1
|
Zhang K, Zhu YW, Tang AQ, Zhou ZT, Yang YL, Liu ZH, Li Y, Liang XY, Feng ZF, Wang J, Jiang T, Jiang QY, Wu DD. Role of 3-mercaptopyruvate sulfurtransferase in cancer: Molecular mechanisms and therapeutic perspectives. Transl Oncol 2025; 52:102272. [PMID: 39813769 PMCID: PMC11783123 DOI: 10.1016/j.tranon.2025.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/10/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
The occurrence and development of tumor is mediated by a wide range of complex mechanisms. Subsequent to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) holds the distinction of being the third identified gasotransmitter. Alternation of H2S level has been widely demonstrated to induce an array of disturbances in important cancer cell signaling pathways. As a result, the effects of H2S-catalyzing enzymes in cancers also attract widspread attention. 3-mercaptopyruvate sulfurtransferase (3-MST) is privileged to be one of them. In fact, 3-MST is overexpressed in many tumors including human colon cancer, lung adenocarcinoma, and bladder urothelial carcinoma. But it is also lowly expressed in hepatocellular carcinoma. In this review, we focus on the generation of endogenous H2S and polysulfides, facilitated by 3-MST. Additionally, we delve deeply into the potential role of 3-MST in tumorigenesis and development. The impact of 3-MST inhibition on the development of tumors and its potential for tumor therapy are also highlighted.
Collapse
Affiliation(s)
- Ka Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ao-Qi Tang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ze-Tao Zhou
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zi-Hui Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Yan Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan 475004, China
| | - Jun Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Tong Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Li J, Ding X, Yan W, Liu K, Ye W, Wang H, Wang L. Tumor-Derived Immunoglobulin-Like Transcript 4 Promotes Postoperative Relapse via Inducing Vasculogenic Mimicry through MAPK/ERK Signaling in Hepatocellular Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2398-2411. [PMID: 39233275 DOI: 10.1016/j.ajpath.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
The efficacy of conventional anti-angiogenesis drugs is usually low in treating hepatocellular carcinoma (HCC). Therefore, there is an urgent need to find new precise therapeutic targets and to develop more effective drugs for the treatment of HCC. Vasculogenic mimicry (VM) is different from classic endothelium-dependent angiogenesis and is associated with a poor prognosis in patients with malignant tumor. However, the mechanism underlying VM is complex and not fully defined. Ig-like transcript (ILT)-4, as a negative regulator of immune response, is expressed in many solid tumors. However, whether and how ILT4 regulates VM remains unclear. This study found VM enriched in HCC tissues, especially in tissues from patients with relapse within 5 years after surgery. Similarly, ILT4 expression level was also higher in HCC tissues from patients with relapse within 5 years after surgery. Linear regression analysis revealed a positive correlation between the expression of ILT4 and VM density. Furthermore, overexpression/knockdown of ILT4 expression upregulated/down-regulated VM-related marker, three-dimensional tube formation, and migration and invasion in HCC cell lines in vitro. In mechanistic studies, ILT4 promoted VM formation via mitogen-activated protein kinase (MAPK)/ERK signaling. This study provides a rationale and mechanism for ILT4-mediated postoperative relapse via inducing VM in HCC. The related molecular pathways can be used as novel therapeutic targets for the inhibition of HCC angiogenesis and postoperative relapse.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- MAP Kinase Signaling System
- Male
- Female
- Middle Aged
- Receptors, Immunologic/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Movement
- Cell Line, Tumor
- Membrane Glycoproteins
Collapse
Affiliation(s)
- Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xiaofeng Ding
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wanping Yan
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Ke Liu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Wei Ye
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Huali Wang
- General Family Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| |
Collapse
|
3
|
Yang Y, Yuan T, Rodriguez Y Baena F, Dini D, Zhan W. Effect of infusion direction on convection-enhanced drug delivery to anisotropic tissue. J R Soc Interface 2024; 21:20240378. [PMID: 39353562 PMCID: PMC11444765 DOI: 10.1098/rsif.2024.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Convection-enhanced delivery (CED) can effectively overcome the blood-brain barrier by infusing drugs directly into diseased sites in the brain using a catheter, but its clinical performance still needs to be improved. This is strongly related to the highly anisotropic characteristics of brain white matter, which results in difficulties in controlling drug transport and distribution in space. In this study, the potential to improve the delivery of six drugs by adjusting the placement of the infusion catheter is examined using a mathematical model and accurate numerical simulations that account simultaneously for the interstitial fluid (ISF) flow and drug transport processes in CED. The results demonstrate the ability of this direct infusion to enhance ISF flow and therefore facilitate drug transport. However, this enhancement is highly anisotropic, subject to the orientation of local axon bundles and is limited within a small region close to the infusion site. Drugs respond in different ways to infusion direction: the results of our simulations show that while some drugs are almost insensitive to infusion direction, this strongly affects other compounds in terms of isotropy of drug distribution from the catheter. These findings can serve as a reference for planning treatments using CED.
Collapse
Affiliation(s)
- Yi Yang
- School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Szewczyk K, Jiang L, Khawaja H, Miranti CK, Zohar Y. Microfluidic Applications in Prostate Cancer Research. MICROMACHINES 2024; 15:1195. [PMID: 39459070 PMCID: PMC11509716 DOI: 10.3390/mi15101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024]
Abstract
Prostate cancer is a disease in which cells in the prostate, a gland in the male reproductive system below the bladder, grow out of control and, among men, it is the second-most frequently diagnosed cancer (other than skin cancer). In recent years, prostate cancer death rate has stabilized and, currently, it is the second-most frequent cause of cancer death in men (after lung cancer). Most deaths occur due to metastasis, as cancer cells from the original tumor establish secondary tumors in distant organs. For a long time, classical cell cultures and animal models have been utilized in basic and applied scientific research, including clinical applications for many diseases, such as prostate cancer, since no better alternatives were available. Although helpful in dissecting cellular mechanisms, these models are poor predictors of physiological behavior mainly because of the lack of appropriate microenvironments. Microfluidics has emerged in the last two decades as a technology that could lead to a paradigm shift in life sciences and, in particular, controlling cancer. Microfluidic systems, such as organ-on-chips, have been assembled to mimic the critical functions of human organs. These microphysiological systems enable the long-term maintenance of cellular co-cultures in vitro to reconstitute in vivo tissue-level microenvironments, bridging the gap between traditional cell cultures and animal models. Several reviews on microfluidics for prostate cancer studies have been published focusing on technology advancement and disease progression. As metastatic castration-resistant prostate cancer remains a clinically challenging late-stage cancer, with no curative treatments, we expanded this review to cover recent microfluidic applications related to prostate cancer research. The review includes discussions of the roles of microfluidics in modeling the human prostate, prostate cancer initiation and development, as well as prostate cancer detection and therapy, highlighting potentially major contributions of microfluidics in the continuous march toward eradicating prostate cancer.
Collapse
Affiliation(s)
- Kailie Szewczyk
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA;
| | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA; (K.S.); (L.J.)
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
5
|
Falleni M, Dal Lago M, Tosi D, Ghilardi G, De Pasquale L, Saibene AM, Felisati G, Cozzolino M, Gianelli U. Vascular mimicry and mosaic vessels in parathyroid tumours: a new diagnostic approach? J Clin Pathol 2024:jcp-2024-209703. [PMID: 39288990 DOI: 10.1136/jcp-2024-209703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
AIMS Evaluation of 'alternative' vascularisation in human cancer is considered an important prognostic parameter; the 2022 WHO classification of parathyroid tumours despite progresses in clinical triaging of patients strongly emphasises new histopathological parameters to properly stratify these lesions. 'Alternative' and 'classic' vessels were here investigated for the first time in parathyroid tumours for their possible histopathological and clinical relevance during progression. METHODS Using a double CD31/PAS staining, microvessel density (MVD, 'classic' CD31+ vessels), mosaic vessel density (MoVD, 'alternative' CD31+/-vessels) and vessel mimicry density (VMD, 'alternative' CD31-/PAS+ vessels) were evaluated in 4 normal parathyroid glands (N), 50 Adenomas (A), 35 Atypical Tumours (AT) and 10 Carcinomas (K). RESULTS Compared with N, MVD significantly increased in A (p=0.012) and decreased in K (p=0.013) with vessel counts lower than in AT and A (p<0.001). MoVs and VMs, absent in normal tissue, were documented in non-benign parathyroid lesions (AT, K) (p<0.001), with MoVs and VMs most represented in AT and K, respectively (p<0.001), in peripheral growing areas. Vessel distribution was correlated to neoplastic progression (r=-0.541 MVD; r=+0.760 MoVD, r=+0.733 VMD), with MVD decrease in AT and K inversely related to MoVD and VMD increase (r=-0.503 and r=-0.456). CONCLUSIONS 'Alternative' vessel identification in parathyroid tumours is crucial because it: (1) explains the paradox of non-angiogenic tumours, consisting in a new bloody non-endothelial vessel network and (2) helps pathologists to unmask worrisome lesions. Furthermore, detection of alternative vascular systems in human tumours might explain the limited success of antiangiogenic therapies and encourage new oncological studies.
