1
|
Ren Q, Lim YY, Teo CH. Genome-wide identification and expression analysis of orphan genes in twelve Musa (sub)species. 3 Biotech 2025; 15:41. [PMID: 39822754 PMCID: PMC11732818 DOI: 10.1007/s13205-025-04213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Orphan genes (OGs), also known as lineage-specific genes, are species-specific genes that play a crucial role in species-specific adaptations to various stresses. Although OGs have been identified in several plant species, there is no information on OGs in banana genomes. This study aimed to systematically identify OGs in twelve banana (sub)species using comparative genomics. The results showed that OG content varied widely among these (sub)species, from 0.4% in Musa itinerans to 7.3% in Ensete glaucum. Genetic structure analysis showed that banana OGs have significantly shorter protein lengths, smaller molecular weight, fewer exons, and shorter exon lengths than non-orphan genes (NOGs). Subcellular localization predictions showed that banana OGs are mainly found in the chloroplast, nucleus, and cytosol, and are evenly distributed across chromosomes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that OGs may be involved in cellular processes, metabolic processes, and molecular transport. The transcriptome analysis of 9 AAA cultivars against 4 M. acuminata subspecies genomes showed the OGs content. Analysis of gene expression in M. acuminata subsp. malaccensis showed 75 differentially expressed (DE) OGs in response to abiotic stresses and 46 DE OGs related to biotic stresses, indicating that these OGs might play important roles in response to abiotic and biotic stresses. This study provides a foundation for further in-depth research into the functions of OGs in bananas. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04213-9.
Collapse
Affiliation(s)
- Qingwen Ren
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Felipe Benites L, Stephens TG, Van Etten J, James T, Christian WC, Barry K, Grigoriev IV, McDermott TR, Bhattacharya D. Hot springs viruses at Yellowstone National Park have ancient origins and are adapted to thermophilic hosts. Commun Biol 2024; 7:312. [PMID: 38594478 PMCID: PMC11003980 DOI: 10.1038/s42003-024-05931-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 04/11/2024] Open
Abstract
Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.
Collapse
Affiliation(s)
- L Felipe Benites
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Julia Van Etten
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Timeeka James
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - William C Christian
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Timothy R McDermott
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Khandia R, Gurjar P, Romashchenko V, Al-Hussain SA, Alexiou A, Zouganelis G, Zaki MEA. In-silico Codon Context and Synonymous Usage Analysis of Genes for Molecular Mechanisms Inducing Autophagy and Apoptosis with Reference to Neurodegenerative Disorders. J Alzheimers Dis 2024; 99:927-939. [PMID: 38728191 DOI: 10.3233/jad-240158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background Autophagy and apoptosis are cellular processes that maintain cellular homeostasis and remove damaged or aged organelles or aggregated and misfolded proteins. Stress factors initiate the signaling pathways common to autophagy and apoptosis. An imbalance in the autophagy and apoptosis, led by cascade of molecular mechanism prior to both processes culminate into neurodegeneration. Objective In present study, we urge to investigate the codon usage pattern of genes which are common before initiating autophagy and apoptosis. Methods In the present study, we took up eleven genes (DAPK1, BECN1, PIK3C3 (VPS34), BCL2, MAPK8, BNIP3 L (NIX), PMAIP1, BAD, BID, BBC3, MCL1) that are part of molecular signaling mechanism prior to autophagy and apoptosis. We analyzed dinucleotide odds ratio, codon bias, usage, context, and rare codon analysis. Results CpC and GpG dinucleotides were abundant, with the dominance of G/C ending codons as preferred codons. Clustering analysis revealed that MAPK8 had a distinct codon usage pattern compared to other envisaged genes. Both positive and negative contexts were observed, and GAG-GAG followed by CTG-GCC was the most abundant codon pair. Of the six synonymous arginine codons, two codons CGT and CGA were the rarest. Conclusions The information presented in the study may be used to manipulate the process of autophagy and apoptosis and to check the pathophysiology associated with their dysregulation.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, NSW, Australia
| | | | - Sami A Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, NSW, Australia
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, Wienna, Austria
| | - George Zouganelis
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby, UK
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Iacono R, De Lise F, Moracci M, Cobucci-Ponzano B, Strazzulli A. Glycoside hydrolases from (hyper)thermophilic archaea: structure, function, and applications. Essays Biochem 2023; 67:731-751. [PMID: 37341134 DOI: 10.1042/ebc20220196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
(Hyper)thermophilic archaeal glycosidases are enzymes that catalyze the hydrolysis of glycosidic bonds to break down complex sugars and polysaccharides at high temperatures. These enzymes have an unique structure that allows them to remain stable and functional in extreme environments such as hot springs and hydrothermal vents. This review provides an overview of the current knowledge and milestones on the structures and functions of (hyper)thermophilic archaeal glycosidases and their potential applications in various fields. In particular, this review focuses on the structural characteristics of these enzymes and how these features relate to their catalytic activity by discussing different types of (hyper)thermophilic archaeal glycosidases, including β-glucosidases, chitinase, cellulases and α-amylases, describing their molecular structures, active sites, and mechanisms of action, including their role in the hydrolysis of carbohydrates. By providing a comprehensive overview of (hyper)thermophilic archaeal glycosidases, this review aims to stimulate further research into these fascinating enzymes.
Collapse
Affiliation(s)
- Roberta Iacono
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, Naples, 80126, Italy
| | - Federica De Lise
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
| | - Marco Moracci
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, Naples, 80126, Italy
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Beatrice Cobucci-Ponzano
- Institute of Biosciences and BioResources, National Research Council of Italy, Via P. Castellino 111, Naples, 80131, Italy
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, Naples, 80126, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Virtual 2D map of cyanobacterial proteomes. PLoS One 2022; 17:e0275148. [PMID: 36190972 PMCID: PMC9529120 DOI: 10.1371/journal.pone.0275148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Cyanobacteria are prokaryotic Gram-negative organisms prevalent in nearly all habitats. A detailed proteomics study of Cyanobacteria has not been conducted despite extensive study of their genome sequences. Therefore, we conducted a proteome-wide analysis of the Cyanobacteria proteome and found Calothrix desertica as the largest (680331.825 kDa) and Candidatus synechococcus spongiarum as the smallest (42726.77 kDa) proteome of the cyanobacterial kingdom. A Cyanobacterial proteome encodes 312.018 amino acids per protein, with a molecular weight of 182173.1324 kDa per proteome. The isoelectric point (pI) of the Cyanobacterial proteome ranges from 2.13 to 13.32. It was found that the Cyanobacterial proteome encodes a greater number of acidic-pI proteins, and their average pI is 6.437. The proteins with higher pI are likely to contain repetitive amino acids. A virtual 2D map of Cyanobacterial proteome showed a bimodal distribution of molecular weight and pI. Several proteins within the Cyanobacterial proteome were found to encode Selenocysteine (Sec) amino acid, while Pyrrolysine amino acids were not detected. The study can enable us to generate a high-resolution cell map to monitor proteomic dynamics. Through this computational analysis, we can gain a better understanding of the bias in codon usage by analyzing the amino acid composition of the Cyanobacterial proteome.
