1
|
Martín P, Sánchez-Madrid F. T cells in cardiac health and disease. J Clin Invest 2025; 135:e185218. [PMID: 39817455 PMCID: PMC11735099 DOI: 10.1172/jci185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction. We discuss the contribution of T cells to myocardial injury and remodeling, with emphasis on specific immune receptors, e.g., CD69, that have a critical role in regulating immune tolerance and maintaining the balance between T cell subsets in the heart. Additionally, we offer a perspective on recent advances in T cell-targeted therapies and their potential to modulate immune responses and improve clinical outcomes in patients with CVD and in heart transplant recipients. Understanding the intricate interplay between T cells and cardiovascular pathology is essential for developing novel immunotherapeutic strategies against CVD.
Collapse
Affiliation(s)
- Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Immunology, IIS Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Pi H, Wang G, Wang Y, Zhang M, He Q, Zheng X, Yin K, Zhao G, Jiang T. Immunological perspectives on atherosclerotic plaque formation and progression. Front Immunol 2024; 15:1437821. [PMID: 39399488 PMCID: PMC11466832 DOI: 10.3389/fimmu.2024.1437821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Atherosclerosis serves as the primary catalyst for numerous cardiovascular diseases. Growing evidence suggests that the immune response is involved in every stage of atherosclerotic plaque evolution. Rapid, but not specific, innate immune arms, including neutrophils, monocytes/macrophages, dendritic cells (DCs) and other innate immune cells, as well as pattern-recognition receptors and various inflammatory mediators, contribute to atherogenesis. The specific adaptive immune response, governed by T cells and B cells, antibodies, and immunomodulatory cytokines potently regulates disease activity and progression. In the inflammatory microenvironment, the heterogeneity of leukocyte subpopulations plays a very important regulatory role in plaque evolution. With advances in experimental techniques, the fine mechanisms of immune system involvement in atherosclerotic plaque evolution are becoming known. In this review, we examine the critical immune responses involved in atherosclerotic plaque evolution, in particular, looking at atherosclerosis from the perspective of evolutionary immunobiology. A comprehensive understanding of the interplay between plaque evolution and plaque immunity provides clues for strategically combating atherosclerosis.
Collapse
Affiliation(s)
- Hui Pi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Guangliang Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Qin He
- Department of Microbiology and Immunology, Dali University, Dali, Yunnan, China
| | - Xilong Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| | - Ting Jiang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan, Guangdong, China
| |
Collapse
|
3
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
4
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
5
|
Chen C, Zheng M, Wang W, Yu W. Elevated circulating inflammatory biomarker levels in the SIRT1-NF-κB-sCD40L pathway in patients with acute myocardial infarction: a case-control study. Ann Med 2023; 55:2284366. [PMID: 37992411 PMCID: PMC11529192 DOI: 10.1080/07853890.2023.2284366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Inflammation plays a key role in atherosclerosis development and progression. However, the role of novel inflammatory biomarker pathways, namely the SIRT1-NF-κB-sCD40L, in the etiopathogenesis of human atherosclerosis remains undefined. This study was designed to evaluate the changes and clinical implications of these inflammatory mediators in the plasma of patients with acute myocardial infarction (AMI). METHODS The peripheral arterial blood of 88 participants (68 patients with AMI and 20 age-matched controls), was drawn prior to performing coronary angiography (CAG). The SIRT1, NF-κB, and sCD40L plasma levels were quantified using ELISA. Spearman's analysis was used to evaluate the correlation between the three inflammatory markers, while Pearson's test assessed their potential correlation with cardiac troponin T (TNT) levels. Sensitivity, specificity, and area under the ROC curve (AUC) were calculated as measures of diagnostic accuracy. RESULTS Patients with AMI showed higher levels of circulating SIRT1, NF-κB, and sCD40L compared to the age-matched controls (p < 0.05). However, the plasma concentrations of these three inflammatory mediators did not differ between the ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) patients. Additionally, in patients with AMI, the SIRT1 level was positively correlated with NF-κB and sCD40L levels (p < 0.001). Likewise, the levels of SIRT1, NF-κB and sCD40L were positively correlated with TNT levels (p < 0.001). More importantly, the ROC analysis showed that the diagnostic accuracy of AMI was significantly higher when NF-κB or sCD40L level was used in combination with TNT levels (p < 0.05). CONCLUSIONS The levels of the circulating inflammatory biomarkers, including SIRT1, NF-κB, and sCD40L, were significantly elevated in patients with AMI. These novel biomarkers can improve the diagnostic accuracy of AMI when combined with TNT.KEY MESSAGESAMI is a potentially lethal CAD and is the leading cause of mortality and morbidity worldwide. Inflammation plays a key role in atherosclerosis development and progression. The levels of the circulating novel inflammatory biomarkers, including SIRT1, NF-κB, and sCD40L, were significantly elevated in patients with AMI.The SIRT1 level was positively correlated with NF-κB and sCD40L levels in patients with AMI.The levels of SIRT1, NF-κB and sCD40L were positively correlated with TNT levels.The ROC analysis showed that the diagnostic accuracy of AMI was significantly higher when NF-κB or sCD40L level was used in combination with TNT levels.SIRT1/NF-κB/sCD40L axis inhibition is a potential new target for AMI treatment.
Collapse
Affiliation(s)
- Chunjuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Meiyi Zheng
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Cardiology, Shantou Central Hospital, Shantou, China
| | - Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wei Yu
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Solanki K, Kumar A, Khan MS, Karthikeyan S, Atre R, Zhang KY, Bezsonov E, Obukhov AG, Baig MS. Novel peptide inhibitors targeting CD40 and CD40L interaction: A potential for atherosclerosis therapy. Curr Res Struct Biol 2023; 6:100110. [PMID: 38106460 PMCID: PMC10724548 DOI: 10.1016/j.crstbi.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by plaque build-up in the arteries, leading to the obstruction of blood flow. Macrophages are the primary immune cells found in the atherosclerotic lesions and are directly involved in atherosclerosis progression. Macrophages are derived from extravasating blood monocytes. The monocytic CD40 receptor is important for monocyte recruitment on the endothelium expressing the CD40 ligand (CD40L). Thus, targeting monocyte/macrophage interaction with the endothelium by inhibiting CD40-CD40L interaction may be a promising strategy for attenuating atherosclerosis. Monoclonal antibodies have been used against this target but shows various complications. We used an array of computer-aided drug discovery tools and molecular docking approaches to design a therapeutic inhibitory peptide that could efficiently bind to the critical residues (82Y, 84D, and 86N) on the CD40 receptor essential for the receptor's binding to CD40L. The initial screen identified a parent peptide with a high binding affinity to CD40, but the peptide exhibited a positive hepatotoxicity score. We then designed several novel peptidomimetic derivatives with higher binding affinities to CD40, good physicochemical properties, and negative hepatotoxicity as compared to the parent peptide. Furthermore, we conducted molecular dynamics simulations for both the apo and complexed forms of the receptor with ligand, and screened peptides to evaluate their stability. The designed peptidomimetic derivatives are promising therapeutics targeting the CD40-CD40L interaction and may potentially be used to attenuate atherosclerosis.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552, India
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Tsurumi, Yokohama, Kanagawa, Japan
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai Campus, Chennai, 600127, India
| | - Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552, India
| | - Kam Y.J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Tsurumi, Yokohama, Kanagawa, Japan
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 3 Tsyurupa Street, 117418, Moscow, Russia
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Izmailovsky Boulevard, 105043, Moscow, Russia
| | - Alexander G. Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552, India
| |
Collapse
|
7
|
Bosmans LA, van Tiel CM, Aarts SABM, Willemsen L, Baardman J, van Os BW, den Toom M, Beckers L, Ahern DJ, Levels JHM, Jongejan A, Moerland PD, Verberk SGS, van den Bossche J, de Winther MMPJ, Weber C, Atzler D, Monaco C, Gerdes N, Shami A, Lutgens E. Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovasc Res 2022; 119:1146-1160. [PMID: 35587037 DOI: 10.1093/cvr/cvac084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signaling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-TNF Receptor Associated Factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, were reduced in CD40mac-/- compared to CD40wt mice and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses.Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206 + CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages (BMDMs) of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1 and Tns1). CONCLUSIONS We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Baardman
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - David J Ahern
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Johannes H M Levels
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan van den Bossche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Weber
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Walter-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Germany
| | - Annelie Shami
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Experimental Cardiovascular Immunology Laboratory, Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
von Ehr A, Bode C, Hilgendorf I. Macrophages in Atheromatous Plaque Developmental Stages. Front Cardiovasc Med 2022; 9:865367. [PMID: 35548412 PMCID: PMC9081876 DOI: 10.3389/fcvm.2022.865367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the main pathomechanism leading to cardiovascular diseases such as myocardial infarction or stroke. There is consensus that atherosclerosis is not only a metabolic disorder but rather a chronic inflammatory disease influenced by various immune cells of the innate and adaptive immune system. Macrophages constitute the largest population of inflammatory cells in atherosclerotic lesions. They play a critical role in all stages of atherogenesis. The heterogenous macrophage population can be subdivided on the basis of their origins into resident, yolk sac and fetal liver monocyte-derived macrophages and postnatal monocyte-derived, recruited macrophages. Recent transcriptomic analyses revealed that the major macrophage populations in atherosclerosis include resident, inflammatory and foamy macrophages, representing a more functional classification. The aim of this review is to provide an overview of the trafficking, fate, and functional aspects of the different macrophage populations in the "life cycle" of an atheromatous plaque. Understanding the chronic inflammatory state in atherosclerotic lesions is an important basis for developing new therapeutic approaches to abolish lesion growth and promote plaque regression in addition to general cholesterol lowering.
