1
|
Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Cell Rep 2021; 34:108602. [PMID: 33440154 PMCID: PMC7809594 DOI: 10.1016/j.celrep.2020.108602] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue. However, relatively little is known about how most preferences are encoded in the kinase sequence or how these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity assays of mutant kinases. Cancer mutation data revealed that kinase SDRs are mutated more frequently than catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and aid in the interpretation of evolutionary or disease-related genomic variants.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Cristina Viéitez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Vinothini Rajeeve
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Pedro R Cutillas
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK.
| |
Collapse
|
2
|
Glu 60 of α-Calcium/calmodulin dependent protein kinase II mediates crosstalk between the regulatory T-site and protein substrate binding region of the active site. Arch Biochem Biophys 2020; 685:108348. [PMID: 32198047 DOI: 10.1016/j.abb.2020.108348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022]
Abstract
Memory formation transpires to be by activation and persistent modification of synapses. A chain of biochemical events accompany synaptic activation and culminate in memory formation. These biochemical events are steered by interplay and modulation of various synaptic proteins, achieved by conformational changes and phosphorylation/dephosphorylation of these proteins. Calcium/calmodulin dependent protein kinase II (CaMKII) and N-methyl-d-aspartate receptors (NMDARs) are synaptic proteins whose interactions play a pivotal role in learning and memory process. Catalytic activity of CaMKII is modulated upon its interaction with the GluN2B subunit of NMDAR. The structural basis of this interaction is not clearly understood. We have investigated the role of Glu60 of α-CaMKII, a conserved residue present in the ATP binding region of kinases, in the regulation of catalysis of CaMKII by GluN2B. Mutation of Glu60 to Gly exerts different effects on the kinetic parameters of phosphorylation of GluN2B and GluN2A, of which only GluN2B binds to the T-site of CaMKII. GluN2B induced modulation of the kinetic parameters of peptide substrate was altered in the E60G mutant. The mutation almost abolished the modulation of the apparent Km value for protein substrate. However, although kinetic parameters for ATP were altered by mutating Glu60, modulation of the apparent Km value for ATP by GluN2B seen in WT was exhibited by the E60G mutant of α-CaMKII. Hence our results posit that the communication of the T-site of CaMKII with protein substrate binding region of active site is mediated through Glu60 while the communication of the T-site with the ATP binding region is not entirely dependent on Glu60.
Collapse
|
3
|
Bradley D, Beltrao P. Evolution of protein kinase substrate recognition at the active site. PLoS Biol 2019; 17:e3000341. [PMID: 31233486 PMCID: PMC6611643 DOI: 10.1371/journal.pbio.3000341] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/05/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
Protein kinases catalyse the phosphorylation of target proteins, controlling most cellular processes. The specificity of serine/threonine kinases is partly determined by interactions with a few residues near the phospho-acceptor residue, forming the so-called kinase-substrate motif. Kinases have been extensively duplicated throughout evolution, but little is known about when in time new target motifs have arisen. Here, we show that sequence variation occurring early in the evolution of kinases is dominated by changes in specificity-determining residues. We then analysed kinase specificity models, based on known target sites, observing that specificity has remained mostly unchanged for recent kinase duplications. Finally, analysis of phosphorylation data from a taxonomically broad set of 48 eukaryotic species indicates that most phosphorylation motifs are broadly distributed in eukaryotes but are not present in prokaryotes. Overall, our results suggest that the set of eukaryotes kinase motifs present today was acquired around the time of the eukaryotic last common ancestor and that early expansions of the protein kinase fold rapidly explored the space of possible target motifs.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
4
|
Ahmed A, Gaadhe K, Sharma GP, Kumar N, Neculai M, Hui R, Mohanty D, Sharma P. Novel insights into the regulation of malarial calcium-dependent protein kinase 1. FASEB J 2012; 26:3212-21. [PMID: 22539638 DOI: 10.1096/fj.12-203877] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Calcium-dependent protein kinases (CDPKs) are major effectors of calcium signaling in apicomplexan parasites like Toxoplasma and Plasmodium and control important processes of the parasite life cycle. Despite recently reported crystal structures of Toxoplasma gondii (Tg)CDPKs, several important questions about their regulation remain unanswered. Plasmodium falciparum (Pf)CDPK1 has emerged as a key player in the life cycle of the malaria parasite, as it may be involved in the invasion of the host cells. Molecular modeling and site-directed mutagenesis studies on PfCDPK1 suggested that several residues in the regulatory domain play a dual role, as they seem to contribute to the stabilization of both the active and inactive kinase. Mass spectrometry revealed that PfCDPK1 was autophosphorylated at several sites; some of these were placed at strategic locations and therefore were found to be critical for kinase activation. The N-terminal extension of PfCDPK1 was found to be important for PfCDPK1 activation. Unexpectedly, an ATP binding site in the NTE of PfCDPK1 was identified. Our studies highlight several novel features of PfCDPK1 regulation, which may be shared by other members of the CDPK family. These findings may also aid design of inhibitors against these important targets, which are absent from the host.
