1
|
Hernández-Rollán C, Ehrmann AK, Vlassis A, Kandasamy V, Nørholm MHH. Neq2X7: a multi-purpose and open-source fusion DNA polymerase for advanced DNA engineering and diagnostics PCR. BMC Biotechnol 2024; 24:17. [PMID: 38566117 PMCID: PMC10988834 DOI: 10.1186/s12896-024-00844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.
Collapse
Affiliation(s)
- Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Anja K Ehrmann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Arsenios Vlassis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Vijayalakshmi Kandasamy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark
| | - Morten H H Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, Kongens Lyngby, 2800, Denmark.
- Mycropt ApS, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
2
|
Byareddy SN, Sharma K, Sachdev S, Reddy AS, Acharya A, Klaustermeier KM, Lorson CL, Singh K. Potential therapeutic targets for Mpox: the evidence to date. Expert Opin Ther Targets 2023; 27:419-431. [PMID: 37368464 PMCID: PMC10722886 DOI: 10.1080/14728222.2023.2230361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The global Mpox (MPX) disease outbreak caused by the Mpox virus (MPXV) in 2022 alarmed the World Health Organization (WHO) and health regulation agencies of individual countries leading to the declaration of MPX as a Public Health Emergency. Owing to the genetic similarities between smallpox-causing poxvirus and MPXV, vaccine JYNNEOS, and anti-smallpox drugs Brincidofovir and Tecovirimat were granted emergency use authorization by the United States Food and Drug Administration. The WHO also included cidofovir, NIOCH-14, and other vaccines as treatment options. AREAS COVERED This article covers the historical development of EUA-granted antivirals, resistance to these antivirals, and the projected impact of signature mutations on the potency of antivirals against currently circulating MPXV. Since a high prevalence of MPXV infections in individuals coinfected with HIV and MPXV, the treatment results among these individuals have been included. EXPERT OPINION All EUA-granted drugs have been approved for smallpox treatment. These antivirals show good potency against Mpox. However, conserved resistance mutation positions in MPXV and related poxviruses, and the signature mutations in the 2022 MPXV can potentially compromise the efficacy of the EUA-granted treatments. Therefore, MPXV-specific medications are required not only for the current but also for possible future outbreaks.
Collapse
Affiliation(s)
- Siddappa N Byareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Shrikesh Sachdev
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Athreya S. Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Department of Pharmaceutical Chemistry, DPSRU, New Delhi-110017
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
4
|
Yuan H, Wang Y, Liu XP. The thumb subdomain of Pyrococcus furiosus DNA polymerase is responsible for deoxyuracil binding, hydrolysis and polymerization of nucleotides. Int J Biochem Cell Biol 2022; 144:106171. [PMID: 35093572 DOI: 10.1016/j.biocel.2022.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/02/2022] [Accepted: 01/24/2022] [Indexed: 11/26/2022]
Abstract
B-family DNA polymerases, which are found in eukaryotes, archaea, viruses, and some bacteria, participate in DNA replication and repair. Starting from the N-terminus of archaeal and bacterial B-family DNA polymerases, three domains include the N-terminal, exonuclease, and polymerase domains. The N-terminal domain of the archaeal B-family DNA polymerase has a conserved deoxyuracil-binding pocket for specially binding the deoxyuracil base on DNA. The exonuclease domain is responsible for removing the mismatched base pair. The polymerase domain is the core functional domain and takes a highly conserved structure composed of fingers, palm and thumb subdomains. Previous studies have demonstrated that the thumb subdomain mainly functions as a DNA-binding element and has coordination with the exonuclease domain and palm subdomain. To further elucidate the possible functions of the thumb subdomain of archaeal B-family DNA polymerases, the thumb subdomain of Pyrococcus furiosus DNA polymerase was mutated, and the effects on three activities were characterized. Our results demonstrate that the thumb subdomain participates in the three activities of archaeal B-family DNA polymerases as a common structural element. Both the N-terminal deoxyuracil-binding pocket and thumb subdomain are critical for deoxyuracil binding. Moreover, the thumb subdomain assists DNA polymerization and hydrolysis reactions, but it does not contribute to the fidelity of DNA polymerization.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - You Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Studies on enhancement of production of recombinant DNA polymerase originated from Pyrobaculum calidifontis. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution. Biomolecules 2020; 10:biom10121647. [PMID: 33302546 PMCID: PMC7763228 DOI: 10.3390/biom10121647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/05/2023] Open
Abstract
Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively cross-pair with DNA and RNA. This capacity is essential to allow the transmission of information between different chemistries of nucleic acid molecules. Variants of the archaeal polymerase from Thermococcus gorgonarius, TgoT, that can either generate HNA from DNA (TgoT_6G12) or DNA from HNA (TgoT_RT521) have been previously identified. To understand how DNA and HNA are recognized and selected by these two laboratory-evolved polymerases, we report six X-ray structures of these variants, as well as an in silico model of a ternary complex with HNA. Structural comparisons of the apo form of TgoT_6G12 together with its binary and ternary complexes with a DNA duplex highlight an ensemble of interactions and conformational changes required to promote DNA or HNA synthesis. MD simulations of the ternary complex suggest that the HNA-DNA hybrid duplex remains stable in the A-DNA helical form and help explain the presence of mutations in regions that would normally not be in contact with the DNA if it were not in the A-helical form. One complex with two incorporated HNA nucleotides is surprisingly found in a one nucleotide-backtracked form, which is new for a DNA polymerase. This information can be used for engineering a new generation of more efficient HNA polymerase variants.
Collapse
|
7
|
Pavlov YI, Zhuk AS, Stepchenkova EI. DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer. Cancers (Basel) 2020; 12:E3489. [PMID: 33255191 PMCID: PMC7760166 DOI: 10.3390/cancers12123489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named "division of labor," remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants' effects on cancer.
Collapse
Affiliation(s)
- Youri I. Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Anna S. Zhuk
- International Laboratory of Computer Technologies, ITMO University, 197101 Saint Petersburg, Russia;
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia;
- Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
8
|
Kazlauskas D, Krupovic M, Guglielmini J, Forterre P, Venclovas Č. Diversity and evolution of B-family DNA polymerases. Nucleic Acids Res 2020; 48:10142-10156. [PMID: 32976577 PMCID: PMC7544198 DOI: 10.1093/nar/gkaa760] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
B-family DNA polymerases (PolBs) represent the most common replicases. PolB enzymes that require RNA (or DNA) primed templates for DNA synthesis are found in all domains of life and many DNA viruses. Despite extensive research on PolBs, their origins and evolution remain enigmatic. Massive accumulation of new genomic and metagenomic data from diverse habitats as well as availability of new structural information prompted us to conduct a comprehensive analysis of the PolB sequences, structures, domain organizations, taxonomic distribution and co-occurrence in genomes. Based on phylogenetic analysis, we identified a new, widespread group of bacterial PolBs that are more closely related to the catalytically active N-terminal half of the eukaryotic PolEpsilon (PolEpsilonN) than to Escherichia coli Pol II. In Archaea, we characterized six new groups of PolBs. Two of them show close relationships with eukaryotic PolBs, the first one with PolEpsilonN, and the second one with PolAlpha, PolDelta and PolZeta. In addition, structure comparisons suggested common origin of the catalytically inactive C-terminal half of PolEpsilon (PolEpsilonC) and PolAlpha. Finally, in certain archaeal PolBs we discovered C-terminal Zn-binding domains closely related to those of PolAlpha and PolEpsilonC. Collectively, the obtained results allowed us to propose a scenario for the evolution of eukaryotic PolBs.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Julien Guglielmini
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Patrick Forterre
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius 10257, Lithuania
| |
Collapse
|
9
|
Zhang L, Jiang D, Shi H, Wu M, Gan Q, Yang Z, Oger P. Characterization and application of a family B DNA polymerase from the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans. Int J Biol Macromol 2020; 156:217-224. [PMID: 32229210 DOI: 10.1016/j.ijbiomac.2020.03.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
Abstract
Thermococcus gammatolerans is anaerobic euryarchaeon which grows optimally at 88 °C and its genome encodes a family B DNA polymerase (Tga PolB). Herein, we cloned the gene of Tga PolB, expressed and purified the gene product, and characterized the enzyme biochemically. The recombinant Tga PolB can efficiently synthesize DNA at high temperature, and retain 93% activity after heated at 95 °C for 1.0 h, suggesting that the enzyme is thermostable. Furthermore, the optimal pH for the enzyme activity was measured to be 7.0-9.0. Tga PolB activity is dependent on a divalent cation, among which magnesium ion is optimal. NaCl at low concentration stimulates the enzyme activity but at high concentration inhibits enzyme activity. Interestingly, Tga PolB is able to efficiently bypass uracil in DNA, which is distinct from other archaeal family B DNA pols. By contrast, Tga PolB is halted by an AP site in DNA, as observed in other archaeal family B DNA polymerases. Furthermore, Tga PolB extends the mismatched ends with reduced efficiencies. The enzyme possesses 3'-5' exonuclease activity and this activity is inhibited by dNTPs. The DNA binding assays showed that Tga PolB can efficiently bind to ssDNA and primed DNA, and have a marked preference for primed DNA. Last, Tga PolB can be used in routine PCR.
