1
|
Yang S, Zhang X, Li X, Li H. Crip2 affects vascular development by fine-tuning endothelial cell aggregation and proliferation. Cell Mol Life Sci 2025; 82:110. [PMID: 40074973 PMCID: PMC11904032 DOI: 10.1007/s00018-025-05624-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Endothelial cell adhesion and migration are crucial to various biological processes, including vascular development. The identification of factors that modulate vascular development through these cell functions has emerged as a prominent focus in cardiovascular research. Crip2 is known to play a crucial role in cardiac development, yet its involvement in vascular development and the underlying mechanism remains elusive. In this study, we revealed that Crip2 is expressed predominantly in the vascular system, particularly in the posterior cardinal vein and caudal vein plexus intersegmental vein. Upon Crip2 loss, the posterior cardinal vein plexus and caudal vein plexus are hypoplastic, and endothelial cells exhibit aberrant aggregation. In human umbilical vein endothelial cells (HUVECs), CRIP2 interacts with the cytoskeleton proteins KRT8 and VIM. The absence of CRIP2 negatively regulates their expression, thereby fine-tuning cytoskeleton formation, resulting in a hyperadhesive phenotype. Moreover, CRIP2 deficiency perturbs the VEGFA/CDC42 signaling pathway, which in turn diminishes the migrating capacity of HUVECs. Furthermore, the loss of CRIP2 impairs cell proliferation by affecting its interaction with SRF through PDE10A/cAMP and PDGF/JAK/STAT/SRF signaling. Collectively, our findings delineate a crucial role for CRIP2 in controlling the migration, adhesion and proliferation of endothelial cells, thereby contributing to vascular development in zebrafish. These insights may provide a deeper understanding of the etiology of cardiovascular disorders.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xianpeng Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hongyan Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Ocean University of China, Room 301, Darwin Building, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
2
|
Yu Y, Yuan M, Zhang Z, Wang D, Sun W. Analysis of the effect of LMO2 on indicating CD8 + T-lymphocyte infiltration in pan-cancers. Biochem Biophys Rep 2025; 41:101890. [PMID: 39686960 PMCID: PMC11647632 DOI: 10.1016/j.bbrep.2024.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
LMO2 is a critical factor in hematopoiesis but widely expressed in kinds of epithelia and solid tumors as well, and it has been demonstrated that increased LMO2 level in some tumor cells exhibits an effect on promoting CD8+ T-lymphocyte infiltration in tumor microenvironment. Herein we expanded the investigation of such effect in pan-cancer spectrum, and the transcriptome data analysis revealed extensively positive associations between LMO2 and CD8+ T-lymphocyte infiltration in pan-cancers. Meanwhile, tissue staining revealed variable expression level and consistently cytosolic localization of LMO2 in different tissues and their tumor counterparts, and further indicated that high LMO2 expression in malignant cells was strongly associated with positive CD8+ T-lymphocyte infiltration selectively in digestive tract, breast and kidney tumors. Taken together, this study depicted an overall view of LMO2 functional linkage with tumor immunology in pan-cancers and provided novel insight of LMO2 significance in the field of tumor immune therapy.
Collapse
Affiliation(s)
- Yanhong Yu
- School of Medicine, Nankai University, No.94, Weijin Road, Tianjin, 300071, China
| | - Mei Yuan
- Department of Pharmacy, The Nankai University affiliated Beichen Hospital, No.7, Beiyi Road, Tianjin, 300134, China
| | - Zhao Zhang
- Department of Anorectal, The Nankai University affiliated Union Medical Center, No.190, Jieyuan Road, Tianjin, 300131, China
| | - Dan Wang
- Department of Pathology, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, China
| | - Wei Sun
- School of Medicine, Nankai University, No.94, Weijin Road, Tianjin, 300071, China
| |
Collapse
|
3
|
Papaleo N, Molina-Alvarez A, Onieva R, Fuertes D, Sanchez-Gonzalez B, Riera X, Lopez-Segura D, Lome-Maldonado C, Ara-Mancebo X, Yelamos J, Salido M, Vazquez I, Calvo X, Colomo L. Chromogenic LMO2 mRNA ISH Expression Correlates with LMO2 Protein and Gene Expression and Captures Their Survival Impact in Diffuse Large B-Cell Lymphoma, NOS. Cancers (Basel) 2024; 16:2378. [PMID: 39001439 PMCID: PMC11240605 DOI: 10.3390/cancers16132378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND LMO2 is a relevant gene involved in B-cell ontogeny and a survival predictor of aggressive large B-cell lymphomas (aLBCL). Most studies assessing LMO2 mRNA expression have relied on microarray platforms or qRT-PCR methods, overlooking tissue morphology. In this study, we evaluate LMO2 RNA expression by chromogenic in situ hybridization (CISH) in normal tissue and in a series of 82 aLBCL. METHODS LMO2 CISH was performed in formalin-fixed paraffin-embedded tissues, scored by three different methods, and correlated with a transcriptome panel. RESULTS We obtained statistically significant results correlating the methods of evaluation with LMO2 protein expression and gene expression results. Normal tonsil tissue showed high levels of LMO2, particularly within the light zone of the germinal center. Conversely, in aLBCL, a notable reduction in LMO2 expression was noted, remarkably in cases carrying MYC rearrangements. Furthermore, significant results were obtained through overall survival and Cox regression survival analysis, incorporating International Prognostic Index data alongside LMO2 expression levels. CONCLUSIONS We show a reliable method to identify LMO2 mRNA expression by CISH, effectively capturing many of the reported biologic features of LMO2.
Collapse
Affiliation(s)
- Natalia Papaleo
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
- Department of Pathology, Consorci Hospitalari Parc Tauli, Institut d'Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain
- Department of Morphological Sciences, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Andrea Molina-Alvarez
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Ricard Onieva
- Department of Pathology, Consorci Hospitalari Parc Tauli, Institut d'Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain
| | - Diana Fuertes
- Research Unit Support, Institut d'Investigació i Innovació Parc Taulí (I3PT), 08208 Sabadell, Spain
| | - Blanca Sanchez-Gonzalez
- Department of Hematology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Xenia Riera
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - David Lopez-Segura
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Carmen Lome-Maldonado
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Xavier Ara-Mancebo
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Jose Yelamos
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Marta Salido
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Ivonne Vazquez
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Xavier Calvo
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
| | - Luis Colomo
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute-IMIM, 08003 Barcelona, Spain
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
4
|
Weng W, Deng Y, Deviatiiarov R, Hamidi S, Kajikawa E, Gusev O, Kiyonari H, Zhang G, Sheng G. ETV2 induces endothelial, but not hematopoietic, lineage specification in birds. Life Sci Alliance 2024; 7:e202402694. [PMID: 38570190 PMCID: PMC10992995 DOI: 10.26508/lsa.202402694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Cardiovascular system develops from the lateral plate mesoderm. Its three primary cell lineages (hematopoietic, endothelial, and muscular) are specified by the sequential actions of conserved transcriptional factors. ETV2, a master regulator of mammalian hemangioblast development, however, is absent in the chicken genome and acts downstream of NPAS4L in zebrafish. Here, we investigated the epistatic relationship between NPAS4L and ETV2 in avian hemangioblast development. We showed that ETV2 is deleted in all 363 avian genomes analyzed. Mouse ETV2 induced LMO2, but not NPAS4L or SCL, expression in chicken mesoderm. Squamate (lizards, geckos, and snakes) genomes contain both NPAS4L and ETV2 In Madagascar ground gecko, both genes were expressed in developing hemangioblasts. Gecko ETV2 induced only LMO2 in chicken mesoderm. We propose that both NPAS4L and ETV2 were present in ancestral amniote, with ETV2 acting downstream of NPAS4L in endothelial lineage specification. ETV2 may have acted as a pioneer factor by promoting chromatin accessibility of endothelial-specific genes and, in parallel with NPAS4L loss in ancestral mammals, has gained similar function in regulating blood-specific genes.
Collapse
Affiliation(s)
- Wei Weng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Ruslan Deviatiiarov
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sofiane Hamidi
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Oleg Gusev
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | | | - Guojie Zhang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, China
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Chen D, Fan X, Wang K, Gong L, Melero-Martin JM, Pu WT. Pioneer factor ETV2 safeguards endothelial cell specification by recruiting the repressor REST to restrict alternative lineage commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.595971. [PMID: 38853821 PMCID: PMC11160620 DOI: 10.1101/2024.05.28.595971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mechanisms of cell fate specification remain a central question for developmental biology and regenerative medicine. The pioneer factor ETV2 is a master regulator for the endothelial cell (EC) lineage specification. Here, we studied mechanisms of ETV2-driven fate specification using a highly efficient system in which ETV2 directs human induced pluripotent stem cell-derived mesodermal progenitors to form ECs over two days. By applying CUT&RUN, single-cell RNA-sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analyses, we characterized the transcriptomic profiles, chromatin landscapes, dynamic cis-regulatory elements (CREs), and molecular features of EC cell differentiation mediated by ETV2. This defined the scope of ETV2 pioneering activity and identified its direct downstream target genes. Induced ETV2 expression both directed specification of endothelial progenitors and suppressed acquisition of alternative fates. Functional screening and candidate validation revealed cofactors essential for efficient EC specification, including the transcriptional activator GABPA. Surprisingly, the transcriptional repressor REST was also necessary for efficient EC specification. ETV2 recruited REST to occupy and repress non-EC lineage genes. Collectively, our study provides an unparalleled molecular analysis of EC specification at single-cell resolution and identifies the important role of pioneer factors to recruit repressors that suppress commitment to alternative lineages.