Collapse
Affiliation(s)
- Anwar Ahmed
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Conformational changes underlying calcium/calmodulin-dependent protein kinase II activation. EMBO J 2011; 30:1251-62. [PMID: 21343908 DOI: 10.1038/emboj.2011.40] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/24/2011] [Indexed: 11/08/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) interprets information conveyed by the amplitude and frequency of calcium transients by a controlled transition from an autoinhibited basal intermediate to an autonomously active phosphorylated intermediate (De Koninck and Schulman, 1998). We used spin labelling and electron paramagnetic resonance spectroscopy to elucidate the structural and dynamic bases of autoinhibition and activation of the kinase domain of CaMKII. In contrast to existing models, we find that autoinhibition involves a conformeric equilibrium of the regulatory domain, modulating substrate and nucleotide access. Binding of calmodulin to the regulatory domain induces conformational changes that release the catalytic cleft, activating the kinase and exposing an otherwise inaccessible phosphorylation site, threonine 286. Autophosphorylation at Thr286 further disrupts the interactions between the catalytic and regulatory domains, enhancing the interaction with calmodulin, but maintains the regulatory domain in a dynamic unstructured conformation following dissociation of calmodulin, sustaining activation. These findings support a mechanistic model of the CaMKII holoenzyme grounded in a dynamic understanding of autoregulation that is consistent with a wealth of biochemical and functional data.
Collapse
|
6
|
Rellos P, Pike ACW, Niesen FH, Salah E, Lee WH, von Delft F, Knapp S. Structure of the CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation. PLoS Biol 2010; 8:e1000426. [PMID: 20668654 PMCID: PMC2910593 DOI: 10.1371/journal.pbio.1000426] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 06/08/2010] [Indexed: 11/25/2022] Open
Abstract
Structural and biophysical studies reveal how CaMKII kinases, which are important for cellular learning and memory, are switched on by binding of Ca2+/calmodulin. Long-term potentiation (LTP), a long-lasting enhancement in communication between neurons, is considered to be the major cellular mechanism underlying learning and memory. LTP triggers high-frequency calcium pulses that result in the activation of Calcium/Calmodulin (CaM)-dependent kinase II (CaMKII). CaMKII acts as a molecular switch because it remains active for a long time after the return to basal calcium levels, which is a unique property required for CaMKII function. Here we describe the crystal structure of the human CaMKIIδ/Ca2+/CaM complex, structures of all four human CaMKII catalytic domains in their autoinhibited states, as well as structures of human CaMKII oligomerization domains in their tetradecameric and physiological dodecameric states. All four autoinhibited human CaMKIIs were monomeric in the determined crystal structures but associated weakly in solution. In the CaMKIIδ/Ca2+/CaM complex, the inhibitory region adopted an extended conformation and interacted with an adjacent catalytic domain positioning T287 into the active site of the interacting protomer. Comparisons with autoinhibited CaMKII structures showed that binding of calmodulin leads to the rearrangement of residues in the active site to a conformation suitable for ATP binding and to the closure of the binding groove for the autoinhibitory helix by helix αD. The structural data, together with biophysical interaction studies, reveals the mechanism of CaMKII activation by calmodulin and explains many of the unique regulatory properties of these two essential signaling molecules. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3-D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the Web plugin are available in Text S1. CaMKII enzymes transmit calcium ion (Ca2+) signals released inside the cell by regulating signal transduction pathways through phosphorylation: Ca2+ first binds to the small regulatory protein CaM; this Ca2+/CaM complex then binds to and activates the kinase, which phosphorylates other proteins in the cell. Since CaMKs remain active long after rapid Ca2+ pulses have dropped they function as molecular switches that turn on or off crucial cell functions in response to Ca2+ levels. The multifunctional CaMKII forms of this enzyme – of which there are four in human – are important in many processes including signaling in neurons and controlling of the heart rate. They are particularly abundant in the brain where they probably play a role in memory. CaMKII forms an exceptionally large, dodecameric complex. Here, we describe the crystal structure of this complex for each of the four human CaMKII catalytic domains in their autoinhibited states, a complex of CaMKII with Ca2+/CaM, as well as the structure of the oligomerization domain (the part of the protein that mediates complex formation) in its physiological dodecameric state and in a tetradecameric state. Detailed comparison of this large body of structural data together with biophysical studies has allowed us to better understand the structural mechanisms of CaMKII activation by CaM and to explain many of the complex regulatory features of these essential enzymes.
Collapse
Affiliation(s)
- Peter Rellos
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford, United Kingdom
| | - Ashley C. W. Pike
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford, United Kingdom
| | - Frank H. Niesen
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford, United Kingdom
| | - Eidarus Salah
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford, United Kingdom
| | - Wen Hwa Lee
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford, United Kingdom
| | - Frank von Delft
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford, United Kingdom
| | - Stefan Knapp
- University of Oxford, Nuffield Department of Clinical Medicine, Structural Genomics Consortium, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Carrière C, Mornon JP, Venien-Bryan C, Boisset N, Callebaut I. Calcineurin B-like domains in the large regulatory α/β subunits of phosphorylase kinase. Proteins 2008; 71:1597-606. [DOI: 10.1002/prot.22006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J. Structure of the Autoinhibited Kinase Domain of CaMKII and SAXS Analysis of the Holoenzyme. Cell 2005; 123:849-60. [PMID: 16325579 DOI: 10.1016/j.cell.2005.10.029] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/02/2005] [Accepted: 10/19/2005] [Indexed: 11/25/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase-II (CaMKII) is unique among protein kinases for its dodecameric assembly and its complex response to Ca2+. The crystal structure of the autoinhibited kinase domain of CaMKII, determined at 1.8 A resolution, reveals an unexpected dimeric organization in which the calmodulin-responsive regulatory segments form a coiled-coil strut that blocks peptide and ATP binding to the otherwise intrinsically active kinase domains. A threonine residue in the regulatory segment, which when phosphorylated renders CaMKII calmodulin independent, is held apart from the catalytic sites by the organization of the dimer. This ensures a strict Ca2+ dependence for initial activation. The structure of the kinase dimer, when combined with small-angle X-ray scattering data for the holoenzyme, suggests that inactive CaMKII forms tightly packed autoinhibited assemblies that convert upon activation into clusters of loosely tethered and independent kinase domains.