Collapse
Affiliation(s)
- Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China; Guangling College, Yangzhou University, China.
| | - Donghao Jiang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Haoqiang Shi
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Mai Wu
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Qi Gan
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Jiangsu Province 225127, China
| | - Zhihui Yang
- College of Plant Protection, Agricultural University of Hebei, Baoding, City, Hebei Province 071001, China.
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| |
Collapse
|
10
|
Del Prado A, Rodríguez I, Lázaro JM, Moreno-Morcillo M, de Vega M, Salas M. New insights into the coordination between the polymerization and 3'-5' exonuclease activities in ϕ29 DNA polymerase. Sci Rep 2019; 9:923. [PMID: 30696917 PMCID: PMC6351526 DOI: 10.1038/s41598-018-37513-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/06/2018] [Indexed: 11/09/2022] Open
Abstract
Bacteriophage ϕ29 DNA polymerase has two activities: DNA polymerization and 3′-5′ exonucleolysis governed by catalytic sites present in two structurally distant domains. These domains must work together to allow the correct replication of the template and to prevent the accumulation of errors in the newly synthesized DNA strand. ϕ29 DNA polymerase is endowed with a high processivity and strand displacement capacity together with a high fidelity. Previous studies of its crystallographic structure suggested possible interactions of residues of the exonuclease domain like the Gln180 with the fingers subdomain, or water mediated and direct hydrogen bond by the polar groups of residues Tyr101 and Thr189 that could stabilize DNA binding. To analyse their functional importance for the exonuclease activity of ϕ29 DNA polymerase we engineered mutations to encode amino acid substitutions. Our results confirm that both residues, Tyr101 and Thr189 are involved in the 3′-5′ exonuclease activity and in binding the dsDNA. In addition, Tyr101 is playing a role in processivity and Thr189 is an important determinant in the fidelity of the DNA polymerase. On the other hand, the biochemical characterization of the mutant derivatives of residue Gln180 showed how the mutations introduced enhanced the 3′-5′ exonuclease activity of the enzyme. A potential structural conformation prone to degrade the substrate is discussed.
Collapse
Affiliation(s)
- Alicia Del Prado
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Irene Rodríguez
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - José María Lázaro
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - María Moreno-Morcillo
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Miguel de Vega
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular "Severo Ochoa," (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
11
|
Noncatalytic aspartate at the exonuclease domain of proofreading DNA polymerases regulates both degradative and synthetic activities. Proc Natl Acad Sci U S A 2018. [PMID: 29531047 DOI: 10.1073/pnas.1718787115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most replicative DNA polymerases (DNAPs) are endowed with a 3'-5' exonuclease activity to proofread the polymerization errors, governed by four universally conserved aspartate residues belonging to the Exo I, Exo II, and Exo III motifs. These residues coordinate the two metal ions responsible for the hydrolysis of the last phosphodiester bond of the primer strand. Structural alignment of the conserved exonuclease domain of DNAPs from families A, B, and C has allowed us to identify an additional and invariant aspartate, located between motifs Exo II and Exo III. The importance of this aspartate has been assessed by site-directed mutagenesis at the corresponding Asp121 of the family B ϕ29 DNAP. Substitution of this residue by either glutamate or alanine severely impaired the catalytic efficiency of the 3'-5' exonuclease activity, both on ssDNA and dsDNA. The polymerization activity of these mutants was also affected due to a defective translocation following nucleotide incorporation. Alanine substitution for the homologous Asp90 in family A T7 DNAP showed essentially the same phenotype as ϕ29 DNAP mutant D121A. This functional conservation, together with a close inspection of ϕ29 DNAP/DNA complexes, led us to conclude a pivotal role for this aspartate in orchestrating the network of interactions required during internal proofreading of misinserted nucleotides.
Collapse
|
12
|
Fidelity of DNA replication-a matter of proofreading. Curr Genet 2018; 64:985-996. [PMID: 29500597 PMCID: PMC6153641 DOI: 10.1007/s00294-018-0820-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/29/2023]
Abstract
DNA that is transmitted to daughter cells must be accurately duplicated to maintain genetic integrity and to promote genetic continuity. A major function of replicative DNA polymerases is to replicate DNA with the very high accuracy. The fidelity of DNA replication relies on nucleotide selectivity of replicative DNA polymerase, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR). Proofreading activity that assists most of the replicative polymerases is responsible for removal of incorrectly incorporated nucleotides from the primer terminus before further primer extension. It is estimated that proofreading improves the fidelity by a 2–3 orders of magnitude. The primer with the incorrect terminal nucleotide has to be moved to exonuclease active site, and after removal of the wrong nucleotide must be transferred back to polymerase active site. The mechanism that allows the transfer of the primer between pol and exo site is not well understood. While defects in MMR are well known to be linked with increased cancer incidence only recently, the replicative polymerases that have alterations in the exonuclease domain have been associated with some sporadic and hereditary human cancers. In this review, we would like to emphasize the importance of proofreading (3′-5′ exonuclease activity) in the fidelity of DNA replication and to highlight what is known about switching from polymerase to exonuclease active site.
Collapse
|
13
|
Hendriks A, van Lier J, de Kreuk M. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol Adv 2018; 36:1-13. [DOI: 10.1016/j.biotechadv.2017.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/08/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
14
|
Ralec C, Henry E, Lemor M, Killelea T, Henneke G. Calcium-driven DNA synthesis by a high-fidelity DNA polymerase. Nucleic Acids Res 2017; 45:12425-12440. [PMID: 29040737 PMCID: PMC5716173 DOI: 10.1093/nar/gkx927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 11/14/2022] Open
Abstract
Divalent metal ions, usually Mg2+, are required for both DNA synthesis and proofreading functions by DNA polymerases (DNA Pol). Although used as a non-reactive cofactor substitute for binding and crystallographic studies, Ca2+ supports DNA polymerization by only one DNA Pol, Dpo4. Here, we explore whether Ca2+-driven catalysis might apply to high-fidelity (HiFi) family B DNA Pols. The consequences of replacing Mg2+ by Ca2+ on base pairing at the polymerase active site as well as the editing of terminal nucleotides at the exonuclease active site of the archaeal Pyrococcus abyssi DNA Pol (PabPolB) are characterized and compared to other (families B, A, Y, X, D) DNA Pols. Based on primer extension assays, steady-state kinetics and ion-chased experiments, we demonstrate that Ca2+ (and other metal ions) activates DNA synthesis by PabPolB. While showing a slower rate of phosphodiester bond formation, nucleotide selectivity is improved over that of Mg2+. Further mechanistic studies show that the affinities for primer/template are higher in the presence of Ca2+ and reinforced by a correct incoming nucleotide. Conversely, no exonuclease degradation of the terminal nucleotides occurs with Ca2+. Evolutionary and mechanistic insights among DNA Pols are thus discussed.