Collapse
Affiliation(s)
- Monica Falleni
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Matteo Dal Lago
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Delfina Tosi
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Giorgio Ghilardi
- Surgical Unit, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | | | - Alberto M Saibene
- Otolaryngology Unit, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Giovanni Felisati
- Otolaryngology Unit, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Mario Cozzolino
- Renal Division, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| | - Umberto Gianelli
- Unit of Pathology, Department of Health Sciences, University of Milan, ASST Santi Paolo e Carlo, Milano, Italy
| |
Collapse
|
6
|
Lampejo AO, Lightsey SE, Gomes MC, Nguyen CM, Siemann DW, Sharma B, Murfee WL. A Novel Ex Vivo Tumor Spheroid-Tissue Model for Investigating Microvascular Remodeling and Lymphatic Blood Vessel Plasticity. Ann Biomed Eng 2024; 52:2457-2472. [PMID: 38796670 DOI: 10.1007/s10439-024-03535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Biomimetic tumor microenvironment models bridge the gap between in vitro and in vivo systems and serve as a useful way to address the modeling challenge of how to recreate the cell and system complexity associated with real tissues. Our laboratory has developed an ex vivo rat mesentery culture model, which allows for simultaneous investigation of blood and lymphatic microvascular network remodeling in an intact tissue environment. Given that angiogenesis and lymphangiogenesis are key contributors to the progression of cancer, the objective of this study was to combine tissue and tumor spheroid culture methods to establish a novel ex vivo tumor spheroid-tissue model by verifying its use for evaluating the effects of cancer cell behavior on the local microvascular environment. H1299 or A549 tumor spheroids were formed via hanging drop culture and seeded onto rat mesenteric tissues harvested from adult male Wistar rats. Tissues with transplanted spheroids were cultured in serum-free media for 3 to 5 days. PECAM, NG2, CD11b, and αSMA labeling identified endothelial cells, pericytes, immune cells, and smooth muscle cells, respectively. Time-lapse imaging confirmed cancer cell type specific migration. In addition to increasing PECAM positive capillary sprouting and LYVE-1 positive endothelial cell extensions indicative of lymphangiogenesis, tumor spheroid presence induced the formation of lymphatic/blood vessel connections and the formation of hybrid, mosaic vessels that were characterized by discontinuous LYVE-1 labeling. The results support the application of a novel tumor spheroid microenvironment model for investigating cancer cell-microvascular interactions.
Collapse
Affiliation(s)
- Arinola O Lampejo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Suzanne E Lightsey
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Maria C Gomes
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christian M Nguyen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar W Siemann
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Department of Radiation Oncology, University of Florida, University of Florida Health, Gainesville, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Walter L Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
7
|
Hall E, Mendiola K, Lightsey NK, Hanjaya-Putra D. Mimicking blood and lymphatic vasculatures using microfluidic systems. BIOMICROFLUIDICS 2024; 18:031502. [PMID: 38726373 PMCID: PMC11081709 DOI: 10.1063/5.0175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
The role of the circulatory system, containing the blood and lymphatic vasculatures, within the body, has become increasingly focused on by researchers as dysfunction of either of the systems has been linked to serious complications and disease. Currently, in vivo models are unable to provide the sufficient monitoring and level of manipulation needed to characterize the fluidic dynamics of the microcirculation in blood and lymphatic vessels; thus in vitro models have been pursued as an alternative model. Microfluidic devices have the required properties to provide a physiologically relevant circulatory system model for research as well as the experimental tools to conduct more advanced research analyses of microcirculation flow. In this review paper, the physiological behavior of fluid flow and electrical communication within the endothelial cells of the systems are detailed and discussed to highlight their complexities. Cell co-culturing methods and other relevant organ-on-a-chip devices will be evaluated to demonstrate the feasibility and relevance of the in vitro microfluidic model. Microfluidic systems will be determined as a noteworthy model that can display physiologically relevant flow of the cardiovascular and lymphatic systems, which will enable researchers to investigate the systems' prevalence in diseases and identify potential therapeutics.
Collapse
Affiliation(s)
- Eva Hall
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | - N. Keilany Lightsey
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
8
|
Lee R, Lee WY, Park HJ. Anticancer Effects of Mitoquinone via Cell Cycle Arrest and Apoptosis in Canine Mammary Gland Tumor Cells. Int J Mol Sci 2024; 25:4923. [PMID: 38732133 PMCID: PMC11084895 DOI: 10.3390/ijms25094923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Treating female canine mammary gland tumors is crucial owing to their propensity for rapid progression and metastasis, significantly impacting the overall health and well-being of dogs. Mitoquinone (MitoQ), an antioxidant, has shown promise in inhibiting the migration, invasion, and clonogenicity of human breast cancer cells. Thus, we investigated MitoQ's potential anticancer properties against canine mammary gland tumor cells, CMT-U27 and CF41.Mg. MitoQ markedly suppressed the proliferation and migration of both CMT-U27 and CF41.Mg cells and induced apoptotic cell death in a dose-dependent manner. Furthermore, treatment with MitoQ led to increased levels of pro-apoptotic proteins, including cleaved-caspase3, BAX, and phospho-p53. Cell cycle analysis revealed that MitoQ hindered cell progression in the G1 and S phases in CMT-U27 and CF41.Mg cells. These findings were supported using western blot analysis, demonstrating elevated levels of cleaved caspase-3, a hallmark of apoptosis, and decreased expression of cyclin-dependent kinase (CDK) 2 and cyclin D4, pivotal regulators of the cell cycle. In conclusion, MitoQ exhibits in vitro antitumor effects by inducing apoptosis and arresting the cell cycle in canine mammary gland tumors, suggesting its potential as a preventive or therapeutic agent against canine mammary cancer.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea; (R.L.); (W.-Y.L.)
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea; (R.L.); (W.-Y.L.)
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
- Department Smart Life Science, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea
| |
Collapse
|
9
|
Magalhães A, Cesário V, Coutinho D, Matias I, Domingues G, Pinheiro C, Serafim T, Dias S. A high-cholesterol diet promotes the intravasation of breast tumor cells through an LDL-LDLR axis. Sci Rep 2024; 14:9471. [PMID: 38658568 PMCID: PMC11043359 DOI: 10.1038/s41598-024-59845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
Most metastases in breast cancer occur via the dissemination of tumor cells through the bloodstream. How tumor cells enter the blood (intravasation) is, however, a poorly understood mechanism at the cellular and molecular levels. Particularly uncharacterized is how intravasation is affected by systemic nutrients. High levels of systemic LDL-cholesterol have been shown to contribute to breast cancer progression and metastasis in various models, but the cellular and molecular mechanisms involved are still undisclosed. Here we show that a high- cholesterol diet promotes intravasation in two mouse models of breast cancer and that this could be reverted by blocking LDL binding to LDLR in tumor cells. Moreover, we show that LDL promotes vascular invasion in vitro and the intercalation of tumor cells with endothelial cells, a phenotypic change resembling vascular mimicry (VM). At the molecular level, LDL increases the expression of SERPINE2, previously shown to be required for both VM and intravasation. Overall, our manuscript unravels novel mechanisms by which systemic hypercholesterolemia may affect the onset of metastatic breast cancer by favouring phenotypic changes in breast cancer cells and increasing intravasation.
Collapse
Affiliation(s)
- Ana Magalhães
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Cesário
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo Coutinho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Matias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Germana Domingues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Pinheiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Serafim
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Dias
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
10
|
Fu Y, Sun S, Shi D, Bi J. Construction of endothelial cell signatures for predicting the diagnosis, prognosis and immunotherapy response of bladder cancer via machine learning. J Cell Mol Med 2024; 28:e18155. [PMID: 38429911 PMCID: PMC10907833 DOI: 10.1111/jcmm.18155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
We subtyped bladder cancer (BC) patients based on the expression patterns of endothelial cell (EC) -related genes and constructed a diagnostic signature and an endothelial cell prognostic index (ECPI), which are useful for diagnosing BC patients, predicting the prognosis of BC and evaluating drug sensitivity. Differentially expressed genes in ECs were obtained from the Tumour Immune Single-Cell Hub database. Subsequently, a diagnostic signature, a tumour subtyping system and an ECPI were constructed using data from The Cancer Genome Atlas and Gene Expression Omnibus. Associations between the ECPI and the tumour microenvironment, drug sensitivity and biofunctions were assessed. The hub genes in the ECPI were identified as drug candidates by molecular docking. Subtype identification indicated that high EC levels were associated with a worse prognosis and immunosuppressive effect. The diagnostic signature and ECPI were used to effectively diagnose BC and accurately assess the prognosis of BC and drug sensitivity among patients. Three hub genes in the ECPI were extracted, and the three genes had the closest affinity for doxorubicin and curcumin. There was a close relationship between EC and BC. EC-related genes can help clinicians diagnose BC, predict the prognosis of BC and select effective drugs.