Collapse
|
6
|
Villain P, Catchpole R, Forterre P, Oberto J, da Cunha V, Basta T. Expanded dataset reveals the emergence and evolution of DNA gyrase in Archaea. Mol Biol Evol 2022; 39:6639447. [PMID: 35811376 PMCID: PMC9348778 DOI: 10.1093/molbev/msac155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA gyrase is a type II topoisomerase with the unique capacity to introduce negative supercoiling in DNA. In bacteria, DNA gyrase has an essential role in the homeostatic regulation of supercoiling. While ubiquitous in bacteria, DNA gyrase was previously reported to have a patchy distribution in Archaea but its emergent function and evolutionary history in this domain of life remains elusive. In this study, we used phylogenomic approaches and an up-to date sequence dataset to establish global and archaea-specific phylogenies of DNA gyrases. The most parsimonious evolutionary scenario infers that DNA gyrase was introduced into the lineage leading to Euryarchaeal group II via a single horizontal gene transfer from a bacterial donor which we identified as an ancestor of Gracilicutes and/or Terrabacteria. The archaea-focused trees indicate that DNA gyrase spread from Euryarchaeal group II to some DPANN and Asgard lineages via rare horizontal gene transfers. The analysis of successful recent transfers suggests a requirement for syntropic or symbiotic/parasitic relationship between donor and recipient organisms. We further show that the ubiquitous archaeal Topoisomerase VI may have co-evolved with DNA gyrase to allow the division of labor in the management of topological constraints. Collectively, our study reveals the evolutionary history of DNA gyrase in Archaea and provides testable hypotheses to understand the prerequisites for successful establishment of DNA gyrase in a naive archaeon and the associated adaptations in the management of topological constraints.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Abstract
Temperature impacts biological systems across all length and timescales. Cells and the enzymes that comprise them respond to temperature fluctuations on short timescales, and temperature can affect protein folding, the molecular composition of cells, and volume expansion. Entire ecosystems exhibit temperature-dependent behaviors, and global warming threatens to disrupt thermal homeostasis in microbes that are important for human and planetary health. Intriguingly, the growth rate of most species follows the Arrhenius law of equilibrium thermodynamics, with an activation energy similar to that of individual enzymes but with maximal growth rates and over temperature ranges that are species specific. In this review, we discuss how the temperature dependence of critical cellular processes, such as the central dogma and membrane fluidity, contributes to the temperature dependence of growth. We conclude with a discussion of adaptation to temperature shifts and the effects of temperature on evolution and on the properties of microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA;
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA; .,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
8
|
Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants (Basel) 2022; 11:antiox11030596. [PMID: 35326246 PMCID: PMC8945778 DOI: 10.3390/antiox11030596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Serotonin N-acetyltransferase is the penultimate enzyme in the melatonin biosynthetic pathway that catalyzes serotonin into N-acetylserotonin. Many SNAT genes have been cloned and characterized from organisms ranging from bacteria to plants and mammals. However, to date, no SNAT gene has been identified from Archaea. In this study, three archaeal SNAT candidate genes were synthesized and expressed in Escherichia coli, and SNAT enzyme activity was measured using their purified recombinant proteins. Two SNAT candidate genes, from Methanoregulaceae (Archaea) and Pyrococcus furiosus, showed no SNAT enzyme activity, whereas a SNAT candidate gene from Thermoplasma volcanium previously named TvArd1 exhibited SNAT enzyme activity. The substrate affinity and the maximum reaction rate of TvSNAT toward serotonin were 621 μM and 416 pmol/min/mg protein, respectively. The highest amine substrate was tyramine, followed by tryptamine, serotonin, and 5-methoxytryptamine, which were similar to those of plant SNAT enzymes. Homologs of TvSNAT were found in many Archaea families. Ectopic overexpression of TvSNAT in rice resulted in increased melatonin content, antioxidant activity, and seed size in conjunction with the enhanced expression of seed size-related gene. This study is the first to report the discovery of SNAT gene in Archaea. Future research avenues include the cloning of TvSNAT orthologs in different phyla, and identification of their regulation and functions related to melatonin biosynthesis in living organisms.
Collapse
|
9
|
Tokmakov AA, Kurotani A, Sato KI. Protein pI and Intracellular Localization. Front Mol Biosci 2021; 8:775736. [PMID: 34912847 PMCID: PMC8667598 DOI: 10.3389/fmolb.2021.775736] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
The protein isoelectric point (pI) can be calculated from an amino acid sequence using computational analysis in a good agreement with experimental data. Availability of whole-genome sequences empowers comparative studies of proteome-wide pI distributions. It was found that the whole-proteome distributions of protein pI values are multimodal in different species. It was further hypothesized that the observed multimodality is associated with subcellular localization-specific differences in local pI distributions. Here, we overview the multimodality of proteome-wide pI distributions in different organisms focusing on the relationships between protein pI and subcellular localization. We also discuss the probable factors responsible for variation of the intracellular localization-specific pI profiles.
Collapse
Affiliation(s)
- Alexander A Tokmakov
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Atsushi Kurotani
- Center for Sustainable Resource Science, RIKEN Yokohama Institute, Yokohama, Japan
| | - Ken-Ichi Sato
- Laboratory of Cell Signaling and Development, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
10
|
Seasonal Dynamics of Bathyarchaeota-Dominated Benthic Archaeal Communities Associated with Seagrass (Zostera japonica) Meadows. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9111304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Little is known about the seasonal dynamic of archaeal communities and their potential ecological functions in temperate seagrass ecosystems. In this study, seasonal changes in diversity, community structure, and potential metabolic functions of benthic archaea in surface sediments of two seagrass meadows along the northern Bohai Sea in China were investigated using Miseq sequencing of the 16S rRNA gene and Tax4Fun2 functional prediction. Overall, Crenarchaeota (mainly Bathy-15, Bathy-8, and Bathy-6) dominated, followed by Thermoplasmatota, Asgardarchaeota, and Halobacterota, in terms of alpha diversities and relative abundance. Significant seasonal changes in the entire archaeal community structure were observed. The major phyla Methanobacteria, Nitrosopumilales, and genus Methanolobus had higher proportions in spring, while MBG-D and Bathyarchaeota were more abundant in summer and autumn, respectively. Alpha diversities (Shannon and Simpson) were the highest in summer and the lowest in autumn (ANOVA test, p < 0.05). Salinity, total organic carbon, and total organic nitrogen were the most significant factors influencing the entire archaeal community. Higher cellulose and hemicellulose degradation potentials occurred in summer, while methane metabolism potentials were higher in winter. This study indicated that season had strong effects in modulating benthic archaeal diversity and functional potentials in the temperate seagrass ecosystems.
