1
|
Stefanova ME, Volokh OI, Chertkov OV, Armeev GA, Shaytan AK, Feofanov AV, Kirpichnikov MP, Sokolova OS, Studitsky VM. Structure and Dynamics of Compact Dinucleosomes: Analysis by Electron Microscopy and spFRET. Int J Mol Sci 2023; 24:12127. [PMID: 37569503 PMCID: PMC10419094 DOI: 10.3390/ijms241512127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Formation of compact dinucleosomes (CODIs) occurs after collision between adjacent nucleosomes at active regulatory DNA regions. Although CODIs are likely dynamic structures, their structural heterogeneity and dynamics were not systematically addressed. Here, single-particle Förster resonance energy transfer (spFRET) and electron microscopy were employed to study the structure and dynamics of CODIs. spFRET microscopy in solution and in gel revealed considerable uncoiling of nucleosomal DNA from the histone octamer in a fraction of CODIs, suggesting that at least one of the nucleosomes is destabilized in the presence of the adjacent closely positioned nucleosome. Accordingly, electron microscopy analysis suggests that up to 30 bp of nucleosomal DNA are involved in transient uncoiling/recoiling on the octamer. The more open and dynamic nucleosome structure in CODIs cannot be stabilized by histone chaperone Spt6. The data suggest that proper internucleosomal spacing is an important determinant of chromatin stability and support the possibility that CODIs could be intermediates of chromatin disruption.
Collapse
Affiliation(s)
- Maria E. Stefanova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Olesya I. Volokh
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Oleg V. Chertkov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Grigory A. Armeev
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey K. Shaytan
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga S. Sokolova
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Biological Faculty, MSU-BIT Shenzhen University, Shenzhen 518115, China
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; (M.E.S.); (O.I.V.); (O.V.C.); (G.A.A.); (A.K.S.); (A.V.F.); (O.S.S.); (V.M.S.)
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
2
|
Malinina DK, Sivkina AL, Korovina AN, McCullough LL, Formosa T, Kirpichnikov MP, Studitsky VM, Feofanov AV. Hmo1 Protein Affects the Nucleosome Structure and Supports the Nucleosome Reorganization Activity of Yeast FACT. Cells 2022; 11:cells11192931. [PMID: 36230893 PMCID: PMC9564320 DOI: 10.3390/cells11192931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Yeast Hmo1 is a high mobility group B (HMGB) protein that participates in the transcription of ribosomal protein genes and rDNA, and also stimulates the activities of some ATP-dependent remodelers. Hmo1 binds both DNA and nucleosomes and has been proposed to be a functional yeast analog of mammalian linker histones. We used EMSA and single particle Förster resonance energy transfer (spFRET) microscopy to characterize the effects of Hmo1 on nucleosomes alone and with the histone chaperone FACT. Hmo1 induced a significant increase in the distance between the DNA gyres across the nucleosomal core, and also caused the separation of linker segments. This was opposite to the effect of the linker histone H1, which enhanced the proximity of linkers. Similar to Nhp6, another HMGB factor, Hmo1, was able to support large-scale, ATP-independent, reversible unfolding of nucleosomes by FACT in the spFRET assay and partially support FACT function in vivo. However, unlike Hmo1, Nhp6 alone does not affect nucleosome structure. These results suggest physiological roles for Hmo1 that are distinct from Nhp6 and possibly from other HMGB factors and linker histones, such as H1.
Collapse
Affiliation(s)
- Daria K. Malinina
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | - Anna N. Korovina
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Laura L. McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Mikhail P. Kirpichnikov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vasily M. Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Correspondence: (V.M.S.); (A.V.F.)
| | - Alexey V. Feofanov
- Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: (V.M.S.); (A.V.F.)
| |
Collapse
|
3
|
Vinayachandran V, Bhargava P. Structural Features of the Nucleosomal DNA Modulate the Functional Binding of a Transcription Factor and Productive Transcription. Front Genet 2022; 13:870700. [PMID: 35646068 PMCID: PMC9136082 DOI: 10.3389/fgene.2022.870700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
A small non-histone protein of budding yeast, Nhp6 has been reported to specifically influence the transcription of a yeast gene, SNR6. The gene is essential, transcribed by the enzyme RNA polymerase III, and codes for the U6snRNA required for mRNA splicing. A translationally positioned nucleosome on the gene body enables the assembly factor TFIIIC binding by juxtaposing its otherwise widely separated binding sites, boxes A and B. We found histone depletion results in the loss of U6 snRNA production. Changing the rotational phase of the boxes and the linear distance between them with deletions in 5 bp steps displayed a helical periodicity in transcription, which gradually reduced with incremental deletions up to 40 bp but increased on further deletions enclosing the pseudoA boxes. Nhp6 influences the transcription in a dose-dependent manner, which is modulated by its previously reported co-operator, an upstream stretch of seven T residues centered between the TATA box and transcription start site. Nhp6 occupancy on the gene in vivo goes up at least 2-fold under the repression conditions. Nhp6 absence, T7 disruption, or shorter A–B box distance all cause the downstream initiation of transcription. The right +1 site is selected with the correct placement of TFIIIC before the transcription initiation factor TFIIIB. Thus, the T7 sequence and Nhp6 help the assembly and placement of the transcription complex at the right position. Apart from the chromatin remodelers, the relative rotational orientation of the promoter elements in nucleosomal DNA, and Nhp6 regulate the transcription of the SNR6 gene with precision.
Collapse
|
4
|
Electron microscopy analysis of ATP-independent nucleosome unfolding by FACT. Commun Biol 2022; 5:2. [PMID: 35013515 PMCID: PMC8748794 DOI: 10.1038/s42003-021-02948-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
FACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form. Sivkina et al. present a biochemical and biophysical characterization of the interaction of S. cerevisiae histone chaperone FACT with the nucleosome core particle. They show that FACT adopts a more open geometry in the presence of Nhp6, and together they unfold nucleosomes to an almost extended conformation, suggesting a mechanism for FACT-facilitated disassembly of nucleosomes.