Collapse
|
6
|
Hamper M, Schmidt-Kastner R. Sleep Disorder Kleine-Levin Syndrome (KLS) Joins the List of Polygenic Brain Disorders Associated with Obstetric Complications. Cell Mol Neurobiol 2023; 43:3393-3403. [PMID: 37553546 PMCID: PMC11409999 DOI: 10.1007/s10571-023-01391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Kleine-Levin Syndrome is a rare neurological disorder with onset typically during adolescence that is characterized by recurrent episodes of hypersomnia, behavioral changes, and cognitive abnormalities, in the absence of structural changes in neuroimaging. As for many functional brain disorders, the exact disease mechanism in Kleine-Levin Syndrome is presently unknown, preventing the development of specific treatment approaches or protective measures. Here we review the pathophysiology and genetics of this functional brain disorder and then present a specific working hypothesis. A neurodevelopmental mechanism has been suspected based on associations with obstetric complications. Recent studies have focused on genetic factors whereby the first genome-wide association study (GWAS) in Kleine-Levin Syndrome has defined a linkage at the TRANK1 locus. A Gene x Environment interaction model involving obstetric complications was proposed based on concepts developed for other functional brain disorders. To stimulate future research, we here performed annotations of the genes under consideration for Kleine-Levin Syndrome in relation to factors expected to be associated with obstetric complications. Annotations used data-mining of gene/protein lists related to for hypoxia, ischemia, and vascular factors and targeted literature searches. Tentative links for TRANK1, four additional genes in the TRANK1 locus, and LMOD3-LMO2 are described. Protein interaction data for TRANK1 indicate links to CBX2, CBX4, and KDM3A, that in turn can be tied to hypoxia. Taken together, the neurological sleep disorder, Kleine-Levin Syndrome, shows genetic and mechanistic overlap with well analyzed brain disorders such as schizophrenia, autism spectrum disorder and ADHD in which polygenic predisposition interacts with external events during brain development, including obstetric complications.
Collapse
Affiliation(s)
- Michael Hamper
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA
| | - Rainald Schmidt-Kastner
- Florida Atlantic University (FAU), CE Schmidt College of Medicine, Boca Raton, FL, USA.
- Dept. Clinical Neurosciences, CE Schmidt College of Medicine, Florida Atlantic University (FAU), 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
7
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
8
|
Otálora-Otálora BA, López-Kleine L, Rojas A. Lung Cancer Gene Regulatory Network of Transcription Factors Related to the Hallmarks of Cancer. Curr Issues Mol Biol 2023; 45:434-464. [PMID: 36661515 PMCID: PMC9857713 DOI: 10.3390/cimb45010029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The transcriptomic analysis of microarray and RNA-Seq datasets followed our own bioinformatic pipeline to identify a transcriptional regulatory network of lung cancer. Twenty-six transcription factors are dysregulated and co-expressed in most of the lung cancer and pulmonary arterial hypertension datasets, which makes them the most frequently dysregulated transcription factors. Co-expression, gene regulatory, coregulatory, and transcriptional regulatory networks, along with fibration symmetries, were constructed to identify common connection patterns, alignments, main regulators, and target genes in order to analyze transcription factor complex formation, as well as its synchronized co-expression patterns in every type of lung cancer. The regulatory function of the most frequently dysregulated transcription factors over lung cancer deregulated genes was validated with ChEA3 enrichment analysis. A Kaplan-Meier plotter analysis linked the dysregulation of the top transcription factors with lung cancer patients' survival. Our results indicate that lung cancer has unique and common deregulated genes and transcription factors with pulmonary arterial hypertension, co-expressed and regulated in a coordinated and cooperative manner by the transcriptional regulatory network that might be associated with critical biological processes and signaling pathways related to the acquisition of the hallmarks of cancer, making them potentially relevant tumor biomarkers for lung cancer early diagnosis and targets for the development of personalized therapies against lung cancer.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| | - Adriana Rojas
- Facultad de Medicina, Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Correspondence: (L.L.-K.); (A.R.)
| |
Collapse
|
9
|
Park CG, Choi SH, Lee SY, Eun K, Park MG, Jang J, Jeong HJ, Kim SJ, Jeong S, Lee K, Kim H. Cytoplasmic LMO2-LDB1 Complex Activates STAT3 Signaling through Interaction with gp130-JAK in Glioma Stem Cells. Cells 2022; 11:cells11132031. [PMID: 35805116 PMCID: PMC9265747 DOI: 10.3390/cells11132031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
The oncogenic role of nuclear LIM domain only 2 (LMO2) as a transcriptional regulator is well established, but its function in the cytoplasm is largely unknown. Here, we identified LMO2 as a cytoplasmic activator for signal transducer and activator of transcription 3 (STAT3) signaling in glioma stem cells (GSCs) through biochemical and bioinformatics analyses. LMO2 increases STAT3 phosphorylation by interacting with glycoprotein 130 (gp130) and Janus kinases (JAKs). LMO2-driven activation of STAT3 signaling requires the LDB1 protein and leads to increased expression of an inhibitor of differentiation 1 (ID1), a master regulator of cancer stemness. Our findings indicate that the cytoplasmic LMO2-LDB1 complex plays a crucial role in the activation of the GSC signaling cascade via interaction with gp130 and JAK1/2. Thus, LMO2-LDB1 is a bona fide oncogenic protein complex that activates either the JAK-STAT signaling cascade in the cytoplasm or direct transcriptional regulation in the nucleus.
Collapse
Affiliation(s)
- Cheol Gyu Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Sang-Hun Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Seon Yong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Kiyoung Eun
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
| | - Min Gi Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Junseok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Hyeon Ju Jeong
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Seong Jin Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Sohee Jeong
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Kanghun Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea; (C.G.P.); (S.-H.C.); (S.Y.L.); (K.E.); (M.G.P.); (J.J.); (H.J.J.); (S.J.K.); (S.J.); (K.L.)
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-3290-3059; Fax: +82-2-3290-3040
| |
Collapse
|
10
|
The transcription factor complex LMO2/TAL1 regulates branching and endothelial cell migration in sprouting angiogenesis. Sci Rep 2022; 12:7226. [PMID: 35508511 PMCID: PMC9068620 DOI: 10.1038/s41598-022-11297-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The transcription factor complex, consisting of LMO2, TAL1 or LYL1, and GATA2, plays an important role in capillary sprouting by regulating VEGFR2, DLL4, and angiopoietin 2 in tip cells. Overexpression of the basic helix-loop-helix transcription factor LYL1 in transgenic mice results in shortened tails. This phenotype is associated with vessel hyperbranching and a relative paucity of straight vessels due to DLL4 downregulation in tip cells by forming aberrant complex consisting of LMO2 and LYL1. Knockdown of LMO2 or TAL1 inhibits capillary sprouting in spheroid-based angiogenesis assays, which is associated with decreased angiopoietin 2 secretion. In the same assay using mixed TAL1- and LYL1-expressing endothelial cells, TAL1 was found to be primarily located in tip cells, while LYL1-expressing cells tended to occupy the stalk position in sprouts by upregulating VEGFR1 than TAL1. Thus, the interaction between LMO2 and TAL1 in tip cells plays a key role in angiogenic switch of sprouting angiogenesis.
Collapse
|
11
|
Degree of piRNA sharing and Piwi gene expression in the skeletal muscle of Piaractus mesopotamicus (pacu), Colossoma macropomum (tambaqui), and the hybrid tambacu. Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111120. [PMID: 34822974 DOI: 10.1016/j.cbpa.2021.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
PiRNAs are a class of small noncoding RNAs that, in their mature form, bind to Piwi proteins to repress transposable element activity. Besides their role in gametogenesis and genome integrity, recent evidence indicates their action in non-germinative tissues. We performed a global analysis of piRNA and Piwi gene expression in the skeletal muscle of juveniles pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum), and the hybrid tambacu to evaluate the degree of piRNA sharing among these three genotypes. Total RNA was sequenced and analyzed using specific parameters of piRNAs by bioinformatics tools. piRNA and Piwi gene expression was analyzed by RT-qPCR. We detected 24 piRNA clusters common to the three genotypes, with eight shared between pacu and tambacu, three between pacu and tambaqui, and five between tambaqui and tambacu; seven, five, and four clusters were unique to pacu, tambacu, and tambaqui, respectively. Genomic localization and fold change values showed two clusters and 100 piRNAs shared among the three genotypes. The gene expression of four piRNAs was evaluated to validate our bioinformatics results. piRNAs from cluster 17 were higher in tambacu than pacu and piRNAs from cluster 18 were more highly expressed in tambacu than tambaqui and pacu. In addition, the expression of Piwis 1 and 2 was higher in tambacu and tambaqui than pacu. Our results open an important window to investigate whether these small noncoding RNAs benefit the hybrid in terms of faster growth and offer a new perspective on the function of piRNAs and Piwis in fish skeletal muscle.
Collapse
|
12
|
SLUG and Truncated TAL1 Reduce Glioblastoma Stem Cell Growth Downstream of Notch1 and Define Distinct Vascular Subpopulations in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13215393. [PMID: 34771555 PMCID: PMC8582547 DOI: 10.3390/cancers13215393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive form of brain tumor and is still incurable. These neoplasms are particularly difficult to treat efficiently because of their highly heterogeneous and resistant characteristics. Advances in genomics have highlighted the complex molecular landscape of these tumors and the need to further develop effective and targeted therapies for each patient. A specific population of cells with enriched stem cell properties within tumors, i.e., glioblastoma stem cells (GSC), drives this cellular heterogeneity and therapeutical resistance, and thus constitutes an attractive target for the design of innovative treatments. However, the signals driving the maintenance and resistance of these cells are still unclear. We provide new findings regarding the expression of two transcription factors in these cells and directly in glioblastoma patient samples. We show that these proteins downregulate GSC growth and ultimately participate in the progression of gliomas. The forthcoming results will contribute to a better understanding of gliomagenesis. Abstract Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-β1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.