Collapse
Affiliation(s)
- Alexander von Ehr
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Vuong JT, Stein-Merlob AF, Nayeri A, Sallam T, Neilan TG, Yang EH. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79:577-593. [PMID: 35144750 PMCID: PMC8983019 DOI: 10.1016/j.jacc.2021.11.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitor therapy has revolutionized the treatment of advanced malignancies in recent years. Numerous reports have detailed the myriad of possible adverse inflammatory effects of immune checkpoint therapies, including within the cardiovascular system. However, these reports have been largely limited to myocarditis. The critical role of inflammation and adaptive immunity in atherosclerosis has been well characterized in preclinical studies, and several emerging clinical studies indicate a potential role of immune checkpoint targeting therapies in the development and exacerbation of atherosclerosis. In this review, we provide an overview of the role of T-cell immunity in atherogenesis and describe the molecular effects and clinical associations of both approved and investigational immune checkpoint therapy on atherosclerosis. We also highlight the role of cholesterol metabolism in oncogenesis and discuss the implications of these associations on future treatment and monitoring of atherosclerotic cardiovascular disease in the oncologic population receiving immune checkpoint therapy.
Collapse
Affiliation(s)
- Jacqueline T Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Arash Nayeri
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA; UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
10
|
Gerhardt T, Haghikia A, Stapmanns P, Leistner DM. Immune Mechanisms of Plaque Instability. Front Cardiovasc Med 2022; 8:797046. [PMID: 35087883 PMCID: PMC8787133 DOI: 10.3389/fcvm.2021.797046] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation crucially drives atherosclerosis from disease initiation to the emergence of clinical complications. Targeting pivotal inflammatory pathways without compromising the host defense could compliment therapy with lipid-lowering agents, anti-hypertensive treatment, and lifestyle interventions to address the substantial residual cardiovascular risk that remains beyond classical risk factor control. Detailed understanding of the intricate immune mechanisms that propel plaque instability and disruption is indispensable for the development of novel therapeutic concepts. In this review, we provide an overview on the role of key immune cells in plaque inception and progression, and discuss recently identified maladaptive immune phenomena that contribute to plaque destabilization, including epigenetically programmed trained immunity in myeloid cells, pathogenic conversion of autoreactive regulatory T-cells and expansion of altered leukocytes due to clonal hematopoiesis. From a more global perspective, the article discusses how systemic crises such as acute mental stress or infection abruptly raise plaque vulnerability and summarizes recent advances in understanding the increased cardiovascular risk associated with COVID-19 disease. Stepping outside the box, we highlight the role of gut dysbiosis in atherosclerosis progression and plaque vulnerability. The emerging differential role of the immune system in plaque rupture and plaque erosion as well as the limitations of animal models in studying plaque disruption are reviewed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Arash Haghikia
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Stapmanns
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
| | - David Manuel Leistner
- Charité – Universitätsmedizin Berlin, Department of Cardiology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: David Manuel Leistner
| |
Collapse
|
11
|
Gissler MC, Scherrer P, Anto-Michel N, Pennig J, Hoppe N, Füner L, Härdtner C, Stachon P, Li X, Mitre LS, Marchini T, Madl J, Wadle C, Hilgendorf I, von Zur Mühlen C, Bode C, Weber C, Lutgens E, Wolf D, Gerdes N, Zirlik A, Willecke F. Deficiency of Endothelial CD40 Induces a Stable Plaque Phenotype and Limits Inflammatory Cell Recruitment to Atherosclerotic Lesions in Mice. Thromb Haemost 2021; 121:1530-1540. [PMID: 33618394 DOI: 10.1055/a-1397-1858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The co-stimulatory CD40L-CD40 dyad exerts a critical role in atherosclerosis by modulating leukocyte accumulation into developing atherosclerotic plaques. The requirement for cell-type specific expression of both molecules, however, remains elusive. Here, we evaluate the contribution of CD40 expressed on endothelial cells (ECs) in a mouse model of atherosclerosis. METHODS AND RESULTS Atherosclerotic plaques of apolipoprotein E-deficient (Apoe -/- ) mice and humans displayed increased expression of CD40 on ECs compared with controls. To interrogate the role of CD40 on ECs in atherosclerosis, we induced EC-specific (BmxCreERT2-driven) deficiency of CD40 in Apoe -/- mice. After feeding a chow diet for 25 weeks, EC-specific deletion of CD40 (iEC-CD40) ameliorated plaque lipid deposition and lesional macrophage accumulation but increased intimal smooth muscle cell and collagen content, while atherosclerotic lesion size did not change. Leukocyte adhesion to the vessel wall was impaired in iEC-CD40-deficient mice as demonstrated by intravital microscopy. In accord, expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) in the vascular endothelium declined after deletion of CD40. In vitro, antibody-mediated inhibition of human endothelial CD40 significantly abated monocyte adhesion on ECs. CONCLUSION Endothelial deficiency of CD40 in mice promotes structural features associated with a stable plaque phenotype in humans and decreases leukocyte adhesion. These results suggest that endothelial-expressed CD40 contributes to inflammatory cell migration and consecutive plaque formation in atherogenesis.
Collapse
Affiliation(s)
- Mark Colin Gissler
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Scherrer
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nathaly Anto-Michel
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Pennig
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Füner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carmen Härdtner
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Stachon
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xiaowei Li
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucia Sol Mitre
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Germany
| | - Carolin Wadle
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Zirlik
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Florian Willecke
- Department of Cardiology and Angiology I, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Klinik für Allgemeine und Interventionelle Kardiologie/Angiologie, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
12
|
Shami A, Edsfeldt A, Bengtsson E, Nilsson J, Shore AC, Natali A, Khan F, Lutgens E, Gonçalves I. Soluble CD40 Levels in Plasma Are Associated with Cardiovascular Disease and in Carotid Plaques with a Vulnerable Phenotype. J Stroke 2021; 23:367-376. [PMID: 34649381 PMCID: PMC8521258 DOI: 10.5853/jos.2021.00178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE CD40 and CD40 ligand (CD40L) are costimulatory molecules of the tumor necrosis factor receptor superfamily and well known for their involvement in inflammatory diseases: atherosclerotic mouse models with disrupted CD40 signalling develop lesions of reduced size with a more stable plaque profile. This study investigated the potential of plasma and intraplaque levels of CD40 and CD40L as markers for cardiovascular disease (CVD) in humans and their association with plaque stability. METHODS Soluble CD40 and CD40L (sCD40L) were measured in plasma in 1,437 subjects from The SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) cohort. Intra-plaque levels of sCD40 and sCD40L were measured in atherosclerotic plaque homogenates from 199 subjects of the Carotid Plaque Imaging Project (CPIP) cohort. RESULTS Both plasma sCD40 and sCD40L levels were elevated in individuals with prevalent stroke, while sCD40 levels also were higher in individuals with a prior acute myocardial infarction. Plasma levels of sCD40 correlated with carotid intima-media thickness and total carotid plaque area and were associated with risk of cardiovascular events over a 3-year follow-up period. Intra-plaque levels of sCD40 and sCD40L were associated with plaque components characteristic for plaque vulnerability and extracellular matrix remodelling. CONCLUSIONS Higher plasma sCD40 and sCD40L levels are associated with prevalent CVD. Plasma sCD40 levels also correlate with the severity of carotid atherosclerosis and predict future cardiovascular events, while intra-plaque levels correlate with a vulnerable plaque phenotype. Our findings thus demonstrate that elevated levels of sCD40 and sCD40L are markers of CVD.
Collapse
Affiliation(s)
- Annelie Shami
- Department of Clinical Sciences Malmo, Clinical Research Center, Lund University, Malmo, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmo, Clinical Research Center, Lund University, Malmo, Sweden.,Department of Cardiology, Skane University Hospital, Lund University, Malmo, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences Malmo, Clinical Research Center, Lund University, Malmo, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences Malmo, Clinical Research Center, Lund University, Malmo, Sweden
| | - Angela C Shore
- Diabetes and Vascular Medicine, University of Exeter Medical School, National Institute for Health Research Exeter Clinical Research Facility, Exeter, UK
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Faisel Khan
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmo, Clinical Research Center, Lund University, Malmo, Sweden.,Department of Cardiology, Skane University Hospital, Lund University, Malmo, Sweden
| |
Collapse
|
13
|
Lutgens E, Joffre J, van Os B, Ait-Oufella H. Targeting cytokines and immune checkpoints in atherosclerosis with monoclonal antibodies. Atherosclerosis 2021; 335:98-109. [PMID: 34593238 DOI: 10.1016/j.atherosclerosis.2021.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022]
Abstract
Over the past fifteen years, treatments using monoclonal antibodies specifically targeting cytokines have been developed to treat chronic inflammatory diseases, including rheumatoid arthritis or psoriasis, both associated with increased cardiovascular risk. The cardiovascular impact of these therapies allows us to validate the clinical relevance of the knowledge acquired from experimental studies about the role of cytokines in atherosclerosis. Several clinical studies have confirmed the protective effects of anti-TNFα and anti-IL-6R monoclonal antibodies against athero-thrombotic cardiovascular risk in patients with chronic inflammatory diseases. Yet, caution is needed since anti-TNFα treatment can aggravate chronic heart failure. More recently, the CANTOS study showed for the first time that an anti-inflammatory treatment using anti-IL-1β monoclonal antibody in coronary artery disease patients significantly reduced cardiovascular events. The effects of IL-23/IL-17 axis blockade on cardiovascular risk in patients with psoriasis or arthritis remain controversial. Several monoclonal antibodies targeting costimulatory molecules have also been developed, a direct way to confirm their involvement in atherothrombotic cardiovascular diseases. Blocking the CD28-CD80/86 axis with Abatacept has been shown to reduce cardiovascular risk. In contrast, the treatment of cancer patients with antibodies blocking immune checkpoint inhibitory receptors, such as CTLA-4, PD1, or PDL1, could worsen the risk of atherothrombotic events. In the future, cardiologists will be increasingly solicited to assess the cardiovascular risk of patients suffering from chronic inflammatory diseases or cancer and participate in choosing the most appropriate treatment. At the same time, immunomodulatory approaches directly targeting cardiovascular diseases will be developed as a complement to the usual treatment strategies.
