comparison of results obtained for the same sequences in dumbbell and linear molecular environments reveals several interesting features of the interplay between sequence-dependent structural variability, sequence length, and the unconstrained (linear) or constrained (dumbbell) molecular environments.
Collapse
Affiliation(s)
- Kathleen E Mandell
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, 60607, USA
| | | | | | | | | |
Collapse
|
19
|
Slamovits CH, Keeling PJ. A high density of ancient spliceosomal introns in oxymonad excavates. BMC Evol Biol 2006; 6:34. [PMID: 16638131 PMCID: PMC1501061 DOI: 10.1186/1471-2148-6-34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 04/25/2006] [Indexed: 11/28/2022] Open
Abstract
Background Certain eukaryotic genomes, such as those of the amitochondriate parasites Giardia and Trichomonas, have very low intron densities, so low that canonical spliceosomal introns have only recently been discovered through genome sequencing. These organisms were formerly thought to be ancient eukaryotes that diverged before introns originated, or at least became common. Now however, they are thought to be members of a supergroup known as excavates, whose members generally appear to have low densities of canonical introns. Here we have used environmental expressed sequence tag (EST) sequencing to identify 17 genes from the uncultivable oxymonad Streblomastix strix, to survey intron densities in this most poorly studied excavate group. Results We find that Streblomastix genes contain an unexpectedly high intron density of about 1.1 introns per gene. Moreover, over 50% of these are at positions shared between a broad spectrum of eukaryotes, suggesting theyare very ancient introns, potentially present in the last common ancestor of eukaryotes. Conclusion The Streblomastix data show that the genome of the ancestor of excavates likely contained many introns and the subsequent evolution of introns has proceeded very differently in different excavate lineages: in Streblomastix there has been much stasis while in Trichomonas and Giardia most introns have been lost.
Collapse
Affiliation(s)
- Claudio H Slamovits
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
20
|
Abstract
The origins and importance of spliceosomal introns comprise one of the longest-abiding mysteries of molecular evolution. Considerable debate remains over several aspects of the evolution of spliceosomal introns, including the timing of intron origin and proliferation, the mechanisms by which introns are lost and gained, and the forces that have shaped intron evolution. Recent important progress has been made in each of these areas. Patterns of intron-position correspondence between widely diverged eukaryotic species have provided insights into the origins of the vast differences in intron number between eukaryotic species, and studies of specific cases of intron loss and gain have led to progress in understanding the underlying molecular mechanisms and the forces that control intron evolution.
Collapse
Affiliation(s)
- Scott William Roy
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
21
|
Russell AG, Shutt TE, Watkins RF, Gray MW. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia. BMC Evol Biol 2005; 5:45. [PMID: 16109161 PMCID: PMC1201135 DOI: 10.1186/1471-2148-5-45] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 08/18/2005] [Indexed: 11/16/2022] Open
Abstract
Background Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad). This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT. Results We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal protein L7a gene (Rpl7a), that possesses a canonical GT 5' intron boundary sequence. A comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid). Based on these observations, we searched the partial G. lamblia genome sequence for these conserved features and identified a third spliceosomal intron, in an unassigned open reading frame. Our comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is evolutionarily conserved and is an ancient eukaryotic intron. Conclusion An analysis of the phylogenetic distribution and properties of the Rpl7a intron suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings. Additionally, analysis of the G. lamblia introns has provided further insight into some of the conserved and unique features possessed by the recently identified spliceosomal introns in related organisms such as T. vaginalis and Carpediemonas membranifera.