Collapse
Affiliation(s)
- Oren S Rosenberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
9
|
Zhu G, Fujii K, Liu Y, Codrea V, Herrero J, Shaw S. A Single Pair of Acidic Residues in the Kinase Major Groove Mediates Strong Substrate Preference for P-2 or P-5 Arginine in the AGC, CAMK, and STE Kinase Families. J Biol Chem 2005; 280:36372-9. [PMID: 16131491 DOI: 10.1074/jbc.m505031200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most basophilic serine/threonine kinases preferentially phosphorylate substrates with Arg at P-3 but vary greatly in additional strong preference for Arg at P-2 or P-5. The structural basis for P-2 or P-5 preference is known for two AGC kinases (family of protein kinases A, G, and C) in which it is mediated by a single pair of acidic residues (PEN+1 and YEM+1). We sought a general understanding of P-2 and P-5 Arg preference. The strength of Arg preference at each position was assessed in 15 kinases using a new degenerate peptide library approach. Strong P-2 or P-5 Arg preference occurred not only in AGC kinases (7 of 8 studied) but also in calmodulin-dependent protein kinase (CAMK, 1 of 3) and Ste20 (STE) kinases (2 of 4). Analysis of sequence conservation demonstrated almost perfect correlation between (a) strong P-2 or P-5 Arg preference and (b) acidic residues at both PEN+1 and YEM+1. Mutation of two kinases (PKC-theta and p21-activated kinase 1 (PAK1)) confirmed critical roles of both PEN+1 and YEM+1 residues in determining strong R-2 Arg preference. PAK kinases were unique in having exceptionally strong Arg preference at P-2 but lacking strong Arg preference at P-3. Preference for Arg at P-2 was so critical to PAK recognition that PAK1 activity was virtually eliminated by mutating the PEN+1 or YEM+1 residues. The fact that this specific pair of acidic residues has been repeatedly and exclusively used by evolution for conferring strong Arg preference at two different substrate positions in three different kinase families implies it is uniquely well suited to mediate sufficiently good substrate binding without unduly restricting product release.
Collapse
Affiliation(s)
- Guozhi Zhu
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
10
|
Wu JC, Chen TY, Yu CTR, Tsai SJ, Hsu JM, Tang MJ, Chou CK, Lin WJ, Yuan CJ, Huang CYF. Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J Biol Chem 2005; 280:9013-22. [PMID: 15637052 DOI: 10.1074/jbc.m411068200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human Aurora kinases have three gene family members: Aurora-A, Aurora-B, and Aurora-C. It is not yet established what the specificity of these kinases are and what signals relayed by their reactions. Therefore, we employed small pool expression screening to search for downstream substrates of Aurora-A. Interestingly, all of the identified Aurora-A substrates were resistant to serve as substrates for Aurora-B or Aurora-C, suggesting that these Aurora family members may have distinct substrate specificity for propagation of diverse signaling pathways, even though they share a conserved catalytic kinase domain. Of the candidate substrates, Aurora-A could increase the functional activity of RalA. Mutational analysis revealed that RalA-Ser194 was the phosphorylation site for Aurora-A. Ectopic expression of V23RalA-WT could enhance collagen I-induced cell migration and anchorage-independent growth in Madin-Darby canine kidney (MDCK) Aurora-A stable cell lines. In contrast, overexpression of V23RalA-S194A in MDCK Aurora-A-stable cell lines abolished the intrinsic migration and transformation abilities of Aurora-A. To our knowledge, this is the first systematic search for the downstream substrates of Aurora-A kinase. Moreover, these results support the notion that Aurora-A may act in concert with V23RalA through protein phosphorylation on Ser194 to promote collagen I-induced cell motility and anchorage-independent growth in MDCK epithelial cells.
Collapse
Affiliation(s)
- Jiunn-Chyi Wu
- Division of Molecular and Genomic Medicine, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County 350, Taipei, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Niv MY, Rubin H, Cohen J, Tsirulnikov L, Licht T, Peretzman-Shemer A, Cna'an E, Tartakovsky A, Stein I, Albeck S, Weinstein I, Goldenberg-Furmanov M, Tobi D, Cohen E, Laster M, Ben-Sasson SA, Reuveni H. Sequence-based Design of Kinase Inhibitors Applicable for Therapeutics and Target Identification. J Biol Chem 2004; 279:1242-55. [PMID: 14570903 DOI: 10.1074/jbc.m306723200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A platform for specifically modulating kinase-dependent signaling using peptides derived from the catalytic domain of the kinase is presented. This technology, termed KinAce, utilizes the canonical structure of protein kinases. The targeted regions (subdomain V and subdomains IX and X) are analyzed and their sequence, three-dimensional structure, and involvement in protein-protein interaction are highlighted. Short myristoylated peptides were derived from the target regions of the tyrosine kinases c-Kit and Lyn and the serine/threonine kinases 3-phosphoinositide-dependent kinase-1 (PDK1) and Akt/protein kinase B (PKB). For each kinase an active designer peptide is shown to selectively inhibit the signaling of the kinase from which it is derived, and to inhibit cancer cell proliferation in the micromolar range. This technology emerges as an applicable tool for deriving sequence-based selective inhibitors for a broad range of protein kinases as hits that may be further developed into drugs. Moreover, it enables identification of novel kinase targets for selected therapeutic indications as demonstrated in the KinScreen application.