Collapse
Affiliation(s)
- Yang Fu
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Shanshan Sun
- Department of PharmacyThe People's Hospital of Liaoning ProvinceShenyangLiaoningChina
| | - Du Shi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jianbin Bi
- Department of UrologyThe First Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
11
|
Chen Y, Zhou Y, Yan Z, Tong P, Xia Q, He K. Effect of infiltrating immune cells in tumor microenvironment on metastasis of hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:1595-1604. [PMID: 37414962 DOI: 10.1007/s13402-023-00841-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent human malignancies, leading to poor prognosis due to its high recurrence and metastasis rates. In recent years it has become increasingly evident that the tumor microenvironment (TME) plays an important role in tumor progression and metastasis. Tumor microenvironment (TME) refers to the complex tissue environment of tumor occurrence and development. Here, we summarize the development of HCC and the role of cellular and non-cellular components of the TME in the metastasis HCC, with particular reference to tumor-infiltrating immune cells. We also discuss some of the possible therapeutic targets for the TME and the future prospectives of this evolving field. SIGNIFICANCE: This review provides a comprehensive analysis of the role of the infiltrating immune cells in TME in the metastasis of HCC and highlights the future outlook for targeted therapy of the TME in the context of recent experiments revealing a number of therapeutic targets targeting the TME.
Collapse
Affiliation(s)
- Yiwen Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Yuhang Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Ziyang Yan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Peilin Tong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China.
- Shanghai Institute of Transplantation, Shanghai, China.
| |
Collapse
|
12
|
Grizzi F, Hegazi MAAA, Zanoni M, Vota P, Toia G, Clementi MC, Mazzieri C, Chiriva-Internati M, Taverna G. Prostate Cancer Microvascular Routes: Exploration and Measurement Strategies. Life (Basel) 2023; 13:2034. [PMID: 37895416 PMCID: PMC10608780 DOI: 10.3390/life13102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Angiogenesis is acknowledged as a pivotal feature in the pathology of human cancer. Despite the absence of universally accepted markers for gauging the comprehensive angiogenic activity in prostate cancer (PCa) that could steer the formulation of focused anti-angiogenic treatments, the scrutiny of diverse facets of tumoral blood vessel development may furnish significant understanding of angiogenic processes. Malignant neoplasms, encompassing PCa, deploy a myriad of strategies to secure an adequate blood supply. These modalities range from sprouting angiogenesis and vasculogenesis to intussusceptive angiogenesis, vascular co-option, the formation of mosaic vessels, vasculogenic mimicry, the conversion of cancer stem-like cells into tumor endothelial cells, and vascular pruning. Here we provide a thorough review of these angiogenic mechanisms as they relate to PCa, discuss their prospective relevance for predictive and prognostic evaluations, and outline the prevailing obstacles in quantitatively evaluating neovascularization via histopathological examinations.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Mohamed A. A. A. Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Matteo Zanoni
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Paolo Vota
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Giovanni Toia
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maria Chiara Clementi
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Cinzia Mazzieri
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Gianluigi Taverna
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| |
Collapse
|
13
|
Qi C, Xiong XZ. Value of peripheral blood circulating tumor cell detection in the diagnosis of thoracic diseases and the prediction of severity. Clin Exp Med 2023; 23:2331-2339. [PMID: 36929453 PMCID: PMC10543157 DOI: 10.1007/s10238-023-01022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 03/18/2023]
Abstract
Circulating tumor cell (CTC) detection, as a noninvasive liquid biopsy method, has been used in the diagnosis, prognostic indication, and monitoring of a variety of cancers. In this study, we aimed to investigate whether CTC detection could be used in the early diagnosis and prediction of severity of thoracic diseases. We enrolled 168 thoracic disease patients, all of whom underwent pathological biopsy. Carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) measurement was also performed in 146 patients. There were 131 cases of malignant thoracic diseases and 37 cases of benign lesions. We detected CTCs in a 5 ml peripheral blood sample with the CTCBiopsy® system and analyzed the value of CTC count for predicting disease severity. Of 131 patients with a diagnosis of thoracic malignancy, CTCs were found in blood samples from 122 patients. However, only 2 out of 37 patients with benign thoracic disease had no detectable CTCs. There was no significant correlation between CTC count and benign and malignant lesions (P = 0.986). However, among 131 patients who had been diagnosed with malignant lesions, 33 had lymph node metastasis or distant metastasis. The presence of CTCs was significantly correlated with metastasis (P = 0.016 OR = 1.14). The area under the receiver operating characteristic (ROC) curve was 0.625 (95% confidence interval (CI), 0.519 to 0.730 P = 0.032). In addition, with stage IA1 as the cutoff, all patients were further divided into an early-stage group and a late-stage group. CTC count was significantly correlated with disease progression (P = 0.031 OR = 1.11), with an area under the curve (AUC) of 0.599 (95% CI, 0.506-0.692 P = 0.47). The sensitivity and specificity of CTC detection for the diagnosis of disease stage were 72.3% and 45.5%, respectively. In addition, the cutoff of 2.5 CTCs was the same when predicting disease metastasis and staging. Furthermore, the combination of CTC count, demographic characteristics and tumor markers had better predictive significance for disease staging. CTC count can effectively indicate the stages and metastasis of thoracic diseases, but it cannot differentiate benign and malignant diseases.
Collapse
Affiliation(s)
- Chang Qi
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
14
|
Morales-Guadarrama G, Méndez-Pérez EA, García-Quiroz J, Avila E, Ibarra-Sánchez MJ, Esparza-López J, García-Becerra R, Larrea F, Díaz L. The Inhibition of the FGFR/PI3K/Akt Axis by AZD4547 Disrupts the Proangiogenic Microenvironment and Vasculogenic Mimicry Arising from the Interplay between Endothelial and Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:13770. [PMID: 37762073 PMCID: PMC10531243 DOI: 10.3390/ijms241813770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Vasculogenic mimicry (VM), a process in which aggressive cancer cells form tube-like structures, plays a crucial role in providing nutrients and escape routes. Highly plastic tumor cells, such as those with the triple-negative breast cancer (TNBC) phenotype, can develop VM. However, little is known about the interplay between the cellular components of the tumor microenvironment and TNBC cells' VM capacity. In this study, we analyzed the ability of endothelial and stromal cells to induce VM when interacting with TNBC cells and analyzed the involvement of the FGFR/PI3K/Akt pathway in this process. VM was corroborated using fluorescently labeled TNBC cells. Only endothelial cells triggered VM formation, suggesting a predominant role of paracrine/juxtacrine factors from an endothelial origin in VM development. Via immunocytochemistry, qPCR, and secretome analyses, we determined an increased expression of proangiogenic factors as well as stemness markers in VM-forming cancer cells. Similarly, endothelial cells primed by TNBC cells showed an upregulation of proangiogenic molecules, including FGF, VEGFA, and several inflammatory cytokines. Endothelium-dependent TNBC-VM formation was prevented by AZD4547 or LY294002, strongly suggesting the involvement of the FGFR/PI3K/Akt axis in this process. Given that VM is associated with poor clinical prognosis, targeting FGFR/PI3K/Akt pharmacologically may hold promise for treating and preventing VM in TNBC tumors.
Collapse
Affiliation(s)
- Gabriela Morales-Guadarrama
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Edgar A. Méndez-Pérez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - María J. Ibarra-Sánchez
- Unidad de Bioquímica Dr. Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - José Esparza-López
- Unidad de Bioquímica Dr. Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| |
Collapse
|
15
|
Huang W, Li X, Song H, Yin Y, Wang H. Verification of fasting-mimicking diet to assist monotherapy of human cancer-bearing models. Biochem Pharmacol 2023; 215:115699. [PMID: 37482198 DOI: 10.1016/j.bcp.2023.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
The efficacy of a single clinical nanodrug for cancer treatment is still unsatisfactory, especially for drug-resistant cancer. Herein, we applied a fasting-mimicking diet (FMD) approach via dietary intervention to assist single clinical nanodrug for breast or ovarian cancer treatments instead of using multi-drug therapies which might cause adverse side effects. Specifically, we adopted Doxil or Abraxane to treat human breast tumor-bearing nude mice and Doxil to treat the human ovarian tumor and drug-resistant ovarian tumor-bearing nude mice under FMD conditions, respectively. According to the results, the FMD condition can promote the cellular uptake and cytotoxicity of a single nanodrug, reduce the ATP level in drug-resistant tumor cells to hinder drug efflux, normalize tumor blood vessels, relieve tumor hypoxia, and increase the accumulation of nanodrugs at tumor sites, thereby enhancing the therapeutic effects on these types of human cancers. Collectively, these results demonstrate that the FMD strategy of significance can become a practical, alternative, and promising assistant for single nanodrug for enhancing cancer therapy and clinical translation.