Collapse
Affiliation(s)
- Esther Lutgens
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, 80336, Munich, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Pettenkoferstraße 8a & 9, 80336, Munich, Germany.
| | - Jeremie Joffre
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France; Department of Anesthesia and Perioperative Care, UCSF School of Medicine, San Francisco, CA, USA
| | - Bram van Os
- Department of Medical Biochemistry Experimental Vascular Biology, Amsterdam, the Netherlands
| | - Hafid Ait-Oufella
- Service de Réanimation Médicale, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France; Université de Paris, Inserm U970, Paris Cardiovascular Research Center, Paris, France.
| |
Collapse
|
14
|
Bonfiglio CA, Weber C, Atzler D, Lutgens E. Immunotherapy and cardiovascular diseases (CVD): novel avenues for immunotherapeutic approaches. QJM 2021; 116:271-278. [PMID: 34293177 DOI: 10.1093/qjmed/hcab207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/27/2021] [Indexed: 12/20/2022] Open
Abstract
As current therapies for cardiovascular disease (CVD), predominantly based on lipid lowering, still face an unacceptable residual risk, novel treatment strategies are being explored. Besides lipids, inflammatory processes play a major role in the pathogenesis of atherosclerosis, the underlying cause of the majority of CVD. The first clinical trials targeting the interleukin-1β-inflammasome axis have shown that targeting this pathway is successful in reducing cardiovascular events but did not decrease overall CVD mortality. Hence, novel and improved immunotherapeutics to treat CVD are being awaited. In this review we highlight novel immunotherapeutic approaches in CVD as well as future challenges ahead.
Collapse
Affiliation(s)
- Cecilia Assunta Bonfiglio
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Universiteitssingel 50, 6229 ER, Maastricht University, Maastricht, the Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Goethestraße 33D, Munich, 80336, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 8a & 9, Munich, 80336, Germany
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Room K1-110, Meibergdreef 15, AZ Amsterdam, 1105, The Netherlands
| |
Collapse
|
15
|
Deroissart J, Porsch F, Koller T, Binder CJ. Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis. Handb Exp Pharmacol 2021; 270:359-404. [PMID: 34251531 DOI: 10.1007/164_2021_505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypercholesterolemia is a major risk factor in atherosclerosis development and lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effective reduction of LDL cholesterol in patients, a residual cardiovascular risk persists in some individuals, highlighting the need for further therapeutic intervention. Recently, the CANTOS trial paved the way toward the development of specific therapies targeting inflammation, a key feature in atherosclerosis progression. The pre-existence of multiple drugs modulating both innate and adaptive immune responses has significantly accelerated the number of translational studies applying these drugs to atherosclerosis. Additional preclinical research has led to the discovery of new therapeutic targets, offering promising perspectives for the treatment and prevention of atherosclerosis. Currently, both drugs with selective targeting and broad unspecific anti-inflammatory effects have been tested. In this chapter, we aim to give an overview of current advances in immunomodulatory treatment approaches for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Koller
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Cell-specific and divergent roles of the CD40L-CD40 axis in atherosclerotic vascular disease. Nat Commun 2021; 12:3754. [PMID: 34145241 PMCID: PMC8213756 DOI: 10.1038/s41467-021-23909-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.
Collapse
|
17
|
Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, van Tiel C, Ta Megens R, Nitz K, Baardman J, Kusters P, Seijkens T, Buerger C, Janjic A, Riccardi C, Edsfeldt A, Monaco C, Daemen M, de Winther MPJ, Nilsson J, Weber C, Gerdes N, Gonçalves I, Lutgens E. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J 2021; 41:2938-2948. [PMID: 32728688 DOI: 10.1093/eurheartj/ehaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.
Collapse
Affiliation(s)
- Annelie Shami
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Laura A Bosmans
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Department of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Svenja Meiler
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Michael Lacy
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Claudia van Tiel
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Remco Ta Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Katrin Nitz
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jeroen Baardman
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Pascal Kusters
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Tom Seijkens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christina Buerger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Aleksandar Janjic
- Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-Universität, München, Martinsried, Germany
| | - Carlo Riccardi
- Department of Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Mat Daemen
- Department of Pathology, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Menno P J de Winther
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund University, Sweden
| | - Esther Lutgens
- Experimental Vascular Biology Division, Department of Medical Biochemistry, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, München, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
18
|
deFilippi C, Toribio M, Wong LP, Sadreyev R, Grundberg I, Fitch KV, Zanni MV, Lo J, Sponseller CA, Sprecher E, Rashidi N, Thompson MA, Cagliero D, Aberg JA, Braun LR, Stanley TL, Lee H, Grinspoon SK. Differential Plasma Protein Regulation and Statin Effects in Human Immunodeficiency Virus (HIV)-Infected and Non-HIV-Infected Patients Utilizing a Proteomics Approach. J Infect Dis 2021; 222:929-939. [PMID: 32310273 DOI: 10.1093/infdis/jiaa196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND People with human immunodeficiency virus (PWH) demonstrate increased atherosclerotic cardiovascular disease (ASCVD). Statins are being studied to prevent ASCVD in human immunodeficiency virus (HIV), but little is known regarding the effects of statins on a broad range of inflammatory and cardiovascular proteins in this population. METHODS We used a highly specific discovery proteomic approach (Protein Extension Assay), to determine statin effects on over 350 plasma proteins in relevant ASCVD pathways among HIV and non-HIV groups. Responses to pitavastatin calcium were assessed in 89 PWH in the INTREPID trial and 46 non-HIV participants with features of central adiposity and insulin resistance. History of cardiovascular disease was exclusionary for both studies. RESULTS Among participants with HIV, PCOLCE (enzymatic cleavage of type I procollagen) significantly increased after pitavastatin therapy and PLA2G7 (systemic marker of arterial inflammation) decreased. Among participants without HIV, integrin subunit alpha M (integrin adhesive function) and defensin alpha-1 (neutrophil function) increased after pitavastatin therapy and PLA2G7 decreased. At baseline, comparing participants with and without HIV, differentially expressed proteins included proteins involved in platelet and endothelial function and immune activation. CONCLUSIONS Pitavastatin affected proteins important to platelet and endothelial function and immune activation, and effects differed to a degree within PWH and participants without HIV.
Collapse
Affiliation(s)
- Chris deFilippi
- Inova Heart and Vascular Institute, Falls Church, Virginia, USA
| | - Mabel Toribio
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Lai Ping Wong
- Massachusetts General Hospital, Department of Molecular Biology and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan Sadreyev
- Massachusetts General Hospital, Department of Molecular Biology and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kathleen V Fitch
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Markella V Zanni
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Lo
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | - Diana Cagliero
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Judith A Aberg
- Mount Sinai Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Laurie R Braun
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Takara L Stanley
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| | - Hang Lee
- Massachusetts General Hospital, Biostatistics Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven K Grinspoon
- Massachusetts General Hospital, Metabolism Unit and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Voutyritsa E, Kyriakos G, Patsouras A, Damaskos C, Garmpi A, Diamantis E, Garmpis N, Savvanis S. Experimental Agents for the Treatment of Atherosclerosis: New Directions. J Exp Pharmacol 2021; 13:161-179. [PMID: 33633471 PMCID: PMC7901406 DOI: 10.2147/jep.s265642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular and related metabolic disorders constitute a worldwide health challenge. Atherosclerosis is a chronic inflammatory condition based on both dyslipidemia and inflammation. Therefore, even when dyslipidemia is controlled, the risk of atherosclerosis remains. Among the most efficient inflammatory mediators used as therapeutic tools in cardiovascular disease are the interleukins, which are pro-inflammatory mediators like cytokines. Moreover, a protein kinase inhibitors, p38 mitogen-activated protein kinase (MAPK) inhibitor, and an inhibitor of a leukocyte adhesion molecule, P-Selectin, have also presented therapeutic potential for this disorder. Colchicine, being an inexpensive therapeutic option, has been proved to be suitable for the prevention of atherosclerosis. In this review, we summarize all the studies, from 2010 to 2020, in which treatment approaches based on the agents mentioned above are evaluated in the management of atherosclerosis.
Collapse
Affiliation(s)
- Errika Voutyritsa
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kyriakos
- Sección de Endocrinología y Nutrición, Hospital General Universitario Santa Lucia, Cartagena, Spain
| | - Alexandros Patsouras
- Second Department of Internal Medicine, Tzanio General Hospital, Piraeus, Greece
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Renal Transplantation Unit, Laiko General Hospital, Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Diamantis
- Department of Endocrinology and Diabetes Center, G. Gennimatas General Hospital, Athens, Greece
| | - Nikolaos Garmpis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyridon Savvanis
- Internal Medicine Department, Elpis General Hospital, Athens, Greece
| |
Collapse
|
20
|
Roy A, Saqib U, Baig MS. NOS1-mediated macrophage and endothelial cell interaction in the progression of atherosclerosis. Cell Biol Int 2021; 45:1191-1201. [PMID: 33501735 DOI: 10.1002/cbin.11558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 01/24/2021] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease arising due to an imbalance in lipid metabolism and maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Interactions between monocytes/macrophages and endothelial cells play an essential role in the pathogenesis of atherosclerosis. In our current study, nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) has been identified as a regulator of macrophage and endothelial cell interaction. Oxidized LDL (OxLDL) activates NOS1, which results in the expression of CD40 ligand in macrophages. OxLDL-stimulated macrophages produce some soluble factors which increase the CD40 receptor expression in endothelial cells. This increases the interaction between the macrophages and endothelial cells, which leads to an increase in the inflammatory response. Inhibition of NOS1-derived NO might serve as an effective strategy to reduce foam cell formation and limit the extent of atherosclerotic plaque expansion.