Collapse
Affiliation(s)
- Céline Ralec
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Etienne Henry
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Mélanie Lemor
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Tom Killelea
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
15
|
Crystal structures of ternary complexes of archaeal B-family DNA polymerases. PLoS One 2017; 12:e0188005. [PMID: 29211756 PMCID: PMC5718519 DOI: 10.1371/journal.pone.0188005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 01/04/2023] Open
Abstract
Archaeal B-family polymerases drive biotechnology by accepting a wide substrate range of chemically modified nucleotides. By now no structural data for archaeal B-family DNA polymerases in a closed, ternary complex are available, which would be the basis for developing next generation nucleotides. We present the ternary crystal structures of KOD and 9°N DNA polymerases complexed with DNA and the incoming dATP. The structures reveal a third metal ion in the active site, which was so far only observed for the eukaryotic B-family DNA polymerase δ and no other B-family DNA polymerase. The structures reveal a wide inner channel and numerous interactions with the template strand that provide space for modifications within the enzyme and may account for the high processivity, respectively. The crystal structures provide insights into the superiority over other DNA polymerases concerning the acceptance of modified nucleotides.
Collapse
|
16
|
Chim N, Shi C, Sau SP, Nikoomanzar A, Chaput JC. Structural basis for TNA synthesis by an engineered TNA polymerase. Nat Commun 2017; 8:1810. [PMID: 29180809 PMCID: PMC5703726 DOI: 10.1038/s41467-017-02014-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/01/2017] [Indexed: 12/03/2022] Open
Abstract
Darwinian evolution experiments carried out on xeno-nucleic acid (XNA) polymers require engineered polymerases that can faithfully and efficiently copy genetic information back and forth between DNA and XNA. However, current XNA polymerases function with inferior activity relative to their natural counterparts. Here, we report five X-ray crystal structures that illustrate the pathway by which α-(l)-threofuranosyl nucleic acid (TNA) triphosphates are selected and extended in a template-dependent manner using a laboratory-evolved polymerase known as Kod-RI. Structural comparison of the apo, binary, open and closed ternary, and translocated product detail an ensemble of interactions and conformational changes required to promote TNA synthesis. Close inspection of the active site in the closed ternary structure reveals a sub-optimal binding geometry that explains the slow rate of catalysis. This key piece of information, which is missing for all naturally occurring archaeal DNA polymerases, provides a framework for engineering new TNA polymerase variants. The laboratory-evolved polymerase Kod-RI catalyzes α-L-threose nucleic acid (TNA) synthesis. Here, the authors present Kod-RI crystal structures that give insights into how TNA triphosphates are selected and extended in a template-dependent manner, which will help to engineer improved TNA polymerases for synthetic genetics applications.
Collapse
Affiliation(s)
- Nicholas Chim
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Changhua Shi
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Sujay P Sau
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - Ali Nikoomanzar
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry University of California, Irvine, CA, 92697-3958, USA.
| |
Collapse
|
17
|
Amadei A, Del Galdo S, D'Abramo M. Density discriminates between thermophilic and mesophilic proteins. J Biomol Struct Dyn 2017; 36:3265-3273. [PMID: 28952426 DOI: 10.1080/07391102.2017.1385537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite an intense interest and a remarkable number of studies on the subject, the relationships between thermostability and (primary, secondary and tertiary) structure of proteins are still not fully understood. Here, comparing the protein density - defined by the ratio between the residue number and protein excluded volume - for a set of thermophilic/mesophilic pairs, we provide evidence that this property is connected to the optimal growth temperature. In particular, our results indicate that thermophilic proteins have - in general - a lower density with respect to the mesophilic counterparts, being such a correlation more pronounced for optimal growth temperature differences greater than 40°C. The effect of the protein thermostability changes on the molecular shape is also presented.
Collapse
Affiliation(s)
- Andrea Amadei
- a Department of Chemical Science and Technology , University of Roma Tor Vergata , via della Ricerca Scientifica, 00133 , Roma , Italy
| | - Sara Del Galdo
- a Department of Chemical Science and Technology , University of Roma Tor Vergata , via della Ricerca Scientifica, 00133 , Roma , Italy
| | - Marco D'Abramo
- b Department of Chemistry , Sapienza University of Rome , P.le A. Moro, 5, 00185 , Rome , Italy
| |
Collapse
|
18
|
Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat Commun 2017; 8:15075. [PMID: 28462924 PMCID: PMC5418573 DOI: 10.1038/ncomms15075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis. The current model for B-family DNA polymerases in archaea is one of single-subunit enzymes in contrast to the multi-subunit complexes in eukaryotes. Here the authors show that PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts.
Collapse
|
19
|
Guo J, Zhang W, Coker AR, Wood SP, Cooper JB, Ahmad S, Ali S, Rashid N, Akhtar M. Structure of the family B DNA polymerase from the hyperthermophilic archaeon Pyrobaculum calidifontis. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:420-427. [PMID: 28471366 DOI: 10.1107/s2059798317004090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/13/2017] [Indexed: 11/10/2022]
Abstract
The family B DNA polymerase from Pyrobaculum calidifontis (Pc-polymerase) consists of 783 amino acids and is magnesium-ion dependent. It has an optimal pH of 8.5, an optimal temperature of 75°C and a half-life of 4.5 h at 95°C, giving it greater thermostability than the widely used Taq DNA polymerase. The enzyme is also capable of PCR-amplifying larger DNA fragments of up to 7.5 kb in length. It was shown to have functional, error-correcting 3'-5' exonuclease activity, as do the related high-fidelity DNA polymerases from Pyrococcus furiosus, Thermococcus kodakarensis KOD1 and Thermococcus gorgonarius, which have extensive commercial applications. Pc-polymerase has a quite low sequence identity of approximately 37% to these enzymes, which, in contrast, have very high sequence identity to each other, suggesting that the P. calidifontis enzyme is distinct. Here, the structure determination of Pc-polymerase is reported, which has been refined to an R factor of 24.47% and an Rfree of 28.81% at 2.80 Å resolution. The domains of the enzyme are arranged in a circular fashion to form a disc with a narrow central channel. One face of the disc has a number of connected crevices in it, which allow the protein to bind duplex and single-stranded DNA. The central channel is thought to allow incoming nucleoside triphosphates to access the active site. The enzyme has a number of unique structural features which distinguish it from other archaeal DNA polymerases and may account for its high processivity. A model of the complex with the primer-template duplex of DNA indicates that the largest conformational change that occurs upon DNA binding is the movement of the thumb domain, which rotates by 7.6° and moves by 10.0 Å. The surface potential of the enzyme is dominated by acidic groups in the central region of the molecule, where catalytic magnesium ions bind at the polymerase and exonuclease active sites. The outer regions are richer in basic amino acids that presumably interact with the sugar-phosphate backbone of DNA. The large number of salt bridges may contribute to the high thermal stability of this enzyme.