Collapse
Affiliation(s)
- Masha Y Niv
- Keryx Biopharmaceuticals, 15 Yad-Haruzim St., Jerusalem 93420, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG. Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol 2002; 317:309-23. [PMID: 11902845 DOI: 10.1006/jmbi.2001.5316] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have expressed a truncated form of the alpha1 kinase domain of AMP-activated protein kinase (AMPK) in Escherichia coli as a glutathione-S-transferase fusion (GST-KD). A T172D mutant version did not require prior phosphorylation and was utilized for most subsequent studies. We have also created a recombinant substrate (GST-ACC) by expressing 34 residues around the major phosphorylation site (Ser79) on rat acetyl-CoA carboxylase-1/alpha (ACC1) as a GST fusion. This was an excellent substrate that was phosphorylated with similar kinetic parameters to ACC1 by both native AMPK and the bacterially expressed kinase domain. We also constructed a structural model for the binding of the ACC1 sequence to the kinase domain, based on crystal structures for related protein kinases. The model was tested by making a total of 25 mutants of GST-ACC and seven mutants of GST-KD, and measuring kinetic parameters with different combinations. The results reveal that AMPK and ACC1 interact over a much wider region than previously realized (>20 residues). The features of the interaction can be summarised as follows: (i) an amphipathic helix from P-16 to P-5 on the substrate binds in a hydrophobic groove on the large lobe of the kinase; (ii) basic residues at P-6 and P-4 bind to two acidic patches (D215/D216/D217 and E103/D100/E143, respectively), on the large lobe; (iii) a histidine at P+3 interacts with D56 on the small lobe; (iv) the side-chain of P+4 leucine could not be precisely positioned, but a new finding was that asparagine or glutamine could replace a hydrophobic residue at this position. These interactions position the serine residue to be phosphorylated in close proximity to the gamma-phosphate group of ATP. Although based on modelling rather than a determined structure, this represents one of the most detailed studies of the interaction between a kinase and its substrate achieved to date.
Collapse
Affiliation(s)
- John W Scott
- Division of Molecular Physiology, School of Life Sciences and Wellcome Trust Biocentre, Dundee University, Scotland, UK
| | | | | | | | | |
Collapse
|
13
|
Bartleson C, Graves DJ. An inhibitory segment of the catalytic subunit of phosphorylase kinase does not act as a pseudosubstrate. J Biol Chem 2001; 276:34560-6. [PMID: 11448955 DOI: 10.1074/jbc.m102308200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C terminus of the catalytic gamma subunit of phosphorylase kinase contains two autoinhibitory calmodulin binding domains designated PhK13 and PhK5. These peptides inhibit truncated gamma(1-300). Previous data show that PhK13 (residues 302-326) is a competitive inhibitor with respect to phosphorylase b, with a K(i) of 1.8 microm. This result suggests that PhK13 may bind to the active site of truncated gamma(1-300). Variants of PhK13 were prepared to localize the determinants for interaction with the catalytic fragment gamma(1-300). PhK13-1, containing residues 302-312, was found to be a competitive inhibitor with respect to phosphorylase b with a K(i) of 6.0 microm. PhK13 has been proposed to function as a pseudosubstrate inhibitor with Cys-308 occupying the site that normally accommodates the phosphorylatable serine in phosphorylase b. A PhK13-1 variant, C308S, was synthesized. Kinetic characterization of this peptide reveals that it does not serve as a substrate but is a competitive inhibitor. Additional variants were designed based on previous knowledge of phosphorylase kinase substrate determinants. Variants were analyzed as substrates and as inhibitors for truncated gamma(1-300). Although PhK13-1 does not appear to function as a pseudosubstrate, several specificity determinants employed in the recognition of phosphorylase b as substrate are utilized in the recognition of PhK13-1 as an inhibitor.