Collapse
|
11
|
Martinez-Liu L, Hernandez-Guerrero R, Rivera-Gomez N, Martinez-Nuñez MA, Escobar-Turriza P, Peeters E, Perez-Rueda E. Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms. PLoS One 2021; 16:e0254025. [PMID: 34214112 PMCID: PMC8253408 DOI: 10.1371/journal.pone.0254025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
Archaea represent a diverse phylogenetic group that includes free-living, extremophile, mesophile, symbiont, and opportunistic organisms. These prokaryotic organisms share a high significant similarity with the basal transcriptional machinery of Eukarya, and they share regulatory mechanisms with Bacteria, such as operonic organization and DNA-binding transcription factors (TFs). In this work, we identified the repertoire of TFs in 415 archaeal genomes and compared them with their counterparts in bacterial genomes. The comparisons of TFs, at a global level and per family, allowed us to identify similarities and differences between the repertoires of regulatory proteins of bacteria and archaea. For example, 11 of 62 families are more highly abundant in archaea than bacteria, and 13 families are abundant in bacteria but not in archaea and 38 families have similar abundances in the two groups. In addition, we found that archaeal TFs have a lower isoelectric point than bacterial proteins, i.e., they contain more acidic amino acids, and are smaller than bacterial TFs. Our findings suggest a divergence occurred for the regulatory proteins, even though they are common to archaea and bacteria. We consider that this analysis contributes to the comprehension of the structure and functionality of regulatory proteins of archaeal organisms.
Collapse
Affiliation(s)
- Luis Martinez-Liu
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Nancy Rivera-Gomez
- Catedras-CONACyT, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | - Pedro Escobar-Turriza
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Eveline Peeters
- Research Group of Microbiology, Vrije Universiteit Brussel, Ixelles, Belgium
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- * E-mail:
| |
Collapse
|
12
|
Hu W, Feng S, Tong Y, Zhang H, Yang H. Adaptive defensive mechanism of bioleaching microorganisms under extremely environmental acid stress: Advances and perspectives. Biotechnol Adv 2020; 42:107580. [DOI: 10.1016/j.biotechadv.2020.107580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
13
|
Wang L, Wang M, Shi X, Yang J, Qian C, Liu Q, Zong L, Liu X, Zhu Z, Tang D, Zhang X. Investigation into archaeal extremophilic lifestyles through comparative proteogenomic analysis. J Biomol Struct Dyn 2020; 39:7080-7092. [PMID: 32820705 DOI: 10.1080/07391102.2020.1808531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Archaea are a group of primary life forms on Earth and could thrive in many unique environments. Their successful colonization of extreme niches requires corresponding adaptations at proteogenomic level in order to maintain stable cellular structures and active physiological functions. Although some studies have already investigated the extremophilic lifestyles of archaeal species based on genomic features and protein structures, there is a lack of comparative proteogenomic analysis in a large scale. In this study, we explored 686 high-quality archaeal genomes (proteomes) sourced from the Pathosystems Resource Integration Center (PATRIC) database. General patterns of genomic features such as genome size, coding capacity (coding genes and non-coding regions), and G + C contents were re-confirmed. Protein domain distribution patterns were then identified across archaeal species. Domains with unknown functions (DUFs) and mini proteins were investigated in terms of their distributions due to their importance in archaeal physiological functions. In addition, physicochemical properties of protein sequences, such as stability, hydrophobicity, isoelectric point, aromaticity and amino acid compositions in corresponding archaeal groups were compared. Unique features associated with extremophilic lifestyles were observed, which suggested that evolutionary adaptations to different extreme environments had intrinsic impacts on archaeal protein features. Taken together, this systematic study facilitates a better understanding of the mechanisms behind the extremophilic lifestyles of archaeal species, which will further contribute to the evolutionary explorations of archaeal adaptations both experimentally and theoretically in the future studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mengmeng Wang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyi Shi
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianye Yang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenlu Qian
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qinghua Liu
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lixin Zong
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Daoquan Tang
- Jiangsu Key Lab of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Zhang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Computer Science, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Sauer DB, Wang DN. Predicting the optimal growth temperatures of prokaryotes using only genome derived features. Bioinformatics 2020; 35:3224-3231. [PMID: 30689741 DOI: 10.1093/bioinformatics/btz059] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Optimal growth temperature is a fundamental characteristic of all living organisms. Knowledge of this temperature is central to the study of a prokaryote, the thermal stability and temperature dependent activity of its genes, and the bioprospecting of its genome for thermally adapted proteins. While high throughput sequencing methods have dramatically increased the availability of genomic information, the growth temperatures of the source organisms are often unknown. This limits the study and technological application of these species and their genomes. Here, we present a novel method for the prediction of growth temperatures of prokaryotes using only genomic sequences. RESULTS By applying the reverse ecology principle that an organism's genome includes identifiable adaptations to its native environment, we can predict a species' optimal growth temperature with an accuracy of 5.17°C root-mean-square error and a coefficient of determination of 0.835. The accuracy can be further improved for specific taxonomic clades or by excluding psychrophiles. This method provides a valuable tool for the rapid calculation of organism growth temperature when only the genome sequence is known. AVAILABILITY AND IMPLEMENTATION Source code, genomes analyzed and features calculated are available at: https://github.com/DavidBSauer/OGT_prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David B Sauer
- Department of Cell Biology, and The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Da-Neng Wang
- Department of Cell Biology, and The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
15
|
Panja AS, Maiti S, Bandyopadhyay B. Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. Sci Rep 2020; 10:1822. [PMID: 32020026 PMCID: PMC7000726 DOI: 10.1038/s41598-020-58825-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/21/2020] [Indexed: 12/02/2022] Open
Abstract
Several organisms, specifically microorganisms survive in a wide range of harsh environments including extreme temperature, pH, and salt concentration. We analyzed systematically a large number of protein sequences with their structures to understand their stability and to discriminate extremophilic proteins from their non-extremophilic orthologs. Our results highlighted that the strategy for the packing of the protein core was influenced by the environmental stresses through substitutive structural events through better ionic interaction. Statistical analysis showed that a significant difference in number and composition of amino acid exist among them. The negative correlation of pairwise sequence alignments and structural alignments indicated that most of the extremophile and non-extremophile proteins didn’t contain any association for maintaining their functional stability. A significant numbers of salt bridges were noticed on the surface of the extremostable proteins. The Ramachandran plot data represented more occurrences of amino acids being present in helix and sheet regions of extremostable proteins. We also found that a significant number of small nonpolar amino acids and moderate number of charged amino acids like Arginine and Aspartic acid represented more nonplanar Omega angles in their peptide bond. Thus, extreme conditions may predispose amino acid composition including geometric variability for molecular adaptation of extremostable proteins against atmospheric variations and associated changes under natural selection pressure. The variation of amino acid composition and structural diversifications in proteins play a major role in evolutionary adaptation to mitigate climate change.