Collapse
Affiliation(s)
- Anthony G Russell
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Timothy E Shutt
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Russell F Watkins
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Michael W Gray
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
22
|
Russell AG, Watanabe YI, Charette JM, Gray MW. Unusual features of fibrillarin cDNA and gene structure in Euglena gracilis: evolutionary conservation of core proteins and structural predictions for methylation-guide box C/D snoRNPs throughout the domain Eucarya. Nucleic Acids Res 2005; 33:2781-91. [PMID: 15894796 PMCID: PMC1126904 DOI: 10.1093/nar/gki574] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Box C/D ribonucleoprotein (RNP) particles mediate O2′-methylation of rRNA and other cellular RNA species. In higher eukaryotic taxa, these RNPs are more complex than their archaeal counterparts, containing four core protein components (Snu13p, Nop56p, Nop58p and fibrillarin) compared with three in Archaea. This increase in complexity raises questions about the evolutionary emergence of the eukaryote-specific proteins and structural conservation in these RNPs throughout the eukaryotic domain. In protists, the primarily unicellular organisms comprising the bulk of eukaryotic diversity, the protein composition of box C/D RNPs has not yet been extensively explored. This study describes the complete gene, cDNA and protein sequences of the fibrillarin homolog from the protozoon Euglena gracilis, the first such information to be obtained for a nucleolus-localized protein in this organism. The E.gracilis fibrillarin gene contains a mixture of intron types exhibiting markedly different sizes. In contrast to most other E.gracilis mRNAs characterized to date, the fibrillarin mRNA lacks a spliced leader (SL) sequence. The predicted fibrillarin protein sequence itself is unusual in that it contains a glycine-lysine (GK)-rich domain at its N-terminus rather than the glycine-arginine-rich (GAR) domain found in most other eukaryotic fibrillarins. In an evolutionarily diverse collection of protists that includes E.gracilis, we have also identified putative homologs of the other core protein components of box C/D RNPs, thereby providing evidence that the protein composition seen in the higher eukaryotic complexes was established very early in eukaryotic cell evolution.
Collapse
Affiliation(s)
- Anthony G Russell
- Department of Biochemistry and Molecular Biology, Dalhousie University Halifax, Nova Scotia, Canada B3H 1X5.
| | | | | | | |
Collapse
|
23
|
Libri D, Duconge F, Levy L, Vinauger M. A role for the Psi-U mismatch in the recognition of the 5' splice site of yeast introns by the U1 small nuclear ribonucleoprotein particle. J Biol Chem 2002; 277:18173-81. [PMID: 11877437 DOI: 10.1074/jbc.m112460200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein particle (snRNP)/5' splice site (5'SS) interaction in yeast is essential for the splicing process and depends on the formation of a short RNA duplex between the 5' arm of U1 snRNA and the 1st intronic nucleotides. This RNA/RNA interaction is characterized by the presence of a mismatch that occurs with almost all yeast introns and concerns nucleotides 4 on the pre-mRNA (a U) and 5 on U1 snRNA (a Psi). The latter nucleotide is well conserved from yeast to vertebrates, but its role in yeast and the significance of the associated mismatch in the U1 snRNA/5'SS interaction have never been fully explained. We report here that the presence of this mismatch is a determinant of stability that mainly affects the off rate of the interaction. To our knowledge this is the first report assigning a function to this noncanonical interaction. We also performed SELEX (systematic evolution of ligands by exponential enrichment) experiments by immunoprecipitating U1 snRNP and the associated RNA. The artificial phylogeny derived from these experiments allows the isolation of the selective pressure due to U1 snRNP binding on the 5'SS of yeast introns.
Collapse
Affiliation(s)
- Domenico Libri
- Centre de Génétique Moléculaire, CNRS, 91190 Gif sur Yvette, France.
| | | | | | | |
Collapse
|
24
|
Nixon JEJ, Wang A, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J. A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci U S A 2002; 99:3701-5. [PMID: 11854456 PMCID: PMC122587 DOI: 10.1073/pnas.042700299] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Accepted: 12/26/2001] [Indexed: 11/18/2022] Open
Abstract
Short introns occur in numerous protist lineages, but there are no reports of intervening sequences in the protists Giardia lamblia and Trichomonas vaginalis, which may represent the deepest known branches in the eukaryotic line of descent. We have discovered a 35-bp spliceosomal intron in a gene encoding a putative [2Fe-2S] ferredoxin of G. lamblia. The Giardia intron contains a canonical splice site at its 3' end (AG), a noncanonical splice site at its 5' end (CT), and a branch point sequence that fits the yeast consensus sequence of TACTAAC except for the first nucleotide (AACTAAC). We have also identified several G. lamblia genes with spliceosomal peptides, including homologues of eukaryote-specific spliceosomal peptides (Prp8 and Prp11), several DExH-box RNA-helicases that have homologues in eubacteria, but serve essential functions in the splicing of introns in eukaryotes, and 11 predicted archaebacteria-like Sm and like-Sm core peptides, which coat small nuclear RNAs. Phylogenetic analyses show the Giardia Sm core peptides are the products of multiple, ancestral gene duplications followed by divergence, but they retain strong similarity to Sm and like-Sm peptides of other eukaryotes. Although we have documented only a single intron in Giardia, it likely has other introns and fully functional, spliceosomal machinery. If introns were added during eukaryotic evolution (the introns-late hypothesis), then these results push back the date of this event before the branching of G. lamblia.