Collapse
|
5
|
Huang L, Zhang Z, McMacken R. Interaction of the Escherichia coli HU Protein with Various Topological Forms of DNA. Biomolecules 2021; 11:1724. [PMID: 34827722 PMCID: PMC8616027 DOI: 10.3390/biom11111724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 01/24/2023] Open
Abstract
E. coli histone-like protein HU has been shown to interact with different topological forms of DNA. Using radiolabeled HU, we examine the effects of DNA supercoiling on HU-DNA interactions. We show that HU binds preferentially to negatively supercoiled DNA and that the affinity of HU for DNA increases with increases in the negative superhelical density of DNA. Binding of HU to DNA is most sensitively influenced by DNA supercoiling within a narrow but physiologically relevant range of superhelicity (σ = -0.06-0). Under stoichiometric binding conditions, the affinity of HU for negatively supercoiled DNA (σ = -0.06) is more than 10 times higher than that for relaxed DNA at physiologically relevant HU/DNA mass ratios (e.g., 1:10). This binding preference, however, becomes negligible at HU/DNA mass ratios higher than 1:2. At saturation, HU binds both negatively supercoiled and relaxed DNA with similar stoichiometries, i.e., 5-6 base pairs per HU dimer. In our chemical crosslinking studies, we demonstrate that HU molecules bound to negatively supercoiled DNA are more readily crosslinked than those bound to linear DNA. At in vivo HU/DNA ratios, HU appears to exist predominantly in a tetrameric form on negatively supercoiled DNA and in a dimeric form on linear DNA. Using a DNA ligase-mediated nick closure assay, we show that approximately 20 HU dimers are required to constrain one negative supercoil on relaxed DNA. Although fewer HU dimers may be needed to constrain one negative supercoil on negatively supercoiled DNA, our results and estimates of the cellular level of HU argue against a major role for HU in constraining supercoils in vivo. We discuss our data within the context of the dynamic distribution of the HU protein in cells, where temporal and local changes of DNA supercoiling are known to take place.
Collapse
Affiliation(s)
- Li Huang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Roger McMacken
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
6
|
Kamagata K, Itoh Y, Tan C, Mano E, Wu Y, Mandali S, Takada S, Johnson RC. Testing mechanisms of DNA sliding by architectural DNA-binding proteins: dynamics of single wild-type and mutant protein molecules in vitro and in vivo. Nucleic Acids Res 2021; 49:8642-8664. [PMID: 34352099 PMCID: PMC8421229 DOI: 10.1093/nar/gkab658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
Architectural DNA-binding proteins (ADBPs) are abundant constituents of eukaryotic or bacterial chromosomes that bind DNA promiscuously and function in diverse DNA reactions. They generate large conformational changes in DNA upon binding yet can slide along DNA when searching for functional binding sites. Here we investigate the mechanism by which ADBPs diffuse on DNA by single-molecule analyses of mutant proteins rationally chosen to distinguish between rotation-coupled diffusion and DNA surface sliding after transient unbinding from the groove(s). The properties of yeast Nhp6A mutant proteins, combined with molecular dynamics simulations, suggest Nhp6A switches between two binding modes: a static state, in which the HMGB domain is bound within the minor groove with the DNA highly bent, and a mobile state, where the protein is traveling along the DNA surface by means of its flexible N-terminal basic arm. The behaviors of Fis mutants, a bacterial nucleoid-associated helix-turn-helix dimer, are best explained by mobile proteins unbinding from the major groove and diffusing along the DNA surface. Nhp6A, Fis, and bacterial HU are all near exclusively associated with the chromosome, as packaged within the bacterial nucleoid, and can be modeled by three diffusion modes where HU exhibits the fastest and Fis the slowest diffusion.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Wang P, Yang W, Zhao S, Nashun B. Regulation of chromatin structure and function: insights into the histone chaperone FACT. Cell Cycle 2021; 20:465-479. [PMID: 33590780 DOI: 10.1080/15384101.2021.1881726] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, changes in chromatin accessibility are necessary for chromatin to maintain its highly dynamic nature at different times during the cell cycle. Histone chaperones interact with histones and regulate chromatin dynamics. Facilitates chromatin transcription (FACT) is an important histone chaperone that plays crucial roles during various cellular processes. Here, we analyze the structural characteristics of FACT, discuss how FACT regulates nucleosome/chromatin reorganization and summarize possible functions of FACT in transcription, replication, and DNA repair. The possible involvement of FACT in cell fate determination is also discussed.Abbreviations: FACT: facilitates chromatin transcription, Spt16: suppressor of Ty16, SSRP1: structure-specific recognition protein-1, NTD: N-terminal domain, DD: dimerization domain, MD: middle domain, CTD: C-terminus domain, IDD: internal intrinsically disordered domain, HMG: high mobility group, CID: C-terminal intrinsically disordered domain, Nhp6: non-histone chromosomal protein 6, RNAPII: RNA polymerase II, CK2: casein kinase 2, AID: acidic inner disorder, PIC: pre-initiation complex, IR: ionizing radiation, DDSB: DNA double-strand break, PARlation: poly ADP-ribosylation, BER: base-excision repair, UVSSA: UV-stimulated scaffold protein A, HR: homologous recombination, CAF-1: chromatin assembly factor 1, Asf1: anti-silencing factor 1, Rtt106: regulator of Ty1 transposition protein 106, H3K56ac: H3K56 acetylation, KD: knock down, SETD2: SET domain containing 2, H3K36me3: trimethylation of lysine36 in histone H3, H2Bub: H2B ubiquitination, iPSCs: induced pluripotent stem cells, ESC: embryonic stem cell, H3K4me3: trimethylation of lysine 4 on histone H3 protein subunit, CHD1: chromodomain protein.