Collapse
Affiliation(s)
- Anindya S Panja
- Post Graduate Department of Biotechnology, Molecular informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India.
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Bidyut Bandyopadhyay
- Post Graduate Department of Biotechnology, Molecular informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
16
|
Najar IN, Sherpa MT, Das S, Thakur N. Bacterial diversity and functional metagenomics expounding the diversity of xenobiotics, stress, defense and CRISPR gene ontology providing eco-efficiency to Himalayan Hot Springs. Funct Integr Genomics 2020; 20:479-496. [PMID: 31897823 DOI: 10.1007/s10142-019-00723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
Sikkim is one of the bio-diverse states of India, which harbors diverse alkaline and sulfur rich hot springs in its vicinity. However, there is a dearth of data present in terms of microbial and its functional diversity as only a few hot springs have been studied in this area. Thus, in this regard, microbial and functional diversity of two hot springs by NGS, PLFA, and culture-independent approaches were carried out. PLFA and culture-dependent analysis was complementary as the Gram-positive bacteria were abundant in both the hot springs with the dominance of phylum Firmicutes with Geobacillus. Metagenomic analysis revealed the abundance of Proteobacteria, Actinobacteria, and Firmicutes in both hot springs. Functional metagenomics suggested that both Yumthang and Reshi hot spring possess a diverse set of genes analogous to stress such as genes allied to osmotic, heat shock, and acid stresses; defense analogies such as multidrug resistance efflux pump, multidrug transport system, and β-lactamase; and CRISPR analogues such as related to Cas1, Cas2, Cas3, cmr1-5 proteins, CT1972, and CT1133 gene families. The xenobiotic analogues were found against benzoate, nitrotolune, xylene, DDT, and chlorocyclohexane/chlorobenzene degradation. Thus, these defensive mechanisms against environmental and anthropogenic hiccups and hindrances provide the eco-efficiency to such thermal habitats. The higher enzymatic, degradation, defense, stress potential and the lower percentage identity (< 95%) of isolates encourage the further exploration and exploitation of these habitats for industrial and biotechnological purposes.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India.
- Department of Chemical Engineering and Biomolecular Engineering, Korean Advance Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
17
|
Genetic evolution and codon usage analysis of NKX-2.5 gene governing heart development in some mammals. Genomics 2019; 112:1319-1329. [PMID: 31377427 DOI: 10.1016/j.ygeno.2019.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022]
Abstract
NKX-2.5 gene is responsible for cardiac development and its targeted disruption apprehends cardiac development at the linear heart tube stage. Bioinformatic analysis was employed to investigate the codon usage pattern and dN/dS of mammalian NKX-2.5 gene. The relative synonymous codon usage analysis revealed variation in codon usage and two synonymous codons namely ATA (Ile) and GTA (Val) were absent in NKX-2.5 gene across selected mammalian species suggesting that these two codons were possibly selected against during evolution. Parity rule 2 analysis of two and four fold amino acids showed CT bias whereas six-fold amino acids revealed GA bias. Neutrality analysis suggests that selection played a prominent role while mutation had a minor role. The dN/dS analysis suggests synonymous substitution played a significant role and it negatively correlated with p-distance of the gene. Purifying natural selection played a dominant role in the genetic evolution of NKX-2.5 gene in mammals.
Collapse
|
18
|
Yik LY, Chin GJWL, Budiman C, Joseph CG, Musta B, Rodrigues KF. Adaptive Strategies of Bacillus thuringiensis Isolated from Acid Mine Drainage Site in Sabah, Malaysia. Indian J Microbiol 2018; 58:165-173. [PMID: 29651175 DOI: 10.1007/s12088-017-0701-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/26/2017] [Indexed: 11/29/2022] Open
Abstract
The adaptive process in bacteria is driven by specific genetic elements which regulate phenotypic characteristics such as tolerance to high metal ion concentrations and the secretion of protective biofilms. Extreme environments such as those associated with heavy metal pollution and extremes of acidity offer opportunities to study the adaptive mechanisms of microorganisms. This study focused on the genome analysis of Bacillus thuringiensis (Bt MCMY1), a gram positive rod shaped bacterium isolated from an acid mine drainage site in Sabah, Malaysia by using a combination of Single Molecule Real Time DNA Sequencing, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The genome size of Bt MCMY1 was determined to be 5,458,152 bases which was encoded on a single chromosome. Analysis of the genome revealed genes associated with resistance to Copper, Mercury, Arsenic, Cobalt, Zinc, Cadmium and Aluminum. Evidence from SEM and FTIR indicated that the bacterial colonies form distinct films which bear the signature of polyhydroxyalkanoates (PHA) and this finding was supported by the genome data indicating the presence of a genetic pathway associated with the biosynthesis of PHAs. This is the first report of a Bacillus sp. isolated from an acid mine drainage site in Sabah, Malaysia and the genome sequence will provide insights into the manner in which B. thuringiensis adapts to acid mine drainage.
Collapse
Affiliation(s)
- Low Yi Yik
- 1Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | - Cahyo Budiman
- 1Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Collin Glenn Joseph
- 2Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Baba Musta
- 2Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | |
Collapse
|
19
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
20
|
Characterization of a Thermostable 8-Oxoguanine DNA Glycosylase Specific for GO/N Mismatches from the Thermoacidophilic Archaeon Thermoplasma volcanium. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:8734894. [PMID: 27799846 PMCID: PMC5069365 DOI: 10.1155/2016/8734894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/27/2016] [Accepted: 09/07/2016] [Indexed: 01/09/2023]
Abstract
The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeon Thermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases of Methanocaldococcus jannaschii (MjaOgg) and Sulfolobus solfataricus (SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed in Escherichia coli and purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encoding TVG_RS00315 is a member of the Ogg2 family of T. volcanium.
Collapse
|
21
|
Kumar A, Sharma M, Bhardwaj PK, Vats SK, Singh D, Kumar S. Copper, zinc superoxide dismutase from Caragana jubata : A thermostable enzyme that functions under a broad pH and temperature window. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|
23
|
Identification of GH15 Family Thermophilic Archaeal Trehalases That Function within a Narrow Acidic-pH Range. Appl Environ Microbiol 2015; 81:4920-31. [PMID: 25979886 DOI: 10.1128/aem.00956-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/09/2015] [Indexed: 11/20/2022] Open
Abstract
Two glucoamylase-like genes, TVN1315 and Ta0286, from the archaea Thermoplasma volcanium and T. acidophilum, respectively, were expressed in Escherichia coli. The gene products, TVN1315 and Ta0286, were identified as archaeal trehalases. These trehalases belong to the CAZy database family GH15, although they have putative (α/α)6 barrel catalytic domain structures similar to those of GH37 and GH65 family trehalases from other organisms. These newly identified trehalases function within a narrow range of acidic pH values (pH 3.2 to 4.0) and at high temperatures (50 to 60°C), and these enzymes display Km values for trehalose higher than those observed for typical trehalases. These enzymes were inhibited by validamycin A; however, the inhibition constants (Ki) were higher than those of other trehalases. Three TVN1315 mutants, corresponding to E408Q, E571Q, and E408Q/E571Q mutations, showed reduced activity, suggesting that these two glutamic acid residues are involved in trehalase catalysis in a manner similar to that of glucoamylase. To date, TVN1315 and Ta0286 are the first archaeal trehalases to be identified, and this is the first report of the heterologous expression of GH15 family trehalases. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 family enzymes as well as glycoside hydrolase family enzymes; additionally, these enzymes provide insight into archaeal trehalose metabolism.