Collapse
Affiliation(s)
- C Bartleson
- Signal Transduction Training Program and the Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
14
|
Graves D, Bartleson C, Biorn A, Pete M. Substrate and inhibitor recognition of protein kinases: what is known about the catalytic subunit of phosphorylase kinase? Pharmacol Ther 1999; 82:143-55. [PMID: 10454193 DOI: 10.1016/s0163-7258(98)00049-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although much can be learned about the specificity of protein kinases from studies with peptide substrates, the question remains, how do kinases recognize their three-dimensional protein substrates? Information derived from such studies provides further understanding of substrate recognition and can facilitate the design of specific protein kinase inhibitors. Phosphorylase kinase (PhK) catalyzes the phosphorylation of phosphorylase b (phos. b) to form the active phosphorylase a. No other protein kinase can duplicate this reaction. Why? To probe this question and establish what features in the protein are important for substrate binding and product release, mutants of phos. b have been studied. This report shows how mutations change the properties of the protein substrate and the ability of these mutants to be phosphorylated by PhK and other kinases. Action of protein kinases on their substrates is often regulated by autoinhibitory segments. The C-terminus of the catalytic gamma-subunit of PhK contains two inhibitory sites overlapping two calmodulin-binding regions. These two peptide segments resemble sequences in phos. b and may explain why peptides of these regions are potent inhibitors of PhK. We will show results with peptide inhibitors, using various expressed forms of the catalytic subunit, which describe their modes of interaction and mechanisms of inhibition. Metal ions can change molecular interactions. With PhK, Mn2+ facilitates the use of GTP as a phosphoryl group donor and greatly increases phosphorylation of a tyrosine residue in angiotensin II. This implies that the spatial arrangement of specificity determinants can be manipulated so that PhK can utilize other substrates.
Collapse
Affiliation(s)
- D Graves
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
15
|
Lowe ED, Noble ME, Skamnaki VT, Oikonomakos NG, Owen DJ, Johnson LN. The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J 1997; 16:6646-58. [PMID: 9362479 PMCID: PMC1170269 DOI: 10.1093/emboj/16.22.6646] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The structure of a truncated form of the gamma-subunit of phosphorylase kinase (PHKgammat) has been solved in a ternary complex with a non-hydrolysable ATP analogue (adenylyl imidodiphosphate, AMPPNP) and a heptapeptide substrate related in sequence to both the natural substrate and to the optimal peptide substrate. Kinetic characterization of the phosphotransfer reaction confirms the peptide to be a good substrate, and the structure allows identification of key features responsible for its high affinity. Unexpectedly, the substrate peptide forms a short anti-parallel beta-sheet with the kinase activation segment, the region which in other kinases plays an important role in regulation of enzyme activity. This anchoring of the main chain of the substrate peptide at a fixed distance from the gamma-phosphate of ATP explains the selectivity of PHK for serine/threonine over tyrosine as a substrate. The catalytic core of PHK exists as a dimer in crystals of the ternary complex, and the relevance of this phenomenon to its in vivo recognition of dimeric glycogen phosphorylase b is considered.