Collapse
Affiliation(s)
- Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Haohao Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Maddison K, Faulkner S, Graves MC, Fay M, Bowden NA, Tooney PA. Vasculogenic Mimicry Occurs at Low Levels in Primary and Recurrent Glioblastoma. Cancers (Basel) 2023; 15:3922. [PMID: 37568738 PMCID: PMC10417556 DOI: 10.3390/cancers15153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Vasculogenic mimicry (VM), the ability of tumour cells to form functional microvasculature without an endothelial lining, may contribute to anti-angiogenic treatment resistance in glioblastoma. We aimed to assess the extent of VM formation in primary and recurrent glioblastomas and to determine whether VM vessels also express prostate-specific membrane antigen (PSMA), a pathological vessel marker. Formalin-fixed paraffin-embedded tissue from 35 matched pairs of primary and recurrent glioblastoma was immunohistochemically labelled for PSMA and CD34 and stained with periodic acid-Schiff (PAS). Vascular structures were categorised as endothelial vessels (CD34+/PAS+) or VM (CD34-/PAS+). Most blood vessels in both primary and recurrent tumours were endothelial vessels, and these significantly decreased in recurrent tumours (p < 0.001). PSMA was expressed by endothelial vessels, and its expression was also decreased in recurrent tumours (p = 0.027). VM was observed in 42.86% of primary tumours and 28.57% of recurrent tumours. VM accounted for only a small proportion of the tumour vasculature and VM density did not differ between primary and recurrent tumours (p = 0.266). The functional contribution of VM and its potential as a treatment target in glioblastoma require further investigation.
Collapse
Affiliation(s)
- Kelsey Maddison
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
| | - Moira C. Graves
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael Fay
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- GenesisCare, Lake Macquarie Private Hospital, Gateshead, NSW 2290, Australia
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Paul A. Tooney
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
17
|
Wang L, Yuan PQ, Taché Y. Vasculature in the mouse colon and spatial relationships with the enteric nervous system, glia, and immune cells. Front Neuroanat 2023; 17:1130169. [PMID: 37332321 PMCID: PMC10272736 DOI: 10.3389/fnana.2023.1130169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 06/20/2023] Open
Abstract
The distribution, morphology, and innervation of vasculature in different mouse colonic segments and layers, as well as spatial relationships of the vasculature with the enteric plexuses, glia, and macrophages are far from being complete. The vessels in the adult mouse colon were stained by the cardiovascular perfusion of wheat germ agglutinin (WGA)-Alexa Fluor 448 and by CD31 immunoreactivity. Nerve fibers, enteric glia, and macrophages were immunostained in the WGA-perfused colon. The blood vessels entered from the mesentery to the submucosa and branched into the capillary networks in the mucosa and muscularis externa. The capillary net formed anastomosed rings at the orifices of mucosa crypts, and the capillary rings surrounded the crypts individually in the proximal colon and more than two crypts in the distal colon. Microvessels in the muscularis externa with myenteric plexus were less dense than in the mucosa and formed loops. In the circular smooth muscle layer, microvessels were distributed in the proximal, but not the distal colon. Capillaries did not enter the enteric ganglia. There were no significant differences in microvascular volume per tissue volume between the proximal and distal colon either in the mucosa or muscularis externa containing the myenteric plexus. PGP9.5-, tyrosine hydroxylase-, and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers were distributed along the vessels in the submucosa. In the mucosa, PGP9.5-, CGRP-, and vasoactive intestinal peptide (VIP)-immunoreactive nerves terminated close to the capillary rings, while cells and processes labeled by S100B and glial fibrillary acidic protein were distributed mainly in the lamina propria and lower portion of the mucosa. Dense Iba1 immunoreactive macrophages were closely adjacent to the mucosal capillary rings. There were a few macrophages, but no glia in apposition to microvessels in the submucosa and muscularis externa. In conclusion, in the mouse colon, (1) the differences in vasculature between the proximal and distal colon were associated with the morphology, but not the microvascular amount per tissue volume in the mucosa and muscle layers; (2) the colonic mucosa contained significantly more microvessels than the muscularis externa; and (3) there were more CGRP and VIP nerve fibers found close to microvessels in the mucosa and submucosa than in the muscle layers.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Pu-Qing Yuan
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Yvette Taché
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
18
|
Biagioni A, Peri S, Versienti G, Fiorillo C, Becatti M, Magnelli L, Papucci L. Gastric Cancer Vascularization and the Contribution of Reactive Oxygen Species. Biomolecules 2023; 13:886. [PMID: 37371466 DOI: 10.3390/biom13060886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Blood vessels are the most important way for cancer cells to survive and diffuse in the body, metastasizing distant organs. During the process of tumor expansion, the neoplastic mass progressively induces modifications in the microenvironment due to its uncontrolled growth, generating a hypoxic and low pH milieu with high fluid pressure and low nutrients concentration. In such a particular condition, reactive oxygen species play a fundamental role, enhancing tumor proliferation and migration, inducing a glycolytic phenotype and promoting angiogenesis. Indeed, to reach new sources of oxygen and metabolites, highly aggressive cancer cells might produce a new abnormal network of vessels independently from endothelial cells, a process called vasculogenic mimicry. Even though many molecular markers and mechanisms, especially in gastric cancer, are still unclear, the formation of such intricate, leaky and abnormal vessel networks is closely associated with patients' poor prognosis, and therefore finding new pharmaceutical solutions to be applied along with canonical chemotherapies in order to control and normalize the formation of such networks is urgent.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Sara Peri
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giampaolo Versienti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
19
|
Hackner D, Hobbs M, Merkel S, Krautz C, Weber GF, Grützmann R, Brunner M. Impact of Aspirin Intake on Postoperative Survival after Primary Pancreatic Resection of Pancreatic Ductal Adenocarcinoma-A Single-Center Evaluation. Biomedicines 2023; 11:biomedicines11051466. [PMID: 37239137 DOI: 10.3390/biomedicines11051466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: The intake of aspirin (ASS) has been demonstrated to have a relevant impact on the pathogenesis, incidence and outcome in different solid gastrointestinal tumors. However, data on the effect of ASS on the short-term outcome and the long-term survival in patients with pancreatic carcinoma are still limited. (2) Methods: A total of 213 patients who underwent primary resection of PDAC at the University Hospital of Erlangen from January 2000 to December 2018 were included in this retrospective single-center study in total. Patients were stratified according to the aspirin intake into three groups: continuous aspirin intake (cASS), perioperatively interrupted aspirin intake (iASS) and no aspirin intake (no ASS) at the timepoint of surgery. The postoperative outcome as well as long-term survival were compared between the groups. (3) Results: There were no differences regarding postoperative morbidity (iASS: 54% vs. cASS: 53% vs. no ASS: 64%, p = 0.448) and in-hospital mortality (iASS: 4% vs. cASS: 10% vs. no ASS: 3%, p = 0.198) between the groups. The overall survival (OS) and disease-free survival (DFS) did not differ in the groups when comparing the ASS-intake status (OS: iASS 17.8 months vs. cASS 19.6 months vs. no ASS 21.6 months, p = 0.489; DFS: iASS 14.0 months vs. cASS 18.3 months vs. no ASS 14.7 months, p = 0.957). Multivariate analysis revealed that age (hazard ratio (HR) 2.2, p < 0.001), lymph node-positive status (HR 2.0, p < 0.001), R status 1 or 2 (HR 2.8, p < 0.001) and differentiation with a grading of 3 (HR 1.7, p = 0.005) were significant independent prognostic factors regarding the OS. Moreover, age (HR 1.5, p = 0.040), lymph node-positive status (HR 1.8, p = 0.002) and high-grade (G3) carcinomas (HR 1.5, p = 0.037) could be identified as independent prognostic parameters for DFS. (4) Conclusions: In patients undergoing primary surgery for curative resection of pancreatic carcinoma, the perioperative intake of ASS had no significant impact on postoperative outcome, overall and disease-free survival.
Collapse
Affiliation(s)
- Danilo Hackner
- Department of General and Visceral Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mirianna Hobbs
- Department of General and Visceral Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susanne Merkel
- Department of General and Visceral Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Krautz
- Department of General and Visceral Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Georg F Weber
- Department of General and Visceral Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Robert Grützmann
- Department of General and Visceral Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maximilian Brunner
- Department of General and Visceral Surgery, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
20
|
Yamamoto A, Huang Y, Krajina BA, McBirney M, Doak AE, Qu S, Wang CL, Haffner MC, Cheung KJ. Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7. Proc Natl Acad Sci U S A 2023; 120:e2214888120. [PMID: 36853945 PMCID: PMC10013750 DOI: 10.1073/pnas.2214888120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 03/01/2023] Open
Abstract
Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.
Collapse
Affiliation(s)
- Ami Yamamoto
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Yin Huang
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Brad A. Krajina
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Andrea E. Doak
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Sixuan Qu
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Carolyn L. Wang
- Department of Radiology, University of Washington School of Medicine, Seattle, WA98195
| | - Michael C. Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Kevin J. Cheung
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
21
|
Piludu M, Pichiri G, Coni P, Piras M, Congiu T, Faa G, Lachowicz JI. Cell starvation increases uptake of extracellular Thymosin β4 and its complexes with calcium. Int Immunopharmacol 2023; 116:109743. [PMID: 36706591 DOI: 10.1016/j.intimp.2023.109743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Cell metastasis is the main cause of cancer mortality. Inhibiting early events during cell metastasis and invasion could significantly improve cancer prognosis, but the initial mechanisms of cell transition and migration are barely known. Calcium regulates cell migration, whilst Thymosin β4 is a G-actin and iron binding peptide associated with tumor metastasis and ferroptosis. Under normal cell growth conditions, intracellular free calcium ions and Thymosin β4 concentrations are strictly regulated, and are not influenced by extracellular supplementation. However, cell starvation decreases intracellular Thymosin β4 and increases extracellular peptide uptake above the normal range. Unexpectedly, cell starvation significantly increases internalization of extracellular Ca2+/Thymosin β4 complexes. Elucidating the role of Ca2+/Thymosin β4 in the early events of metastasis will likely be important in the future to develop therapies targeting metastasis.