Collapse
Affiliation(s)
- Jingxu Guo
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Wenling Zhang
- School of Pharmacy, UCL, 29-39 Brunswick Square, London WC1N 1AX, England
| | - Alun R Coker
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Steve P Wood
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Jonathan B Cooper
- Wolfson Institute for Biomedical Research, Division of Medicine, UCL, Gower Street, London WC1E 6BT, England
| | - Shazeel Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Syed Ali
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Muhummad Akhtar
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| |
Collapse
|
20
|
Xu X, Yan C, Kossmann BR, Ivanov I. Secondary Interaction Interfaces with PCNA Control Conformational Switching of DNA Polymerase PolB from Polymerization to Editing. J Phys Chem B 2016; 120:8379-88. [PMID: 27109703 DOI: 10.1021/acs.jpcb.6b02082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replicative DNA polymerases (Pols) frequently possess two distinct DNA processing activities: DNA synthesis (polymerization) and proofreading (3'-5' exonuclease activity). The polymerase and exonuclease reactions are performed alternately and are spatially separated in different protein domains. Thus, the growing DNA primer terminus has to undergo dynamic conformational switching between two distinct functional sites on the polymerase. Furthermore, the transition from polymerization (pol) mode to exonuclease (exo) mode must occur in the context of a DNA Pol holoenzyme, wherein the polymerase is physically associated with processivity factor proliferating cell nuclear antigen (PCNA) and primer-template DNA. The mechanism of this conformational switching and the role that PCNA plays in it have remained obscure, largely due to the dynamic nature of ternary Pol/PCNA/DNA assemblies. Here, we present computational models of ternary assemblies for archaeal polymerase PolB. We have combined all available structural information for the binary complexes with electron microscopy data and have refined atomistic models for ternary PolB/PCNA/DNA assemblies in pol and exo modes using molecular dynamics simulations. In addition to the canonical PIP-box/interdomain connector loop (IDCL) interface of PolB with PCNA, contact analysis of the simulation trajectories revealed new secondary binding interfaces, distinct between the pol and exo states. Using targeted molecular dynamics, we explored the conformational transition from pol to exo mode. We identified a hinge region between the thumb and palm domains of PolB that is critical for conformational switching. With the thumb domain anchored onto the PCNA surface, the neighboring palm domain executed rotational motion around the hinge, bringing the core of PolB down toward PCNA to form a new interface with the clamp. A helix from PolB containing a patch of arginine residues was involved in the binding, locking the complex in the exo mode conformation. Together, these results provide a structural view of how the transition between the pol and exo states of PolB is coordinated through PCNA to achieve efficient proofreading.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Chunli Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Bradley R Kossmann
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| |
Collapse
|
21
|
Stodola JL, Stith CM, Burgers PM. Proficient Replication of the Yeast Genome by a Viral DNA Polymerase. J Biol Chem 2016; 291:11698-705. [PMID: 27072134 DOI: 10.1074/jbc.m116.728741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication.
Collapse
Affiliation(s)
- Joseph L Stodola
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Carrie M Stith
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Peter M Burgers
- From the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
22
|
Lee J, Kim KM, Yang EC, Miller KA, Boo SM, Bhattacharya D, Yoon HS. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Sci Rep 2016; 6:23744. [PMID: 27030297 PMCID: PMC4814812 DOI: 10.1038/srep23744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/14/2016] [Indexed: 11/22/2022] Open
Abstract
The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| | - Kyeong Mi Kim
- Marine Biodiversity Institute of Korea, Seocheon, 325-902, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Division, Korea Institute of Ocean Science & Technology, Ansan, 15627, Korea
| | - Kathy Ann Miller
- Herbarium, University of California at Berkeley, 1001 Valley Life Sciences Building 2465, Berkeley, California, 94720-2465, USA
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources and Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
23
|
Hottin A, Marx A. Structural Insights into the Processing of Nucleobase-Modified Nucleotides by DNA Polymerases. Acc Chem Res 2016; 49:418-27. [PMID: 26947566 DOI: 10.1021/acs.accounts.5b00544] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The DNA polymerase-catalyzed incorporation of modified nucleotides is employed in many biological technologies of prime importance, such as next-generation sequencing, nucleic acid-based diagnostics, transcription analysis, and aptamer selection by systematic enrichment of ligands by exponential amplification (SELEX). Recent studies have shown that 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with modifications at the nucleobase such as dyes, affinity tags, spin and redox labels, or even oligonucleotides are substrates for DNA polymerases, even if modifications of high steric demand are used. The position at which the modification is introduced in the nucleotide has been identified as crucial for retaining substrate activity for DNA polymerases. Modifications are usually attached at the C5 position of pyrimidines and the C7 position of 7-deazapurines. Furthermore, it has been shown that the nature of the modification may impact the efficiency of incorporation of a modified nucleotide into the nascent DNA strand by a DNA polymerase. This Account places functional data obtained in studies of the incorporation of modified nucleotides by DNA polymerases in the context of recently obtained structural data. Crystal structure analysis of a Thermus aquaticus (Taq) DNA polymerase variant (namely, KlenTaq DNA polymerase) in ternary complex with primer-template DNA and several modified nucleotides provided the first structural insights into how nucleobase-modified triphosphates are tolerated. We found that bulky modifications are processed by KlenTaq DNA polymerase as a result of cavities in the protein that enable the modification to extend outside the active site. In addition, we found that the enzyme is able to adapt to different modifications in a flexible manner and adopts different amino acid side-chain conformations at the active site depending on the nature of the nucleotide modification. Different "strategies" (i.e., hydrogen bonding, cation-π interactions) enable the protein to stabilize the respective protein-substrate complex without significantly changing the overall structure of the complex. Interestingly, it was also discovered that a modified nucleotide may be more efficiently processed by KlenTaq DNA polymerase when the 3'-primer terminus is also a modified nucleotide instead of a nonmodified natural one. Indeed, the modifications of two modified nucleotides at adjacent positions can interact with each other (i.e., by π-π interactions) and thereby stabilize the enzyme-substrate complex, resulting in more efficient transformation. Several studies have indicated that archeal DNA polymerases belonging to sequence family B are better suited for the incorporation of nucleobase-modified nucleotides than enzymes from family A. However, significantly less structural data are available for family B DNA polymerases. In order to gain insights into the preference for modified substrates by members of family B, we succeeded in obtaining binary structures of 9°N and KOD DNA polymerases bound to primer-template DNA. We found that the major groove of the archeal family B DNA polymerases is better accessible than in family A DNA polymerases. This might explain the observed superiority of family B DNA polymerases in polymerizing nucleotides that bear bulky modifications located in the major groove, such as modification at C5 of pyrimidines and C7 of 7-deazapurines. Overall, this Account summarizes our recent findings providing structural insight into the mechanism by which modified nucleotides are processed by DNA polymerases. It provides guidelines for the design of modified nucleotides, thus supporting future efforts based on the acceptance of modified nucleotides by DNA polymerases.
Collapse
Affiliation(s)
- Audrey Hottin
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department
of Chemistry and
Konstanz Research School Chemical Biology University of Konstanz Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
24
|
Vashishtha AK, Kuchta RD. Effects of Acyclovir, Foscarnet, and Ribonucleotides on Herpes Simplex Virus-1 DNA Polymerase: Mechanistic Insights and a Novel Mechanism for Preventing Stable Incorporation of Ribonucleotides into DNA. Biochemistry 2016; 55:1168-77. [PMID: 26836009 DOI: 10.1021/acs.biochem.6b00065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the impact of two clinically approved anti-herpes drugs, acyclovir and Forscarnet (phosphonoformate), on the exonuclease activity of the herpes simplex virus-1 DNA polymerase, UL30. Acyclovir triphosphate and Foscarnet, along with the closely related phosphonoacetic acid, did not affect exonuclease activity on single-stranded DNA. Furthermore, blocking the polymerase active site due to either binding of Foscarnet or phosphonoacetic acid to the E-DNA complex or polymerization of acyclovir onto the DNA also had a minimal effect on exonuclease activity. The inability of the exonuclease to excise acyclovir from the primer 3'-terminus results from the altered sugar structure directly impeding phosphodiester bond hydrolysis as opposed to inhibiting binding, unwinding of the DNA by the exonuclease, or transfer of the DNA from the polymerase to the exonuclease. Removing the 3'-hydroxyl or the 2'-carbon from the nucleotide at the 3'-terminus of the primer strongly inhibited exonuclease activity, although addition of a 2'-hydroxyl did not affect exonuclease activity. The biological consequences of these results are twofold. First, the ability of acyclovir and Foscarnet to block dNTP polymerization without impacting exonuclease activity raises the possibility that their effects on herpes replication may involve both direct inhibition of dNTP polymerization and exonuclease-mediated destruction of herpes DNA. Second, the ability of the exonuclease to rapidly remove a ribonucleotide at the primer 3'-terminus in combination with the polymerase not efficiently adding dNTPs onto this primer provides a novel mechanism by which the herpes replication machinery can prevent incorporation of ribonucleotides into newly synthesized DNA.