Collapse
Affiliation(s)
- Peijun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuxin Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Kamagata K, Ouchi K, Tan C, Mano E, Mandali S, Wu Y, Takada S, Takahashi S, Johnson RC. The HMGB chromatin protein Nhp6A can bypass obstacles when traveling on DNA. Nucleic Acids Res 2020; 48:10820-10831. [PMID: 32997109 PMCID: PMC7641734 DOI: 10.1093/nar/gkaa799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
DNA binding proteins rapidly locate their specific DNA targets through a combination of 3D and 1D diffusion mechanisms, with the 1D search involving bidirectional sliding along DNA. However, even in nucleosome-free regions, chromosomes are highly decorated with associated proteins that may block sliding. Here we investigate the ability of the abundant chromatin-associated HMGB protein Nhp6A from Saccharomyces cerevisiae to travel along DNA in the presence of other architectural DNA binding proteins using single-molecule fluorescence microscopy. We observed that 1D diffusion by Nhp6A molecules is retarded by increasing densities of the bacterial proteins Fis and HU and by Nhp6A, indicating these structurally diverse proteins impede Nhp6A mobility on DNA. However, the average travel distances were larger than the average distances between neighboring proteins, implying Nhp6A is able to bypass each of these obstacles. Together with molecular dynamics simulations, our analyses suggest two binding modes: mobile molecules that can bypass barriers as they seek out DNA targets, and near stationary molecules that are associated with neighboring proteins or preferred DNA structures. The ability of mobile Nhp6A molecules to bypass different obstacles on DNA suggests they do not block 1D searches by other DNA binding proteins.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Sridhar Mandali
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA
| | - Yining Wu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Joyeux M. Bacterial Nucleoid: Interplay of DNA Demixing and Supercoiling. Biophys J 2020; 118:2141-2150. [PMID: 31629479 PMCID: PMC7202931 DOI: 10.1016/j.bpj.2019.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 09/23/2019] [Indexed: 01/17/2023] Open
Abstract
This work addresses the question of the interplay of DNA demixing and supercoiling in bacterial cells. Demixing of DNA from other globular macromolecules results from the overall repulsion between all components of the system and leads to the formation of the nucleoid, which is the region of the cell that contains the genomic DNA in a rather compact form. Supercoiling describes the coiling of the axis of the DNA double helix to accommodate the torsional stress injected in the molecule by topoisomerases. Supercoiling is able to induce some compaction of the bacterial DNA, although to a lesser extent than demixing. In this work, we investigate the interplay of these two mechanisms with the goal of determining whether the total compaction ratio of the DNA is the mere sum or some more complex function of the compaction ratios due to each mechanism. To this end, we developed a coarse-grained bead-and-spring model and investigated its properties through Brownian dynamics simulations. This work reveals that there actually exist different regimes, depending on the crowder volume ratio and the DNA superhelical density. In particular, a regime in which the effects of DNA demixing and supercoiling on the compaction of the DNA coil simply add up is shown to exist up to moderate values of the superhelical density. In contrast, the mean radius of the DNA coil no longer decreases above this threshold and may even increase again for sufficiently large crowder concentrations. Finally, the model predicts that the DNA coil may depart from the spherical geometry very close to the jamming threshold as a trade-off between the need to minimize both the bending energy of the stiff plectonemes and the volume of the DNA coil to accommodate demixing.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique, CNRS and Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
10
|
Abstract
How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.
Collapse
Affiliation(s)
- Subhash C. Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| | - Zhong Qian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sankar L. Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| |
Collapse
|
11
|
Sarangi MK, Zvoda V, Holte MN, Becker NA, Peters JP, Maher LJ, Ansari A. Evidence for a bind-then-bend mechanism for architectural DNA binding protein yNhp6A. Nucleic Acids Res 2019; 47:2871-2883. [PMID: 30698746 PMCID: PMC6451137 DOI: 10.1093/nar/gkz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/18/2018] [Accepted: 01/18/2019] [Indexed: 01/17/2023] Open
Abstract
The yeast Nhp6A protein (yNhp6A) is a member of the eukaryotic HMGB family of chromatin factors that enhance apparent DNA flexibility. yNhp6A binds DNA nonspecifically with nM affinity, sharply bending DNA by >60°. It is not known whether the protein binds to unbent DNA and then deforms it, or if bent DNA conformations are ‘captured’ by protein binding. The former mechanism would be supported by discovery of conditions where unbent DNA is bound by yNhp6A. Here, we employed an array of conformational probes (FRET, fluorescence anisotropy, and circular dichroism) to reveal solution conditions in which an 18-base-pair DNA oligomer indeed remains bound to yNhp6A while unbent. In 100 mM NaCl, yNhp6A-bound DNA unbends as the temperature is raised, with no significant dissociation of the complex detected up to ∼45°C. In 200 mM NaCl, DNA unbending in the intact yNhp6A complex is again detected up to ∼35°C. Microseconds-resolved laser temperature-jump perturbation of the yNhp6a–DNA complex revealed relaxation kinetics that yielded unimolecular DNA bending/unbending rates on timescales of 500 μs−1 ms. These data provide the first direct observation of bending/unbending dynamics of DNA in complex with yNhp6A, suggesting a bind-then-bend mechanism for this protein.
Collapse
Affiliation(s)
- Manas Kumar Sarangi
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Viktoriya Zvoda
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Justin P Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
12
|
Nune M, Morgan MT, Connell Z, McCullough L, Jbara M, Sun H, Brik A, Formosa T, Wolberger C. FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics. eLife 2019; 8:40988. [PMID: 30681413 PMCID: PMC6372288 DOI: 10.7554/elife.40988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.
Collapse
Affiliation(s)
- Melesse Nune
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Michael T Morgan
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zaily Connell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hao Sun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Cynthia Wolberger
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
13
|
Kamagata K, Mano E, Ouchi K, Kanbayashi S, Johnson RC. High Free-Energy Barrier of 1D Diffusion Along DNA by Architectural DNA-Binding Proteins. J Mol Biol 2018; 430:655-667. [PMID: 29307468 DOI: 10.1016/j.jmb.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 01/25/2023]
Abstract
Architectural DNA-binding proteins function to regulate diverse DNA reactions and have the defining property of significantly changing DNA conformation. Although the 1D movement along DNA by other types of DNA-binding proteins has been visualized, the mobility of architectural DNA-binding proteins on DNA remains unknown. Here, we applied single-molecule fluorescence imaging on arrays of extended DNA molecules to probe the binding dynamics of three structurally distinct architectural DNA-binding proteins: Nhp6A, HU, and Fis. Each of these proteins was observed to move along DNA, and the salt concentration independence of the 1D diffusion implies sliding with continuous contact to DNA. Nhp6A and HU exhibit a single sliding mode, whereas Fis exhibits two sliding modes. Based on comparison of the diffusion coefficients and sizes of many DNA binding proteins, the architectural proteins are categorized into a new group distinguished by an unusually high free-energy barrier for 1D diffusion. The higher free-energy barrier for 1D diffusion by architectural proteins can be attributed to the large DNA conformational changes that accompany binding and impede rotation-coupled movement along the DNA grooves.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan.