Collapse
Affiliation(s)
- Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
22
|
Yamamoto A, Doak AE, Cheung KJ. Orchestration of Collective Migration and Metastasis by Tumor Cell Clusters. ANNUAL REVIEW OF PATHOLOGY 2023; 18:231-256. [PMID: 36207009 DOI: 10.1146/annurev-pathmechdis-031521-023557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metastatic dissemination has lethal consequences for cancer patients. Accruing evidence supports the hypothesis that tumor cells can migrate and metastasize as clusters of cells while maintaining contacts with one another. Collective metastasis enables tumor cells to colonize secondary sites more efficiently, resist cell death, and evade the immune system. On the other hand, tumor cell clusters face unique challenges for dissemination particularly during systemic dissemination. Here, we review recent progress toward understanding how tumor cell clusters overcome these disadvantages as well as mechanisms they utilize to gain advantages throughout the metastatic process. We consider useful models for studying collective metastasis and reflect on how the study of collective metastasis suggests new opportunities for eradicating and preventing metastatic disease.
Collapse
Affiliation(s)
- Ami Yamamoto
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA; , , .,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Andrea E Doak
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA; , , .,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Kevin J Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA; , ,
| |
Collapse
|
23
|
Das U, Banik S, Nadumane SS, Chakrabarti S, Gopal D, Kabekkodu SP, Srisungsitthisunti P, Mazumder N, Biswas R. Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
Affiliation(s)
- Upama Das
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pornsak Srisungsitthisunti
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
24
|
Pontis F, Roz L, Fortunato O, Bertolini G. The metastatic niche formation: focus on extracellular vesicle-mediated dialogue between lung cancer cells and the microenvironment. Front Oncol 2023; 13:1116783. [PMID: 37207158 PMCID: PMC10189117 DOI: 10.3389/fonc.2023.1116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Lung cancer is the deadliest cancer in the world, with the majority of patients presenting with advanced or metastatic disease at first diagnosis. The lungs are also one of the most common sites of metastasis from lung cancer and other tumors. Understanding the mechanisms that regulate metastasis formation from primary lung cancer and in the lungs is therefore fundamental unmet clinical need. One of the first steps during the establishment of lung cancer metastases includes the formation of the pre-metastatic niche (PMN) at distant organs, which may occur even during the early phases of cancer development. The PMN is established through intricate cross-talk between primary tumor-secreted factors and stromal components at distant sites. Mechanisms controlling primary tumor escape and seeding of distant organs rely on specific properties of tumor cells but are also tightly regulated by interactions with stromal cells at the metastatic niche that finally dictate the success of metastasis establishment. Here, we summarize the mechanisms underlying pre-metastatic niche formation starting from how lung primary tumor cells modulate distant sites through the release of several factors, focusing on Extracellular Vesicles (EVs). In this context, we highlight the role of lung cancer-derived EVs in the modulation of tumor immune escape. Then, we illustrate the complexity of Circulating Tumor Cells (CTCs) that represent the seeds of metastasis and how interactions with stromal and immune cells can help their metastatic dissemination. Finally, we evaluate the contribution of EVs in dictating metastasis development at the PMN through stimulation of proliferation and control of disseminated tumor cell dormancy. Overall, we present an overview of different steps in the lung cancer metastatic cascade, focusing on the EV-mediated interactions between tumor cells and stromal/immune cells.
Collapse
|
25
|
Pantel K, Alix-Panabières C. Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: biology and clinical translation. J Immunother Cancer 2022; 10:jitc-2022-005615. [PMID: 36517082 PMCID: PMC9756199 DOI: 10.1136/jitc-2022-005615] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer-related deaths are mainly caused by metastatic spread of tumor cells from the primary lesion to distant sites via the blood circulation. Understanding the mechanisms of blood-borne tumor cell dissemination by the detection and molecular characterization of circulating tumor cells (CTCs) in the blood of patients with cancer has opened a new avenue in cancer research. Recent technical advances have enabled a comprehensive analysis of the CTCs at the genome, transcriptome and protein level as well as first functional studies using patient-derived CTC cell lines. In this review, we describe and discuss how research on CTCs has yielded important insights into the biology of cancer metastasis and the response of patients with cancer to therapies directed against metastatic cells. Future investigations will show whether CTCs leaving their primary site are more vulnerable to attacks by immune effector cells and whether cancer cell dissemination might be the 'Achilles heel' of metastatic progression. Here, we focus on the lessons learned from CTC research on the biology of cancer metastasis in patients with particular emphasis on the interactions of CTCs with the immune system. Moreover, we describe and discuss briefly the potential and challenges for implementing CTCs into clinical decision-making including detection of minimal residual disease, monitoring efficacies of systemic therapies and identification of therapeutic targets and resistance mechanisms.
Collapse
Affiliation(s)
- Klaus Pantel
- Institute of Tumour Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- European Liquid Biopsy Society (ELBS), Hamburg, Germany,Laboratory Detection of Rare Human Circulating Cells (LCCRH), University Hospital Centre Montpellier, Montpellier, France,CREEC, MIVEGEC, Montpellier, France
| |
Collapse
|
26
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
27
|
Tumor Cell Capture Using Platelet-Based and Platelet-Mimicking Modified Human Serum Albumin Submicron Particles. Int J Mol Sci 2022; 23:ijms232214277. [PMID: 36430755 PMCID: PMC9694380 DOI: 10.3390/ijms232214277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The co-localization of platelets and tumor cells in hematogenous metastases has long been recognized. Interactions between platelets and circulating tumor cells (CTCs) contribute to tumor cell survival and migration via the vasculature into other tissues. Taking advantage of the interactions between platelets and tumor cells, two schemes, direct and indirect, were proposed to target the modified human serum albumin submicron particles (HSA-MPs) towards tumor cells. HSA-MPs were constructed by the Co-precipitation-Crosslinking-Dissolution (CCD) method. The anti-CD41 antibody or CD62P protein was linked to the HSA-MPs separately via 1-ethyl-3-(-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) EDC/NHS chemistry. The size of modified HSA-MPs was measured at approximately 1 µm, and the zeta potential was around -24 mV. Anti-CD41-HSA-MPs adhered to platelets as shown by flowcytometry and confocal laser scanning microscopy. In vitro, we confirmed the adhesion of platelets to tumor lung carcinoma cells A549 under shearing conditions. Higher cellular uptake of anti-CD41-HSA-MPs in A549 cells was found in the presence of activated platelets, suggesting that activated platelets can mediate the uptake of these particles. RNA-seq data in the Cancer Cell Lineage Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) database showed the expression of CD62P ligands in different types of cancers. Compared to the non-targeted system, CD62P-HSA-MPs were found to have higher cellular uptake in A549 cells. Our results suggest that the platelet-based and platelet-mimicking modified HSA-MPs could be promising options for tracking metastatic cancer.
Collapse
|
28
|
Fründt T, von Felden J, Krause J, Heumann A, Li J, Riethdorf S, Pantel K, Huber S, Lohse AW, Wege H, Schulze K. Circulating tumor cells as a preoperative risk marker for occult metastases in patients with resectable cholangiocarcinoma. Front Oncol 2022; 12:941660. [PMID: 36439492 PMCID: PMC9685781 DOI: 10.3389/fonc.2022.941660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor associated with a high rate of recurrence after resection. An important risk factor for recurrence is the presence of occult metasta-ses, which are not radiologically detectable at the time of diagnosis. There are currently no biomarkers for the preoperative assessment of micrometastases. A previous study demonstrated the prognostic relevance of circulating tumor cells (CTC) in patients with advanced CCA but the potential of CTCs as a preoperative marker for detecting occult metastases has not been investigated so far. In this two-phase study, we first recruited a cohort of 27 patients with histologically proven, metastatic CCA or gallbladder cancer (GBCA) to assess feasibility (feasibility cohort, FC). CTCs were measured in the peripheral blood using the CellSearch System (CSS) between October 2012 and January 2017. Subsequently, in 11 patients undergoing curative-intended resection for CCA (intrahepatic CCA: n =4; extrahepatic CCA n= 6; gallbladder cancer: n=1), peripheral and central venous blood specimens were obtained to improve detection rate by simultaneous measurement and to elucidate distribution of CTCs in different venous compartments. Presence of CTCs detection was correlated with postoperative TNM-status. In the FC, CTCs (range 1-3 cells, median: 1) were detected in 40% (11/27) patients and were signifi-cantly associated with worse overall survival (hazard ratio: 3.59; 95% CI: 1.79- 7.1; p = 0.04). By combined peripheral and central measurement, CTC detection was increased to 54% (6/11) in the resection cohort (RC) and was associated with metastases that were only identified during the surgical procedure (peritoneal carcinoma: n = 1; infiltration of the duodenum: n = 1) or immediately after surgery (evidence of pulmonary metastases by CT scan two days after resection, not evident on initial tumor staging prior resection). Taken together, in this single center pilot study, we demonstrated that CTCs are detectable in CCA patients and are associated with significantly impaired survival in patients at metastatic stage. Detection rate prior to surgery was improved to >50% by combined peripheral and central measurement. Moreover, preoperative CTC detection may indicate existing metastases and could help to stratify patients more accurately.