Collapse
Affiliation(s)
- Julie E J Nixon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115-6018, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Johnson PJ. Spliceosomal introns in a deep-branching eukaryote: the splice of life. Proc Natl Acad Sci U S A 2002; 99:3359-61. [PMID: 11904397 PMCID: PMC122526 DOI: 10.1073/pnas.072084199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Patricia J Johnson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095-1489, USA.
| |
Collapse
|
26
|
Abstract
Molecular phylogeny has been regarded as the ultimate tool for the reconstruction of relationships among eukaryotes-especially the different protist groups-given the difficulty in interpreting morphological data from an evolutionary point of view. In fact, the use of ribosomal RNA as a marker has provided the first well resolved eukaryotic phylogenies, leading to several important evolutionary hypotheses. The most significant is that several early-emerging, amitochondriate lineages, are living relics from the early times of eukaryotic evolution. The use of alternative protein markers and the recognition of several molecular phylogeny reconstruction artefacts, however, have strongly challenged these ideas. The putative early emerging lineages have been demonstrated as late-emerging ones, artefactually misplaced to the base of the tree. The present state of eukaryotic evolution is best described by a multifurcation, in agreement with the 'big bang' hypothesis that assumes a rapid diversification of the major eukaryotic phyla. For further resolution, the analysis of genomic data through improved phylogenetic methods will be required.
Collapse
Affiliation(s)
- H Philippe
- Equipe Phylogénie, Bioinformatique et Génome, UMR CNRS 7622, 9 quai Saint-Bernard, Case 24 75252, Paris Cedex 05, France
| | | | | |
Collapse
|
27
|
Watanabe Y, Gray MW. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria. Nucleic Acids Res 2000; 28:2342-52. [PMID: 10871366 PMCID: PMC102724 DOI: 10.1093/nar/28.12.2342] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A reverse transcription-polymerase chain reaction (RT-PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated 'PsuX' and 'PsuY') distantly related to the Cbf5p/TruB gene family.
Collapse
Affiliation(s)
- Y Watanabe
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
28
|
Abstract
Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.
Collapse
|
29
|
Schnare MN, Gray MW. Structural conservation and variation among U5 small nuclear RNAs from trypanosomatid protozoa. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:362-6. [PMID: 10684982 DOI: 10.1016/s0167-4781(00)00009-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
U5 snRNAs in trypanosomatid protozoa do not contain the trimethylguanosine cap structures that are often targeted in snRNA isolation procedures. As a result, the trypanosomatids are not well represented in the database of available U5 snRNA sequences. We have isolated and determined the sequence of the U5 snRNA from Crithidia fasciculata. Comparison with previously published trypanosomatid U5 snRNA sequences allows us to deduce the pattern of structural conservation and variation among these very divergent snRNA molecules.
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
30
|
Mair G, Shi H, Li H, Djikeng A, Aviles HO, Bishop JR, Falcone FH, Gavrilescu C, Montgomery JL, Santori MI, Stern LS, Wang Z, Ullu E, Tschudi C. A new twist in trypanosome RNA metabolism: cis-splicing of pre-mRNA. RNA (NEW YORK, N.Y.) 2000; 6:163-9. [PMID: 10688355 PMCID: PMC1369902 DOI: 10.1017/s135583820099229x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
It has been known for almost a decade and a half that in trypanosomes all mRNAs are trans-spliced by addition to the 5' end of the spliced leader (SL) sequence. During the same time period the conviction developed that classical cis-splicing introns are not present in the trypanosome genome and that the trypanosome gene arrangement is highly compact with small intergenic regions separating one gene from the next. We have now discovered that these tenets are no longer true. Poly(A) polymerase (PAP) genes in Trypanosoma brucei and Trypanosoma cruzi are split by intervening sequences of 653 and 302 nt, respectively. The intervening sequences occur at identical positions in both organisms and obey the GT/AG rule of cis-splicing introns. PAP mRNAs are trans-spliced at the very 5' end as well as internally at the 3' splice site of the intervening sequence. Interestingly, 11 nucleotide positions past the actual 5' splice site are conserved between the T. bruceiand T. cruzi introns. Point mutations in these conserved positions, as well as in the AG dinucleotide of the 3' splice site, abolish intron removal in vivo. Our results, together with the recent discovery of cis-splicing introns in Euglena gracilis, suggest that both trans- and cis-splicing are ancient acquisitions of the eukaryotic cell.