Collapse
Affiliation(s)
- Anjali Roy
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| | - Uzma Saqib
- Discipline of Chemistry, Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| |
Collapse
|
21
|
Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov 2021; 20:589-610. [PMID: 33976384 PMCID: PMC8112476 DOI: 10.1038/s41573-021-00198-1] [Citation(s) in RCA: 592] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
Atherosclerosis, a dominant and growing cause of death and disability worldwide, involves inflammation from its inception to the emergence of complications. Targeting inflammatory pathways could therefore provide a promising new avenue to prevent and treat atherosclerosis. Indeed, clinical studies have now demonstrated unequivocally that modulation of inflammation can forestall the clinical complications of atherosclerosis. This progress pinpoints the need for preclinical investigations to refine strategies for combatting inflammation in the human disease. In this Review, we consider a gamut of attractive possibilities for modifying inflammation in atherosclerosis, including targeting pivotal inflammatory pathways such as the inflammasomes, inhibiting cytokines, manipulating adaptive immunity and promoting pro-resolution mechanisms. Along with lifestyle measures, pharmacological interventions to mute inflammation could complement traditional targets, such as lipids and hypertension, to make new inroads into the management of atherosclerotic risk.
Collapse
|
22
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2021; 73:64-91. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
AbstractCardiovascular disease is the leading cause of death globally. Coronary artery disease (CAD) is a chronic inflammatory disease usually caused by atherosclerosis, in which the coronary arteries become narrowed by atheromatous plaque. Plaques in atherosclerosis are formed through the accumulation of lipids and various immune cells. Both adaptive and innate immune systems are involved in the pathogenesis of atherosclerosis and facilitate plaque formation and disease progression. Almost all immune system cells, including neutrophils, B cells, T cells monocytes, macrophages, foam cells, and dendritic cells (DCs), play a vital role in atherosclerotic plaque. Atherogenesis, the normal function of the endothelium, is initially disrupted and, then, cells of the immune system are recruited to the endothelium following increased expression of cell adhesion molecules. Accumulation of immune cells and lipids leads to the formation of a necrotic nucleus. As the disease progresses, smooth muscle cells form fibrous layers, whose rupture results in exposing the necrotic nucleus and thrombosis. Accordingly, the present review was conducted to determine the role of different cells in innate and adaptive immune systems in inhibition and progression of atherosclerosis.
Collapse
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
23
|
Lutgens E, Atzler D, Döring Y, Duchene J, Steffens S, Weber C. Immunotherapy for cardiovascular disease. Eur Heart J 2020; 40:3937-3946. [PMID: 31121017 DOI: 10.1093/eurheartj/ehz283] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
The outcomes of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial have unequivocally proven that inflammation is a key driver of atherosclerosis and that targeting inflammation, in this case by using an anti-interleukin-1β antibody, improves cardiovascular disease (CVD) outcomes. This is especially true for CVD patients with a pro-inflammatory constitution. Although CANTOS has epitomized the importance of targeting inflammation in atherosclerosis, treatment with canakinumab did not improve CVD mortality, and caused an increase in infections. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways and exhibit limited immune-suppressive side effects, as pursued in our collaborative research centre, are required to optimize immunotherapy for CVD. In this review, we will highlight the potential of novel immunotherapeutic targets that are currently considered to become a future treatment for CVD.
Collapse
Affiliation(s)
- Esther Lutgens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,Department of Medical Biochemistry, Amsterdam University Medical Centers, Location AMC, Amsterdam Cardiovascular Sciences (ACS), University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Goethestraße 33, Munich 80336, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), CRC 1123 Atherosclerosis - Mechanisms and Networks of novel therapeutic Targets, Ludwig-Maximilians-Universität, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, Munich 80336, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitsingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
24
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
25
|
Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L Dyad as Immunotherapeutic Target in Cardiovascular Disease. J Cardiovasc Transl Res 2020; 14:13-22. [PMID: 32222950 PMCID: PMC7892683 DOI: 10.1007/s12265-020-09994-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Chronic inflammation drives the development of atherosclerosis. Despite optimal treatment of classical cardiovascular risk factors, a substantial portion of the population has elevated inflammatory biomarkers and develops atherosclerosis-related complications, indicating that a residual inflammatory risk drives atherosclerotic cardiovascular disease in these patients. Additional anti-inflammatory therapeutic strategies are therefore required. The co-stimulatory molecule CD40 and its ligand CD40L (CD154) have a central role in the regulation of the inflammatory response during the development of atherosclerosis by modulating the interaction between immune cells and between immune cells and non-immune cells. In this review, we discuss the role of the CD40-CD40L dyad in atherosclerosis, and we discuss recent studies on the therapeutic potential of novel CD40-CD40L targeting strategies in cardiovascular medicine.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Lena Bosch
- Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Nash M, McGrath JP, Cartland SP, Patel S, Kavurma MM. Tumour necrosis factor superfamily members in ischaemic vascular diseases. Cardiovasc Res 2020; 115:713-720. [PMID: 30816914 DOI: 10.1093/cvr/cvz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Current treatment of ischaemic vascular diseases such as coronary and peripheral artery disease includes angioplasty and bypass grafting, as well as lipid lowering therapies and control of other cardiovascular risk factors. Numerous members of the tumour necrosis factor superfamily (TNFSF) have recently shown emerging roles in both the protection and progression of such diseases. Understanding the role TNFSF members play in ischaemic vascular disease may provide insight into the development of novel therapeutics to prevent or treat diseases relating to atherosclerosis and ischaemia. This review summarizes the most recent findings relating to TNFSF members and the mechanisms that precede ischaemic vascular disease progression, particularly endothelial dysfunction, chronic inflammation, and atherosclerotic plaque development. This review also explores recent translational research on the role of TNFSF therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Megan Nash
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Biochemistry, University of Bath, Bath, UK
| | - Jordan P McGrath
- Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Siân P Cartland
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
27
|
Li G, Yang L, Li D, Zhang J, Du L, Xia L, Liu Y, Hu W. Effects of combined treatment with PD‑L1 Ig and CD40L mAb on immune tolerance in the CBA/J x DBA/2 mouse model. Mol Med Rep 2020; 21:1789-1798. [PMID: 32319625 PMCID: PMC7057827 DOI: 10.3892/mmr.2020.10977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/01/2020] [Indexed: 12/31/2022] Open
Abstract
The embryo is a natural allograft and is the only exception to immune rejection, which reflects maternal immune tolerance towards the embryo. However, pregnancy loss is primarily caused by maternal immune rejection of the embryo. The aim of the present study was to explore the effects of combined treatment of programmed death-ligand 1 (PD-L1) immunoglobulin (Ig) and CD40-ligand (CD40L) monoclonal antibody (mAb) on immune tolerance in an abortion-prone mating model. Mice were divided into the normal, spontaneous abortion, PD-L1 Ig, CD40L mAb and the PD-L1 Ig + CD40L mAb groups. On day 14 of gestation, the embryo resorption abortion rates of all the groups was observed. The maternal hypo-responsiveness to paternal antigens was determined using a mixed lymphocyte response and the splenic CD4+CD25+ T-cell population, major histocompatibility complex (MHC)-II+, CD80+ and CD86+ cell populations in pregnant female CBA/J mice were analyzed using flow cytometry. The expression levels of intracellular cytokines in the splenic tissues of pregnant CBA/J female mice were analyzed using western blotting. The PD-L1 Ig + CD40L group displayed the lowest resorption rate compared with the other groups. A significant decrease in the proliferative response of maternal splenic immunocompetent cells against paternal antigens, and a significant increase in the proliferative response of maternal splenic CD4+CD25+ T cells was observed in the PD-L1 Ig + CD40L group compared with the spontaneous abortion group. The number of MHC-II+, CD80+ and CD86+ bone marrow-derived dendritic cells (DCs) generated by female mice, and the levels of tumor necrosis factor-α and interferon-γ in the spleens of female mice were significantly decreased in the PD-L1 Ig + CD40L mAb group compared with the spontaneous abortion group. By contrast, interleukin-4 levels were significantly increased in the PD-L1 Ig + CD40L mAb group compared with the spontaneous abortion group. The results suggested that the administration of PD-L1 Ig + CD40L mAb on day 4 of gestation, the period of peri-implantation, may induce paternal antigen-specific immunotolerance, leading to the embryo resorption rate of the abortion-prone model being similar to that of the normal pregnancy model. The results indicate that the combined treatment of PD-L1 Ig and anti-CD40L mAbs may serve as a potential therapeutic for pregnancy loss.