Collapse
|
13
|
Fli1 + cells transcriptional analysis reveals an Lmo2-Prdm16 axis in angiogenesis. Proc Natl Acad Sci U S A 2021; 118:2008559118. [PMID: 34330825 DOI: 10.1073/pnas.2008559118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A network of molecular factors drives the development, differentiation, and maintenance of endothelial cells. Friend leukemia integration 1 transcription factor (FLI1) is a bona fide marker of endothelial cells during early development. In zebrafish Tg( f li1:EGFP) y1 , we identified two endothelial cell populations, high-fli1 + and low-fli1 +, by the intensity of green fluorescent protein signal. By comparing RNA-sequencing analysis of non-fli1 expressing cells (fli1 -) with these two (fli1 +) cell populations, we identified several up-regulated genes, not previously recognized as important, during endothelial development. Compared with fli1 - and low-fli1 + cells, high-fli1 + cells showed up-regulated expression of the zinc finger transcription factor PRDI-BF1 and RIZ homology domain containing 16 (prdm16). Prdm16 knockdown (KD) by morpholino in the zebrafish larva was associated with impaired angiogenesis and increased number of low-fli1 + cells at the expense of high-fli1 + cells. In addition, PRDM16 KD in endothelial cells derived from human-induced pluripotent stem cells impaired their differentiation and migration in vitro. Moreover, zebrafish mutants (mut) with loss of function for the oncogene LIM domain only 2 (lmo2) also showed reduced prdm16 gene expression combined with impaired angiogenesis. Prdm16 expression was reduced further in endothelial (CD31+) cells compared with CD31- cells isolated from l mo2-mutants (l mo2-mut) embryos. Chromatin immunoprecipitation-PCR demonstrated that Lmo2 binds to the promoter and directly regulates the transcription of prdm16 This work unveils a mechanism by which prdm16 expression is activated in endothelial cells by Lmo2 and highlights a possible therapeutic pathway by which to modulate endothelial cell growth and repair.
Collapse
|
14
|
Wang C, Gong Y, Wei A, Huang T, Hou S, Du J, Li Z, Wang J, Liu B, Lan Y. Adult-repopulating lymphoid potential of yolk sac blood vessels is not confined to arterial endothelial cells. SCIENCE CHINA-LIFE SCIENCES 2021; 64:2073-2087. [PMID: 34181164 DOI: 10.1007/s11427-021-1935-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
During embryogenesis, hematopoietic stem progenitor cells (HSPCs) are believed to be derived from hemogenic endothelial cells (HECs). Moreover, arterial feature is proposed to be a prerequisite for HECs to generate HSPCs with lymphoid potential. Although the molecular basis of hematopoietic stem cell-competent HECs has been delicately elucidated within the embryo proper, the functional and molecular characteristics of HECs in the extraembryonic yolk sac (YS) remain largely unresolved. In this study, we initially identified six molecularly different endothelial populations in the midgestational YS through integrated analysis of several single-cell RNA sequencing (scRNA-seq) datasets and validated the arterial vasculature distribution of Gja5+ ECs using a Gja5-EGFP reporter mouse model. Further, we explored the hemogenic potential of different EC populations based on their Gja5-EGFP and CD44 expression levels. The hemogenic potential was ubiquitously detected in spatiotemporally different vascular beds on embryonic days (E)8.5-E9.5 and gradually concentrated in CD44-positive ECs from E10.0. Unexpectedly, B-lymphoid potential was detected in the YS ECs as early as E8.5 regardless of their arterial features. Furthermore, the capacity for generating hematopoietic progenitors with in vivo lymphoid potential was found in nonarterial as well as arterial YS ECs on E10.0-E10.5. Importantly, the distinct identities of E10.0-E10.5 HECs between YS and intraembryonic caudal region were revealed by further scRNA-seq analysis. Cumulatively, these findings extend our knowledge regarding the hemogenic potential of ECs from anatomically and molecularly different vascular beds, providing a theoretical basis for better understanding the sources of HSPCs during mammalian development.
Collapse
Affiliation(s)
- Chaojie Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Anbang Wei
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Tao Huang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Junjie Du
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Junliang Wang
- Department of radiotherapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Bing Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China. .,State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Fantinatti BEA, Perez ES, Zanella BTT, Valente JS, de Paula TG, Mareco EA, Carvalho RF, Piazza S, Denti MA, Dal-Pai-Silva M. Integrative microRNAome analysis of skeletal muscle of Colossoma macropomum (tambaqui), Piaractus mesopotamicus (pacu), and the hybrid tambacu, based on next-generation sequencing data. BMC Genomics 2021; 22:237. [PMID: 33823787 PMCID: PMC8022549 DOI: 10.1186/s12864-021-07513-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Background Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu) are good fish species for aquaculture. The tambacu, individuals originating from the induced hybridization of the female tambaqui with the male pacu, present rapid growth and robustness, characteristics which have made the tambacu a good choice for Brazilian fish farms. Here, we used small RNA sequencing to examine global miRNA expression in the genotypes pacu (PC), tambaqui (TQ), and hybrid tambacu (TC), (Juveniles, n = 5 per genotype), to better understand the relationship between tambacu and its parental species, and also to clarify the mechanisms involved in tambacu muscle growth and maintenance based on miRNAs expression. Results Regarding differentially expressed (DE) miRNAs between the three genotypes, we observed 8 upregulated and 7 downregulated miRNAs considering TC vs. PC; 14 miRNAs were upregulated and 10 were downregulated considering TC vs. TQ, and 15 miRNAs upregulated and 9 were downregulated considering PC vs. TQ. The majority of the miRNAs showed specific regulation for each genotype pair, and no miRNA were shared between the 3 genotype pairs, in both up- and down-regulated miRNAs. Considering only the miRNAs with validated target genes, we observed the miRNAs miR-144-3p, miR-138-5p, miR-206-3p, and miR-499-5p. GO enrichment analysis showed that the main target genes for these miRNAs were grouped in pathways related to oxygen homeostasis, blood vessel modulation, and oxidative metabolism. Conclusions Our global miRNA analysis provided interesting DE miRNAs in the skeletal muscle of pacu, tambaqui, and the hybrid tambacu. In addition, in the hybrid tambacu, we identified some miRNAs controlling important molecular muscle markers that could be relevant for the farming maximization. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07513-5.
Collapse
Affiliation(s)
- Bruno E A Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.,Ninth of July University - UNINOVE, Bauru, Sao Paulo, Brazil.,Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Erika S Perez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Bruna T T Zanella
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Jéssica S Valente
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Tassiana G de Paula
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Edson A Mareco
- University of Western Sao Paulo - UNOESTE, Presidente Prudente, Sao Paulo, Brazil
| | - Robson F Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Sao Paulo, 18618-970, Brazil.
| |
Collapse
|
16
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci 2021; 22:540. [PMID: 33430434 PMCID: PMC7826605 DOI: 10.3390/ijms22020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.
Collapse
Affiliation(s)
| | | | | | | | - Christina Piperi
- Correspondence: (A.G.P.); (C.P.); Tel.: +30-210-7462610 (C.P.); Fax: +30-210-7462703 (C.P.)
| |
Collapse
|
17
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
18
|
Wang W, Chen Y, Chang Y, Sun W. Biochemical Feature of LMO2 Interactome and LMO2 Function Prospect. Med Sci Monit Basic Res 2020; 26:e924421. [PMID: 32713935 PMCID: PMC7409384 DOI: 10.12659/msmbr.924421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background LMO2 belongs to the LIM-Only group of LIM domain protein superfamily. It is ubiquitously expressed in different types of tissues and locates either in the nucleus or in the cytoplasm depending on the tissue type. Till now the unique function of LMO2 was considered to be serving as a bridging or blocking molecule that mediates extensive protein-protein interactions. However, the exactly biological features of LMO2 interactome as well as LMO2 function spectrum remain largely unclear. Material/Methods In this study, yeast 2-hybrid assay was firstly performed using LMO2 as the bait and the characteristic of LMO2 protein interactome was analyzed according to the yeast 2-hybrid data and other relative biological information primarily using bioinformatic method. Results Our data indicated that LMO2 favored interacting with peptides containing β-sheet structure and having relatively unstable confirmation. Moreover, several LMO2 favored interacting domains were identified, including WD40 repeat, coiled-coil, Ankyrin repeat, Zinc finger, PDZ, and SH3, and functions of these domain-containing members were dramatically enriched in some types of cancers. Conclusions Our results revealed a LMO2 favored protein-interaction pattern in both secondary structure and domain level, and concentrated LMO2 function in kinds of cytoplasmic metabolism pathways as well as multiple types of cancers.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Medicine, Nankai University, Tianjin, China (mainland)
| | - Yaxin Chen
- School of Medicine, Nankai University, Tianjin, China (mainland)
| | - Ying Chang
- Department of Prenatal Diagnosis, Tianjin Center Hospital of Gynecology Obstetrics, Tianjin, China (mainland)
| | - Wei Sun
- School of Medicine, Nankai University, Tianjin, China (mainland)
| |
Collapse
|
19
|
Milton-Harris L, Jeeves M, Walker SA, Ward SE, Mancini EJ. Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2. Oncotarget 2020; 11:1737-1748. [PMID: 32477463 PMCID: PMC7233811 DOI: 10.18632/oncotarget.27580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 01/05/2023] Open
Abstract
Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs.