Collapse
|
24
|
Ma C, Pathak C, Jang S, Lee SJ, Nam M, Kim SJ, Im H, Lee BJ. Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family member suggesting multiple ligand binding modes with acetyl coenzyme A and coenzyme A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1790-7. [PMID: 25062911 DOI: 10.1016/j.bbapap.2014.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/18/2022]
Abstract
Acetylation and deacetylation reactions result in biologically important modifications that are involved in normal cell function and cancer development. These reactions, carried out by protein acetyltransferase enzymes, act by transferring an acetyl group from acetyl-coenzymeA (Ac-CoA) to various substrate proteins. Such protein acetylation remains poorly understood in Archaea, and has been only partially described. Information processing in Archaea has been reported to be similar to that in eukaryotes and distinct from the equivalent bacterial processes. The human N-acetyltransferase Ard1 (hArd1) is one of the acetyltransferases that has been found to be overexpressed in various cancer cells and tissues, and knockout of the hArd1 gene significantly reduces growth rate of the cancer cell lines. In the present study, we determined the crystal structure of Thermoplasma volcanium Ard1 (Tv Ard1), which shows both ligand-free and multiple ligand-bound forms, i.e.,Ac-CoA- and coenzyme A (CoA)-bound forms. The difference between ligand-free and ligand-bound chains in the crystal structure was used to search for the interacting residues. The re-orientation and position of the loop between β4 and α3 including the phosphate-binding loop (P-loop) were observed, which are important for the ligand interaction. In addition, a biochemical assay to determine the N-acetyltransferase activity of Tv Ard1 was performed using the T.volcanium substrate protein Alba (Tv Alba). Taken together, the findings of this study elucidate ligand-free form of Tv Ard1 for the first time and suggest multiple modes of binding with Ac-CoA and CoA.
Collapse
Affiliation(s)
- Chao Ma
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Chinar Pathak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sunbok Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sang Jae Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Minjoo Nam
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Chonnam, Republic of Korea
| | - Hookang Im
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
25
|
Kaneda K, Ohishi K, Sekiguchi J, Shida T. Characterization of the AP Endonucleases fromThermoplasma volcaniumandLactobacillus plantarum: Contributions of Two Important Tryptophan Residues to AP Site Recognition. Biosci Biotechnol Biochem 2014; 70:2213-21. [PMID: 16960376 DOI: 10.1271/bbb.60153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Escherichia coli AP endonuclease (ExoIII) and its human homolog (APE1) have the sole tryptophan residue for AP site recognition (AP site recognizer) but these residues are at different positions near the catalytic sites. On the other hand, many bacterial AP endonucleases have two tryptophan residues at the same positions of both ExoIII and APE1. To elucidate whether these residues are involved in AP site recognition, the ExoIII homologs of Thermoplasma volcanium and Lactobacillus plantarum were characterized. These proteins showed AP endonuclease and 3'-5'exonculease activities. In each enzyme, the mutations of the tryptophan residues corresponding to Trp-280 of APE1 caused more significant reductions in activities and binding abilities to the oligonucleotide containing an AP site (AP-DNA) than those corresponding to Trp-212 of ExoIII. These results suggest that the tryptophan residue corresponding to Trp-280 of APE1 is the predominant AP site recognizer, and that corresponding to Trp-212 of ExoIII is the auxiliary recognizer.
Collapse
Affiliation(s)
- Kohichi Kaneda
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | | | | | | |
Collapse
|
26
|
|
27
|
Huang Y, Mrázek J. Assessing diversity of DNA structure-related sequence features in prokaryotic genomes. DNA Res 2014; 21:285-97. [PMID: 24408877 PMCID: PMC4060949 DOI: 10.1093/dnares/dst057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches.
Collapse
Affiliation(s)
- Yongjie Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jan Mrázek
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Kouril T, Esser D, Kort J, Westerhoff HV, Siebers B, Snoep JL. Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus. FEBS J 2013; 280:4666-80. [PMID: 23865479 DOI: 10.1111/febs.12438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 01/22/2023]
Abstract
Four enzymes of the gluconeogenic pathway in Sulfolobus solfataricus were purified and kinetically characterized. The enzymes were reconstituted in vitro to quantify the contribution of temperature instability of the pathway intermediates to carbon loss from the system. The reconstituted system, consisting of phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, triose phosphate isomerase and the fructose 1,6-bisphosphate aldolase/phosphatase, maintained a constant consumption rate of 3-phosphoglycerate and production of fructose 6-phosphate over a 1-h period. Cofactors ATP and NADPH were regenerated via pyruvate kinase and glucose dehydrogenase. A mathematical model was constructed on the basis of the kinetics of the purified enzymes and the measured half-life times of the pathway intermediates. The model quantitatively predicted the system fluxes and metabolite concentrations. Relative enzyme concentrations were chosen such that half the carbon in the system was lost due to degradation of the thermolabile intermediates dihydroxyacetone phosphate, glyceraldehyde 3-phosphate and 1,3-bisphosphoglycerate, indicating that intermediate instability at high temperature can significantly affect pathway efficiency.
Collapse
Affiliation(s)
- Theresa Kouril
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Prabha R, Singh DP, Gupta SK, de Farias ST, Rai A. Comparative analysis to identify determinants of changing life style in Thermosynechococcus elongatus BP-1, a thermophilic cyanobacterium. Bioinformation 2013; 9:299-308. [PMID: 23559749 PMCID: PMC3607189 DOI: 10.6026/97320630009299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/22/2012] [Indexed: 11/23/2022] Open
Abstract
A comparative genomics analysis among all forty whole genome sequences available for cyanobacteria (3 thermophiles- Thermosynechococcus elongatus BP-1, Synechococcus sp. JA-2-3B'a (2-13), Synechococcus sp. JA-3-3Ab and 37 mesophiles) was performed to identify genomic and proteomic factors responsible for the behaviour of T. elongatus BP-1, a thermophilic unicellular cyanobacterium with optimum growth temperature [OGT] of 55°C. Majority of genomic and proteomic characteristics for this cyanobacterium indicated contrasting features indicating its mesophilic behaviour while the role of mutational biasness and selection pressure is thought to be responsible for high OGT. Contradictory results were obtained for T. elongatus for synonymous codon usage, CvP-bias and amino acid composition with respect to thermophilic behaviour. Calculated J2 index is lowest among all cyanobacterial genomes. Except for proline and termination codons, T. elongatus showed synonymous codon usage pattern which is expected for mesophiles. Results indicated that among cyanobacterial genomes, majority of genomic and proteomic determinants put T. elongatus very close to mesophiles and the whole genome of this organism represents continuous gain of mesophilic rather than thermophilic behavior.