Collapse
Affiliation(s)
- Guanfei Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lihua Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Dan Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jinhong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ling Du
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Libin Xia
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yunhua Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wanqin Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
28
|
Abstract
The role of inflammation in cardiovascular disease (CVD) is now widely accepted. Immune cells, including T cells, are influenced by inflammatory signals and contribute to the onset and progression of CVD. T cell activation is modulated by T cell co-stimulation and co-inhibition pathways. Immune checkpoint inhibitors (ICIs) targeting T cell inhibition pathways have revolutionized cancer treatment and improved survival in patients with cancer. However, ICIs might induce cardiovascular toxicity via T cell re-invigoration. With the rising use of ICIs for cancer treatment, a timely overview of the role of T cell co-stimulation and inhibition molecules in CVD is desirable. In this Review, the importance of these molecules in the pathogenesis of CVD is highlighted in preclinical studies on models of CVD such as vein graft disease, myocarditis, graft arterial disease, post-ischaemic neovascularization and atherosclerosis. This Review also discusses the therapeutic potential of targeting T cell co-stimulation and inhibition pathways to treat CVD, as well as the possible cardiovascular benefits and adverse events after treatment. Finally, the Review emphasizes that patients with cancer who are treated with ICIs should be monitored for CVD given the reported association between the use of ICIs and the risk of cardiovascular toxicity.
Collapse
|
29
|
Seijkens TTP, van Tiel CM, Kusters PJH, Atzler D, Soehnlein O, Zarzycka B, Aarts SABM, Lameijer M, Gijbels MJ, Beckers L, den Toom M, Slütter B, Kuiper J, Duchene J, Aslani M, Megens RTA, van 't Veer C, Kooij G, Schrijver R, Hoeksema MA, Boon L, Fay F, Tang J, Baxter S, Jongejan A, Moerland PD, Vriend G, Bleijlevens B, Fisher EA, Duivenvoorden R, Gerdes N, de Winther MPJ, Nicolaes GA, Mulder WJM, Weber C, Lutgens E. Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. J Am Coll Cardiol 2019; 71:527-542. [PMID: 29406859 PMCID: PMC5800892 DOI: 10.1016/j.jacc.2017.11.055] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 02/05/2023]
Abstract
Background Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. Objectives This study evaluates the potential of TRAF-STOP treatment in atherosclerosis. Methods The effects of TRAF-STOPs on atherosclerosis were investigated in apolipoprotein E deficient (Apoe−/−) mice. Recombinant high-density lipoprotein (rHDL) nanoparticles were used to target TRAF-STOPs to macrophages. Results TRAF-STOP treatment of young Apoe−/− mice reduced atherosclerosis by reducing CD40 and integrin expression in classical monocytes, thereby hampering monocyte recruitment. When Apoe−/− mice with established atherosclerosis were treated with TRAF-STOPs, plaque progression was halted, and plaques contained an increase in collagen, developed small necrotic cores, and contained only a few immune cells. TRAF-STOP treatment did not impair “classical” immune pathways of CD40, including T-cell proliferation and costimulation, Ig isotype switching, or germinal center formation, but reduced CD40 and β2-integrin expression in inflammatory monocytes. In vitro testing and transcriptional profiling showed that TRAF-STOPs are effective in reducing macrophage migration and activation, which could be attributed to reduced phosphorylation of signaling intermediates of the canonical NF-κB pathway. To target TRAF-STOPs specifically to macrophages, TRAF-STOP 6877002 was incorporated into rHDL nanoparticles. Six weeks of rHDL-6877002 treatment attenuated the initiation of atherosclerosis in Apoe−/− mice. Conclusions TRAF-STOPs can overcome the current limitations of long-term CD40 inhibition in atherosclerosis and have the potential to become a future therapeutic for atherosclerosis.
Collapse
Affiliation(s)
- Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal J H Kusters
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Dorothee Atzler
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Barbara Zarzycka
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marnix Lameijer
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Marion J Gijbels
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Johan Duchene
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Maria Aslani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU Medical Center, Amsterdam, the Netherlands
| | - Roy Schrijver
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Marten A Hoeksema
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | | | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Tang
- Bioceros BV, Utrecht, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samantha Baxter
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aldo Jongejan
- Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Perry D Moerland
- Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gert Vriend
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Bleijlevens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York
| | - Raphael Duivenvoorden
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Gerry A Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Willem J M Mulder
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
30
|
Csősz É, Tóth N, Deák E, Csutak A, Tőzsér J. Wound-Healing Markers Revealed by Proximity Extension Assay in Tears of Patients following Glaucoma Surgery. Int J Mol Sci 2018; 19:ijms19124096. [PMID: 30567303 PMCID: PMC6321131 DOI: 10.3390/ijms19124096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Tears are a constantly available and highly valuable body fluid collectable by non-invasive techniques. Although it can give information on ocular status and be used for follow-ups, tear analysis is challenging due to the low amount of sample that is available. Proximity extension assay (PEA) allows for a sensitive and scalable analysis of multiple proteins in a single run from a one-µL sample, so we applied this technique and examined the amount of 184 proteins in tears collected at different time points after trabeculectomy. The success rate of this surgical intervention highly depends on proper wound healing; therefore, information on the process is indispensable. We observed significantly higher levels of IL-6 and MMP1 at the early time points (day one, two, and four) following trabeculectomy, and the protein amounts went back to the level observed before the surgery three months after the intervention. Patients with or without complications were tested, and proteins that have roles in the immune response and wound healing could be observed with altered frequency and amounts in the cases of patients with complications. Our results highlight the importance of inflammation in wound-healing complications, and at the same time, indicate the utility of PEA in tear analysis.
Collapse
Affiliation(s)
- Éva Csősz
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
| | - Noémi Tóth
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - Eszter Deák
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - József Tőzsér
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
| |
Collapse
|
31
|
Abstract
Innate and adaptive immune effector mechanisms, in conjunction with hyperlipidemia, are important drivers of atherosclerosis. The interaction between the different immune cells and the secretion of cytokines and chemokines determine the progression of atherosclerosis. The activation or dampening of the immune response is tightly controlled by immune checkpoints. Costimulatory and coinhibitory immune checkpoints represent potential targets for immune modulatory therapies for atherosclerosis. This review will discuss the current knowledge on immune checkpoints in atherosclerosis and the clinical potential of immune checkpoint targeted therapy for atherosclerosis.
Collapse
Affiliation(s)
- Ellen Rouwet
- From the Department of Surgery and Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands (E.R.)
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology Laboratory, Academic Medical Center, Amsterdam, The Netherlands (E.L.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Munich, Germany (E.L.)
| |
Collapse
|
32
|
Lameijer M, Binderup T, van Leent MMT, Senders ML, Fay F, Malkus J, Sanchez-Gaytan BL, Teunissen AJP, Karakatsanis N, Robson P, Zhou X, Ye Y, Wojtkiewicz G, Tang J, Seijkens TTP, Kroon J, Stroes ESG, Kjaer A, Ochando J, Reiner T, Pérez-Medina C, Calcagno C, Fisher EA, Zhang B, Temel RE, Swirski FK, Nahrendorf M, Fayad ZA, Lutgens E, Mulder WJM, Duivenvoorden R. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat Biomed Eng 2018; 2:279-292. [PMID: 30936448 PMCID: PMC6447057 DOI: 10.1038/s41551-018-0221-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Macrophage accumulation in atherosclerosis is directly linked to the destabilization and rupture of plaque, causing acute atherothrombotic events. Circulating monocytes enter the plaque and differentiate into macrophages, where they are activated by CD4+ T lymphocytes through CD40-CD40 ligand signalling. Here, we report the development and multiparametric evaluation of a nanoimmunotherapy that moderates CD40-CD40 ligand signalling in monocytes and macrophages by blocking the interaction between CD40 and tumour necrosis factor receptor-associated factor 6 (TRAF6). We evaluated the biodistribution characteristics of the nanoimmunotherapy in apolipoprotein E-deficient (Apoe-/-) mice and in non-human primates by in vivo positron-emission tomography imaging. In Apoe-/- mice, a 1-week nanoimmunotherapy treatment regimen achieved significant anti-inflammatory effects, which was due to the impaired migration capacity of monocytes, as established by a transcriptome analysis. The rapid reduction of plaque inflammation by the TRAF6-targeted nanoimmunotherapy and its favourable toxicity profiles in both mice and non-human primates highlights the translational potential of this strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Marnix Lameijer
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Tina Binderup
- Cluster for Molecular Imaging and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mandy M T van Leent
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Max L Senders
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Francois Fay
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joost Malkus
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brenda L Sanchez-Gaytan
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abraham J P Teunissen
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Karakatsanis
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Robson
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuxiang Ye
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Tang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Andreas Kjaer
- Cluster for Molecular Imaging and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jordi Ochando
- Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos Pérez-Medina
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, NYU School of Medicine, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan E Temel
- Saha Cardiovascular Research Center and Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands.
| | - Raphaël Duivenvoorden
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands.
- Department of Nephrology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Li B, Li W, Li X, Zhou H. Inflammation: A Novel Therapeutic Target/Direction in Atherosclerosis. Curr Pharm Des 2018; 23:1216-1227. [PMID: 28034355 PMCID: PMC6302344 DOI: 10.2174/1381612822666161230142931] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Over the past two decades, the viewpoint of atherosclerosis has been replaced gradually by a lipid-driven, chronic, low-grade inflammatory disease of the arterial wall. Current treatment of atherosclerosis is focused on limiting its risk factors, such as hyperlipidemia or hypertension. However, treatment targeting the inflammatory nature of atherosclerosis is still very limited and deserves further attention to fight atherosclerosis successfully. Here, we review the current development of inflammation and atherosclerosis to discuss novel insights and potential targets in atherosclerosis, and to address drug discovery based on anti-inflammatory strategy in atherosclerotic disease.