Collapse
Affiliation(s)
- Ashwani Kumar Vashishtha
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - Robert D Kuchta
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| |
Collapse
|
25
|
Suggested Literature. Genetics 2015. [DOI: 10.2135/2009.geneticslabmanual.oth] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus. J Bacteriol 2015; 197:3463-71. [PMID: 26303832 DOI: 10.1128/jb.00352-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the present study, the crystal structure of recombinant diphosphomevalonate decarboxylase from the hyperthermophilic archaeon Sulfolobus solfataricus was solved as the first example of an archaeal and thermophile-derived diphosphomevalonate decarboxylase. The enzyme forms a homodimer, as expected for most eukaryotic and bacterial orthologs. Interestingly, the subunits of the homodimer are connected via an intersubunit disulfide bond, which presumably formed during the purification process of the recombinant enzyme expressed in Escherichia coli. When mutagenesis replaced the disulfide-forming cysteine residue with serine, however, the thermostability of the enzyme was significantly lowered. In the presence of β-mercaptoethanol at a concentration where the disulfide bond was completely reduced, the wild-type enzyme was less stable to heat. Moreover, Western blot analysis combined with nonreducing SDS-PAGE of the whole cells of S. solfataricus proved that the disulfide bond was predominantly formed in the cells. These results suggest that the disulfide bond is required for the cytosolic enzyme to acquire further thermostability and to exert activity at the growth temperature of S. solfataricus. IMPORTANCE This study is the first report to describe the crystal structures of archaeal diphosphomevalonate decarboxylase, an enzyme involved in the classical mevalonate pathway. A stability-conferring intersubunit disulfide bond is a remarkable feature that is not found in eukaryotic and bacterial orthologs. The evidence that the disulfide bond also is formed in S. solfataricus cells suggests its physiological importance.
Collapse
|
27
|
Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 2015; 99:6585-97. [DOI: 10.1007/s00253-015-6781-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
28
|
Boone CD, Rasi V, Tu C, McKenna R. Structural and catalytic effects of proline substitution and surface loop deletion in the extended active site of human carbonic anhydrase II. FEBS J 2015; 282:1445-57. [PMID: 25683338 PMCID: PMC4400229 DOI: 10.1111/febs.13232] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 01/07/2023]
Abstract
UNLABELLED Bioengineering of a thermophilic enzyme starting from a mesophilic scaffold has proven to be a significant challenge, as several stabilizing elements have been proposed to be the foundation of thermal stability, including disulfide bridges, surface loop reduction, ionic pair networks, proline substitutions and aromatic clusters. This study emphasizes the effect of increasing the rigidity of human carbonic anhydrase II (HCA II; EC 4.2.1.1) via incorporation of proline residues at positions 170 and 234, which are located in surface loops that are able to accommodate restrictive main-chain conformations without rearrangement of the surrounding peptide backbone. Additionally, the effect of the compactness of HCA II was examined by deletion of a surface loop (residues 230-240) that had been previously identified as a possible source of thermal stability for the hyperthermophilic carbonic anhydrase isolated from the bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Differential scanning calorimetry analysis of these HCA II variants revealed that these structural modifications had a minimum effect on the thermal stability of the enzyme, while kinetic studies showed unexpected effects on the catalytic efficiency and proton transfer rates. X-ray crystallographic analysis of these HCA II variants showed that the electrostatic potential and configuration of the highly acidic loop (residues 230-240) play an important role in its high catalytic activity. Based on these observations and previous studies, a picture is emerging of the various components within the general structural architecture of HCA II that are key to stability. These elements may provide blueprints for rational thermal stability engineering of other enzymes. DATABASE Structural data have been submitted to the Protein Data Bank under accession numbers 4QK1 (K170P), 4QK2 (E234P) and 4QK3 (Δ230-240).
Collapse
Affiliation(s)
- Christopher D. Boone
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL, 32610, USA
| | - Valerio Rasi
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL, 32610, USA
| | - Chingkuang Tu
- Pharmacology & Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL, 32610, USA
| | - Robert McKenna
- Biochemistry & Molecular Biology, University of Florida, P.O. Box 100245, Gainesville, FL, 32610, USA,Corresponding author. FAX (352) 392-3422;
| |
Collapse
|
29
|
Molecular Genetic Methods to Study DNA Replication Protein Function in Haloferax volcanii, A Model Archaeal Organism. Methods Mol Biol 2015; 1300:187-218. [PMID: 25916714 DOI: 10.1007/978-1-4939-2596-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Successful high-fidelity chromosomal DNA replication is fundamental to all forms of cellular life and requires the complex interplay of a variety of essential and nonessential protein factors in a spatially and temporally coordinated manner. Much of what is known about the enzymes and mechanisms of chromosome replication has come from analysis of simple microbial model systems, such as yeast and archaea. Archaea possess a highly simplified eukaryotic-like replication apparatus, making them an excellent model for gaining novel insights into conserved aspects of protein function at the heart of the replisome. Amongst the thermophilic archaea, a number of species have proved useful for biochemical analysis of protein function, but few of these organisms are suited to genetic analysis. One archaeal organism that is genetically tractable is the mesophilic euryarchaeon Haloferax volcanii, a halophile that grows aerobically in high salt medium at an optimum temperature of 40-45 °C and with a doubling time of 2-3 h. The Hfx. volcanii genome has been sequenced and a range of methods have been developed to allow reverse genetic analysis of protein function in vivo, including techniques for gene replacement and gene deletion, transcriptional regulation, point mutation and gene tagging. Here we briefly summarize current knowledge of the chromosomal DNA replication machinery in the haloarchaea before describing in detail the molecular methods available to probe protein structure and function within the Hfx. volcanii replication apparatus.
Collapse
|
30
|
Laos R, Thomson JM, Benner SA. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Front Microbiol 2014; 5:565. [PMID: 25400626 PMCID: PMC4215692 DOI: 10.3389/fmicb.2014.00565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Abstract
DNA polymerases have evolved for billions of years to accept natural nucleoside triphosphate substrates with high fidelity and to exclude closely related structures, such as the analogous ribonucleoside triphosphates. However, polymerases that can accept unnatural nucleoside triphosphates are desired for many applications in biotechnology. The focus of this review is on non-standard nucleotides that expand the genetic "alphabet." This review focuses on experiments that, by directed evolution, have created variants of DNA polymerases that are better able to accept unnatural nucleotides. In many cases, an analysis of past evolution of these polymerases (as inferred by examining multiple sequence alignments) can help explain some of the mutations delivered by directed evolution.
Collapse
Affiliation(s)
- Roberto Laos
- Foundation for Applied Molecular Evolution Gainesville, FL, USA
| | | | - Steven A Benner
- Foundation for Applied Molecular Evolution Gainesville, FL, USA
| |
Collapse
|
31
|
Cho SS, Yu M, Kwon ST. Mutations in the palm subdomain of Twa DNA polymerase to enhance PCR efficiency and its function analysis. J Biotechnol 2014; 184:39-46. [PMID: 24865518 DOI: 10.1016/j.jbiotec.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/19/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Among the family B DNA polymerases, the Twa DNA polymerase from T. wiotapuensis, a hyperthermophilic archaeon, has exceedingly high fidelity. For applications in PCR, however, the enzyme is limited by its low extension rate and processivity. To resolve these weaknesses, we focused on two amino acid residues (A381 and N501) located at the palm subdomain of Twa DNA polymerase. Following replacement of these residues by site-directed mutagenesis, Twa N501R DNA polymerase showed significantly improved polymerase function compared to the wild-type enzyme in terms of processivity (3-fold), extension rate (2-fold) and PCR efficiency. Kinetic analysis using DNA as template revealed that the kcat value of the Twa N501R mutant was similar to that of wild-type, but the Km of the Twa N501R mutant was about 1.5-fold lower than that of the wild-type. These results suggest that a positive charge at residue 501 located in the forked-point does not impede catalytic activity of the polymerase domain but stabilizes interactions between the polymerase domain and the DNA template.