Collapse
Affiliation(s)
- Leanne Milton-Harris
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Sarah A Walker
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9QJ, United Kingdom
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Erika J Mancini
- School of Life Sciences, Biochemistry Department, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| |
Collapse
|
20
|
Eckert P, Knickmeyer MD, Heermann S. In Vivo Analysis of Optic Fissure Fusion in Zebrafish: Pioneer Cells, Basal Lamina, Hyaloid Vessels, and How Fissure Fusion is Affected by BMP. Int J Mol Sci 2020; 21:ijms21082760. [PMID: 32316164 PMCID: PMC7215994 DOI: 10.3390/ijms21082760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Colobomata, persistent optic fissures, frequently cause congenital blindness. Here, we focused on optic fissure fusion using in vivo time-lapse imaging in zebrafish. We identified the fusion initiating cells, which we termed “pioneer cells.” Based on morphology, localization, and downregulation of the neuroretinal (NR) precursor marker rx2, these cells could be considered as retinal pigment epithelial (RPE) progenitors. Notably, pioneer cells regain rx2 expression and integrate into the NR after fusion, indicating that they do not belong to the pool of RPE progenitors, supported by the lack of RPE marker expression in pioneer cells. They establish the first cellular contact between the margins in the proximal fissure region and separate the hyaloid artery and vein. After initiation, the fusion site is progressing distally, increasing the distance between the hyaloid artery and vein. A timed BMP (Bone Morphogenetic Protein) induction, resulting in coloboma, did not alter the morphology of the fissure margins, but it did affect the expression of NR and RPE markers within the margins. In addition, it resulted in a persisting basal lamina and persisting remnants of periocular mesenchyme and hyaloid vasculature within the fissure, supporting the necessity of BMP antagonism within the fissure margins. The hampered fissure fusion had severe effects on the vasculature of the eye.
Collapse
Affiliation(s)
- Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Max D. Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Correspondence:
| |
Collapse
|
21
|
Lange L, Hoffmann D, Schwarzer A, Ha TC, Philipp F, Lenz D, Morgan M, Schambach A. Inducible Forward Programming of Human Pluripotent Stem Cells to Hemato-endothelial Progenitor Cells with Hematopoietic Progenitor Potential. Stem Cell Reports 2019; 14:122-137. [PMID: 31839543 PMCID: PMC6962646 DOI: 10.1016/j.stemcr.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer a promising platform to model early embryonic developmental processes, to create disease models that can be evaluated by drug screens as well as proof-of-concept experiments for regenerative medicine. However, generation of iPSC-derived hemato-endothelial and hematopoietic progenitor cells for these applications is challenging due to variable and limited cell numbers, which necessitates enormous up-scaling or development of demanding protocols. Here, we unravel the function of key transcriptional regulators SCL, LMO2, GATA2, and ETV2 (SLGE) on early hemato-endothelial specification and establish a fully inducible and stepwise hemato-endothelial forward programming system based on SLGE-regulated overexpression. Regulated induction of SLGE in stable SLGE-iPSC lines drives very efficient generation of large numbers of hemato-endothelial progenitor cells (CD144+/CD73–), which produce hematopoietic progenitor cells (CD45+/CD34+/CD38–/CD45RA−/CD90+/CD49f+) through a gradual process of endothelial-to-hematopoietic transition (EHT). Inducible and robust hemato-endothelial forward programming of human iPSCs Efficient, scalable generation of hemato-endothelial progenitor cells Production of HPCs with HSC-like immunophenotype and multi-lineage potential Whole transcriptome screen for potential regulators of definitive hematopoiesis
Collapse
Affiliation(s)
- Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Friederike Philipp
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Daniela Lenz
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA.
| |
Collapse
|
22
|
Choi HJ, Rho SS, Choi DH, Kwon YG. LDB2 regulates the expression of DLL4 through the formation of oligomeric complexes in endothelial cells. BMB Rep 2018; 51:21-26. [PMID: 28946938 PMCID: PMC5796630 DOI: 10.5483/bmbrep.2018.51.1.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 11/25/2022] Open
Abstract
Delta-like ligand 4 (DLL4) expression in endothelial cells is intimately associated with angiogenic sprouting and vascular remodeling, but the precise mechanism of transcriptional regulation of DLL4 remains incompletely understood. Here, we showed that LIM-domain binding protein 2 (LDB2) plays an important role in regulating basal DLL4 and VEGF-induced DLL4 expression. Knockdown of LDB2 using siRNA enhanced endothelial sprouting and tubular network formation in vitro. Injection of ldb2-morpholino resulted in defective development of intersegmental vessels in zebrafish. Reduction or overexpression of LDB2 in endothelial cells decreased or increased DLL4 expression. LDB2 regulated DLL4 promoter activity by binding to its promoter region and the same promoter region was occupied and regulated by the LMO2/TAL1/GATA2 complex. Interestingly, LDB2 also mediated VEGF-induced DLL4 expression in endothelial cells. The regulation of DLL4 by the LDB2 complex provides a novel mechanism of DLL4 transcriptional control that may be exploited to develop therapeutics for aberrant vascular remodeling.
Collapse
Affiliation(s)
- Hyun-Jung Choi
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), College of Medicine, Yonsei University, Seoul 03722, Korea
| | - Seung-Sik Rho
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Dong-Hoon Choi
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
23
|
Kairamkonda S, Nongthomba U. Beadex, a Drosophila LIM domain only protein, function in follicle cells is essential for egg development and fertility. Exp Cell Res 2018; 367:97-103. [PMID: 29580687 DOI: 10.1016/j.yexcr.2018.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/25/2022]
Abstract
LIM domain, constituted by two tandem C2H2 zinc finger motif, proteins regulate several biological processes. They are usually found associated with various functional domains like Homeodomain, kinase domain and other protein binding domains. LIM proteins that are devoid of other domains are called LIM only proteins (LMO). LMO proteins were first identified in humans and are implicated in development and oncogenesis. They regulate various cell specifications by regulating the activity of respective transcriptional complexes. The Drosophila LMO protein (dLMO), Beadex (Bx), regulates various developmental processes like wing margin development and bristle development. It also regulates Drosophila behavior in response to cocaine and ethanol. We have previously generated Bx null flies and shown its essential function in neurons for multiple aspects of female reproduction. However, it was not known whether Bx affects reproduction through its independent function in ovaries. In this paper we show that female flies null for Bx lay eggs with multiple defects. Further, through knock down studies we demonstrate that function of Bx in follicle cells is required for normal egg development. We also show that function of Bx is particularly required in border cells for Drosophila fertility.
Collapse
Affiliation(s)
- Subhash Kairamkonda
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
24
|
Wu C, Li J, Tian C, Shi W, Jiang H, Zhang Z, Wang H, Zhang Q, Sun W, Sun P, Xiang R, Yang S. Epigenetic dysregulation of ZEB1 is involved in LMO2-promoted T-cell acute lymphoblastic leukaemia leukaemogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2511-2525. [PMID: 29778661 DOI: 10.1016/j.bbadis.2018.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 01/02/2023]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a hematological malignancy caused by the accumulation of genomic lesions that affect the development of T-cells. ZEB1, a member of zinc finger-homeodomain family transcription factor, exhibits crucial function in promoting T-cell differentiation and potentially acts as a tumor suppressor in T-ALL. However, the molecular mechanism by which ZEB1 regulates T-ALL leukaemogenesis remains obscure. Here, we showed that oncogenic LIM only 2 (LMO2) could recruit Sap18 and HDAC1 to assemble an epigenetic regulatory complex, thus inducing histone deacetylation in ZEB1 promoter and chromatin remodeling to achieve transcriptional repression. Furthermore, downregulation of ZEB1 by LMO2 complex results in an increased leukaemia stem cell (LSC) phenotype as well as unsensitivity in response to methotrexate (MTX) chemotherapy in T-ALL cells. Importantly, we demonstrated that Trichostatin A (TSA, a HDAC inhibitor) addition significantly attenuates MTX unsensitivity caused by dysfunction of LMO2/ZEB1 signaling. In conclusion, these findings have identified a molecular mechanism underlying LMO2/ZEB1-mediated leukaemogenesis, paving a way for treating T-ALL with a new strategy of epigenetic inhibitors.
Collapse
Affiliation(s)
- Chao Wu
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Jianjun Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Chenchen Tian
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Wen Shi
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Huimin Jiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Zhen Zhang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Hang Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Quansheng Zhang
- Tianjin Key Laboratory of Organ Transplantation, Tianjin First Center Hospital, Tianjin 300192, China
| | - Wei Sun
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China
| | - Peiqing Sun
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Rong Xiang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China.
| | - Shuang Yang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, Tianjin 300071, China.
| |
Collapse
|
25
|
Hall AW, Battenhouse AM, Shivram H, Morris AR, Cowperthwaite MC, Shpak M, Iyer VR. Bivalent Chromatin Domains in Glioblastoma Reveal a Subtype-Specific Signature of Glioma Stem Cells. Cancer Res 2018; 78:2463-2474. [PMID: 29549165 DOI: 10.1158/0008-5472.can-17-1724] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/10/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) can be clustered by gene expression into four main subtypes associated with prognosis and survival, but enhancers and other gene-regulatory elements have not yet been identified in primary tumors. Here, we profiled six histone modifications and CTCF binding as well as gene expression in primary gliomas and identified chromatin states that define distinct regulatory elements across the tumor genome. Enhancers in mesenchymal and classical tumor subtypes drove gene expression associated with cell migration and invasion, whereas enhancers in proneural tumors controlled genes associated with a less aggressive phenotype in GBM. We identified bivalent domains marked by activating and repressive chromatin modifications. Interestingly, the gene interaction network from common (subtype-independent) bivalent domains was highly enriched for homeobox genes and transcription factors and dominated by SHH and Wnt signaling pathways. This subtype-independent signature of early neural development may be indicative of poised dedifferentiation capacity in glioblastoma and could provide potential targets for therapy.Significance: Enhancers and bivalent domains in glioblastoma are regulated in a subtype-specific manner that resembles gene regulation in glioma stem cells. Cancer Res; 78(10); 2463-74. ©2018 AACR.