Collapse
|
29
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
30
|
Targeting of the Peritumoral Adipose Tissue Microenvironment as an Innovative Antitumor Therapeutic Strategy. Biomolecules 2022; 12:biom12050702. [PMID: 35625629 PMCID: PMC9138344 DOI: 10.3390/biom12050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in promoting and sustaining cancer growth. Adipose tissue (AT), due to its anatomical distribution, is a prevalent component of TME, and contributes to cancer development and progression. Cancer-associated adipocytes (CAAs), reprogrammed by cancer stem cells (CSCs), drive cancer progression by releasing metabolites and inflammatory adipokines. In this review, we highlight the mechanisms underlying the bidirectional crosstalk among CAAs, CSCs, and stromal cells. Moreover, we focus on the recent advances in the therapeutic targeting of adipocyte-released factors as an innovative strategy to counteract cancer progression.
Collapse
|
31
|
Min T, Xie X, Ren K, Sun T, Wang H, Dang C, Zhang H. Therapeutic Effects of Cold Atmospheric Plasma on Solid Tumor. Front Med (Lausanne) 2022; 9:884887. [PMID: 35646968 PMCID: PMC9139675 DOI: 10.3389/fmed.2022.884887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a devastating disease, and there is no particularly effective treatment at present. Recently, a new treatment, cold atmospheric plasma (CAP), has been proposed. At present, CAP is confirmed to have selective killing effect on tumor by many studies in vitro and in vivo. A targeted literature search was carried out on the study of cold atmospheric plasma. Through analysis and screening, a narrative review approach was selected to describe therapeutic effects of cold atmospheric plasma on solid tumor. According to the recent studies on plasma, some hypothetical therapeutic schemes of CAP are proposed in this paper. The killing mechanism of CAP on solid tumor is expounded in terms of the selectivity of CAP to tumor, the effects of CAP on cells, tumor microenvironment (TME) and immune system. CAP has many effects on solid tumors, and these effects are dose-dependent. The effects of optimal doses of CAP on solid tumors include killing tumor cells, inhibiting non-malignant cells and ECM in TME, affecting the communication between tumor cells, and inducing immunogenic death of tumor cells. In addition, several promising research directions of CAP are proposed in this review, which provide guidance for future research.
Collapse
Affiliation(s)
- Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Chengxue Dang
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Hao Zhang
| |
Collapse
|
32
|
Chapelin F, Gedaly R, Sweeney Z, Gossett LJ. Prognostic Value of Fluorine-19 MRI Oximetry Monitoring in cancer. Mol Imaging Biol 2022; 24:208-219. [PMID: 34708396 DOI: 10.1007/s11307-021-01648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022]
Abstract
Hypoxia is a key prognostic indicator in most solid tumors, as it is correlated to tumor angiogenesis, metastasis, recurrence, and response to therapy. Accurate measurement and mapping of tumor oxygenation profile and changes upon intervention could facilitate disease progression assessment and assist in treatment planning. Currently, no gold standard exists for non-invasive spatiotemporal measurement of hypoxia. Magnetic resonance imaging (MRI) represents an attractive option as it is a clinically available and non-ionizing imaging modality. Specifically, perfluorocarbon (PFC) beacons can be externally introduced into the tumor tissue and the linear dependence of their spin-lattice relaxation rate (R1) on the local partial pressure of oxygen (pO2) exploited for real-time tissue oxygenation monitoring in vivo. In this review, we will focus on early studies and recent developments of fluorine-19 MRI and spectroscopy (MRS) for evaluation of tumor oximetry and response to therapy.
Collapse
Affiliation(s)
- Fanny Chapelin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA.
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Roberto Gedaly
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Department of Surgery, Transplant Division, University of Kentucky, Lexington, KY, USA
| | - Zachary Sweeney
- College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Liza J Gossett
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, 514F RMB, 143 Graham Avenue, Lexington, KY, USA
| |
Collapse
|
33
|
Abstract
Cachexia, a wasting syndrome that is often associated with cancer, is one of the primary causes of death in cancer patients. Cancer cachexia occurs largely due to systemic metabolic alterations stimulated by tumors. Despite the prevalence of cachexia, our understanding of how tumors interact with host tissues and how they affect metabolism is limited. Among the challenges of studying tumor-host tissue crosstalk are the complexity of cancer itself and our insufficient knowledge of the factors that tumors release into the blood. Drosophila is emerging as a powerful model in which to identify tumor-derived factors that influence systemic metabolism and tissue wasting. Strikingly, studies that are characterizing factors derived from different fly tumor cachexia models are identifying both common and distinct cachectic molecules, suggesting that cachexia is more than one disease and that fly models can help identify these differences. Here, we review what has been learned from studies of tumor-induced organ wasting in Drosophila and discuss the open questions.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pedro Saavedra
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
34
|
|
35
|
Salem A, Salo T. Vasculogenic Mimicry in Head and Neck Squamous Cell Carcinoma-Time to Take Notice. FRONTIERS IN ORAL HEALTH 2022; 2:666895. [PMID: 35048009 PMCID: PMC8757801 DOI: 10.3389/froh.2021.666895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a group of common cancers characterized by a swift growth pattern, early metastasis, and dismal 5-year survival rates. Despite the recent advances in cancer management, the multimodality approach is not effective in eradicating HNSCC. Moreover, the clinical response to the antiangiogenic therapy remains considerably limited in HNSCC patients, suggesting that tumor perfusion can take place through other non-angiogenic pathways. Tumor cell-induced angiogenesis is one of the main hallmarks of cancer. However, at the end of the previous millennium, a new paradigm of tumor cell-associated neovascularization has been reported in human melanoma cells. This new phenomenon, which was named "vasculogenic mimicry" or "vascular mimicry" (VM), describes the ability of aggressively growing tumor cells to form perfusable, matrix-rich, vessel-like networks in 3-dimensional matrices in vitro. Similar matrix-rich VM networks were also identified in tissue samples obtained from cancer patients. To date, myriad studies have reported intriguing features of VM in a wide variety of cancers including HNSCC. We aim in this mini-review to summarize the current evidence regarding the phenomenon of VM in HNSCC-from the available detection protocols and potentially involved mechanisms, to its prognostic value and the present limitations.
Collapse
Affiliation(s)
- Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit, University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
36
|
Zayas‐Santiago A, Martínez‐Montemayor MM, Colón‐Vázquez J, Ortiz‐Soto G, Cirino‐Simonet JG, Inyushin M. Accumulation of amyloid beta (Aβ) and amyloid precursor protein (APP) in tumors formed by a mouse xenograft model of inflammatory breast cancer. FEBS Open Bio 2022; 12:95-105. [PMID: 34592066 PMCID: PMC8727955 DOI: 10.1002/2211-5463.13308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/16/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023] Open
Abstract
Accumulation of amyloid in breast cancer is a well-known phenomenon, but only immunoglobulin light-chain amyloidosis (AL) or transthyretin (TTR) amyloid had been detected in human breast tumor samples previously. We recently reported that another amyloidogenic peptide, amyloid beta (Aβ), is present in an aggregated form in animal and human high-grade gliomas and suggested that it originates systemically from the blood, possibly generated by platelets. To study whether breast cancers are also associated with these Aβ peptides and in what form, we used a nude mouse model inoculated with triple-negative inflammatory breast cancer cell (SUM-149) xenografts, which develop noticeable tumors. Immunostaining with two types of specific antibodies for Aβ identified the clear presence of Aβ peptides associated with (a) carcinoma cells and (b) extracellular aggregated amyloid (also revealed by Congo red and thioflavin S staining). Aβ peptides, in both cells and in aggregated amyloid, were distributed in clear gradients, with maximum levels near blood vessels. We detected significant presence of amyloid precursor protein (APP) in the walls of blood vessels of tumor samples, as well as in carcinoma cells. Finally, we used ELISA to confirm the presence of elevated levels of mouse-generated Aβ40 in tumors. We conclude that Aβ in inflammatory breast cancer tumors, at least in a mouse model, is always present and is concentrated near blood vessels. We also discuss here the possible pathways of Aβ accumulation in tumors and whether this phenomenon could represent the specific signature of high-grade cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Mikhail Inyushin
- Department of PhysiologyUniversidad Central del CaribeBayamónPRUSA
| |
Collapse
|
37
|
Marques Dos Reis E, Vieira Berti F, Marques Porto L. Vasculogenic Mimicry in a 3D Model In Vitro. Methods Mol Biol 2022; 2514:39-43. [PMID: 35771416 DOI: 10.1007/978-1-0716-2403-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Increasing studies on vasculogenic mimicry (VM) have shown that the hypoxic microenvironment and the presence of endothelial cell play an important role in regulating tumor phenotype and aggressiveness. Thus, the representation of these factors in vitro becomes necessary to mimic VM. This chapter provides a protocol for mimicking VM in vitro in a more robust 3D model that includes the presence of 3D matrix, melanoma cells, a hypoxia-inducing agent, and endothelial cells.