Collapse
Affiliation(s)
- Bin Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038. China
| | - Weihong Li
- Assisted Reproductive Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016. China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Chongqing 400038. China
| | - Hong Zhou
- Department of Pharmacology, College of Pharamacy, The Third Military Medical University, P.O. Box: 400038, Chongqing. China
| |
Collapse
|
34
|
Kusters PJH, Seijkens TTP, Beckers L, Lievens D, Winkels H, de Waard V, Duijvestijn A, Lindquist Liljeqvist M, Roy J, Daugherty A, Newby A, Gerdes N, Lutgens E. CD40L Deficiency Protects Against Aneurysm Formation. Arterioscler Thromb Vasc Biol 2018. [PMID: 29519940 DOI: 10.1161/atvbaha.117.310640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The mechanisms underlying formation of arterial aneurysms remain incompletely understood. Because inflammation is a common feature during the progressive degeneration of the aortic wall, we studied the role of the costimulatory molecule CD40L, a major driver of inflammation, in aneurysm formation. APPROACH AND RESULTS Transcriptomics data obtained from human abdominal aortic aneurysms and normal aortas revealed increased abundance of both CD40L and CD40 in media of thrombus-free and thrombus-covered human abdominal aortic aneurysms samples. To further unravel the role of CD40L in aneurysm formation, apolipoprotein E-deficient (Apoe-/-) and Cd40l-/-Apoe-/- mice were infused with angiotensin II for 7 and 28 days. Only a minority of Cd40l-/-Apoe-/- mice (33% and 17%) developed (dissecting) aneurysms compared with 75% and 67% of Apoe-/- littermates after 7 and 28 days of infusion, respectively. Total vessel area of the aorta at the suprarenal level was 52% smaller in angiotensin II-infused Cd40l-/-Apoe-/- mice compared with that in angiotensin II-infused Apoe-/- mice. Chimeric Apoe-/- mice repopulated with Cd40l-/-Apoe-/- bone marrow afforded a similar protection against dissecting aneurysm formation. Moreover, lack of CD40L protected mice from fatal aneurysm rupture. T helper cell and macrophage accumulation in aneurysmal tissue was reduced in Cd40l-/-Apoe-/- mice with a concomitant decrease in expression of proinflammatory chemo- and cytokines. In addition, aneurysms of Cd40l-/-Apoe-/- mice displayed reduced abundance of matrix metalloproteinase-13 and an increase in tissue inhibitor of metalloproteinase-3 while activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 was diminished. CONCLUSIONS Deficiency of (hematopoietic) CD40L protects against dissecting aneurysm formation and reduces the incidence of fatal rupture. This is associated with a decreased accumulation and activation of inflammatory cells and a dampened protease activity in the arterial wall.
Collapse
Affiliation(s)
- Pascal J H Kusters
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.)
| | - Tom T P Seijkens
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.).,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| | - Linda Beckers
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.)
| | - Dirk Lievens
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.).,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| | - Holger Winkels
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.).,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| | - Vivian de Waard
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.)
| | | | - Moritz Lindquist Liljeqvist
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (M.L.L., J.R.)
| | - Joy Roy
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden (M.L.L., J.R.)
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.)
| | - Andrew Newby
- Bristol Heart Institute, University of Bristol, United Kingdom (A.N.)
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.).,Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.)
| | - Esther Lutgens
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (P.J.H.K., T.T.P.S., L.B., D.L., H.W., V.d.W., E.L.) .,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany (T.T.P.S., D.L., H.W., N.G., E.L.)
| |
Collapse
|
35
|
Maracle CX, Agca R, Helder B, Meeuwsen JAL, Niessen HWM, Biessen EAL, de Winther MPJ, de Jager SCA, Nurmohamed MT, Tas SW. Noncanonical NF-κB signaling in microvessels of atherosclerotic lesions is associated with inflammation, atheromatous plaque morphology and myocardial infarction. Atherosclerosis 2018; 270:33-41. [PMID: 29407886 DOI: 10.1016/j.atherosclerosis.2018.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/31/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Neovascularization is associated with atherosclerotic plaque instability and increased chance of myocardial infarction (MI). Patients with chronic inflammatory diseases (CID) have increased risk of atherosclerosis, and evidence demonstrates that NF-κB inducing kinase (NIK)-mediated noncanonical NF-κB signaling in endothelial cells (EC) is linked to inflammation and angiogenesis. Here, we hypothesized NIK may also be activated in EC of atherosclerotic lesion microvessels. METHODS Using cohorts of atherosclerotic lesions from coronary and carotid arteries, we quantified NIK expression in plaque microvessels and compared it to pathological markers, including inflammatory cell content, plaque characteristics and MI. Differences in gene transcripts were evaluated between stable and ruptured lesions. RESULTS NIK+EC were present in both coronary and carotid lesions. In CID patients, plaques with stenosis >40% had an increased number of NIK+EC and higher content of immune cells (p < .05) as compared to controls. Immune cells per NIK+EC were also greater in CID patients (p < .05), with pronounced differences as stenosis increased. In unstable lesions, NIK+EC were elevated as were EC expressing CXCL12 (p < .05). NIK+EC were increased in lesions with lipid content >40% (p < .05) and more abundant in coronary artery lesions implicated in MI (p < .05). These vessels also associated with atheromatous rather than fibrous plaque morphology (p < .05). Transcriptomic profiling demonstrated components of noncanonical NF-κB pathway were also upregulated in ruptured plaques (p < .05). CONCLUSIONS NIK+EC associate with chronic inflammation in advanced lesions and are linked to markers of local inflammation, lipid content, unstable plaque phenotype and development of MI. Therefore, targeting noncanonical NF-κB signaling may hold therapeutic potential for patients with atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Chrissta X Maracle
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Rabia Agca
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Boy Helder
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - John A L Meeuwsen
- Laboratory for Experimental Cardiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Hans W M Niessen
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik A L Biessen
- Department of Experimental Vascular Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Mike T Nurmohamed
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
|
37
|
Jin R, Xiao AY, Song Z, Yu S, Li J, Cui MZ, Li G. Platelet CD40 Mediates Leukocyte Recruitment and Neointima Formation after Arterial Denudation Injury in Atherosclerosis-Prone Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:252-263. [PMID: 29037856 PMCID: PMC5745524 DOI: 10.1016/j.ajpath.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/06/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022]
Abstract
The role of platelets in the development of thrombosis and abrupt closure after angioplasty is well recognized. However, the direct impact of platelets on neointima formation after arterial injury remains undetermined. Herein, we show that neointima formation after carotid artery wire injury reduces markedly in CD40-/- apolipoprotein E-deficient (apoE-/-) mice but only slightly in CD40 ligand-/-apoE-/- mice, compared with apoE-/- mice. Wild-type and CD40-deficient platelets were isolated from blood of apoE-/- and CD40-/-apoE-/- mice, respectively. The i.v. injection of thrombin-activated platelets into CD40-/-apoE-/- mice was performed every 5 days, starting at 2 days before wire injury. Injection of wild-type platelets promoted neointima formation, which was associated with increased inflammation by stimulating leukocyte recruitment via up-regulation of circulating platelet surface P-selectin expression and the formation of platelet-leukocyte aggregates. It was also associated with further promoting the luminal deposition of platelet-derived regulated on activation normal T cell expressed and secreted/chemokine (C-C motif) ligand 5 and expression of monocyte chemoattractant protein-1 and vascular cell adhesion molecule 1 in wire-injured carotid arteries. Remarkably, all these inflammatory actions by activated platelets were abrogated by lack of CD40 on injected platelets. Moreover, injection of wild-type platelets inhibited endothelial recovery in wire-injured carotid arteries, but this effect was also abrogated by lack of CD40 on injected platelets. Results suggest that platelet CD40 plays a pivotal role in neointima formation after arterial injury and might represent an attractive target to prevent restenosis after vascular interventions.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana; Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Adam Y Xiao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Zifang Song
- Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Shiyong Yu
- Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jarvis Li
- Caddo Magnet High School, Shreveport, Louisiana
| | - Mei-Zhen Cui
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Guohong Li
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana; Department of Neurosurgery, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.
| |
Collapse
|
38
|
Wolf D, Stachon P, Bode C, Zirlik A. Inflammatory mechanisms in atherosclerosis. Hamostaseologie 2017; 34:63-71. [DOI: 10.5482/hamo-13-09-0050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
SummaryThroughout the last two decades inflammation has been recognized as the central mechanism underlying atherogenesis. A multitude of basic science work demonstrates the pivotal role of inflammatory processes during every step of atherosclerotic plaque formation: From initiation via propagation to complication.This review describes some of the key mechanisms involved with a particular focus on the diverse group of inflammatory cells and their subsets that distinctly contribute to atherogenic and anti-atherogenic phenomena. Furthermore, we summarize the controlling action of a tight network of co-stimulatory molecules and cytokines orchestrating the inflammatory and anti-inflammatory effector functions. Finally, the current status of clinical trials evaluating anti-inflammatory/ immune-modulatory treatment strategies is summarized and an outlook for future therapeutic implications is provided.
Collapse
|
39
|
Gerdes N, Zirlik A. Co-stimulatory molecules in and beyond co-stimulation – tipping the balance in atherosclerosis? Thromb Haemost 2017; 106:804-13. [DOI: 10.1160/th11-09-0605] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryA plethora of basic laboratory and clinical studies has uncovered the chronic inflammatory nature of atherosclerosis. The adaptive immune system with its front-runner, the T cell, drives the atherogenic process at all stages. T cell function is dependent on and controlled by a variety of either co-stimulatory or co-inhibitory signals. In addition, many of these proteins enfold T cell-independent pro-atherogenic functions on a variety of cell types. Accordingly they represent potential targets for immune- modulatory and/or anti-inflammatory therapy of atherosclerosis. This review focuses on the diverse role of co-stimulatory molecules of the B7 and tumour necrosis factor (TNF)-superfamily and their downstream signalling effectors in atherosclerosis. In particular, the contribution of CD28/CD80/CD86/CTLA4, ICOS/ICOSL, PD-1/PDL-1/2, TRAF, CD40/CD154, OX40/OX40L, CD137/CD137L, CD70/CD27, GITR/GITRL, and LIGHT to arterial disease is reviewed. Finally, the potential for a therapeutic exploitation of these molecules in the treatment of atherosclerosis is discussed.