Collapse
Affiliation(s)
- Amelia Weber Hall
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | - Anna M Battenhouse
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | - Haridha Shivram
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | - Adam R Morris
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | | | - Max Shpak
- St David's Medical Center, Austin, Texas.,Sarah Cannon Research Institute, Nashville, Tennessee
| | - Vishwanath R Iyer
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas. .,Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, Texas
| |
Collapse
|
26
|
Liu Y, Wang Z, Huang D, Wu C, Li H, Zhang X, Meng B, Li Z, Zhu T, Yang S, Sun W. LMO2 promotes tumor cell invasion and metastasis in basal-type breast cancer by altering actin cytoskeleton remodeling. Oncotarget 2018; 8:9513-9524. [PMID: 27880729 PMCID: PMC5354749 DOI: 10.18632/oncotarget.13434] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022] Open
Abstract
LMO2 is traditionally recognized as a pivotal transcriptional regulator during embryonic hematopoiesis and angionenesis, and its ectopic expression in T lymphocyte progenitors is closely correlated to the onset of acute T lymphocytic leukemia. However, recently studies revealed complicated expression features and dual functions of LMO2 on tumor behaviors in a variety of cancer types, including breast cancers. Basal-type breast cancer is one of the breast cancer subtypes and a prognostically unfavorable subtype among all breast cancers. Herein we found that in basal-type breast cancer specifically, high LMO2 expression was positively correlated with lymph node metastases in patients, promoted tumor cell migration and invasion and increased distant metastasis in SCID mice. Moreover, the novel function of LMO2 was achieved by its predominantly cytoplasmic location and interaction with cofilin1, which is a critical regulator in actin cytoskeleton dynamics. These findings suggest a subtype-dependent role of LMO2 in breast cancers and the potential of LMO2 as a subtype-specific biomarker for clinical practice.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Zhaoyang Wang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Di Huang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Chao Wu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Huihui Li
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Xin Zhang
- Department of Histology and Embryology in School of Medicine, Nankai University, Tianjin, China
| | - Bin Meng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zongjin Li
- Laboratory of Stem cells in School of Medicine, Nankai University, Tianjin, China
| | - Tianhui Zhu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Liu Y, Yuan M, Wu C, Zhu T, Sun W. A comprehensive function analysis of LMO2 in different breast cancer subtypes. Oncotarget 2018; 9:8911-8926. [PMID: 29507663 PMCID: PMC5823636 DOI: 10.18632/oncotarget.23542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/01/2017] [Indexed: 01/16/2023] Open
Abstract
Breast cancer is the most common invasive cancer in women worldwide, and can be subdivided into Luminal A, Luminal B, Her2, and Basal subtype (the PAM50 subtyping system). The lmo2 gene was traditionally recognized as a proto-oncogene in hematopoietic system but its functions in breast cancers remained largely unclear. Based on the Cancer Genome Atlas (TCGA) breast cancer dataset, herein we found that the significantly LMO2-correlated genes in normal or malignant samples were enriched in rather divergent cellular pathways, suggesting the function complexity of LMO2 in breast tissues. Moreover, high LMO2 expression level was found to predict a shorter patient survival in Luminal A type whereas a better outcome in Her2 type. Correspondingly, LMO2 also revealed function diversities in different PAM50 subtypes. In Luminal A type, the LMO2 related genes were primarily enriched in cancer-promoting pathways, including VEGF production, stemness, PPAR signal pathways, MAPK cascade and cell cycle regulation. In Her2 type however, the LMO2 related genes lacked the enrichment on most of the generally cancer-related pathways and were particularly enriched in negative regulation of ErbB pathway as well as MAPK cascade, suggesting a potentially anti-oncogenic role of LMO2 on this subtype. Taken together, this study drew a comprehensive overview of divergent functions of LMO2 on breast cancers, provided additional evidence for the function complexity of LMO2 in solid tumors and suggested the potential usage of LMO2 as a PAM50 subtype dependent biomarker for breast cancer clinic in the precision medicine era.
Collapse
Affiliation(s)
- Ye Liu
- Reproductive Center, Tianjin First Center Hospital, Tianjin, China
| | - Mei Yuan
- Department of Pharmacy, Beichen Hospital, Tianjin, China
| | - Chao Wu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Tianhui Zhu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
28
|
Beisaw A, Tsaytler P, Koch F, Schmitz SU, Melissari MT, Senft AD, Wittler L, Pennimpede T, Macura K, Herrmann BG, Grote P. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep 2017; 19:118-134. [PMID: 29141987 DOI: 10.15252/embr.201744201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
Abstract
T-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (TY88A) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the T locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification. Our data indicate that T mediates H3K27ac recruitment through a physical interaction with p300. In addition, we determine that T plays a prominent role in the specification of hematopoietic and endothelial cell types. Hematopoietic and endothelial gene expression programs are disrupted in TY88A mutant embryos, leading to a defect in the differentiation of hematopoietic progenitors. We show that this role of T is mediated, at least in part, through activation of a distal Lmo2 enhancer.
Collapse
Affiliation(s)
- Arica Beisaw
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pavel Tsaytler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sandra U Schmitz
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria-Theodora Melissari
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna D Senft
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tracie Pennimpede
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Karol Macura
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Genetics, Charité-University Medicine Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Phillip Grote
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany .,Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Stanulovic VS, Cauchy P, Assi SA, Hoogenkamp M. LMO2 is required for TAL1 DNA binding activity and initiation of definitive haematopoiesis at the haemangioblast stage. Nucleic Acids Res 2017; 45:9874-9888. [PMID: 28973433 PMCID: PMC5622341 DOI: 10.1093/nar/gkx573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
LMO2 is a bridging factor within a DNA binding complex and is required for definitive haematopoiesis to occur. The developmental stage of the block in haematopoietic specification is not known. We show that Lmo2−/− mouse embryonic stem cells differentiated to Flk-1+ haemangioblasts, but less efficiently to haemogenic endothelium, which only produced primitive haematopoietic progenitors. Genome-wide approaches indicated that LMO2 is required at the haemangioblast stage to position the TAL1/LMO2/LDB1 complex to regulatory elements that are important for the establishment of the haematopoietic developmental program. In the absence of LMO2, the target site recognition of TAL1 is impaired. The lack of LMO2 resulted in altered gene expression levels already at the haemangioblast stage, with transcription factor genes accounting for ∼15% of affected genes. Comparison of Lmo2−/− with Tal1−/− Flk-1+ cells further showed that TAL1 was required to initiate or sustain Lmo2 expression.
Collapse
Affiliation(s)
- Vesna S Stanulovic
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
30
|
Ganta VC, Annex BH. LMO2 (LIM Domain Only 2) and Endothelial Cell Migration in Developmental and Postnatal Angiogenesis. Arterioscler Thromb Vasc Biol 2017; 37:1806-1808. [PMID: 28954807 DOI: 10.1161/atvbaha.117.309953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Vijay Chaitanya Ganta
- From the Robert M. Berne Cardiovascular Research Center (V.C.G., B.H.A.) and Division of Cardiovascular Medicine, Department of Medicine (B.H.A.), University of Virginia School of Medicine, Charlottesville
| | - Brian H Annex
- From the Robert M. Berne Cardiovascular Research Center (V.C.G., B.H.A.) and Division of Cardiovascular Medicine, Department of Medicine (B.H.A.), University of Virginia School of Medicine, Charlottesville.
| |
Collapse
|
31
|
Matrone G, Meng S, Gu Q, Lv J, Fang L, Chen K, Cooke JP. Lmo2 (LIM-Domain-Only 2) Modulates Sphk1 (Sphingosine Kinase) and Promotes Endothelial Cell Migration. Arterioscler Thromb Vasc Biol 2017; 37:1860-1868. [PMID: 28775072 DOI: 10.1161/atvbaha.117.309609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lmo (LIM-domain-only)2 transcription factor is involved in hematopoiesis and vascular remodeling. Sphk (sphingosine kinase)1 phosphorylates sphingosine to S1P (sphingosine-1-phosphate). We hypothesized that Lmo2 regulates Sphk1 to promote endothelial cell (EC) migration and vascular development. APPROACH AND RESULTS: Lmo2 and Sphk1 knockdown (KD) were performed in Tg(fli1:EGFP) y1 zebrafish and in human umbilical vein EC. Rescue of phenotypes or overexpression of these factors were achieved using mRNA encoding Lmo2 or Sphk1. EC proliferation in vivo was assessed by BrdU (bromodeoxyuridine) immunostaining and fluorescence-activated cell sorter analysis of dissociated Tg(fli1:EGFP) y1 embryos. Cell migration was assessed by scratch assay in human umbilical vein EC and mouse aortic rings. Lmo2 interactions with Sphk1 promoter were assessed by ChIP-PCR (chromatin immunoprecipitation-polymerase chain reaction). Lmo2 or Sphk1 KD reduced number and length of intersegmental vessels. There was no reduction in the numbers of GFP+ (green fluorescent protein) ECs after Lmo2 KD. However, reduced numbers of BrdU+GFP+ nuclei were observed along the dysmorphic intersegmental vessels, accumulating instead at the sprouting origin of the intersegmental vessels. This anomaly was likely because of impaired EC migration, which was confirmed in migration assays using Lmo2 KD human umbilical vein ECs and mouse aortic rings. Both in vivo and in vitro, Lmo2 KD reduced Sphk1 gene expression, associated with less Lmo2 binding to the Sphk1 promoter as assessed by ChIP-PCR. Sphk1 mRNA rescued the Lmo2 KD phenotype. CONCLUSIONS Our data showed that Lmo2 is necessary for Sphk1 gene expression in ECs. Lmo2 KD reduced Lmo2-Sphk1 gene interaction, impaired intersegmental vessels formation, and reduced cell migration. We identified for the first time Sphk1 as downstream effector of Lmo2.