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA90095-1737, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Joyeux M. In vivo compaction dynamics of bacterial DNA: A fingerprint of DNA/RNA demixing? Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nat Struct Mol Biol 2016; 23:1111-1116. [PMID: 27820806 DOI: 10.1038/nsmb.3321] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
DNA accessibility to regulatory proteins is substantially influenced by nucleosome structure and dynamics. The facilitates chromatin transcription (FACT) complex increases the accessibility of nucleosomal DNA, but the mechanism and extent of its nucleosome reorganization activity are unknown. Here we determined the effects of FACT from the yeast Saccharomyces cerevisiae on single nucleosomes by using single-particle Förster resonance energy transfer (spFRET) microscopy. FACT binding results in dramatic ATP-independent, symmetrical and reversible DNA uncoiling that affects at least 70% of the DNA within a nucleosome, occurs without apparent loss of histones and proceeds via an 'all-or-none' mechanism. A mutated version of FACT is defective in uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus, FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this activity is an important function of FACT in vivo.
Collapse
|
16
|
Joyeux M. Compaction of bacterial genomic DNA: clarifying the concepts. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:383001. [PMID: 26345139 DOI: 10.1088/0953-8984/27/38/383001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The unconstrained genomic DNA of bacteria forms a coil, whose volume exceeds 1000 times the volume of the cell. Since prokaryotes lack a membrane-bound nucleus, in sharp contrast with eukaryotes, the DNA may consequently be expected to occupy the whole available volume when constrained to fit in the cell. Still, it has been known for more than half a century that the DNA is localized in a well-defined region of the cell, called the nucleoid, which occupies only 15% to 25% of the total volume. Although this problem has focused the attention of many scientists in recent decades, there is still no certainty concerning the mechanism that enables such a dramatic compaction. The goal of this Topical Review is to take stock of our knowledge on this question by listing all possible compaction mechanisms with the proclaimed desire to clarify the physical principles they are based upon and discuss them in the light of experimental results and the results of simulations based on coarse-grained models. In particular, the fundamental differences between ψ-condensation and segregative phase separation and between the condensation by small and long polycations are highlighted. This review suggests that the importance of certain mechanisms, like supercoiling and the architectural properties of DNA-bridging and DNA-bending nucleoid proteins, may have been overestimated, whereas other mechanisms, like segregative phase separation and the self-association of nucleoid proteins, as well as the possible role of the synergy of two or more mechanisms, may conversely deserve more attention.
Collapse
Affiliation(s)
- Marc Joyeux
- Laboratoire Interdisciplinaire de Physique (CNRS UMR5588), Université Joseph Fourier Grenoble 1, BP 87, 38402 St Martin d'Hères, France
| |
Collapse
|
17
|
Abstract
Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized.
Collapse
Affiliation(s)
- Reid C. Johnson
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, Phone: 310 825-7800, Fax: 310 206-5272
| |
Collapse
|
18
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
19
|
Kasho K, Fujimitsu K, Matoba T, Oshima T, Katayama T. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation. Nucleic Acids Res 2014; 42:13134-49. [PMID: 25378325 PMCID: PMC4245941 DOI: 10.1093/nar/gku1051] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuyuki Fujimitsu
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshihiro Matoba
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Taku Oshima
- Division of Genomics of Bacterial Cell Functions, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
Kumari S, Swaminathan A, Chatterjee S, Senapati P, Boopathi R, Kundu TK. Chromatin organization, epigenetics and differentiation: an evolutionary perspective. Subcell Biochem 2013; 61:3-35. [PMID: 23150244 DOI: 10.1007/978-94-007-4525-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genome packaging is a universal phenomenon from prokaryotes to higher mammals. Genomic constituents and forces have however, travelled a long evolutionary route. Both DNA and protein elements constitute the genome and also aid in its dynamicity. With the evolution of organisms, these have experienced several structural and functional changes. These evolutionary changes were made to meet the challenging scenario of evolving organisms. This review discusses in detail the evolutionary perspective and functionality gain in the phenomena of genome organization and epigenetics.
Collapse
Affiliation(s)
- Sujata Kumari
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur Post, Bangalore, 560064, India
| | | | | | | | | | | |
Collapse
|
21
|
Yam C, He Y, Zhang D, Chiam KH, Oliferenko S. Divergent Strategies for Controlling the Nuclear Membrane Satisfy Geometric Constraints during Nuclear Division. Curr Biol 2011; 21:1314-9. [DOI: 10.1016/j.cub.2011.06.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/25/2011] [Accepted: 06/22/2011] [Indexed: 10/17/2022]
|
22
|
Czapla L, Peters JP, Rueter EM, Olson WK, Maher LJ. Understanding apparent DNA flexibility enhancement by HU and HMGB architectural proteins. J Mol Biol 2011; 409:278-89. [PMID: 21459097 PMCID: PMC3095720 DOI: 10.1016/j.jmb.2011.03.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/25/2022]
Abstract
Understanding and predicting the mechanical properties of protein/DNA complexes are challenging problems in biophysics. Certain architectural proteins bind DNA without sequence specificity and strongly distort the double helix. These proteins rapidly bind and unbind, seemingly enhancing the flexibility of DNA as measured by cyclization kinetics. The ability of architectural proteins to overcome DNA stiffness has important biological consequences, but the detailed mechanism of apparent DNA flexibility enhancement by these proteins has not been clear. Here, we apply a novel Monte Carlo approach that incorporates the precise effects of protein on DNA structure to interpret new experimental data for the bacterial histone-like HU protein and two eukaryotic high-mobility group class B (HMGB) proteins binding to ∼200-bp DNA molecules. These data (experimental measurement of protein-induced increase in DNA cyclization) are compared with simulated cyclization propensities to deduce the global structure and binding characteristics of the closed protein/DNA assemblies. The simulations account for all observed (chain length and concentration dependent) effects of protein on DNA behavior, including how the experimental cyclization maxima, observed at DNA lengths that are not an integral helical repeat, reflect the deformation of DNA by the architectural proteins and how random DNA binding by different proteins enhances DNA cyclization to different levels. This combination of experiment and simulation provides a powerful new approach to resolve a long-standing problem in the biophysics of protein/DNA interactions.
Collapse
Affiliation(s)
- Luke Czapla
- (1)Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
23
|
Bond LM, Peters JP, Becker NA, Kahn JD, Maher LJ. Gene repression by minimal lac loops in vivo. Nucleic Acids Res 2010; 38:8072-82. [PMID: 21149272 PMCID: PMC3001091 DOI: 10.1093/nar/gkq755] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 01/25/2023] Open
Abstract
The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.