Collapse
Affiliation(s)
- Emily Marques Dos Reis
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fernanda Vieira Berti
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Luismar Marques Porto
- Chemical and Food Engineering Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
38
|
Gasparri ML, Di Micco R, Siconolfi A, Farooqi AA, Di Bartolomeo G, Zuber V, Caserta D, Bellati F, Ruscito I, Papadia A, Gentilini OD. Brain metastases in breast cancer. UNRAVELING THE COMPLEXITIES OF METASTASIS 2022:63-85. [DOI: 10.1016/b978-0-12-821789-4.24001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Wu Y, Zhou Y, Qin X, Liu Y. From cell spheroids to vascularized cancer organoids: Microfluidic tumor-on-a-chip models for preclinical drug evaluations. BIOMICROFLUIDICS 2021; 15:061503. [PMID: 34804315 PMCID: PMC8589468 DOI: 10.1063/5.0062697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/16/2021] [Indexed: 05/14/2023]
Abstract
Chemotherapy is one of the most effective cancer treatments. Starting from the discovery of new molecular entities, it usually takes about 10 years and 2 billion U.S. dollars to bring an effective anti-cancer drug from the benchtop to patients. Due to the physiological differences between animal models and humans, more than 90% of drug candidates failed in phase I clinical trials. Thus, a more efficient drug screening system to identify feasible compounds and pre-exclude less promising drug candidates is strongly desired. For their capability to accurately construct in vitro tumor models derived from human cells to reproduce pathological and physiological processes, microfluidic tumor chips are reliable platforms for preclinical drug screening, personalized medicine, and fundamental oncology research. This review summarizes the recent progress of the microfluidic tumor chip and highlights tumor vascularization strategies. In addition, promising imaging modalities for enhancing data acquisition and machine learning-based image analysis methods to accurately quantify the dynamics of tumor spheroids are introduced. It is believed that the microfluidic tumor chip will serve as a high-throughput, biomimetic, and multi-sensor integrated system for efficient preclinical drug evaluation in the future.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Xiaochen Qin
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
40
|
Tieng FYF, Abu N, Nasir SN, Lee LH, Ab Mutalib NS. Liquid Biopsy-Based Colorectal Cancer Screening via Surface Markers of Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2136. [PMID: 34829483 PMCID: PMC8618170 DOI: 10.3390/diagnostics11112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is ranked second for cancer-related deaths worldwide with approximately half of the patients being diagnosed at the late stages. The untimely detection of CRC results in advancement to the metastatic stage and nearly 90% of cancer-related deaths. The early detection of CRC is crucial to decrease its overall incidence and mortality rates. The recent introduction of circulating tumor cells (CTCs) has enabled a less invasive sampling method from liquid biopsies, besides revealing key information toward CRC metastasis. The current gold standard for CTC identification is the CellSearch® system (Veridex). This first-generation instrumentation relies on a single cell surface marker (CSM) to capture and count CTCs. Detection of CTCs allows the identification of patients at risk for metastasis, whereas CTC enumeration could improve risk assessment, monitoring of systemic therapy, and detection of therapy resistance in advanced metastatic CRC. In this review, we compared the pros and cons between single CSM-based CTC enrichment techniques and multi-marker-based systems. We also highlighted the challenges faced in the routine implementation of CSM-dependent CTC detection methods in CRC screening, prediction, prognosis, disease monitoring, and therapy selection toward precision medicine, as well as the dwelling on post-CTC analysis and characterization methods.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.); (S.N.N.)
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University of Malaysia, Subang Jaya 47500, Selangor, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
41
|
Rijal G. Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering (Basel) 2021; 8:bioengineering8110163. [PMID: 34821729 PMCID: PMC8615023 DOI: 10.3390/bioengineering8110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA
| |
Collapse
|
42
|
Shin SU, Cho HM, Das R, Gil-Henn H, Ramakrishnan S, Al Bayati A, Carroll SF, Zhang Y, Sankar AP, Elledge C, Pimentel A, Blonska M, Rosenblatt JD. Inhibition of Vasculogenic Mimicry and Angiogenesis by an Anti-EGFR IgG1-Human Endostatin-P125A Fusion Protein Reduces Triple Negative Breast Cancer Metastases. Cells 2021; 10:cells10112904. [PMID: 34831127 PMCID: PMC8616280 DOI: 10.3390/cells10112904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited therapeutic options. Metastasis is the major cause of TNBC mortality. Angiogenesis facilitates TNBC metastases. Many TNBCs also form vascular channels lined by tumor cells rather than endothelial cells, known as ‘vasculogenic mimicry’ (VM). VM has been linked to metastatic TNBC behavior and resistance to anti-angiogenic agents. Epidermal growth factor receptor (EGFR) is frequently expressed on TNBC, but anti-EGFR antibodies have limited efficacy. We synthesized an anti-EGFR antibody–endostatin fusion protein, αEGFR IgG1-huEndo-P125A (αEGFR-E-P125A), designed to deliver a mutant endostatin, huEndo-P125A (E-P125A), to EGFR expressing tumors, and tested its effects on angiogenesis, TNBC VM, and motility in vitro, and on the growth and metastasis of two independent human TNBC xenograft models in vivo. αEGFR-E-P125A completely inhibited the ability of human umbilical vein endothelial cells to form capillary-like structures (CLS) and of TNBC cells to engage in VM and form tubes in vitro. αEGFR-E-P125A treatment reduced endothelial and TNBC motility in vitro more effectively than E-P125A or cetuximab, delivered alone or in combination. Treatment of TNBC with αEGFR-E-P125A was associated with a reduction in cytoplasmic and nuclear β-catenin and reduced phosphorylation of vimentin. αEGFR-E-P125A treatment of TNBC xenografts in vivo inhibited angiogenesis and VM, reduced primary tumor growth and lung metastasis of orthotopically implanted MDA-MB-468 TNBC cells, and markedly decreased lung metastases following intravenous injection of MDA-MB-231-4175 lung-tropic TNBC cells. Combined inhibition of angiogenesis, VM, and TNBC motility mediated by αEGFR-E-P125A is a promising strategy for the prevention of TNBC metastases.
Collapse
Affiliation(s)
- Seung-Uon Shin
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Hyun-Mi Cho
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Rathin Das
- Synergys Biotherapeutics Inc., Alamo, CA 94507, USA; (R.D.); (S.F.C.)
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;
| | - Ahmed Al Bayati
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
- Kentucky Clinic, University of Kentucky, Lexington, KY 40536, USA
| | | | - Yu Zhang
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Ankita P. Sankar
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (A.P.S.); (C.E.)
| | - Christian Elledge
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (A.P.S.); (C.E.)
| | - Augustin Pimentel
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Medical Oncology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA;
| | - Marzenna Blonska
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
| | - Joseph D. Rosenblatt
- Sylvester Comprehensive Cancer Center, Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine (UMMSOM), Miami, FL 33136, USA; (S.-U.S.); (H.-M.C.); (A.A.B.); (Y.Z.); (M.B.)
- Correspondence: ; Tel.: +1-305-243-4618; Fax: +1-305-243-9161
| |
Collapse
|
43
|
Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 19:75-90. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests that a high tumour burden has a negative effect on anticancer immunity. The concept of tumour burden, simply defined as the total amount of cancer in the body, in contrast to molecular tumour burden, is often poorly understood by the wider medical community; nonetheless, a possible role exists in defining the optimal treatment strategy for many patients. Historically, tumour burden has been assessed using imaging. In particular, CT scans have been used to evaluate both the number and size of metastases as well as the number of organs involved. These methods are now often complemented by metabolic tumour burden, measured using the more recently developed 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET/CT. Serum-based biomarkers, such as lactate dehydrogenase, can also reflect tumour burden and are often also correlated with a poor response to immune-checkpoint inhibitors. Other circulating markers (such as circulating free tumour DNA and/or circulating tumour cells) are also attracting research interest as surrogate markers of tumour burden. In this Review, we summarize evidence supporting the utility of tumour burden as a biomarker to guide the use of immune-checkpoint inhibitors. We also describe data and provide perspective on the various tools used for tumour burden assessment, with a particular emphasis on future therapeutic strategies that might address the issue of inferior outcomes among patients with cancer with a high tumour burden.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Camilo Garcia
- Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France.,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Caroline Robert
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France. .,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
44
|
Hujanen R, Almahmoudi R, Salo T, Salem A. Comparative Analysis of Vascular Mimicry in Head and Neck Squamous Cell Carcinoma: In Vitro and In Vivo Approaches. Cancers (Basel) 2021; 13:4747. [PMID: 34638234 PMCID: PMC8507545 DOI: 10.3390/cancers13194747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tissue vasculature provides the main conduit for metastasis in solid tumours including head and neck squamous cell carcinoma (HNSCC). Vascular mimicry (VM) is an endothelial cell (EC)-independent neovascularization pattern, whereby tumour cells generate a perfusable vessel-like meshwork. Yet, despite its promising clinical utility, there are limited approaches to better identify VM in HNSCC and what factors may influence such a phenomenon in vitro. Therefore, we employed different staining procedures to assess their utility in identifying VM in tumour sections, wherein mosaic vessels may also be adopted to further assess the VM-competent cell phenotype. Using 13 primary and metastatic HNSCC cell lines in addition to murine- and human-derived matrices, we elucidated the impact of the extracellular matrix, tumour cell type, and density on the formation and morphology of cell-derived tubulogenesis in HNSCC. We then delineated the optimal cell numbers needed to obtain a VM meshwork in vitro, which revealed cell-specific variations and yet consistent expression of the EC marker CD31. Finally, we proposed the zebrafish larvae as a simple and cost-effective model to evaluate VM development in vivo. Taken together, our findings offer a valuable resource for designing future studies that may facilitate the therapeutic exploitation of VM in HNSCC and other tumours.