Collapse
|
40
|
Libby P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J Am Coll Cardiol 2017; 70:2278-2289. [PMID: 29073957 DOI: 10.1016/j.jacc.2017.09.028] [Citation(s) in RCA: 457] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/07/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory pathways drive atherogenesis and link conventional risk factors to atherosclerosis and its complications. One inflammatory mediator has come to the fore as a therapeutic target in cardiovascular disease. The experimental and clinical evidence reviewed here support interleukin-1 beta (IL-1β) as both a local vascular and systemic contributor in this regard. Intrinsic vascular wall cells and lesional leukocytes alike can produce this cytokine. Local stimuli in the plaque favor the generation of active IL-1β through the action of a molecular assembly known as the inflammasome. Clinically applicable interventions that interfere with IL-1 action can improve cardiovascular outcomes, ushering in a new era of anti-inflammatory therapies for atherosclerosis. The translational path described here illustrates how advances in basic vascular biology may transform therapy. Biomarker-directed application of anti-inflammatory interventions promises to help us achieve a more precise and personalized allocation of therapy for our cardiovascular patients.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
41
|
Kusters P, Seijkens T, Bürger C, Legein B, Winkels H, Gijbels M, Barthels C, Bennett R, Beckers L, Atzler D, Biessen E, Brocker T, Weber C, Gerdes N, Lutgens E. Constitutive CD40 Signaling in Dendritic Cells Limits Atherosclerosis by Provoking Inflammatory Bowel Disease and Ensuing Cholesterol Malabsorption. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2912-2919. [PMID: 28935569 DOI: 10.1016/j.ajpath.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/03/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
The costimulatory molecule CD40 is a major driver of atherosclerosis. It is expressed on a wide variety of cell types, including mature dendritic cells (DCs), and is required for optimal T-cell activation and expansion. It remains undetermined whether and how CD40 on DCs impacts the pathogenesis of atherosclerosis. Here, the effects of constitutively active CD40 in DCs on atherosclerosis were examined using low-density lipoprotein-deficient (Ldlr-/-) bone marrow chimeras that express a transgene containing an engineered latent membrane protein 1 (LMP)/CD40 fusion protein conferring constitutive CD40 signaling under control of the DC-specific CD11c promoter (DC-LMP1/CD40). As expected, DC-LMP1/CD40/Ldlr-/- chimeras (DC-LMP1/CD40) showed increased antigen-presenting capacity of DCs and increased T-cell numbers. However, the mice developed extensive neutrophilia compared to CD40wt/Ldlr-/- (CD40wt) chimeras. Despite overt T-cell expansion and neutrophilia, a reduction in conventional DC frequency and a dramatic (approximately 80%) reduction in atherosclerosis was observed. Further analyses revealed that cholesterol and triglyceride levels had decreased by 37% and 60%, respectively, in DC-LMP1/CD40 chimeras. Moreover, DC-LMP1/CD40 chimeras developed inflammatory bowel disease characterized by massive transmural influx of leukocytes and lymphocytes, resulting in villous degeneration and lipid malabsorption. Constitutive activation of CD40 in DCs results in inflammation of the gastrointestinal tract, thereby impairing lipid uptake, which consequently results in attenuated atherosclerosis.
Collapse
Affiliation(s)
- Pascal Kusters
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom Seijkens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christina Bürger
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Bart Legein
- Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands
| | - Holger Winkels
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Marion Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands
| | - Christian Barthels
- Institute for Immunology, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Remy Bennett
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany; Walther-Straub-Institut for Pharmacology and Toxicology, Ludwig Maximilians University, Munich, Germany
| | - Erik Biessen
- Department of Pathology, Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, the Netherlands; Institute for Molecular Cardiovascular Research (IMCAR), Klinikum RWTH Aachen, Aachen, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany; Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
42
|
Dai J, Fang P, Saredy J, Xi H, Ramon C, Yang W, Choi ET, Ji Y, Mao W, Yang X, Wang H. Metabolism-associated danger signal-induced immune response and reverse immune checkpoint-activated CD40 + monocyte differentiation. J Hematol Oncol 2017; 10:141. [PMID: 28738836 PMCID: PMC5525309 DOI: 10.1186/s13045-017-0504-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/26/2017] [Indexed: 01/16/2023] Open
Abstract
Adaptive immunity is critical for disease progression and modulates T cell (TC) and antigen-presenting cell (APC) functions. Three signals were initially proposed for adaptive immune activation: signal 1 antigen recognition, signal 2 co-stimulation or co-inhibition, and signal 3 cytokine stimulation. In this article, we propose to term signal 2 as an immune checkpoint, which describes interactions of paired molecules leading to stimulation (stimulatory immune checkpoint) or inhibition (inhibitory immune checkpoint) of an immune response. We classify immune checkpoint into two categories: one-way immune checkpoint for forward signaling towards TC only, and two-way immune checkpoint for both forward and reverse signaling towards TC and APC, respectively. Recently, we and others provided evidence suggesting that metabolic risk factors (RF) activate innate and adaptive immunity, involving the induction of immune checkpoint molecules. We summarize these findings and suggest a novel theory, metabolism-associated danger signal (MADS) recognition, by which metabolic RF activate innate and adaptive immunity. We emphasize that MADS activates the reverse immune checkpoint which leads to APC inflammation in innate and adaptive immunity. Our recent evidence is shown that metabolic RF, such as uremic toxin or hyperhomocysteinemia, induced immune checkpoint molecule CD40 expression in monocytes (MC) and elevated serum soluble CD40 ligand (sCD40L) resulting in CD40+ MC differentiation. We propose that CD40+ MC is a novel pro-inflammatory MC subset and a reliable biomarker for chronic kidney disease severity. We summarize that CD40:CD40L immune checkpoint can induce TC and APC activation via forward stimulatory, reverse stimulatory, and TC contact-independent immune checkpoints. Finally, we modeled metabolic RF-induced two-way stimulatory immune checkpoint amplification and discussed potential signaling pathways including AP-1, NF-κB, NFAT, STAT, and DNA methylation and their contribution to systemic and tissue inflammation.
Collapse
Affiliation(s)
- Jin Dai
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian road, Hangzhou, 310006, Zhejiang, China.,Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Pu Fang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Jason Saredy
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hang Xi
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Cueto Ramon
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - William Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Department of Surgery, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 210029, China
| | - Wei Mao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian road, Hangzhou, 310006, Zhejiang, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
43
|
Michel NA, Zirlik A, Wolf D. CD40L and Its Receptors in Atherothrombosis-An Update. Front Cardiovasc Med 2017; 4:40. [PMID: 28676852 PMCID: PMC5477003 DOI: 10.3389/fcvm.2017.00040] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
CD40L (CD154), a member of the tumor necrosis factor superfamily, is a co-stimulatory molecule that was first discovered on activated T cells. Beyond its fundamental role in adaptive immunity-ligation of CD40L to its receptor CD40 is a prerequisite for B cell activation and antibody production-evidence from more than two decades has expanded our understanding of CD40L as a powerful modulator of inflammatory pathways. Although inhibition of CD40L with neutralizing antibodies has induced life-threatening side effects in clinical trials, the discovery of cell-specific effects and novel receptors with distinct functional consequences has opened a new path for therapies that specifically target detrimental properties of CD40L. Here, we carefully evaluate the signaling network of CD40L by gene enrichment analysis and its cell-specific expression, and thoroughly discuss its role in cardiovascular pathologies with a specific emphasis on atherosclerotic and thrombotic disease.
Collapse
Affiliation(s)
- Nathaly Anto Michel
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Faculty of Medicine, Department of Cardiology and Angiology I, Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Ley K, Gerdes N, Winkels H. ATVB Distinguished Scientist Award: How Costimulatory and Coinhibitory Pathways Shape Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:764-777. [PMID: 28360089 PMCID: PMC5424816 DOI: 10.1161/atvbaha.117.308611] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Immune cells play a critical role in atherosclerosis. Costimulatory and coinhibitory molecules of the tumor necrosis factor receptor and CD28 immunoglobulin superfamilies not only shape T-cell and B-cell responses but also have a major effect on antigen-presenting cells and nonimmune cells. APPROACH AND RESULTS Pharmacological inhibition or activation of costimulatory and coinhibitory molecules and genetic deletion demonstrated their involvement in atherosclerosis. This review highlights recent advances in understanding how costimulatory and coinhibitory pathways shape the immune response in atherosclerosis. CONCLUSIONS Insights gained from costimulatory and coinhibitory molecule function in atherosclerosis may inform future therapeutic approaches.
Collapse
Affiliation(s)
- Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.).
| | - Norbert Gerdes
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| | - Holger Winkels
- From the Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, CA (K.L., H.W.); Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital Düsseldorf, Germany (N.G.); and Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany (N.G.)
| |
Collapse
|
45
|
Zirlik A, Lutgens E. An inflammatory link in atherosclerosis and obesity. Co-stimulatory molecules. Hamostaseologie 2016. [PMID: 26225729 DOI: 10.5482/hamo-14-12-0079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis and obesity-induced metabolic dysfunction are lipid-driven inflammatory pathologies responsible for a major part of cardiovascular complications. Immune cell activation as well as interactions between the different immune cells is dependent on and controlled by a variety of co-stimulatory signals. These co-stimulatory signals can either aggravate or ameliorate the disease depending on the stage of the disease, the cell-types involved and the signal transduction cascades initiated. This review focuses on the diverse roles of the most established co-stimulatory molecules of the B7 and Tumor Necrosis Factor Receptor (TNFR) families, ie the CD28/CTLA4-CD80/CD86 and CD40L/CD40 dyads in the pathogenesis of atherosclerosis and obesity. In addition, we will explore their potential as therapeutic targets in both atherosclerosis and obesity.