Collapse
Affiliation(s)
- Sung Suk Cho
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Mi Yu
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Suk-Tae Kwon
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
32
|
Makarova KS, Krupovic M, Koonin EV. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Front Microbiol 2014; 5:354. [PMID: 25101062 PMCID: PMC4104785 DOI: 10.3389/fmicb.2014.00354] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 01/15/2023] Open
Abstract
The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the family B and the family D archaeal polymerases.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
33
|
Cho SS, Yu M, Kim SH, Kwon ST. Enhanced PCR efficiency of high-fidelity DNA polymerase from Thermococcus waiotapuensis. Enzyme Microb Technol 2014; 63:39-45. [PMID: 25039058 DOI: 10.1016/j.enzmictec.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 05/18/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Twa DNA polymerase from hyperthermophilic archaeon Thermococcus waiotapuensis has exceedingly high fidelity among family B DNA polymerases. However, Twa DNA polymerase has significant shortcomings in terms of a low extension rate and poor processivity. To resolve these weaknesses, we focused on two amino acid residues (N565 and H633) in the palm and thumb subdomains of the Twa DNA polymerase. These two residues were replaced by site-directed mutagenesis and the enzymatic properties of the mutants were analyzed. Here, Twa H633R DNA polymerase showed significantly improved polymerase function compared to wild-type Twa DNA polymerase in terms of processivity (2-fold), extension rate (1.5-fold) and PCR efficiency. Kinetic analysis using DNA as a template revealed that the kcat value of the Twa H633R mutant was similar to that of wild-type, but the Km of the Twa H633R mutant was about 1.6-fold lower than that of the wild-type. These results showed that the Arg residue substitution at H633 located in the thumb subdomain has a positive effect on processivity, extension rate and PCR efficiency, suggesting that the Twa H633R mutant allows a conformational change for easy access of the primer-template to the binding site of the polymerase domain.
Collapse
Affiliation(s)
- Sung Suk Cho
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Mi Yu
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Seung Hyun Kim
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Suk-Tae Kwon
- Department of Genetic Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
34
|
Elshawadfy AM, Keith BJ, Ee Ooi H, Kinsman T, Heslop P, Connolly BA. DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction. Front Microbiol 2014; 5:224. [PMID: 24904539 PMCID: PMC4034419 DOI: 10.3389/fmicb.2014.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/28/2014] [Indexed: 11/20/2022] Open
Abstract
The polymerase chain reaction (PCR) is widely applied across the biosciences, with archaeal Family-B DNA polymerases being preferred, due to their high thermostability and fidelity. The enzyme from Pyrococcus furiosus (Pfu-Pol) is more frequently used than the similar protein from Thermococcus kodakarensis (Tkod-Pol), despite the latter having better PCR performance. Here the two polymerases have been comprehensively compared, confirming that Tkod-Pol: (1) extends primer-templates more rapidly; (2) has higher processivity; (3) demonstrates superior performance in normal and real time PCR. However, Tkod-Pol is less thermostable than Pfu-Pol and both enzymes have equal fidelities. To understand the favorable properties of Tkod-Pol, hybrid proteins have been prepared. Single, double and triple mutations were used to site arginines, present at the “forked-point” (the junction of the exonuclease and polymerase channels) of Tkod-Pol, at the corresponding locations in Pfu-Pol, slightly improving PCR performance. The Pfu-Pol thumb domain, responsible for double-stranded DNA binding, has been entirely replaced with that from Tkod-Pol, again giving better PCR properties. Combining the “forked-point” and thumb swap mutations resulted in a marked increase in PCR capability, maintenance of high fidelity and retention of the superior thermostability associated with Pfu-Pol. However, even the arginine/thumb swap mutant falls short of Tkod-Pol in PCR, suggesting further improvement within the Pfu-Pol framework is attainable. The significance of this work is the observation that improvements in PCR performance are easily attainable by blending elements from closely related archaeal polymerases, an approach that may, in future, be extended by using more polymerases from these organisms.
Collapse
Affiliation(s)
- Ashraf M Elshawadfy
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Brian J Keith
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - H'Ng Ee Ooi
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Thomas Kinsman
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Pauline Heslop
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| | - Bernard A Connolly
- Institute of Cell and Molecular Biosciences, University of Newcastle Newcastle upon Tyne, UK
| |
Collapse
|
35
|
PPL2 translesion polymerase is essential for the completion of chromosomal DNA replication in the African trypanosome. Mol Cell 2014; 52:554-65. [PMID: 24267450 PMCID: PMC3898837 DOI: 10.1016/j.molcel.2013.10.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 01/23/2023]
Abstract
Faithful copying of the genome is essential for life. In eukaryotes, a single archaeo-eukaryotic primase (AEP), DNA primase, is required for the initiation and progression of DNA replication. Here we have identified additional eukaryotic AEP-like proteins with DNA-dependent primase and/or polymerase activity. Uniquely, the genomes of trypanosomatids, a group of kinetoplastid protozoa of significant medical importance, encode two PrimPol-like (PPL) proteins. In the African trypanosome, PPL2 is a nuclear enzyme present in G2 phase cells. Following PPL2 knockdown, a cell-cycle arrest occurs after the bulk of DNA synthesis, the DNA damage response is activated, and cells fail to recover. Consistent with this phenotype, PPL2 replicates damaged DNA templates in vitro, including templates containing the UV-induced pyrimidine-pyrimidone (6-4) photoproduct. Furthermore, PPL2 accumulates at sites of nuclear DNA damage. Taken together, our results indicate an essential role for PPL2 in postreplication tolerance of endogenous DNA damage, thus allowing completion of genome duplication. Trypanosomatids contain two archaeo-eukaryotic primase-polymerase-like proteins PPL2 is essential in the pathogenic bloodstream form African trypanosome PPL2 suppresses DNA damage and allows completion of chromosomal replication PPL2 mediates translesion DNA synthesis
Collapse
|
36
|
Trakselis MA, Bauer RJ. Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties. NUCLEIC ACID POLYMERASES 2014. [DOI: 10.1007/978-3-642-39796-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Santos E, Lázaro JM, Pérez-Arnaiz P, Salas M, de Vega M. Role of the LEXE motif of protein-primed DNA polymerases in the interaction with the incoming nucleotide. J Biol Chem 2013; 289:2888-98. [PMID: 24324256 DOI: 10.1074/jbc.m113.530980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The LEXE motif, conserved in eukaryotic type DNA polymerases, is placed close to the polymerization active site. Previous studies suggested that the second Glu was involved in binding a third noncatalytic ion in bacteriophage RB69 DNA polymerase. In the protein-primed DNA polymerase subgroup, the LEXE motif lacks the first Glu in most cases, but it has a conserved Phe/Trp and a Gly preceding that position. To ascertain the role of those residues, we have analyzed the behavior of mutants at the corresponding ϕ29 DNA polymerase residues Gly-481, Trp-483, Ala-484, and Glu-486. We show that mutations at Gly-481 and Trp-483 hamper insertion of the incoming dNTP in the presence of Mg(2+) ions, a reaction highly improved when Mn(2+) was used as metal activator. These results, together with previous crystallographic resolution of ϕ29 DNA polymerase ternary complex, allow us to infer that Gly-481 and Trp-483 could form a pocket that orients Val-250 to interact with the dNTP. Mutants at Glu-486 are also defective in polymerization and, as mutants at Gly-481 and Trp-483, in the pyrophosphorolytic activity with Mg(2+). Recovery of both reactions with Mn(2+) supports a role for Glu-486 in the interaction with the pyrophosphate moiety of the dNTP.