Collapse
Affiliation(s)
- Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| |
Collapse
|
45
|
Gong C, Brunton SL, Schowengerdt BT, Seibel EJ. Intensity-Mosaic: automatic panorama mosaicking of disordered images with insufficient features. J Med Imaging (Bellingham) 2021; 8:054002. [PMID: 34604440 PMCID: PMC8479456 DOI: 10.1117/1.jmi.8.5.054002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Handling low-quality and few-feature medical images is a challenging task in automatic panorama mosaicking. Current mosaicking methods for disordered input images are based on feature point matching, whereas in this case intensity-based registration achieves better performance than feature-point registration methods. We propose a mosaicking method that enables the use of mutual information (MI) registration for mosaicking randomly ordered input images with insufficient features. Approach: Dimensionality reduction is used to map disordered input images into a low dimensional space. Based on the low dimensional representation, the image global correspondence can be recognized efficiently. For adjacent image pairs, we optimize the MI metric for registration. The panorama is then created after image blending. We demonstrate our method on relatively lower-cost handheld devices that acquire images from the retina in vivo, kidney ex vivo, and bladder phantom, all of which contain sparse features. Results: Our method is compared with three baselines: AutoStitch, "dimension reduction + SIFT," and "MI-Only." Our method compared to the first two feature-point based methods exhibits 1.25 (ex vivo microscope dataset) to two times (in vivo retina dataset) rate of mosaic completion, and MI-Only has the lowest complete rate among three datasets. When comparing the subsequent complete mosaics, our target registration errors can be 2.2 and 3.8 times reduced when using the microscopy and bladder phantom datasets. Conclusions: Using dimensional reduction increases the success rate of detecting adjacent images, which makes MI-based registration feasible and narrows the search range of MI optimization. To the best of our knowledge, this is the first mosaicking method that allows automatic stitching of disordered images with intensity-based alignment, which provides more robust and accurate results when there are insufficient features for classic mosaicking methods.
Collapse
Affiliation(s)
- Chen Gong
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Steven L. Brunton
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | | | - Eric J. Seibel
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| |
Collapse
|
46
|
Wrenn E, Huang Y, Cheung K. Collective metastasis: coordinating the multicellular voyage. Clin Exp Metastasis 2021; 38:373-399. [PMID: 34254215 PMCID: PMC8346286 DOI: 10.1007/s10585-021-10111-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
The metastatic process is arduous. Cancer cells must escape the confines of the primary tumor, make their way into and travel through the circulation, then survive and proliferate in unfavorable microenvironments. A key question is how cancer cells overcome these multiple barriers to orchestrate distant organ colonization. Accumulating evidence in human patients and animal models supports the hypothesis that clusters of tumor cells can complete the entire metastatic journey in a process referred to as collective metastasis. Here we highlight recent studies unraveling how multicellular coordination, via both physical and biochemical coupling of cells, induces cooperative properties advantageous for the completion of metastasis. We discuss conceptual challenges and unique mechanisms arising from collective dissemination that are distinct from single cell-based metastasis. Finally, we consider how the dissection of molecular transitions regulating collective metastasis could offer potential insight into cancer therapy.
Collapse
Affiliation(s)
- Emma Wrenn
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, 98195, USA
| | - Yin Huang
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kevin Cheung
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| |
Collapse
|
47
|
Disseminated Melanoma Cells Transdifferentiate into Endothelial Cells in Intravascular Niches at Metastatic Sites. Cell Rep 2021; 31:107765. [PMID: 32553158 DOI: 10.1016/j.celrep.2020.107765] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/24/2019] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cell plasticity, including transdifferentiation, is thought to be a key driver of therapy failure, tumor dormancy, and metastatic dissemination. Although melanoma cells have been shown to adopt various phenotypic features in vitro, direct in vivo evidence of metastatic cell plasticity remains sparse. Here, we combine lineage tracing in a spontaneous metastatic mouse model of melanoma, advanced imaging, and single-cell RNA sequencing approaches to search for pathophysiologically relevant melanoma cellular states. We identify melanoma cells in intravascular niches of various metastatic organs. These cells are quiescent, are negative for characteristic melanoma markers, and acquire endothelial cell features. We replicate the endothelial transdifferentiation (EndT) finding in another mouse model and provide evidence of EndT in BRAFV600E-metastatic biopsies from human lung, brain, and small intestine, thus highlighting the clinical relevance of these findings. The tumor-vasculature pattern described herein may contribute to melanoma dormancy within metastatic organs and represent a putative target for therapies.
Collapse
|
48
|
Song CW, Cho LC. In Reply to Brown and Carlson. Int J Radiat Oncol Biol Phys 2021; 110:252-253. [PMID: 33243480 DOI: 10.1016/j.ijrobp.2020.06.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Chang W Song
- Department of Radiation Therapy, University of Minnesota Medical School, Minneapolis, Minnesota
| | - L Chinsoo Cho
- Department of Radiation Therapy, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
49
|
Liu Y, Luo Y, Cai M, Shen P, Li J, Chen H, Bao W, Zhu Y. Anti-angiogenic therapy in ovarian cancer: current situation & prospects. Indian J Med Res 2021; 154:680-690. [PMID: 35532586 PMCID: PMC9210530 DOI: 10.4103/ijmr.ijmr_1160_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Indexed: 11/04/2022] Open
Abstract
Ovarian cancer (OC) is one of five leading causes of cancer related death among women worldwide. Although treatment has been improving, the survival rate has barely improved over the past 30 years. The fatality rate is due to asymptomatic early signs and the lack of long-term effective treatment strategies for advanced disease. Angiogenesis is an important process in tumour growth and metastasis and is the creation of new blood vessels from existing blood vessels. It is a dynamic and complex process involving various molecular regulatory pathways and multiple mechanisms. The inhibition of angiogenesis has become a recognized therapeutic strategy for many solid tumours. While benefits in progression-free survival have been observed, the OS is far from satisfactory for OC patients who receive antiangiogenic therapy. In this article, the present research status of angiogenesis in OC was reviewed and the reasons for poor antiangiogenic therapeutic effects was explored with the aim to identify potential therapeutic targets that may improve the effect of antiangiogenic therapies.
Collapse
Affiliation(s)
- Yinping Liu
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Luo
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Cai
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peijun Shen
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hailin Chen
- Department of Obstetrics & Gynecology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Bao
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Zhu
- Department of Obstetrics & Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Almahmoudi R, Salem A, Hadler-Olsen E, Svineng G, Salo T, Al-Samadi A. The effect of interleukin-17F on vasculogenic mimicry in oral tongue squamous cell carcinoma. Cancer Sci 2021; 112:2223-2232. [PMID: 33743555 PMCID: PMC8177764 DOI: 10.1111/cas.14894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is one of the most common cancers worldwide and is characterized by early metastasis and poor prognosis. Recently, we reported that extracellular interleukin-17F (IL-17F) correlates with better disease-specific survival in OTSCC patients and has promising anticancer effects in vitro. Vasculogenic mimicry (VM) is the formation of an alternative vasculogenic system by aggressive tumor cells, which is implicated in treatment failure and poor survival of cancer patients. We sought to confirm the formation of VM in OTSCC and to investigate the effect of IL-17F on VM formation. Here, we showed that highly invasive OTSCC cells (HSC-3 and SAS) form tube-like VM on Matrigel similar to those formed by human umbilical vein endothelial cells. Interestingly, the less invasive cells (SCC-25) did not form any VM structures. Droplet-digital PCR, FACS, and immunofluorescence staining revealed the presence of CD31 mRNA and protein in OTSCC cells. Additionally, in a mouse orthotopic model, HSC-3 cells expressed VE-cadherin (CD144) but lacked Von Willebrand Factor. We identified different patterns of VM structures in patient samples and in an orthotopic OTSCC mouse model. Similar to the effect produced by the antiangiogenic drug sorafenib, IL-17F inhibited the formation of VM structures in vitro by HSC-3 and reduced almost all VM-related parameters. In conclusion, our findings indicate the presence of VM in OTSCC and the antitumorigenic effect of IL-17F through its effect on the VM. Therefore, targeting IL-17F or its regulatory pathways may lead to promising therapeutic strategies in patients with OTSCC.
Collapse
Affiliation(s)
- Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,The Public Dental Health Service Competence Center of Northern Norway, Tromsø, Norway
| | - Gunbjørg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, Finland.,Medical Research Centre, Oulu University Hospital, Oulu, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|