Collapse
Affiliation(s)
- Gianfranco Matrone
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Shu Meng
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Qilin Gu
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Jie Lv
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Longhou Fang
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Kaifu Chen
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - John P Cooke
- From the Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX.
| |
Collapse
|
32
|
Liu Y, Wu C, Zhu T, Sun W. LMO2 Enhances Lamellipodia/Filopodia Formation in Basal-Type Breast Cancer Cells by Mediating ARP3-Profilin1 Interaction. Med Sci Monit 2017; 23:695-703. [PMID: 28170369 PMCID: PMC5310228 DOI: 10.12659/msm.903261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The human LMO2 gene was first cloned from an acute T lymphocytic leukemia patient; it is primarily expressed in hematopoietic and vascular endothelial systems, and functions as a pivotal transcriptional regulator during embryonic hematopoiesis and angiogenesis. However, some recent reports indicated that LMO2 is widely expressed in many tissues and tumors, predominantly in cytoplasm, and revealed complicated functions on tumor behaviors in a variety of cancer types. As an adaptor molecule, binding partners and function details of LMO2 in these solid tumors need to be further investigated. Material/Methods In this study, we used yeast two-hybrid method to screen potential LMO2 interacting partners, MBP-pulldown, and co-immunoprecipitation assay to confirm protein-protein interactions, and confocal microscopy to reveal the subcellular localization of relevant proteins and actin cytoskeleton changes in relevant cells. Results We found that ARP3 and profilin1 were 2 binding partners of LMO2, primarily in cytoplasm. LMO2. Functionally, LMO2 mediated the assembly of a complex including ARP3, profilin1, and actin monomer, increased actin monomer binding to profilin1, and promoted lamellipodia/filopodia formation in basal-type breast cancer cells. Conclusions Our data indicate a novel functional mechanism of LMO2 in facilitating the delivery of actin monomers to the branched microfilament and increasing lamellipodia/filopodia formation in basal-type breast cancer cells, suggesting a cancer-promoting role of LMO2 in a subtype-dependent manner and its potential as a subtype-specific biomarker for clinical treatment of breast cancers.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin, China (mainland)
| | - Chao Wu
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin, China (mainland)
| | - Tianhui Zhu
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin, China (mainland)
| | - Wei Sun
- Laboratory of Molecular Genetics, School of Medicine, Nankai University, Tianjin, China (mainland)
| |
Collapse
|
33
|
Wang W, Wu S, Guo M, He J. LMO4 is a prognostic marker involved in cell migration and invasion in non-small-cell lung cancer. J Thorac Dis 2016; 8:3682-3690. [PMID: 28149564 DOI: 10.21037/jtd.2016.12.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aims of this study were to analyze the association of LMO4 with non-small-cell lung cancer (NSCLC) survival rate, and to determine its functional role and signaling pathway in lung cancer. METHODS Immunohistochemistry (IHC) was used to detect the expression of LMO4 in NSCLC cell lines and tumor tissues. Migration and invasion ability was detected respectively by wound healing test and transwell test. Immunofluorescence and western blot were detected of AKT/PI3K pathway related genes MAPK, PI3K, AKT. RESULTS LMO4 has high expression level of NSCLC cell lines and tumor tissues, and correlated with a lower survival rate. LMO4 can regulate the migration and invasion of NSCLC cells through the AKT/PI3K pathway. CONCLUSIONS LMO4 could serve as a promising biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Sipei Wu
- Lung Cancer Research Institute and Cancer Center, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Minzhang Guo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jianxing He
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
34
|
Liu Y, Huang D, Wang Z, Wu C, Zhang Z, Wang D, Li Z, Zhu T, Yang S, Sun W. LMO2 attenuates tumor growth by targeting the Wnt signaling pathway in breast and colorectal cancer. Sci Rep 2016; 6:36050. [PMID: 27779255 PMCID: PMC5078767 DOI: 10.1038/srep36050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022] Open
Abstract
The proto-oncogene LIM-domain only 2 (lmo2) was traditionally considered to be a pivotal transcriptional regulator in hematopoiesis and leukemia. Recently, the cytosolic localization of LMO2 was revealed in multiple epithelial tissues and a variety of solid tumors. However, the function of LMO2 in these epithelia and solid tumors remains largely unclear. The Wnt signaling pathway is a crucial determinant of development, and abnormalities in several key segments of this pathway contribute to oncogenesis. The current study demonstrated that LMO2 participates in the regulation of canonical Wnt signaling in the cytoplasm by binding to Dishevelled-1/2 (DVL-1/2) proteins. These interactions occurred at the PDZ domain of Dishevelled, and LMO2 subsequently attenuated the activation of the key factor β-catenin in the canonical Wnt signaling pathway. Meanwhile, significantly decreased expression of LMO2 was detected in breast and colorectal cancers, and the downregulation of LMO2 in these cells increased cell proliferation and reduced apoptosis. Taken together, the data in this study revealed a novel crosstalk between LMO2 and the Wnt signaling pathway during tumorigenesis and suggested that LMO2 might be a tumor suppressor in certain solid tumors, in contrast to its traditional oncogenic role in the hematopoietic system.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Di Huang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Zhaoyang Wang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Chao Wu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Zhao Zhang
- Department of Anorectal, Tianjin Union Medical Center, Tianjin, China
| | - Dan Wang
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Zongjin Li
- Laboratory of Stem cells in School of Medicine, Nankai University, Tianjin, China
| | - Tianhui Zhu
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- Laboratory of Molecular Genetics in School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
35
|
Simonik EA, Cai Y, Kimmelshue KN, Brantley-Sieders DM, Loomans HA, Andl CD, Westlake GM, Youngblood VM, Chen J, Yarbrough WG, Brown BT, Nagarajan L, Brandt SJ. LIM-Only Protein 4 (LMO4) and LIM Domain Binding Protein 1 (LDB1) Promote Growth and Metastasis of Human Head and Neck Cancer (LMO4 and LDB1 in Head and Neck Cancer). PLoS One 2016; 11:e0164804. [PMID: 27780223 PMCID: PMC5079595 DOI: 10.1371/journal.pone.0164804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/01/2016] [Indexed: 12/18/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) accounts for more than 300,000 deaths worldwide per year as a consequence of tumor cell invasion of adjacent structures or metastasis. LIM-only protein 4 (LMO4) and LIM-domain binding protein 1 (LDB1), two directly interacting transcriptional adaptors that have important roles in normal epithelial cell differentiation, have been associated with increased metastasis, decreased differentiation, and shortened survival in carcinoma of the breast. Here, we implicate two LDB1-binding proteins, single-stranded binding protein 2 (SSBP2) and 3 (SSBP3), in controlling LMO4 and LDB1 protein abundance in HNSCC and in regulating specific tumor cell functions in this disease. First, we found that the relative abundance of LMO4, LDB1, and the two SSBPs correlated very significantly in a panel of human HNSCC cell lines. Second, expression of these proteins in tumor primaries and lymph nodes involved by metastasis were concordant in 3 of 3 sets of tissue. Third, using a Matrigel invasion and organotypic reconstruct assay, CRISPR/Cas9-mediated deletion of LDB1 in the VU-SCC-1729 cell line, which is highly invasive of basement membrane and cellular monolayers, reduced tumor cell invasiveness and migration, as well as proliferation on tissue culture plastic. Finally, inactivation of the LDB1 gene in these cells decreased growth and vascularization of xenografted human tumor cells in vivo. These data show that LMO4, LDB1, and SSBP2 and/or SSBP3 regulate metastasis, proliferation, and angiogenesis in HNSCC and provide the first evidence that SSBPs control LMO4 and LDB1 protein abundance in a cancer context.
Collapse
Affiliation(s)
- Elizabeth A. Simonik
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ying Cai
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Katherine N. Kimmelshue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Dana M. Brantley-Sieders
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Holli A. Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Claudia D. Andl
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Grant M. Westlake
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Victoria M. Youngblood
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- VA Tennessee Valley Healthcare System, Nashville, TN, United States of America
| | - Wendell G. Yarbrough
- Department of Otolaryngology and Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Brandee T. Brown
- Department of Otolaryngology and Barry Baker Laboratory for Head and Neck Oncology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Lalitha Nagarajan
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Stephen J. Brandt
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- VA Tennessee Valley Healthcare System, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
36
|
Meng S, Matrone G, Lv J, Chen K, Wong WT, Cooke JP. LIM Domain Only 2 Regulates Endothelial Proliferation, Angiogenesis, and Tissue Regeneration. J Am Heart Assoc 2016; 5:JAHA.116.004117. [PMID: 27792641 PMCID: PMC5121509 DOI: 10.1161/jaha.116.004117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background LIM domain only 2 (LMO2, human gene) is a key transcription factor that regulates hematopoiesis and vascular development. However, its role in adult endothelial function has been incompletely characterized. Methods and Results In vitro loss‐ and gain‐of‐function studies on LMO2 were performed in human umbilical vein endothelial cells with lentiviral overexpression or short hairpin RNA knockdown (KD) of LMO2, respectively. LMO2 KD significantly impaired endothelial proliferation. LMO2 controls endothelial G1/S transition through transcriptional regulation of cyclin‐dependent kinase 2 and 4 as determined by reverse transcription polymerase chain reaction (PCR), western blot, and chromatin immunoprecipitation, and also influences the expression of Cyclin D1 and Cyclin A1. LMO2 KD also impaired angiogenesis by reducing transforming growth factor‐β (TGF‐β) expression, whereas supplementation of exogenous TGF‐β restored defective network formation in LMO2 KD human umbilical vein endothelial cells. In a zebrafish model of caudal fin regeneration, RT‐PCR revealed that the lmo2 (zebrafish gene) gene was upregulated at day 5 postresection. The KD of lmo2 by vivo‐morpholino injections in adult Tg(fli1:egfp)y1 zebrafish reduced 5‐bromo‐2′‐deoxyuridine incorporation in endothelial cells, impaired neoangiogenesis in the resected caudal fin, and substantially delayed fin regeneration. Conclusions The transcriptional factor LMO2 regulates endothelial proliferation and angiogenesis in vitro. Furthermore, LMO2 is required for angiogenesis and tissue healing in vivo. Thus, LMO2 is a critical determinant of vascular and tissue regeneration.