Collapse
Affiliation(s)
- Laura M. Bond
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Justin P. Peters
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Jason D. Kahn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| |
Collapse
|
24
|
Dowell NL, Sperling AS, Mason MJ, Johnson RC. Chromatin-dependent binding of the S. cerevisiae HMGB protein Nhp6A affects nucleosome dynamics and transcription. Genes Dev 2010; 24:2031-42. [PMID: 20844014 DOI: 10.1101/gad.1948910] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae protein Nhp6A is a model for the abundant and multifunctional high-mobility group B (HMGB) family of chromatin-associated proteins. Nhp6A binds DNA in vitro without sequence specificity and bends DNA sharply, but its role in chromosome biology is poorly understood. We show by whole-genome chromatin immunoprecipitation (ChIP) and high-resolution whole-genome tiling arrays (ChIP-chip) that Nhp6A is localized to specific regions of chromosomes that include ∼23% of RNA polymerase II promoters. Nhp6A binding functions to stabilize nucleosomes, particularly at the transcription start site of these genes. Both genomic binding and transcript expression studies point to functionally related groups of genes that are bound specifically by Nhp6A and whose transcription is altered by the absence of Nhp6. Genomic analyses of Nhp6A mutants specifically defective in DNA bending reveal a critical role of DNA bending for stabilizing chromatin and coregulation of transcription but not for targeted binding by Nhp6A. We conclude that the chromatin environment, not DNA sequence recognition, localizes Nhp6A binding, and that Nhp6A stabilizes chromatin structure and coregulates transcription.
Collapse
Affiliation(s)
- Noah L Dowell
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
25
|
Xiao B, Johnson RC, Marko JF. Modulation of HU-DNA interactions by salt concentration and applied force. Nucleic Acids Res 2010; 38:6176-85. [PMID: 20497998 PMCID: PMC2952867 DOI: 10.1093/nar/gkq435] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
HU is one of the most abundant proteins in bacterial chromosomes and participates in nucleoid compaction and gene regulation. We report experiments using DNA stretching that study the dependence of DNA condensation by HU on force, salt and HU concentration. Previous experiments at sub-physiological salt levels revealed that low concentrations of HU could compact DNA, whereas larger HU concentrations formed a DNA-stiffening complex. Here we report that this bimodal binding behavior depends sensitively on salt concentration. Only the compaction mode was observed for 150 mM and higher NaCl levels, i.e. for physiological salt concentrations. Similar results were obtained for the more physiological salt K-glutamate. Real-time studies of dissociation kinetics revealed that HU unbound slowly (minutes to hours under the conditions studied) but completely for salt concentrations at or above 100 mM NaCl; the lifetime of HU complexes was observed to increase with the HU concentration at which the complexes were formed, and to decrease with salt concentration. Higher salt levels of 300 mM NaCl completely eliminated observable HU binding to DNA. Finally, we observed that the dissociation kinetics depend on force applied to the DNA: increased applied force in the sub-piconewton range accelerates dissociation, suggesting a mechanism for DNA tension to regulate chromosome structure and gene expression.
Collapse
Affiliation(s)
- Botao Xiao
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
26
|
Abstract
It has been more than 50 years since the elucidation of the structure of double-helical DNA. Despite active research and progress in DNA biology and biochemistry, much remains to be learned in the field of DNA biophysics. Predicting the sequence-dependent curvature and flexibility of DNA is difficult. Applicability of the conventional worm-like chain polymer model of DNA has been challenged. The fundamental forces responsible for the remarkable resistance of DNA to bending and twisting remain controversial. The apparent 'softening' of DNA measured in vivo in the presence of kinking proteins and superhelical strain is incompletely understood. New methods and insights are being applied to these problems. This review places current work on DNA biophysics in historical context and illustrates the ongoing interplay between theory and experiment in this exciting field.
Collapse
|
27
|
Stillman DJ. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:175-80. [PMID: 20123079 DOI: 10.1016/j.bbagrm.2009.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 10/19/2022]
Abstract
The small Nhp6 protein from budding yeast is an abundant protein that binds DNA non-specifically and bends DNA sharply. It contains only a single HMGB domain that binds DNA in the minor groove and a basic N-terminal extension that wraps around DNA to contact the major groove. This review describes the genetic and biochemical experiments that indicate Nhp6 functions in promoting RNA pol III transcription, in formation of preinitiation complexes at promoters transcribed by RNA pol II, and in facilitating the activity of chromatin modifying complexes. The FACT complex may provide a paradigm for how Nhp6 functions with chromatin factors, as Nhp6 allows Spt16-Pob3 to bind to and reorganize nucleosomes in vitro.
Collapse
Affiliation(s)
- David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
28
|
Salerno P, Larsson J, Bucca G, Laing E, Smith CP, Flärdh K. One of the two genes encoding nucleoid-associated HU proteins in Streptomyces coelicolor is developmentally regulated and specifically involved in spore maturation. J Bacteriol 2009; 191:6489-500. [PMID: 19717607 PMCID: PMC2795297 DOI: 10.1128/jb.00709-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 08/17/2009] [Indexed: 02/01/2023] Open
Abstract
Streptomyces genomes encode two homologs of the nucleoid-associated HU proteins. One of them, here designated HupA, is of a conventional type similar to E. coli HUalpha and HUbeta, while the other, HupS, is a two-domain protein. In addition to the N-terminal part that is similar to that of HU proteins, it has a C-terminal domain that is similar to the alanine- and lysine-rich C termini of eukaryotic linker histones. Such two-domain HU proteins are found only among Actinobacteria. In this phylum some organisms have only a single HU protein of the type with a C-terminal histone H1-like domain (e.g., Hlp in Mycobacterium smegmatis), while others have only a single conventional HU. Yet others, including the streptomycetes, produce both types of HU proteins. We show here that the two HU genes in Streptomyces coelicolor are differentially regulated and that hupS is specifically expressed during sporulation, while hupA is expressed in vegetative hyphae. The developmental upregulation of hupS occurred in sporogenic aerial hyphal compartments and was dependent on the developmental regulators whiA, whiG, and whiI. HupS was found to be nucleoid associated in spores, and a hupS deletion mutant had an average nucleoid size in spores larger than that in the parent strain. The mutant spores were also defective in heat resistance and spore pigmentation, although they possessed apparently normal spore walls and displayed no increased sensitivity to detergents. Overall, the results show that HupS is specifically involved in sporulation and may affect nucleoid architecture and protection in spores of S. coelicolor.