Collapse
Affiliation(s)
- Eugenia Santos
- From the Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
Moors SLC, Herdewijn P, Robben J, Ceulemans A. Cooperative dynamics of a DNA polymerase replicating complex. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2554-63. [PMID: 24041502 DOI: 10.1016/j.bbapap.2013.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 11/15/2022]
Abstract
Engineered DNA polymerases continue to be the workhorses of many applications in biotechnology, medicine and nanotechnology. However, the dynamic interplay between the enzyme and the DNA remains unclear. In this study, we performed an extensive replica exchange with flexible tempering (REFT) molecular dynamics simulation of the ternary replicating complex of the archaeal family B DNA polymerase from the thermophile Thermococcus gorgonarius, right before the chemical step. The convoluted dynamics of the enzyme are reducible to rigid-body motions of six subdomains. Upon binding to the enzyme, the DNA double helix conformation changes from a twisted state to a partially untwisted state. The twisted state displays strong bending motion, whereby the DNA oscillates between a straight and a bent conformation. The dynamics of double-stranded DNA are strongly correlated with rotations of the thumb toward the palm, which suggests an assisting role of the enzyme during DNA translocation. In the complex, the primer-template duplex displays increased preference for the B-DNA conformation at the n-2 and n-3 dinucleotide steps. Interactions at the primer 3' end indicate that Thr541 and Asp540 are the acceptors of the first proton transfer in the chemical step, whereas in the translocation step both residues hold the primer 3' terminus in the vicinity of the priming site, which is crucial for high processivity.
Collapse
Affiliation(s)
- Samuel L C Moors
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
39
|
del Prado A, Lázaro JM, Villar L, Salas M, de Vega M. Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site. PLoS One 2013; 8:e72765. [PMID: 24023769 PMCID: PMC3762793 DOI: 10.1371/journal.pone.0072765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
Resolution of the crystallographic structure of φ29 DNA polymerase binary and ternary complexes showed that residue Lys529, located at the C-terminus of the palm subdomain, establishes contacts with the 3' terminal phosphodiester bond. In this paper, site-directed mutants at this Lys residue were used to analyse its functional importance for the synthetic activities of φ29 DNA polymerase, an enzyme that starts linear φ29 DNA replication using a terminal protein (TP) as primer. Our results show that single replacement of φ29 DNA polymerase residue Lys529 by Ala or Glu decreases the stabilisation of the primer-terminus at the polymerisation active site, impairing both the insertion of the incoming nucleotide when DNA and TP are used as primers and the translocation step required for the next incoming nucleotide incorporation. In addition, combination of the DNA polymerase mutants with a TP derivative at residue Glu233, neighbour to the priming residue Ser232, leads us to infer a direct contact between Lys529 and Glu233 for initiation of TP-DNA replication. Altogether, the results are compatible with a sequential binding of φ29 DNA polymerase residue Lys529 with TP and DNA during replication of TP-DNA.
Collapse
Affiliation(s)
- Alicia del Prado
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - José M. Lázaro
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Laurentino Villar
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| | - Miguel de Vega
- Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
| |
Collapse
|
40
|
Wynne SA, Pinheiro VB, Holliger P, Leslie AGW. Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA. PLoS One 2013; 8:e70892. [PMID: 23940661 PMCID: PMC3733885 DOI: 10.1371/journal.pone.0070892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is a paucity of structural information to guide further engineering of this group of polymerases. Here we report two structures, of the apo form and of a binary complex of a previously described variant (E10) of Pyrococcus furiosus (Pfu) polymerase with an ability to fully replace dCTP with Cyanine dye-labeled dCTP (Cy3-dCTP or Cy5-dCTP) in PCR and synthesise highly fluorescent “CyDNA” densely decorated with cyanine dye heterocycles. The apo form of Pfu-E10 closely matches reported apo form structures of wild-type Pfu. In contrast, the binary complex (in the replicative state with a duplex DNA oligonucleotide) reveals a closing movement of the thumb domain, increasing the contact surface with the nascent DNA duplex strand. Modelling based on the binary complex suggests how bulky fluorophores may be accommodated during processive synthesis and has aided the identification of residues important for the synthesis of unnatural nucleic acid polymers.
Collapse
Affiliation(s)
- Samantha A. Wynne
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Vitor B. Pinheiro
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Philipp Holliger
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Andrew G. W. Leslie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Abstract
SIGNIFICANCE Disulfide bond formation is critical for biogenesis of many proteins. While most studies in this field are aimed at elucidating the mechanisms in the endoplasmic reticulum, intermembrane space of mitochondria, and prokaryotic periplasm, structural disulfide bond formation also occurs in other compartments including the cytoplasm. Such disulfide bond formation is essential for biogenesis of some viruses, correct epidermis biosynthesis, thermal adaptation of some extremophiles, and efficient recombinant protein production. RECENT ADVANCES The majority of work in this new field has been reported in the past decade. Within the past few years very significant new data have emerged on the catalytic and noncatalytic mechanisms for disulfide bond formation in the cytoplasm. This includes the crystal structure of a key component of viral oxidative protein folding, identification of a missing component in cytoplasmic disulfide bond formation in hyperthermophiles, and introduction of de novo dithiol oxidants in engineered oxidative folding pathways. CRITICAL ISSUES AND FUTURE DIRECTIONS While a broad picture of cytoplasmic disulfide bond formation has emerged many critical questions remain unanswered. The individual components in the natural systems are largely known, but the molecular mechanisms by which these processes occur are largely deduced from the mechanisms of analogous components in other compartments. This prevents full understanding and manipulation of these systems, including the potential for novel anti-viral drugs based on the unique features of their sulfhydryl oxidases and the generation of more efficient cell factories for the large-scale production of therapeutic and industrial proteins.
Collapse
|
42
|
Bergen K, Betz K, Welte W, Diederichs K, Marx A. Structures of KOD and 9°N DNA polymerases complexed with primer template duplex. Chembiochem 2013; 14:1058-62. [PMID: 23733496 DOI: 10.1002/cbic.201300175] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/29/2022]
Abstract
Replicate it: Structures of KOD and 9°N DNA polymerases, two enzymes that are widely used to replicate DNA with highly modified nucleotides, were solved at high resolution in complex with primer/template duplex. The data elucidate substrate interaction of the two enzymes and pave the way for further optimisation of the enzymes and substrates.
Collapse
Affiliation(s)
- Konrad Bergen
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
43
|
Abstract
In 1959, Arthur Kornberg was awarded the Nobel Prize for his work on the principles by which DNA is duplicated by DNA polymerases. Since then, it has been confirmed in all branches of life that replicative DNA polymerases require a single-stranded template to build a complementary strand, but they cannot start a new DNA strand de novo. Thus, they also depend on a primase, which generally assembles a short RNA primer to provide a 3'-OH that can be extended by the replicative DNA polymerase. The general principles that (1) a helicase unwinds the double-stranded DNA, (2) single-stranded DNA-binding proteins stabilize the single-stranded DNA, (3) a primase builds a short RNA primer, and (4) a clamp loader loads a clamp to (5) facilitate the loading and processivity of the replicative polymerase, are well conserved among all species. Replication of the genome is remarkably robust and is performed with high fidelity even in extreme environments. Work over the last decade or so has confirmed (6) that a common two-metal ion-promoted mechanism exists for the nucleotidyltransferase reaction that builds DNA strands, and (7) that the replicative DNA polymerases always act as a key component of larger multiprotein assemblies, termed replisomes. Furthermore (8), the integrity of replisomes is maintained by multiple protein-protein and protein-DNA interactions, many of which are inherently weak. This enables large conformational changes to occur without dissociation of replisome components, and also means that in general replisomes cannot be isolated intact.