Collapse
Affiliation(s)
- Shu Meng
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Gianfranco Matrone
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Jie Lv
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - Wing Tak Wong
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| | - John P Cooke
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX
| |
Collapse
|
37
|
Robertson AL, Avagyan S, Gansner JM, Zon LI. Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett 2016; 590:4016-4033. [PMID: 27616157 DOI: 10.1002/1873-3468.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders and discuss their application for investigating stem cell dysfunction in disease and for the development of new therapeutics.
Collapse
Affiliation(s)
- Anne L Robertson
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Serine Avagyan
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, MA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
LMO2 blocks the UBA6-USE1 interaction and downstream FAT10ylation by targeting the ubiquitin fold domain of UBA6. Biochem Biophys Res Commun 2016; 478:1442-8. [PMID: 27569286 DOI: 10.1016/j.bbrc.2016.08.143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the post-translational modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs) is the most common trigger for protein degradation and is involved in the regulation of a wide range of biological processes. FAT10 (HLA-F-adjacent transcript 10), which belongs to the UBL family, is activated specifically through the UBA6-USE1 cascade and targets substrates covalently for 26S proteasomal degradation. LMO2 is a well-recognized transcriptional regulator in hematopoietic and endothelial systems; however, it is predominantly located in the cytoplasm of epithelium-derived cells. The current study revealed that LMO2 protein interacted with the E1 ubiquitin-activating enzyme UBA6 at the C-terminal ubiquitin fold domain (UFD), which mediates the recognition and recruitment of the E2-conjugating enzyme USE1. Functionally, the LMO2-UBA6 interaction disturbed the interaction between UBA6 and USE1 and led to the decline of the overall cellular FAT10ylation level as well as the FAT10ylation and degradation of a known FAT10 substrate p62. Taken together, this study revealed a novel function of LMO2 involving in the regulatory hierarchy of UBA6-USE1-FAT10ylation pathway by targeting the E1 enzyme UBA6.
Collapse
|
39
|
Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci 2016; 73:1547-67. [PMID: 26849156 PMCID: PMC4805691 DOI: 10.1007/s00018-016-2134-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Hemogenic endothelium is a specialized subset of developing vascular endothelium that acquires hematopoietic potential and can give rise to multilineage hematopoietic stem and progenitor cells during a narrow developmental window in tissues such as the extraembryonic yolk sac and embryonic aorta-gonad-mesonephros. Herein, we review current knowledge about the historical and developmental origins of hemogenic endothelium, the molecular events that govern hemogenic specification of vascular endothelial cells, the generation of multilineage hematopoietic stem and progenitor cells from hemogenic endothelium, and the potential for translational applications of knowledge gained from further study of these processes.
Collapse
Affiliation(s)
- Emily Gritz
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Karen K Hirschi
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA.
| |
Collapse
|
40
|
Abstract
LMO2 was first discovered through proximity to frequently occurring chromosomal translocations in T cell acute lymphoblastic leukaemia (T-ALL). Subsequent studies on its role in tumours and in normal settings have highlighted LMO2 as an archetypical chromosomal translocation oncogene, activated by association with antigen receptor gene loci and a paradigm for translocation gene activation in T-ALL. The normal function of LMO2 in haematopoietic cell fate and angiogenesis suggests it is a master gene regulator exerting a dysfunctional control on differentiation following chromosomal translocations. Its importance in T cell neoplasia has been further emphasized by the recurrent findings of interstitial deletions of chromosome 11 near LMO2 and of LMO2 as a target of retroviral insertion gene activation during gene therapy trials for X chromosome-linked severe combined immuno-deficiency syndrome, both types of event leading to similar T cell leukaemia. The discovery of LMO2 in some B cell neoplasias and in some epithelial cancers suggests a more ubiquitous function as an oncogenic protein, and that the current development of novel inhibitors will be of great value in future cancer treatment. Further, the role of LMO2 in angiogenesis and in haematopoietic stem cells (HSCs) bodes well for targeting LMO2 in angiogenic disorders and in generating autologous induced HSCs for application in various clinical indications.
Collapse
Affiliation(s)
- Jennifer Chambers
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
41
|
Aly RM, Taalab MM, Abdsalam EM, Elyamany OH, Hasan OE. High expression of LMO2 predicts a favorable outcome in adult patients with BCR/ABL negative B-cell acute lymphoblastic leukemia. Oncol Lett 2016; 11:1917-1922. [PMID: 26998100 DOI: 10.3892/ol.2016.4127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/11/2016] [Indexed: 01/12/2023] Open
Abstract
The LIM domain only protein 2 (LMO2) is a key regulator of hematopoietic stem cell development. Expression of LMO2 has been evaluated in B-cell lymphoma, T-cell acute lymphoblastic leukemia and acute myeloid leukemia; however, information concerning its role in breakpoint cluster region/Abelson murine leukemia viral oncogene homolog 1 (BCR/ABL) negative B-cell acute lymphoblastic leukemia (B-ALL) remains limited. The present study investigated LMO2 expression using quantitative polymerase chain reaction in 85 adult patients with BCR/ABL negative B-ALL, and associated the expression of LMO2 with established prognostic factors. LMO2 expression levels in patients with BCR/ABL negative B-ALL was not significantly different compared with control individuals (P=0.25). However, LMO2 expression levels were associated with the immunophenotypical features of the patients; a high LMO2 expression was associated with a higher incidence of complete remission (P=0.03) and lower rate of relapse (P=0.01), and patients with a high LMO2 expression had a significantly improved overall survival rate (P=0.01) and disease-free survival (P=0.01). The present results suggest that LMO2 expression is a favorable prognostic marker in adult patients with BCR/ABL negative B-ALL and may be used as a diagnostic marker and therapeutic target. However, additional studies regarding its prognostic role in patients with BCR/ABL negative B-ALL are required.
Collapse
Affiliation(s)
- Rabab M Aly
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 31115, Egypt
| | - Mona M Taalab
- Clinical Hematology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura 31115, Egypt
| | - Eman M Abdsalam
- General Medicine Department, Faculty of Medicine For Girls, Alazhar University, Cairo 31991, Egypt
| | - Omar H Elyamany
- Department of General Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Omar E Hasan
- Department of General Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
42
|
Jin K, Xiao D, Andersen B, Xiang M. Lmo4 and Other LIM domain only factors are necessary and sufficient for multiple retinal cell type development. Dev Neurobiol 2015; 76:900-15. [PMID: 26579872 DOI: 10.1002/dneu.22365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/01/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis by which distinct cell types are specified is a central issue in retinogenesis and retinal disease development. Here we examined the role of LIM domain only 4 (Lmo4) in retinal development using both gain-of-function and loss-of-function approaches. By immunostaining, Lmo4 was found to be expressed in mouse retina from E10.5 to mature stages. Retroviral delivery of Lmo4 into retinal progenitor cells could promote the amacrine, bipolar and Müller cell fates at the expense of photoreceptors. It also inhibited the fate of early-born retinal ganglion cells. Using a dominant-negative form of Lmo4 which suppresses transcriptional activities of all LIM domain only factors, we demonstrated that LIM domain only factors are both necessary and sufficient for promoting amacrine and bipolar cell development, but not for the differentiation of ganglion, horizontal, Müller, or photoreceptor cells. Taken together, our study uncovers multiple roles of Lmo4 during retinal development and demonstrates the importance of LIM domain only factors in ensuring proper retinal cell specification and differentiation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 900-915, 2016.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Bogi Andersen
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030.,Department of Biological Chemistry, Division of Endocrinology and Metabolism, University of California, Irvine, California, 92697-4030
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China.,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854
| |
Collapse
|
43
|
Roberto V, Tiago D, Gautvik K, Cancela M. Evidence for the conservation of miR-223 in zebrafish (Danio rerio): Implications for function. Gene 2015; 566:54-62. [DOI: 10.1016/j.gene.2015.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/05/2015] [Accepted: 04/09/2015] [Indexed: 01/15/2023]
|
44
|
Kim SH, Kim EJ, Hitomi M, Oh SY, Jin X, Jeon HM, Beck S, Jin X, Kim JK, Park CG, Chang SY, Yin J, Kim T, Jeon YJ, Song J, Lim YC, Lathia JD, Nakano I, Kim H. The LIM-only transcription factor LMO2 determines tumorigenic and angiogenic traits in glioma stem cells. Cell Death Differ 2015; 22:1517-25. [PMID: 25721045 DOI: 10.1038/cdd.2015.7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 01/23/2023] Open
Abstract
Glioblastomas (GBMs) maintain their cellular heterogeneity with glioma stem cells (GSCs) producing a variety of tumor cell types. Here we interrogated the oncogenic roles of Lim domain only 2 (LMO2) in GBM and GSCs in mice and human. High expression of LMO2 was found in human patient-derived GSCs compared with the differentiated progeny cells. LMO2 is required for GSC proliferation both in vitro and in vivo, as shRNA-mediated LMO2 silencing attenuated tumor growth derived from human GSCs. Further, LMO2 is sufficient to induce stem cell characteristics (stemness) in mouse premalignant astrocytes, as forced LMO2 expression facilitated in vitro and in vivo growth of astrocytes derived from Ink4a/Arf null mice and acquisition of GSC phenotypes. A subset of mouse and human GSCs converted into vascular endothelial-like tumor cells both in vitro and in vivo, which phenotype was attenuated by LMO2 silencing and promoted by LMO2 overexpression. Mechanistically, the action of LMO2 for induction of glioma stemness is mediated by transcriptional regulation of Jagged1 resulting in activation of the Notch pathway, whereas LMO2 directly occupies the promoter regions of the VE-cadherin gene for a gain of endothelial cellular phenotype. Subsequently, selective ablation of human GSC-derived VE-cadherin-expressing cells attenuated vascular formation in mouse intracranial tumors, thereby significantly prolonging mouse survival. Clinically, LMO2 expression was elevated in GBM tissues and inversely correlated with prognosis of GBM patients. Taken together, our findings describe novel dual roles of LMO2 to induce tumorigenesis and angiogenesis, and provide potential therapeutic targets in GBMs.