Collapse
Affiliation(s)
- Paola Salerno
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7HX, United Kingdom
| | - Jessica Larsson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7HX, United Kingdom
| | - Giselda Bucca
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7HX, United Kingdom
| | - Emma Laing
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7HX, United Kingdom
| | - Colin P. Smith
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7HX, United Kingdom
| | - Klas Flärdh
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7HX, United Kingdom
| |
Collapse
|
29
|
Sebastian N, Bystry EM, Becker NA, Maher LJ. Enhancement of DNA flexibility in vitro and in vivo by HMGB box A proteins carrying box B residues. Biochemistry 2009; 48:2125-34. [PMID: 19236006 PMCID: PMC2668924 DOI: 10.1021/bi802269f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
HMGB proteins are abundant non-histone components of eukaryotic chromatin. The biological function of DNA sequence-nonspecific HMGB proteins is obscure. These proteins are composed of one or two conserved HMG box domains, each forming three alpha-helices that fold into a sequence-nonspecific DNA-binding module recognizing the DNA minor groove. Box A and box B homology domains have subtle sequence differences such that box B domains bend DNA strongly while DNA bending by isolated box A domains is weaker. Both box A and box B domains preferentially bind to distorted DNA structures. Here we show using DNA cyclization kinetics assays in vitro and Escherichia coli DNA looping assays in vivo that an isolated HMG box A domain derived from human HMGB2 folds poorly and does not enhance apparent DNA flexibility. Surprisingly, substitution of a small number of cationic residues from the N-terminal leader of a functional yeast box B protein, Nhp6Ap, confers the ability to enhance DNA flexibility. These results demonstrate important roles for cationic leader amino acids in HMGB folding, DNA interaction, and DNA bending.
Collapse
Affiliation(s)
- Nadia Sebastian
- Department of Chemistry, Creighton University, 2500 California Pl, Omaha, NE, 68178
| | - Emily M. Bystry
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First St, SW, Rochester, MN 55905
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First St, SW, Rochester, MN 55905
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First St, SW, Rochester, MN 55905
| |
Collapse
|
30
|
Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 2009; 43:393-418. [PMID: 19037758 DOI: 10.1080/10409230802528488] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Koh J, Saecker RM, Record MT. DNA binding mode transitions of Escherichia coli HU(alphabeta): evidence for formation of a bent DNA--protein complex on intact, linear duplex DNA. J Mol Biol 2008; 383:324-46. [PMID: 18657548 PMCID: PMC2649783 DOI: 10.1016/j.jmb.2008.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
Escherichia coli HU(alphabeta), a major nucleoid-associated protein, organizes chromosomal DNA and facilitates numerous DNA transactions. Using isothermal titration calorimetry, fluorescence resonance energy transfer and a series of DNA lengths (8 bp, 15 bp, 34 bp, 38 bp and 160 bp) we established that HU(alphabeta) interacts with duplex DNA using three different nonspecific binding modes. Both the HU to DNA molar ratio ([HU]/[DNA]) and DNA length dictate the dominant HU binding mode. On sufficiently long DNA (> or =34 bp), at low [HU]/[DNA], HU populates a noncooperative 34 bp binding mode with a binding constant of 2.1+/-0.4x10(6) M(-1), and a binding enthalpy of +7.7+/-0.6 kcal/mol at 15 degrees C and 0.15 M Na(+). With increasing [HU]/[DNA], HU bound in the noncooperative 34 bp mode progressively converts to two cooperative (omega approximately 20) modes with site sizes of 10 bp and 6 bp. These latter modes exhibit smaller binding constants (1.1+/-0.2x10(5) M(-1) for the 10 bp mode, 3.5+/-1.4x10(4) M(-1) for the 6 bp mode) and binding enthalpies (4.2+/-0.3 kcal/mol for the 10 bp mode, -1.6+/-0.3 kcal/mol for the 6 bp mode). As DNA length increases to 34 bp or more at low [HU]/[DNA], the small modes are replaced by the 34 bp binding mode. Fluorescence resonance energy transfer data demonstrate that the 34 bp mode bends DNA by 143+/-6 degrees whereas the 6 bp and 10 bp modes do not. The model proposed in this study provides a novel quantitative and comprehensive framework for reconciling previous structural and solution studies of HU, including single molecule (force extension measurement), fluorescence, and electrophoretic gel mobility-shift assays. In particular, it explains how HU condenses or extends DNA depending on the relative concentrations of HU and DNA.
Collapse
Affiliation(s)
- Junseock Koh
- Program in Biophysics, University of Wisconsin, Madison WI 53706
| | - Ruth M. Saecker
- Department of Chemistry, University of Wisconsin, Madison WI 53706
| | - M. Thomas Record
- Program in Biophysics, University of Wisconsin, Madison WI 53706
- Department of Chemistry, University of Wisconsin, Madison WI 53706
- Department of Biochemistry, University of Wisconsin, Madison WI 53706
| |
Collapse
|
32
|
Becker NA, Kahn JD, Maher LJ. Eukaryotic HMGB proteins as replacements for HU in E. coli repression loop formation. Nucleic Acids Res 2008; 36:4009-21. [PMID: 18515834 PMCID: PMC2475640 DOI: 10.1093/nar/gkn353] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 01/18/2023] Open
Abstract
DNA looping is important for gene repression and activation in Escherichia coli and is necessary for some kinds of gene regulation and recombination in eukaryotes. We are interested in sequence-nonspecific architectural DNA-binding proteins that alter the apparent flexibility of DNA by producing transient bends or kinks in DNA. The bacterial heat unstable (HU) and eukaryotic high-mobility group B (HMGB) proteins fall into this category. We have exploited a sensitive genetic assay of DNA looping in living E. coli cells to explore the extent to which HMGB proteins and derivatives can complement a DNA looping defect in E. coli lacking HU protein. Here, we show that derivatives of the yeast HMGB protein Nhp6A rescue DNA looping in E. coli lacking HU, in some cases facilitating looping to a greater extent than is observed in E. coli expressing normal levels of HU protein. Nhp6A-induced changes in the DNA length-dependence of repression efficiency suggest that Nhp6A alters DNA twist in vivo. In contrast, human HMGB2-box A derivatives did not rescue looping.