Collapse
Affiliation(s)
- A Zirlik
- Prof. Andreas Zirlik, Atherogenesis Research Group, Heart Center Freiburg University, Cardiology and Angiology I, University of Freiburg, Germany, E-mail:
| | | |
Collapse
|
46
|
Jansen MF, Hollander MR, van Royen N, Horrevoets AJ, Lutgens E. CD40 in coronary artery disease: a matter of macrophages? Basic Res Cardiol 2016; 111:38. [PMID: 27146510 PMCID: PMC4856717 DOI: 10.1007/s00395-016-0554-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 12/20/2022]
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), is the leading cause of mortality in the western world, with developing countries showing a similar trend. With the increased understanding of the role of the immune system and inflammation in coronary artery disease, it was shown that macrophages play a major role in this disease. Costimulatory molecules are important regulators of inflammation, and especially, the CD40L-CD40 axis is of importance in the pathogenesis of cardiovascular disease. Although it was shown that CD40 can mediate macrophage function, its exact role in macrophage biology has not gained much attention in cardiovascular disease. Therefore, the goal of this review is to give an overview on the role of macrophage-specific CD40 in cardiovascular disease, with a focus on coronary artery disease. We will discuss the function of CD40 on the macrophage and its (proposed) role in the reduction of atherosclerosis, the reduction of neointima formation, and the stimulation of arteriogenesis.
Collapse
Affiliation(s)
- Matthijs F Jansen
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Maurits R Hollander
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton J Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Centre, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
47
|
Ruef J, Browatzki M, Pfeiffer CAH, Schmidt J, Kranzhöfer R. Angiotensin II promotes the inflammatory response to CD40 ligation via TRAF-2. Vasc Med 2016; 12:23-7. [PMID: 17451090 DOI: 10.1177/1358863x07076766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A plethora of evidence supports a link between inflammation and atherogenesis. Both the vasoactive peptide angiotensin II (ANG II) as well as the CD40/CD154 signaling pathway exhibit proinflammatory properties with a direct influence on atherogenesis. We therefore tested the hypothesis that ANG II interacts with CD40/CD154 in human vascular smooth muscle cells (SMC). ANG II did not increase expression of CD40 in human SMC. However, when SMC were prestimulated with ANG II and thereafter stimulated with CD154, the ligand for CD40, the release of IL-6 as a marker of inflammatory activation was augmented compared to cells not primed with ANG II. TNF receptor-associated factor 2 (TRAF-2), an important adaptor protein involved in CD40 signaling, but not TRAF-5 or -6, was increased by ANG II via activation of the angiotensin II type 1 (AT1) receptor subtype. These results suggest that a signaling pathway downstream of CD40 may be altered by ANG II prestimulation. Thus, ANG II can also indirectly cause inflammatory activation of vascular SMC. The data show a novel link between the proatherogenic vasoactive peptide ANG II and cell—cell contact-mediated inflammatory pathways and implicate options for the prevention and therapy of atherosclerotic disease.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Atherosclerosis/metabolism
- CD40 Antigens/metabolism
- CD40 Ligand/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Humans
- Inflammation/metabolism
- Interleukin-6/metabolism
- Losartan/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Receptor Cross-Talk
- Receptor, Angiotensin, Type 1/metabolism
- Saphenous Vein/metabolism
- TNF Receptor-Associated Factor 2/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Johannes Ruef
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Atherosclerosis is a chronic inflammatory disease that is initiated by the retention and accumulation of cholesterol-containing lipoproteins, particularly low-density lipoprotein, in the artery wall. In the arterial intima, lipoprotein components that are generated through oxidative, lipolytic, and proteolytic activities lead to the formation of several danger-associated molecular patterns, which can activate innate immune cells as well as vascular cells. Moreover, self- and non-self-antigens, such as apolipoprotein B-100 and heat shock proteins, can contribute to vascular inflammation by triggering the response of T and B cells locally. This process can influence the initiation, progression, and stability of plaques. Substantial clinical and experimental data support that the modulation of adaptive immune system may be used for treating and preventing atherosclerosis. This may lead to the development of more selective and less harmful interventions, while keeping host defense mechanisms against infections and tumors intact. Approaches such as vaccination might become a realistic option for cardiovascular disease, especially if they can elicit regulatory T and B cells and the secretion of atheroprotective antibodies. Nevertheless, difficulties in translating certain experimental data into new clinical therapies remain a challenge. In this review, we discuss important studies on the function of T- and B-cell immunity in atherosclerosis and their manipulation to develop novel therapeutic strategies against cardiovascular disease.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- From the Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Göran K Hansson
- From the Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Gerdes N, Seijkens T, Lievens D, Kuijpers MJE, Winkels H, Projahn D, Hartwig H, Beckers L, Megens RTA, Boon L, Noelle RJ, Soehnlein O, Heemskerk JWM, Weber C, Lutgens E. Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arterioscler Thromb Vasc Biol 2016; 36:482-90. [PMID: 26821950 DOI: 10.1161/atvbaha.115.307074] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/06/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Beyond their eminent role in hemostasis and thrombosis, platelets are recognized as mediators of inflammation. Platelet cluster of differentiation 40 (CD40) ligand (CD40L and CD154) plays a key role in mediating platelet-induced inflammation in atherosclerosis. CD40, the receptor for CD40L, is present on platelets; however, the role of CD40 on this cell type is until now undefined. APPROACH AND RESULTS We found that in both mice and humans, platelet CD40 mediates the formation of platelet-leukocyte aggregates and the release of chemokine (C-X-C motif) ligand 4. Leukocytes were also less prone to adhere to CD40-deficient thrombi. However, platelet CD40 was not involved in platelet aggregation. Activated platelets isolated from Cd40(-/-)Apoe(-/-) mice adhered less to the endothelium upon injection into Apoe(-/-) mice when compared with CD40-sufficient platelets. Furthermore, lack of CD40 on injected platelets led to reduced leukocyte recruitment to the carotid artery as assayed by intravital microscopy. This was accompanied by a decrease in endothelial vascular cell adhesion molecule-1, platelet endothelial cell adhesion molecule, VE-cadherin, and P-selectin expression. To investigate the effect of platelet CD40 in atherosclerosis, Apoe(-/-) mice received thrombin-activated Apoe(-/-) or Cd40(-/-)Apoe(-/-) platelets every 5 days for 12 weeks, starting at the age of 17 weeks, when atherosclerotic plaques had already formed. When compared with mice that received Apoe(-/-) platelets, those receiving Cd40(-/-)Apoe(-/-) platelets exhibited a >2-fold reduction in atherosclerosis. Plaques of mice receiving CD40-deficient platelets were less advanced, contained less macrophages, neutrophils, and collagen, and displayed smaller lipid cores. CONCLUSIONS Platelet CD40 plays a crucial role in inflammation by stimulating leukocyte activation and recruitment and activation of endothelial cells, thereby promoting atherosclerosis.
Collapse
Affiliation(s)
- Norbert Gerdes
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Tom Seijkens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Dirk Lievens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Marijke J E Kuijpers
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Holger Winkels
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Delia Projahn
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Helene Hartwig
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Linda Beckers
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Remco T A Megens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Louis Boon
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Randolph J Noelle
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Oliver Soehnlein
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Johan W M Heemskerk
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.)
| | - Esther Lutgens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany (N.G., D.L., H.W., D.P., R.T.A.M., O.S., C.W., E.L.); Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (T.S., H.H., L.B., O.S., E.L.); Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands (M.J.E.K., J.W.M.H., C.W.); Bioceros BV, Utrecht, The Netherlands (L.B.); and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH (R.J.N.).
| |
Collapse
|
50
|
Abstract
The immune reactions that regulate atherosclerotic plaque inflammation involve chemokines, lipid mediators and costimulatory molecules. Chemokines are a family of chemotactic cytokines that mediate immune cell recruitment and control cell homeostasis and activation of different immune cell types and subsets. Chemokine production and activation of chemokine receptors form a positive feedback mechanism to recruit monocytes, neutrophils and lymphocytes into the atherosclerotic plaque. In addition, chemokine signalling affects immune cell mobilization from the bone marrow. Targeting several of the chemokines and/or chemokine receptors reduces experimental atherosclerosis, whereas specific chemokine pathways appear to be involved in plaque regression. Leukotrienes are lipid mediators that are formed locally in atherosclerotic lesions from arachidonic acid. Leukotrienes mediate immune cell recruitment and activation within the plaque as well as smooth muscle cell proliferation and endothelial dysfunction. Antileukotrienes decrease experimental atherosclerosis, and recent observational data suggest beneficial clinical effects of leukotriene receptor antagonism in cardiovascular disease prevention. By contrast, other lipid mediators, such as lipoxins and metabolites of omega-3 fatty acids, have been associated with the resolution of inflammation. Costimulatory molecules play a central role in fine-tuning immunological reactions and mediate crosstalk between innate and adaptive immunity in atherosclerosis. Targeting these interactions is a promising approach for the treatment of atherosclerosis, but immunological side effects are still a concern. In summary, targeting chemokines, leukotriene receptors and costimulatory molecules could represent potential therapeutic strategies to control atherosclerotic plaque inflammation.
Collapse
Affiliation(s)
- M Bäck
- Translational Cardiology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - C Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | - E Lutgens
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|