Collapse
Affiliation(s)
- E D Lowe
- Laboratory of Molecular Biophysics and Oxford Centre for Molecular Sciences, University of Oxford, Rex Richards Building, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | |
Collapse
|
16
|
Johnson LN, Barford D, Owen DJ, Noble ME, Garman EF. From phosphorylase to phosphorylase kinase. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1997; 31:11-28. [PMID: 9344238 DOI: 10.1016/s1040-7952(97)80005-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- L N Johnson
- Laboratory of Molecular Biophysics, University of Oxford, England
| | | | | | | | | |
Collapse
|
17
|
Wangsgard WP, Dasgupta M, Blumenthal DK. Antipeptide antibodies as probes of subunit-dependent structural changes in the regulatory domain of the gamma-subunit of phosphorylase kinase. Biochem Biophys Res Commun 1997; 230:179-83. [PMID: 9020041 DOI: 10.1006/bbrc.1996.5927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The gamma-subunit of phosphorylase kinase contains a protein kinase catalytic domain (residues 20-276) and a regulatory domain (residues 276-386). The purpose of the present investigation was to develop monospecific antibodies against four synthetic gamma-subunit regulatory domain peptides (PhK1: 362-386; PhK5: 342-366; PhK9: 322-346; PhK13: 302-326) to use as probes to study the structure of the regulatory domain. Each affinity-purified antibody was characterized with regard to its ability to bind three different structural forms of the gamma-subunit: the isolated gamma-subunit, the gamma-delta complex, and the holoenzyme complex (alpha beta delta gamma)4. Of the four antibodies, binding of affinity-purified anti-PhK13 was most affected by alterations in gamma-subunit interactions. Taken together, the data from this investigation indicate that the regulatory domain of the gamma-subunit can assume different immunochemically distinguishable conformations as the result of interactions among the alpha-, beta-, gamma-, and delta-subunits of phosphorylase kinase.
Collapse
Affiliation(s)
- W P Wangsgard
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
18
|
Pinna LA, Ruzzene M. How do protein kinases recognize their substrates? BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1314:191-225. [PMID: 8982275 DOI: 10.1016/s0167-4889(96)00083-3] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L A Pinna
- Dipartimento di Chimica Biologica, Università di Padova, Italy.
| | | |
Collapse
|
19
|
Wangsgard WP, Meixell GE, Dasgupta M, Blumenthal DK. Activation and inhibition of phosphorylase kinase by monospecific antibodies raised against peptides from the regulatory domain of the gamma-subunit. J Biol Chem 1996; 271:21126-33. [PMID: 8702882 DOI: 10.1074/jbc.271.35.21126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The C terminus of the catalytic gamma-subunit of phosphorylase kinase comprises a regulatory domain that contains regions important for subunit interactions and autoinhibitory functions. Monospecific antibodies raised against four synthetic peptides from this region, PhK1 (362-386), PhK5 (342-366), PhK9 (322-346), and PhK13 (302-326), were found to have significant effects on the catalytic activities of phosphorylase kinase holoenzyme and the gamma delta complex. Antibodies raised against the very C terminus of the gamma-subunit, anti-PhK1 and anti-PhK5, markedly activated both holoenzyme and the gamma delta complex, in the presence and absence of Ca2+. In the presence of Ca2+ at pH 8.2, anti-PhK1 activated the holoenzyme more than 11-fold and activated the gamma delta complex 2.5-fold. Activation of the holoenzyme and the gamma delta complex by anti-PhK5 was 50-70% of that observed with anti-PhK1. Prior phosphorylation of the holoenzyme by the cAMP-dependent protein kinase blocked activation by both anti-PhK1 and anti-PhK5. Antibodies raised against the peptides from the N terminus of the regulatory domain, anti-PhK9 and anti-PhK13, were inhibitory, with their greatest effects on the gamma delta complex. These data demonstrate that the binding of antibodies to specific regions within the regulatory domain of the gamma-subunit can augment or inhibit structural changes and subunit interactions important in regulating phosphorylase kinase activity.