Collapse
Affiliation(s)
- Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - Jason D. Kahn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905 and Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| |
Collapse
|
33
|
Zimmerman J, Maher LJ. Transient HMGB protein interactions with B-DNA duplexes and complexes. Biochem Biophys Res Commun 2008; 371:79-84. [PMID: 18413230 PMCID: PMC2408743 DOI: 10.1016/j.bbrc.2008.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 04/02/2008] [Indexed: 01/13/2023]
Abstract
HMGB proteins are abundant, non-histone proteins in eukaryotic chromatin. HMGB proteins contain one or two conserved "HMG boxes" and can be sequence-specific or nonspecific in their DNA binding. HMGB proteins cause strong DNA bending and bind preferentially to deformed DNAs. We wish to understand how HMGB proteins increase the apparent flexibility of non-distorted B-form DNA. We test the hypothesis that HMGB proteins bind transiently, creating an ensemble of distorted DNAs with rapidly interconverting conformations. We show that binding of B-form DNA by HMGB proteins is both weak and transient under conditions where DNA cyclization is strongly enhanced. We also detect novel complexes in which HMGB proteins simultaneously bind more than one DNA duplex.
Collapse
Affiliation(s)
- Jeff Zimmerman
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, MN 55905
| |
Collapse
|
34
|
Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P, Shoubridge EA. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 2007; 18:3225-36. [PMID: 17581862 PMCID: PMC1951767 DOI: 10.1091/mbc.e07-05-0404] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Packaging DNA into condensed structures is integral to the transmission of genomes. The mammalian mitochondrial genome (mtDNA) is a high copy, maternally inherited genome in which mutations cause a variety of multisystem disorders. In all eukaryotic cells, multiple mtDNAs are packaged with protein into spheroid bodies called nucleoids, which are the fundamental units of mtDNA segregation. The mechanism of nucleoid formation, however, remains unknown. Here, we show that the mitochondrial transcription factor TFAM, an abundant and highly conserved High Mobility Group box protein, binds DNA cooperatively with nanomolar affinity as a homodimer and that it is capable of coordinating and fully compacting several DNA molecules together to form spheroid structures. We use noncontact atomic force microscopy, which achieves near cryo-electron microscope resolution, to reveal the structural details of protein-DNA compaction intermediates. The formation of these complexes involves the bending of the DNA backbone, and DNA loop formation, followed by the filling in of proximal available DNA sites until the DNA is compacted. These results indicate that TFAM alone is sufficient to organize mitochondrial chromatin and provide a mechanism for nucleoid formation.
Collapse
Affiliation(s)
- Brett A. Kaufman
- *Department of Neurology and Neurosurgery and Program in NeuroEngineering, Montreal Neurological Institute
| | | | | | - Santiago Costantino
- *Department of Neurology and Neurosurgery and Program in NeuroEngineering, Montreal Neurological Institute
- Department of Physics
| | | | | | - Eric A. Shoubridge
- *Department of Neurology and Neurosurgery and Program in NeuroEngineering, Montreal Neurological Institute
- Department of Human Genetics, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
35
|
Guo F, Adhya S. Spiral structure of Escherichia coli HUalphabeta provides foundation for DNA supercoiling. Proc Natl Acad Sci U S A 2007; 104:4309-14. [PMID: 17360520 PMCID: PMC1838598 DOI: 10.1073/pnas.0611686104] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Indexed: 11/18/2022] Open
Abstract
We determined the crystal structure of the Escherichia coli nucleoid-associated HUalphabeta protein by x-ray diffraction and observed that the heterodimers form multimers with octameric units in three potential arrangements, which may serve specialized roles in different DNA transaction reactions. It is of special importance that one of the structures forms spiral filaments with left-handed rotations. A negatively superhelical DNA can be modeled to wrap around this left-handed HUalphabeta multimer. Whereas the wild-type HU generated negative DNA supercoiling in vitro, an engineered heterodimer with an altered amino acid residue critical for the formation of the left-handed spiral protein in the crystal was defective in the process, thus providing the structural explanation for the classical property of HU to restrain negative supercoils in DNA.
Collapse
Affiliation(s)
- Fusheng Guo
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4264
| | - Sankar Adhya
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4264
| |
Collapse
|
36
|
Sarkar T, Vitoc I, Mukerji I, Hud NV. Bacterial protein HU dictates the morphology of DNA condensates produced by crowding agents and polyamines. Nucleic Acids Res 2007; 35:951-61. [PMID: 17259223 PMCID: PMC1807954 DOI: 10.1093/nar/gkl1093] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Controlling the size and shape of DNA condensates is important in vivo and for the improvement of nonviral gene delivery. Here, we demonstrate that the morphology of DNA condensates, formed under a variety of conditions, is shifted completely from toroids to rods if the bacterial protein HU is present during condensation. HU is a non-sequence-specific DNA binding protein that sharply bends DNA, but alone does not condense DNA into densely packed particles. Less than one HU dimer per 225 bp of DNA is sufficient to completely control condensate morphology when DNA is condensed by spermidine. We propose that rods are favored in the presence of HU because rods contain sharply bent DNA, whereas toroids contain only smoothly bent DNA. The results presented illustrate the utility of naturally derived proteins for controlling the shape of DNA condensates formed in vitro. HU is a highly conserved protein in bacteria that is implicated in the compaction and shaping of nucleoid structure. However, the exact role of HU in chromosome compaction is not well understood. Our demonstration that HU governs DNA condensation in vitro also suggests a mechanism by which HU could act as an architectural protein for bacterial chromosome compaction and organization in vivo.