Collapse
Affiliation(s)
- Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden.
| | | |
Collapse
|
44
|
Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 2013; 195:2322-8. [PMID: 23504010 DOI: 10.1128/jb.02037-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Three evolutionarily distinct families of replicative DNA polymerases, designated polymerase B (Pol B), Pol C, and Pol D, have been identified. Members of the Pol B family are present in all three domains of life, whereas Pol C exists only in Bacteria and Pol D exists only in Archaea. Pol B enzymes replicate eukaryotic chromosomal DNA, and as members of the Pol B family are present in all Archaea, it has been assumed that Pol B enzymes also replicate archaeal genomes. Here we report the construction of Thermococcus kodakarensis strains with mutations that delete or inactivate key functions of Pol B. T. kodakarensis strains lacking Pol B had no detectable loss in viability and no growth defects or changes in spontaneous mutation frequency but had increased sensitivity to UV irradiation. In contrast, we were unable to introduce mutations that inactivated either of the genes encoding the two subunits of Pol D. The results reported establish that Pol D is sufficient for viability and genome replication in T. kodakarensis and argue that Pol D rather than Pol B is likely the replicative DNA polymerase in this archaeon. The majority of Archaea contain Pol D, and, as discussed, if Pol D is the predominant replicative polymerase in Archaea, this profoundly impacts hypotheses for the origin(s), evolution, and distribution of the different DNA replication enzymes and systems now employed in the three domains of life.
Collapse
|
45
|
Maxwell BA, Suo Z. Single-molecule investigation of substrate binding kinetics and protein conformational dynamics of a B-family replicative DNA polymerase. J Biol Chem 2013; 288:11590-600. [PMID: 23463511 DOI: 10.1074/jbc.m113.459982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative DNA polymerases use a complex, multistep mechanism for efficient and accurate DNA replication as uncovered by intense kinetic and structural studies. Recently, single-molecule fluorescence spectroscopy has provided new insights into real time conformational dynamics utilized by DNA polymerases during substrate binding and nucleotide incorporation. We have used single-molecule Förster resonance energy transfer techniques to investigate the kinetics and conformational dynamics of Sulfolobus solfataricus DNA polymerase B1 (PolB1) during DNA and nucleotide binding. Our experiments demonstrate that this replicative polymerase can bind to DNA in at least three conformations, corresponding to an open and closed conformation of the finger domain as well as a conformation with the DNA substrate bound to the exonuclease active site of PolB1. Additionally, our results show that PolB1 can transition between these conformations without dissociating from a primer-template DNA substrate. Furthermore, we show that the closed conformation is promoted by a matched incoming dNTP but not by a mismatched dNTP and that mismatches at the primer-template terminus lead to an increase in the binding of the DNA to the exonuclease site. Our analysis has also revealed new details of the biphasic dissociation kinetics of the polymerase-DNA binary complex. Notably, comparison of the results obtained in this study with PolB1 with those from similar single-molecule studies with an A-family DNA polymerase suggests mechanistic differences between these polymerases. In summary, our findings provide novel mechanistic insights into protein conformational dynamics and substrate binding kinetics of a high fidelity B-family DNA polymerase.
Collapse
Affiliation(s)
- Brian A Maxwell
- Biophysics Program and the Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
46
|
Richardson TT, Gilroy L, Ishino Y, Connolly BA, Henneke G. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic Acids Res 2013; 41:4207-18. [PMID: 23408858 PMCID: PMC3627576 DOI: 10.1093/nar/gkt083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Archaeal family-D DNA polymerase is inhibited by the presence of uracil in DNA template strands. When the enzyme encounters uracil, following three parameters change: DNA binding increases roughly 2-fold, the rate of polymerization slows by a factor of ≈ 5 and 3'-5' proof-reading exonuclease activity is stimulated by a factor of ≈ 2. Together these changes result in a significant decrease in polymerization activity and a reduction in net DNA synthesis. Pol D appears to interact with template strand uracil irrespective of its distance ahead of the replication fork. Polymerization does not stop at a defined location relative to uracil, rather a general decrease in DNA synthesis is observed. 'Trans' inhibition, the slowing of Pol D by uracil on a DNA strand not being replicated is also observed. It is proposed that Pol D is able to interact with uracil by looping out the single-stranded template, allowing simultaneous contact of both the base and the primer-template junction to give a polymerase-DNA complex with diminished extension ability.
Collapse
Affiliation(s)
- Tomas T Richardson
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
47
|
Gouge J, Ralec C, Henneke G, Delarue M. Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. J Mol Biol 2012; 423:315-36. [PMID: 22902479 DOI: 10.1016/j.jmb.2012.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Euryarchaeal polymerase B can recognize deaminated bases on the template strand, effectively stalling the replication fork 4nt downstream the modified base. Using Pyrococcus abyssi DNA B family polymerase (PabPolB), we investigated the discrimination between deaminated and natural nucleotide(s) by primer extension assays, electrophoretic mobility shift assays, and X-ray crystallography. Structures of complexes between the protein and DNA duplexes with either a dU or a dH in position +4 were solved at 2.3Å and 2.9Å resolution, respectively. The PabPolB is found in the editing mode. A new metal binding site has been uncovered below the base-checking cavity where the +4 base is flipped out; it is fully hydrated in an octahedral fashion and helps guide the strongly kinked template strand. Four other crystal structures with each of the canonical bases were also solved in the editing mode, and the presence of three nucleotides in the exonuclease site caused a shift in the coordination state of its metal A from octahedral to tetrahedral. Surprisingly, we find that all canonical bases also enter the base-checking pocket with very small differences in the binding geometry and in the calculated binding free energy compared to deaminated ones. To explain how this can lead to stalling of the replication fork, the full catalytic pathway and its branches must be taken into account, during which the base is checked several times. Our results strongly suggest a switch from elongation to editing modes right after nucleotide insertion when the modified base is at position +5.
Collapse
Affiliation(s)
- Jérôme Gouge
- Unité de Dynamique Structurale des Macromolécules, UMR 3528 du CNRS, Institut Pasteur, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | |
Collapse
|
48
|
Gardner AF, Wang J, Wu W, Karouby J, Li H, Stupi BP, Jack WE, Hersh MN, Metzker ML. Rapid incorporation kinetics and improved fidelity of a novel class of 3'-OH unblocked reversible terminators. Nucleic Acids Res 2012; 40:7404-15. [PMID: 22570423 PMCID: PMC3424534 DOI: 10.1093/nar/gks330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3′-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3′-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a ‘molecular tuning’ effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator™ DNA polymerase, we demonstrate that these 3′-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3′-O-amino-TTP and 3′-O-azidomethyl-TTP. Lightning Terminators™ show maximum incorporation rates (kpol) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (kpol/KD) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in kpol by >1000-fold over TTP misincorporation. These studies highlight the importance of structure–function relationships of modified nucleotides in dictating polymerase performance.
Collapse
|
49
|
Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P. Synthetic genetic polymers capable of heredity and evolution. Science 2012; 336:341-4. [PMID: 22517858 PMCID: PMC3362463 DOI: 10.1126/science.1217622] [Citation(s) in RCA: 515] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic information storage and processing rely on just two polymers, DNA and RNA, yet whether their role reflects evolutionary history or fundamental functional constraints is currently unknown. With the use of polymerase evolution and design, we show that genetic information can be stored in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage.
Collapse
Affiliation(s)
- Vitor B. Pinheiro
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | | | | - Mikhail Abramov
- REGA Institute, Katholieke Universiteit Leuven, Minderbroederstraat 10, B 3000, Leuven, Belgium
| | - Marleen Renders
- REGA Institute, Katholieke Universiteit Leuven, Minderbroederstraat 10, B 3000, Leuven, Belgium
| | - Su Zhang
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute at Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-5301, USA
| | - John C. Chaput
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute at Arizona State University, 1001 S. McAllister Avenue, Tempe, AZ 85287-5301, USA
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | | - Piet Herdewijn
- REGA Institute, Katholieke Universiteit Leuven, Minderbroederstraat 10, B 3000, Leuven, Belgium
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| |
Collapse
|
50
|
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 2012; 82:240-51. [DOI: 10.1016/j.pep.2011.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|