Collapse
Affiliation(s)
- S-H Kim
- 1] School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea [2] Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - E-J Kim
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - M Hitomi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - S-Y Oh
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - X Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - H-M Jeon
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - S Beck
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - X Jin
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - J-K Kim
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - C G Park
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - S-Y Chang
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| | - J Yin
- Specific Organs Cancer Branch, Research Institute and Hospital, National Cancer Center, Goyang 410-769, Republic of Korea
| | - T Kim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y-J Jeon
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - J Song
- Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Y C Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 143-752, Republic of Korea
| | - J D Lathia
- 1] Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA [2] Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA [3] Case Comprehensive Cancer Center, Cleveland, OH 44195, USA
| | - I Nakano
- 1] Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA [2] James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - H Kim
- School of Life Sciences and Biotechnology and Institute of Life Science and Natural Resources, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
45
|
Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex. Sci Rep 2014; 4:3643. [PMID: 24407558 PMCID: PMC3887373 DOI: 10.1038/srep03643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 12/09/2013] [Indexed: 01/07/2023] Open
Abstract
LMO2 was discovered via chromosomal translocations in T-cell leukaemia and shown normally to be essential for haematopoiesis. LMO2 is made up of two LIM only domains (thus it is a LIM-only protein) and forms a bridge in a multi-protein complex. We have studied the mechanism of formation of this complex using a single domain antibody fragment that inhibits LMO2 by sequestering it in a non-functional form. The crystal structure of LMO2 with this antibody fragment has been solved revealing a conformational difference in the positioning and angle between the two LIM domains compared with its normal binding. This contortion occurs by bending at a central helical region of LMO2. This is a unique mechanism for inhibiting an intracellular protein function and the structural contusion implies a model in which newly synthesized, intrinsically disordered LMO2 binds to a partner protein nucleating further interactions and suggests approaches for therapeutic targeting of LMO2.
Collapse
|
46
|
LIM-domain-only proteins: multifunctional nuclear transcription coregulators that interacts with diverse proteins. Mol Biol Rep 2013; 41:1067-73. [DOI: 10.1007/s11033-013-2952-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
|
47
|
Inoue A, Fujiwara T, Okitsu Y, Katsuoka Y, Fukuhara N, Onishi Y, Ishizawa K, Harigae H. Elucidation of the role of LMO2 in human erythroid cells. Exp Hematol 2013; 41:1062-76.e1. [PMID: 24041784 DOI: 10.1016/j.exphem.2013.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023]
Abstract
LIM-only protein 2 (LMO2) is a non-DNA-binding component of a protein complex containing master regulators of hematopoiesis, including GATA-1, SCL/TAL1, and LDB1. However, the role of LMO2 in human erythroid differentiation is unclear. LMO2 knockdown in hemin-treated K562 cells reduced the benzidine-positive cell ratio, suggesting that LMO2 retards hemin-mediated K562 cell differentiation. Microarray analysis using K562 cells after siRNA-mediated LMO2 knockdown indicated that 177 and 78 genes were upregulated and downregulated (>1.5-fold), respectively. The downregulated gene ensemble contained prototypical erythroid genes (HBB, SLC4A1). Whereas LMO2 knockdown did not affect GATA-1 or SCL/TAL1 expression, it resulted in significantly reduced chromatin occupancy of GATA-1, SCL/TAL1, and LDB1 at the β-globin locus control region and SLC4A1 locus in both K562 cells and human induced pluripotent stem cell-derived erythroid cells. Introduction of GATA-1 mutations, shown to impair direct interaction with LMO2, significantly diminished chromatin occupancy. On the other hand, knockdown of either SCL/TAL1 or LDB1 also resulted in significantly reduced chromatin occupancy of GATA-1 at endogenous loci, suggesting that impaired assembly of these components also affects GATA-1 chromatin occupancy. In an ex vivo model of erythroid differentiation from CD34(+) cells, LMO2 protein level peaked on day 5 and decreased at later stages of differentiation. The LMO2 expression pattern was similar to those of GATA-1 and SCL/TAL1. Furthermore, shRNA-mediated LMO2 knockdown in primary erythroblasts suggested that LMO2 regulates HBB, HBA, and SLC4A1 expression. LMO2 contributes to GATA-1 target gene expression by affecting assembly of the GATA-SCL/TAL1 complex components at endogenous loci.
Collapse
Affiliation(s)
- Ai Inoue
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Lmo2 is an oncogenic transcription factor that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL), including early T-cell precursor ALL (ETP-ALL) cases with poor prognosis. Lmo2 must be recruited to DNA by binding to the hematopoietic basic helix-loop-helix factors Scl/Tal1 or Lyl1. However, it is unknown which of these factors can mediate the leukemic activity of Lmo2. To address this, we have generated Lmo2-transgenic mice lacking either Scl or Lyl1 in the thymus. We show that although Scl is dispensable for Lmo2-driven leukemia, Lyl1 is critical for all oncogenic functions of Lmo2, including upregulation of a stem cell-like gene signature, aberrant self-renewal of thymocytes, and subsequent generation of T-cell leukemia. Lyl1 expression is restricted to preleukemic and leukemic stem cell populations in this model, providing a molecular explanation for the stage-specific expression of the Lmo2-induced gene expression program. Moreover, LMO2 and LYL1 are coexpressed in ETP-ALL patient samples, and LYL1 is required for growth of ETP-ALL cell lines. Thus, the LMO2-LYL1 interaction is a promising therapeutic target for inhibiting self-renewing cancer stem cells in T-ALL, including poor-prognosis ETP-ALL cases.
Collapse
|
49
|
Coma S, Allard-Ratick M, Akino T, van Meeteren LA, Mammoto A, Klagsbrun M. GATA2 and Lmo2 control angiogenesis and lymphangiogenesis via direct transcriptional regulation of neuropilin-2. Angiogenesis 2013; 16:939-52. [PMID: 23892628 DOI: 10.1007/s10456-013-9370-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/15/2013] [Indexed: 12/24/2022]
Abstract
GATA-binding protein 2 (GATA2) and LIM domain only 2 (Lmo2) form common transcription complexes during hematopoietic differentiation. Here we show that these two transcription factors also play a key role in endothelial cells (EC) and lymphatic EC (LEC) function. Primary EC and tumor-associated blood vessels expressed GATA2 and Lmo2. VEGF-induced sprouting angiogenesis in both differentiating embryonic stem cells (embryoid bodies) and primary EC increased GATA2 and Lmo2 levels. Conversely, silencing of GATA2 and Lmo2 expression in primary EC inhibited VEGF-induced angiogenic activity, including EC migration and sprouting in vitro, two key steps of angiogenesis in vivo. This inhibition of EC function was associated with downregulated expression of neuropilin-2 (NRP2), a co-receptor of VEGFRs for VEGF, at the protein, mRNA and promoter levels. NRP2 overexpression partially rescued the impaired angiogenic sprouting in the GATA2/Lmo2 knockdown EC, confirming that GATA2 and Lmo2 mediated EC function, at least in part, by directly regulating NRP2 gene expression. Furthermore, it was found that primary LEC expressed GATA2 and Lmo2 as well. Silencing of GATA2 and Lmo2 expression in LEC inhibited VEGF-induced LEC sprouting, also in a NRP2-dependent manner. In conclusion, our results demonstrate that GATA2 and Lmo2 cooperatively regulate VEGF-induced angiogenesis and lymphangiogenesis via NRP2.
Collapse
Affiliation(s)
- Silvia Coma
- Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Karp Building, Room 12.210, 1 Blackfan Circle, Boston, MA, 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all blood and lymphatic vessels, emerge de novo from the mesoderm in a process known as vasculogenesis. The vascular plexus that is initially formed is then remodeled and refined via proliferation, migration, and sprouting of endothelial cells to form new vessels from preexisting ones during angiogenesis. Mural cells are also recruited by endothelial cells to form the surrounding vessel wall. During this vascular remodeling process, primordial endothelial cells are specialized to acquire arterial, venous, and blood-forming hemogenic phenotypes and functions. A subset of venous endothelium is also specialized to become lymphatic endothelium later in development. The specialization of all endothelial cell subtypes requires extrinsic signals and intrinsic regulatory events, which will be discussed in this review.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|