Collapse
Affiliation(s)
- Ratna Prabha
- National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Kushmaur, Maunath Bhanjan 275101, India
- Department of Biotechnology, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Dhananjaya P Singh
- National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Kushmaur, Maunath Bhanjan 275101, India
| | - Shailendra K Gupta
- CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Kaisarbagh, Lucknow 226001, India
| | | | - Anil Rai
- Indian Agricultural Statistical Research Institute, Indian Council of Agricultural Research, Pusa, New Delhi 110 012, India
| |
Collapse
|
30
|
Ikeda Y, Minoshima H, Satoh M, Ishikawa T, Kawashima-Ohya Y, Tomobe K, Omata Y, Kawashima T. Transcriptional factor fur from Thermoplasma volcanium binds its own promoter DNA in a divalent cation-dependent manner. J GEN APPL MICROBIOL 2013; 58:465-73. [PMID: 23337582 DOI: 10.2323/jgam.58.465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Because archaea possess many respiratory enzymes or radical scavengers with catalytic domains that contain iron, the expression of the genes encoding these enzymes might be regulated by iron acquisition. The genome of an archaeon, Thermoplasma volcanium contains a gene that encodes Fur (TVN0292). The fur gene of T. volcanium was amplified by PCR, and cloned into plasmid pET28a. TvFur (T. volcanium Fur protein) was expressed in E. coli cells and then purified. EMSA revealed that TvFur binds to its own promoter DNA. The binding to its own promoter was in an Mn(2+)-, Zn(2+)-, and Ni(2+)-dependent manner. DNase I footprinting analysis revealed that the binding sequence of tvfur promoter was 5'-G TTATTAT G TTTATAT A TTAATTA G-3'. An analysis utilizing oligonucleotides in TvFur-binding sequences revealed that TvFur binds to the TATA-box or regions in the vicinity of the TATA-box in the promoter. These results indicated that TvFur regulates transcription depending on the availability of environmental divalent cations.
Collapse
Affiliation(s)
- Yu Ikeda
- Department of Molecular Biology, Faculty of Pharmaceutical Science, Yokohama College of Pharmacy, Yokohama 245-0066, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nakashima H, Fukuoka A, Saitou Y. Hydrogen bonds are related to the thermal stability of 16S rRNA. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.61003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Kocabıyık S, Aygar S. Improvement of protein stability and enzyme recovery under stress conditions by using a small HSP (tpv-HSP 14.3) from Thermoplasma volcanium. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Zuo YC, Chen W, Fan GL, Li QZ. A similarity distance of diversity measure for discriminating mesophilic and thermophilic proteins. Amino Acids 2012; 44:573-80. [PMID: 22851052 DOI: 10.1007/s00726-012-1374-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
Abstract
The successful prediction of thermophilic proteins is useful for designing stable enzymes that are functional at high temperature. We have used the increment of diversity (ID), a novel amino acid composition-based similarity distance, in a 2-class K-nearest neighbor classifier to classify thermophilic and mesophilic proteins. And the KNN-ID classifier was successfully developed to predict the thermophilic proteins. Instead of extracting features from protein sequences as done previously, our approach was based on a diversity measure of symbol sequences. The similarity distance between each pair of protein sequences was first calculated to quantitatively measure the similarity level of one given sequence and the other. The query protein is then determined using the K-nearest neighbor algorithm. Comparisons with multiple recently published methods showed that the KNN-ID proposed in this study outperforms the other methods. The improved predictive performance indicated it is a simple and effective classifier for discriminating thermophilic and mesophilic proteins. At last, the influence of protein length and protein identity on prediction accuracy was discussed further. The prediction model and dataset used in this article can be freely downloaded from http://wlxy.imu.edu.cn/college/biostation/fuwu/KNN-ID/index.htm .
Collapse
Affiliation(s)
- Yong-Chun Zuo
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
| | | | | | | |
Collapse
|
34
|
Dutta C, Paul S. Microbial lifestyle and genome signatures. Curr Genomics 2012; 13:153-62. [PMID: 23024607 PMCID: PMC3308326 DOI: 10.2174/138920212799860698] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/28/2011] [Indexed: 12/29/2022] Open
Abstract
Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity.
Collapse
Affiliation(s)
- Chitra Dutta
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
35
|
Roth HM, Römer J, Grundler V, Van Houten B, Kisker C, Tessmer I. XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair (Amst) 2012; 11:286-93. [PMID: 22237014 DOI: 10.1016/j.dnarep.2011.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/14/2011] [Accepted: 12/06/2011] [Indexed: 01/21/2023]
Abstract
Bax1 has recently been identified as a novel binding partner for the archaeal helicase XPB. We previously characterized Bax1 from Thermoplasma acidophilum as a Mg²⁺-dependent structure-specific endonuclease. Here we directly compare the endonuclease activity of Bax1 alone or in combination with XPB. Using several biochemical and biophysical approaches, we demonstrate regulation of Bax1 endonuclease activity by XPB. Interestingly, incision assays with Bax1 and XPB/Bax1 clearly demonstrate that Bax1 produces different incision patterns depending on the presence or absence of XPB. Using atomic force microscopy (AFM), we directly visualize and compare binding of Bax1 and XPB/Bax1 to different DNA substrates. Our AFM data support enhanced DNA binding affinity of Bax1 in the presence of XPB. Taken together, the DNA incision and binding results suggest that XPB is able to load and position Bax1 on the scissile DNA substrate, thus increasing the DNA substrate range of Bax1.