Collapse
Affiliation(s)
- G Mair
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
This chapter focuses on the history of the discovery of cap and an update of research on viral and cellular-messenger RNA (mRNA) capping. Cap structures of the type m7 GpppN(m)pN(m)p are present at the 5′ ends of nearly all eukaryotic cellular and viral mRNAs. A cap is added to cellular mRNA precursors and to the transcripts of viruses that replicate in the nucleus during the initial phases of transcription and before other processing events, including internal N6A methylation, 3′-poly (A) addition, and exon splicing. Despite the variations on the methylation theme, the important biological consequences of a cap structure appear to correlate with the N7-methyl on the 5′-terminal G and the two pyrophosphoryl bonds that connect m7G in a 5′–5′ configuration to the first nucleotide of mRNA. In addition to elucidating the biochemical mechanisms of capping and the downstream effects of this 5′- modification on gene expression, the advent of gene cloning has made available an ever-increasing amount of information on the proteins responsible for producing caps and the functional effects of other cap-related interactions. Genetic approaches have demonstrated the lethal consequences of cap failure in yeasts, and complementation studies have shown the evolutionary functional conservation of capping from unicellular to metazoan organisms.
Collapse
Affiliation(s)
- Y Furuichi
- AGENE Research Institute, Kamakura, Japan
| | | |
Collapse
|
32
|
Schnare MN, Gray MW. Spliced leader-associated RNA from Crithidia fasciculata contains a structure resembling stem/loop II of U1 snRNA. FEBS Lett 1999; 459:215-7. [PMID: 10518021 DOI: 10.1016/s0014-5793(99)01235-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to earlier proposals, recent evidence suggests that trans-spliceosomes in trypanosomatid protozoa may contain a homolog of U1 small nuclear (sn) RNA (Schnare, M.N. and Gray, M.W. (1999) J. Biol. Chem. 274, 23,691-23,694). However, the candidate trypanosomatid U1 snRNA is unconventional because it lacks the highly conserved stem/loop II present in all other U1 snRNAs. Trypanosomatids also possess a unique spliced leader-associated (SLA) RNA of unknown function. We present the complete sequence of the SLA RNA from Crithidia fasciculata and propose that it may contribute a U1 snRNA-like stem/loop II to the trans-spliceosome.
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, N.S., Canada
| | | |
Collapse
|
33
|
Abstract
In trypanosomatid protozoa, all mRNAs obtain identical 5'-ends by trans-splicing of the 5'-terminal 39 nucleotides of a small spliced leader RNA to appropriate acceptor sites in pre-mRNA. Although this process involves spliceosomal small nuclear (sn) RNAs, it is thought that trypanosomatids do not contain a homolog of the cis-spliceosomal U1 snRNA. We show here that a trypanosomatid protozoon, Crithidia fasciculata, contains a novel small RNA that displays several features characteristic of a U1 snRNA, including (i) a methylguanosine cap and additional 5'-terminal modifications, (ii) a potential binding site for common core proteins that are present in other trans-spliceosomal ribonucleoproteins, (iii) a U1-like 5'-terminal sequence, and (iv) a U1-like stem/loop I structure. Because trypanosomatid pre-mRNAs do not appear to contain cis-spliced introns, we argue that this previously unrecognized RNA species is a good candidate to be a trans-spliceosomal U1 snRNA.
Collapse
Affiliation(s)
- M N Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|