Collapse
Affiliation(s)
- W P Wangsgard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
20
|
Francis SH, Smith JA, Colbran JL, Grimes K, Walsh KA, Kumar S, Corbin JD. Arginine 75 in the Pseudosubstrate Sequence of Type Iβ cGMPdependent Protein Kinase Is Critical for Autoinhibition, Although Autophosphorylated Serine 63 Is Outside This Sequence. J Biol Chem 1996. [DOI: 10.1074/jbc.271.34.20748] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Sarno S, Vaglio P, Meggio F, Issinger OG, Pinna LA. Protein kinase CK2 mutants defective in substrate recognition. Purification and kinetic analysis. J Biol Chem 1996; 271:10595-601. [PMID: 8631861 DOI: 10.1074/jbc.271.18.10595] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Five mutants of protein kinase CK2 alpha subunit in which altogether 14 basic residues were singly to quadruply replaced by alanines (K74A,K75A,K76A,K77A; K79A, R80A,K83A; R191A,R195A,K198A; R228A; and R278A, K279A,R280A) have been purified to near homogeneity either as such or after addition of the recombinant beta subunit. By this latter procedure five mutated tetrameric holoenzymes were obtained as judged from their subunit composition, sedimentation coefficient on sucrose gradient ultracentrifugation, and increased activity toward a specific peptide substrate as compared with the isolated alpha subunits. The kinetic constants and the phosphorylation efficiencies (V(max)/Km) of all the mutants with the parent peptide RRRADDSDDDDD and a series of derivatives, in which individual aspartic acids were replaced by alanines, have been determined. Three mutants, namely K74A,K75A,K76A,K77A; K79A, R80A,K83A; and R191A,R195A, K198A, display dramatically lower phosphorylation efficiency and 8-50-fold higher Km values with the parent peptide, symptomatic of reduced attitude to bind the peptide substrate as compared with CK2 wild type. Such differences either disappear or are attentuated if the mutants R191A,R195A, K198A; K79A,R80A,K83A; and K74A,K75A, K76A,K77A are assayed with the peptides RRRADDSADDDD, RRRADDSDDADD, and RRRADDSDDDAA, respectively. In contrast, the phosphorylation efficiencies of the other substituted peptides decrease more markedly with these mutants than with CK2 wild type. These data show that one or more of the basic residues clustered in the 191-198, 79-83, and 74-77 sequences are implicated in the recognition of the acidic determinants at positions +1, +3, and +4/+5, respectively, and that if these residues are mutated, the relevance of the other acidic residues surrounding serine is increased. In contrast the other two mutants, namely R228A and R278A,K279A, R280A, display with all the peptides V(max) values higher than CK2 wild type, counterbalanced however by somewhat higher Km values. It can be concluded from these data that all five mutations performed are compatible with the reconstitution of tetrameric holoenzyme, but all of them influence the enzymatic efficiency of CK2 to different extents. Although the basic residues mutated in the 74-77, 79-83, and 191-198 sequences are clearly implicated in substrate recognition by interacting with acidic determinants at variable positions downstream from serine, the other basic residues seem to play a more elusive and/or indirect role in catalysis.
Collapse
Affiliation(s)
- S Sarno
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
22
|
Dasgupta M, Blumenthal DK. Characterization of the regulatory domain of the gamma-subunit of phosphorylase kinase. The two noncontiguous calmodulin-binding subdomains are also autoinhibitory. J Biol Chem 1995; 270:22283-9. [PMID: 7673209 DOI: 10.1074/jbc.270.38.22283] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphorylase kinase is a multimeric protein kinase (alpha 4 beta 4 gamma 4 delta 4) whose enzymatic activity is conferred by its gamma-subunit. A library of 18 overlapping synthetic peptides spanning residues 277-386 of the gamma-subunit has been prepared to use in identifying important regulatory structures in the protein. In the present study, the library was screened to identify regions that might function as autoinhibitory domains. Peptides from two distinct regions were found to inhibit the Ca2(+)-activated holoenzyme. The same regions were previously found to bind calmodulin (i.e. the delta-subunit; Dasgupta, M. Honeycutt, T., and Blumenthal, D. K. (1989) J. Biol. Chem. 264, 17156-17163). The most potent substrate antagonist peptides were PhK13 (residues 302-326; Ki = 300 nM) and PhK5 (residues 342-366; Ki = 20 microM). Both peptides inhibited the holoenzyme competitively with respect to phosphorylase b and noncompetitively with respect to Mg.ATP. When the pattern of inhibition with both peptides present was analyzed, inhibition was observed to be synergistic and modestly cooperative indicating that the two peptides can simultaneously occupy the protein substrate-binding site(s). These data are consistent with a model in which the regions of the gamma-subunit represented by PhK5 and PhK13 work in concert as regulatory subdomains that transduce Ca2(+)-induced conformational changes in the delta-subunit to the catalytic gamma-subunit through a pseudosubstrate autoinhibitory mechanism.
Collapse
Affiliation(s)
- M Dasgupta
- Department of Biochemistry, University of Texas Health Center, Tyler 75710, USA
| | | |
Collapse
|