Collapse
Affiliation(s)
- Heide M Roth
- Rudolf Virchow Center for Experimental Biomedicine, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Jung TY, Li D, Park JT, Yoon SM, Tran PL, Oh BH, Janeček Š, Park SG, Woo EJ, Park KH. Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. J Biol Chem 2012; 287:7979-89. [PMID: 22223643 DOI: 10.1074/jbc.m111.304774] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylothermus marinus maltogenic amylase (SMMA) is a novel extreme thermophile maltogenic amylase with an optimal temperature of 100 °C, which hydrolyzes α-(1-4)-glycosyl linkages in cyclodextrins and in linear malto-oligosaccharides. This enzyme has a long N-terminal extension that is conserved among archaic hyperthermophilic amylases but is not found in other hydrolyzing enzymes from the glycoside hydrolase 13 family. The SMMA crystal structure revealed that the N-terminal extension forms an N' domain that is similar to carbohydrate-binding module 48, with the strand-loop-strand region forming a part of the substrate binding pocket with several aromatic residues, including Phe-95, Phe-96, and Tyr-99. A structural comparison with conventional cyclodextrin-hydrolyzing enzymes revealed a striking resemblance between the SMMA N' domain position and the dimeric N domain position in bacterial enzymes. This result suggests that extremophilic archaea that live at high temperatures may have adopted a novel domain arrangement that combines all of the substrate binding components within a monomeric subunit. The SMMA structure provides a molecular basis for the functional properties that are unique to hyperthermophile maltogenic amylases from archaea and that distinguish SMMA from moderate thermophilic or mesophilic bacterial enzymes.
Collapse
Affiliation(s)
- Tae-Yang Jung
- Department of Biological Sciences, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 2011; 16:1-19. [PMID: 22080280 DOI: 10.1007/s00792-011-0402-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/05/2011] [Indexed: 01/05/2023]
Abstract
Acidophiles are ecologically and economically important group of microorganisms, which thrive in acidic natural (solfataric fields, sulfuric pools) as well as artificial man-made (areas associated with human activities such as mining of coal and metal ores) environments. They possess networked cellular adaptations to regulate pH inside the cell. Several extracellular enzymes from acidophiles are known to be functional at much lower pH than the cytoplasmic pH. Enzymes like amylases, proteases, ligases, cellulases, xylanases, α-glucosidases, endoglucanases, and esterases stable at low pH are known from various acidophilic microbes. The possibility of improving them by genetic engineering and directed evolution will further boost their industrial applications. Besides biocatalysts, other biomolecules such as plasmids, rusticynin, and maltose-binding protein have also been reported from acidophiles. Some strategies for circumventing the problems encountered in expressing genes encoding proteins from extreme acidophiles have been suggested. The investigations on the analysis of crystal structures of some acidophilic proteins have thrown light on their acid stability. Attempts are being made to use thermoacidophilic microbes for biofuel production from lignocellulosic biomass. The enzymes from acidophiles are mainly used in polymer degradation.
Collapse
|
38
|
Pramanik S, Nagatoishi S, Saxena S, Bhattacharyya J, Sugimoto N. Conformational flexibility influences degree of hydration of nucleic acid hybrids. J Phys Chem B 2011; 115:13862-72. [PMID: 21992117 DOI: 10.1021/jp207856p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four nucleic acid duplexes-DNA/RNA hybrid, RNA/DNA hybrid, RNA duplex, and DNA duplex-were studied under molecular crowding conditions of osmolytes. Destabilization of duplexes (ΔΔG°(25)) indicated that the ΔΔG°(25) values of hybrids were intermediate between those of DNA and RNA duplexes. In the presence of polyethylene glycol 200, the ΔΔG°(25) values were estimated to be +3.0, +3.5, +3.5, and +4.1 kcal mol(-1) for the DNA duplex, DNA/RNA hybrid, RNA/DNA hybrid, and RNA duplex, respectively. Differences in the number of water molecules taken up (-Δn(w)) upon duplex formations between 0 and 37 °C (Δ(-Δn(w))) were estimated to be 44.8 and 59.7 per duplex structure for the DNA/RNA and RNA/DNA hybrids, respectively. While the Δ(-Δn(w)) value for the DNA/RNA hybrid was intermediate between those of the DNA (26.1) and RNA (59.2) duplexes, the value for RNA/DNA hybrid was close to that of RNA duplex. These differences in the thermodynamic parameters and hydration are probably a consequence of the enhanced global flexibility of the RNA/DNA hybrid structure relative to the DNA/RNA hybrid structure observed in molecular dynamics simulations. This molecular crowding study provides information not only on hydration but also on the flexibility of the conformation of nucleic acid duplexes.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
39
|
Nakashima H, Kuroda Y. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins. J Zhejiang Univ Sci B 2011; 12:419-27. [PMID: 21634034 DOI: 10.1631/jzus.b1000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, Ile, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand.
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Department of Clinical Laboratory Science, Graduate Course of Medical Science and Technology, School of Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan.
| | | |
Collapse
|
40
|
García-Descalzo L, Alcazar A, Baquero F, Cid C. Identification of in vivo HSP90-interacting proteins reveals modularity of HSP90 complexes is dependent on the environment in psychrophilic bacteria. Cell Stress Chaperones 2011; 16:203-18. [PMID: 20890740 PMCID: PMC3059794 DOI: 10.1007/s12192-010-0233-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a conserved molecular chaperone that functions as part of complexes in which different client proteins target it to diverse sets of substrates. In this paper, HSP90 complexes were investigated in γ-proteobacteria from mild (Shewanella oneidensis) and cold environments (Shewanella frigidimarina and Psychrobacter frigidicola), to determine changes in HSP90 interactions with client proteins in response to the adaptation to cold environments. HSP90 participation in cold adaptation was determined using the specific inhibitor 17-allylamino-geldanamycin. Then, HSP90 was immunoprecipitated from bacterial cultures, and the proteins in HSP90 complexes were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. According to HSP90-associated protein analysis, only 15 common proteins were found in both species from the same genus, S. oneidensis and S. frigidimarina, whereas a significant higher number of common proteins were found in both psychrophilic species S. frigidimarina and P. frigidicola 21 (p < 0.001). Only two HSP90-interacting proteins, the chaperone proteins DnaK and GroEL, were common to the three species. Interestingly, some proteins related to energy metabolism (isocitrate lyase, succinyl-CoA synthetase, alcohol dehydrogenase, NAD(+) synthase, and malate dehydrogenase) and some translation factors only interacted with HSP90 in psychrophilic bacteria. We can conclude that HSP90 and HSP90-associated proteins might take part in the mechanism of adaptation to cold environments, and interestingly, organisms living in similar environments conserve similar potential HSP90 interactors in opposition to phylogenetically closely related organisms of the same genus but from different environments.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | - Alberto Alcazar
- Department of Investigation, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Fernando Baquero
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
- Department of Microbiology, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir, km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| |
Collapse
|
41
|
Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 2010; 77:1243-53. [PMID: 21169455 DOI: 10.1128/aem.02008-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A microarray study of chemostat growth on insoluble cellulose or soluble cellobiose has provided substantial new information on Clostridium thermocellum gene expression. This is the first comprehensive examination of gene expression in C. thermocellum under defined growth conditions. Expression was detected from 2,846 of 3,189 genes, and regression analysis revealed 348 genes whose changes in expression patterns were growth rate and/or substrate dependent. Successfully modeled genes included those for scaffoldin and cellulosomal enzymes, intracellular metabolic enzymes, transcriptional regulators, sigma factors, signal transducers, transporters, and hypothetical proteins. Unique genes encoding glycolytic pathway and ethanol fermentation enzymes expressed at high levels simultaneously with previously established maximal ethanol production were also identified. Ranking of normalized expression intensities revealed significant changes in transcriptional levels of these genes. The pattern of expression of transcriptional regulators, sigma factors, and signal transducers indicates that response to growth rate is the dominant global mechanism used for control of gene expression in C. thermocellum.
Collapse
|
42
|
McDonald GD, Storrie-Lombardi MC. Biochemical constraints in a protobiotic earth devoid of basic amino acids: the "BAA(-) world". ASTROBIOLOGY 2010; 10:989-1000. [PMID: 21162678 DOI: 10.1089/ast.2010.0484] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids.
Collapse
Affiliation(s)
- Gene D McDonald
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
| | | |
Collapse
|
43
|
Kocabıyık S, Özdemir İ, Zwickl P, Özdoğan S. Molecular cloning and co-expression of Thermoplasma volcanium proteasome subunit genes. Protein Expr Purif 2010; 73:223-30. [DOI: 10.1016/j.pep.2010.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
|
44
|
Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl Microbiol Biotechnol 2010; 88:605-20. [DOI: 10.1007/s00253-010-2795-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/22/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
45
|
Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN. Archaic chaos: intrinsically disordered proteins in Archaea. BMC SYSTEMS BIOLOGY 2010; 4 Suppl 1:S1. [PMID: 20522251 PMCID: PMC2880407 DOI: 10.1186/1752-0509-4-s1-s1] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many proteins or their regions known as intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack unique 3D structure in their native states under physiological conditions yet fulfill key biological functions. Earlier bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. Archaea belong to an intriguing domain of life whose members, being microbes, are characterized by a unique mosaic-like combination of bacterial and eukaryotic properties and include inhabitants of some of the most extreme environments on the planet. With the expansion of the archaea genome data (more than fifty archaea species from five different phyla are known now), and with recent improvements in the accuracy of intrinsic disorder prediction, it is time to re-examine the abundance of IDPs and IDRs in the archaea domain. RESULTS The abundance of IDPs and IDRs in 53 archaea species is analyzed. The amino acid composition profiles of these species are generally quite different from each other. The disordered content is highly species-dependent. Thermoproteales proteomes have 14% of disordered residues, while in Halobacteria, this value increases to 34%. In proteomes of these two phyla, proteins containing long disordered regions account for 12% and 46%, whereas 4% and 26% their proteins are wholly disordered. These three measures of disorder content are linearly correlated with each other at the genome level. There is a weak correlation between the environmental factors (such as salinity, pH and temperature of the habitats) and the abundance of intrinsic disorder in Archaea, with various environmental factors possessing different disorder-promoting strengths. Harsh environmental conditions, especially those combining several hostile factors, clearly favor increased disorder content. Intrinsic disorder is highly abundant in functional Pfam domains of the archaea origin. The analysis based on the disordered content and phylogenetic tree indicated diverse evolution of intrinsic disorder among various classes and species of Archaea. CONCLUSIONS Archaea proteins are rich in intrinsic disorder. Some of these IDPs and IDRs likely evolve to help archaea to accommodate to their hostile habitats. Other archaean IDPs and IDRs possess crucial biological functions similar to those of the bacterial and eukaryotic IDPs/IDRs.
Collapse
Affiliation(s)
- Bin Xue
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Robert W Williams
- Department of Biomedical Informatics, Uniformed Services University, Bethesda, MD 20814 , USA
| | - Christopher J Oldfield
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Informatics, Indianapolis, IN 46202, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
46
|
Abstract
Background There is a considerable literature on the source of the thermostability of proteins from thermophilic organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally and permit the design of synthetic hyperstable biocatalysts. Results We have systematically tested a large number of sequence and structure derived quantities for their ability to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein structures. Conclusions Carefully selected sequence based indices discriminate better than purely structure based indices. Combined sequence and structure based indices improve performance somewhat further. Based on our analysis, the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more strongly hydrophobic interior.
Collapse
|
47
|
Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings RD, Fouke BW, Reysenbach AL, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 2010; 5:e9773. [PMID: 20333304 PMCID: PMC2841643 DOI: 10.1371/journal.pone.0009773] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 02/25/2010] [Indexed: 01/07/2023] Open
Abstract
The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.
Collapse
Affiliation(s)
- William P. Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (WPI); (DBR)
| | - Douglas B. Rusch
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (WPI); (DBR)
| | - Zackary J. Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | | | - Mark A. Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | | | - Richard E. Macur
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Ryan deM. Jennings
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Bruce W. Fouke
- University of Illinois, Urbana, Illinois, United States of America
| | | | - Frank Roberto
- Idaho National Laboratory, Idaho Falls, Idaho, United States of America
| | - Mark Young
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Ariel Schwartz
- Synthetic Genomics Inc., La Jolla, California, United States of America
| | - Eric S. Boyd
- Thermal Biology Institute and Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
| | - Jonathan H. Badger
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eric J. Mathur
- Synthetic Genomics Inc., La Jolla, California, United States of America
| | - Alice C. Ortmann
- Department of Marine Science, University of South Alabama, Mobile, Alabama, United States of America
| | - Mary Bateson
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Gill Geesey
- Thermal Biology Institute and Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
| | - Marvin Frazier
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
48
|
Ishikawa K, Mino K, Nakamura T. New function and application of the cysteine synthase from archaea. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Pantothenate kinase from the thermoacidophilic archaeon Picrophilus torridus. J Bacteriol 2010; 192:233-41. [PMID: 19854913 DOI: 10.1128/jb.01021-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantothenate kinase (CoaA) catalyzes the first step of the coenzyme A (CoA) biosynthetic pathway and controls the intracellular concentrations of CoA through feedback inhibition in bacteria. An alternative enzyme found in archaea, pantoate kinase, is missing in the order Thermoplasmatales. The PTO0232 gene from Picrophilus torridus, a thermoacidophilic euryarchaeon, is shown to be a distant homologue of the prokaryotic type I CoaA. The cloned gene clearly complements the poor growth of the temperature-sensitive Escherichia coli CoaA mutant strain ts9, and the recombinant protein expressed in E. coli cells transfers phosphate to pantothenate at pH 5 and 55 degrees C. In contrast to E. coli CoaA, the P. torridus enzyme is refractory to feedback regulation by CoA, indicating that in P. torridus cells the CoA levels are not regulated by the CoaA step. These data suggest the existence of two subtypes within the class of prokaryotic type I CoaAs.
Collapse
|
50
|
Nagatoishi S, Tanaka Y, Kudou M, Tsumoto K. Temperature and salt concentration alter base-sequence selectivity of a duplex DNA-bindingprotein. MOLECULAR BIOSYSTEMS 2010; 6:98-101. [DOI: 10.1039/b914828k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|