Collapse
Affiliation(s)
- Tumpa Sarkar
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| | - Iulia Vitoc
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| | - Ishita Mukerji
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 and Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459-0175
- *To whom correspondence should be addressed. Tel: +1 404 385 1162; Fax: +1 404 894 2295;
| |
Collapse
|
37
|
Kassavetis GA, Steiner DF. Nhp6 is a transcriptional initiation fidelity factor for RNA polymerase III transcription in vitro and in vivo. J Biol Chem 2006; 281:7445-51. [PMID: 16407207 DOI: 10.1074/jbc.m512810200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of the RNA polymerase III (pol III) transcription factor TFIIIC to the box A intragenic promoter element of tRNA genes specifies the placement of TFIIIB on upstream-lying DNA. In turn, TFIIIB recruits pol III to the promoter and specifies transcription initiating 17-19 base pairs upstream of box A. The resolution of the pol III transcription apparatus into recombinant TFIIIB, highly purified TFIIIC, and pol III is accompanied by a loss of precision in specifying where transcription initiation occurs due to heterogeneous placement of TFIIIB. In this paper we show that Nhp6a, an abundant high mobility group B (HMGB) family, non-sequence-specific DNA-binding protein in Saccharomyces cerevisiae restores transcriptional initiation fidelity to this highly purified in vitro system. Restoration of initiation fidelity requires the presence of Nhp6a prior to TFIIIB-DNA complex formation. Chemical nuclease footprinting of TFIIIC- and TFIIIB-TFIIIC-DNA complexes reveals that Nhp6a markedly alters the TFIIIC footprint over box A and reduces the size of the TFIIIB footprint on upstream DNA sequence. Analyses of unprocessed tRNAs from yeast lacking Nhp6a and its closely related paralogue Nhp6b demonstrate that Nhp6 is required for transcriptional initiation fidelity of some but not all tRNA genes, in vivo.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences and Center for Molecular Genetics, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.
| | | |
Collapse
|
38
|
Türkel S. Non-histone proteins Nhp6A and Nhp6B are required for the regulated expression of SUC2 gene of Saccharomyces cerevisiae. J Biosci Bioeng 2005; 98:9-13. [PMID: 16233659 DOI: 10.1016/s1389-1723(04)70235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 04/05/2004] [Indexed: 10/26/2022]
Abstract
Transcription of the SUC2 gene that encodes invertase enzyme is controlled by glucose repression and derepression mechanisms in Saccharomyces cerevisiae. Several regulatory factors such as Mig1p complex, Gcr1p, Hxk2p, nucleosomes, and the Snf1p kinase complex have been identified as the regulators of SUC2 transcription. The results presented in this study indicate that the non-histone proteins Nhp6A and Nhp6B were also required for the regulated expression of SUC2 gene. Expression of the SUC2 gene reduced to one-fiftieth-one-tenth in the Deltanhp6A Deltanhp6B double mutant strain depending on the growth conditions. Moreover, SUC2 expression and invertase synthesis became constitutive after long-term derepression, and decreased to a low level in Deltanhp6A Deltanhp6B double deletion mutant. A time course analysis of the invertase synthesis revealed that both the repression and derepression rates were very slow in the Deltanhp6A Deltanhp6B double mutant yeast. These results indicate that the architectural transcription factors Nhp6A and Nhp6B play a very critical role in the regulation of SUC2 gene expression.
Collapse
Affiliation(s)
- Sezai Türkel
- Department of Biology, Faculty of Arts and Sciences, Uludag University, 16059-Bursa, Turkey.
| |
Collapse
|
39
|
Biswas D, Yu Y, Prall M, Formosa T, Stillman DJ. The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol 2005; 25:5812-22. [PMID: 15987999 PMCID: PMC1168812 DOI: 10.1128/mcb.25.14.5812-5822.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A crucial step in eukaryotic transcriptional initiation is recognition of the promoter TATA by the TATA-binding protein (TBP), which then allows TFIIA and TFIIB to be recruited. However, nucleosomes block the interaction between TBP and DNA. We show that the yeast FACT complex (yFACT) promotes TBP binding to a TATA box in chromatin both in vivo and in vitro. The SPT16 gene encodes a subunit of yFACT, and we show that certain spt16 mutations are synthetically lethal with TBP mutants. Some of these genetic defects can be suppressed by TFIIA overexpression, strongly suggesting a role for yFACT in TBP-TFIIA complex formation in vivo. Mutations in the TOA2 subunit of TFIIA that disrupt TBP-TFIIA complex formation in vitro are also synthetically lethal with spt16. In some cases this spt16 toa2 lethality is suppressed by overexpression of TBP or the Nhp6 architectural transcription factor that is also a component of yFACT. The Spt3 protein in the SAGA complex has been shown to regulate TBP binding at certain promoters, and we show that some spt16 phenotypes can be suppressed by spt3 mutations. Chromatin immunoprecipitations show TBP binding to promoters is reduced in single spt16 and spt3 mutants but increases in the spt16 spt3 double mutant, reflecting the mutual suppression seen in the genetic assays. Finally, in vitro studies show that yFACT promotes TBP binding to a TATA sequence within a reconstituted nucleosome in a TFIIA-dependent manner. Thus, yFACT functions in establishing transcription initiation complexes in addition to the previously described role in elongation.
Collapse
Affiliation(s)
- Debabrata Biswas
- Department of Pathology, University of Utah Health Sciences Center, 30 North 1900 East, Salt Lake City, Utah 84132-2501, USA
| | | | | | | | | |
Collapse
|
40
|
Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol Cell Biol 2005. [PMID: 15899848 DOI: 10.1128/mcb25.11.4413-4425.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.
Collapse
|
41
|
Dai Y, Wong B, Yen YM, Oettinger MA, Kwon J, Johnson RC. Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination. Mol Cell Biol 2005; 25:4413-25. [PMID: 15899848 PMCID: PMC1140611 DOI: 10.1128/mcb.25.11.4413-4425.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient assembly of RAG1/2-recombination signal sequence (RSS) DNA complexes that are competent for V(D)J cleavage requires the presence of the nonspecific DNA binding and bending protein HMGB1 or HMGB2. We find that either of the two minimal DNA binding domains of HMGB1 is effective in assembling RAG1/2-RSS complexes on naked DNA and stimulating V(D)J cleavage but that both domains are required for efficient activity when the RSS is incorporated into a nucleosome. The single-domain HMGB protein from Saccharomyces cerevisiae, Nhp6A, efficiently assembles RAG1/2 complexes on naked DNA; however, these complexes are minimally competent for V(D)J cleavage. Nhp6A forms much more stable DNA complexes than HMGB1, and a variety of mutations that destabilize Nhp6A binding to bent microcircular DNA promote increased V(D)J cleavage. One of the two DNA bending wedges on Nhp6A and the analogous phenylalanine wedge at the DNA exit site of HMGB1 domain A were found to be essential for promoting RAG1/2-RSS complex formation. Because the phenylalanine wedge is required for specific recognition of DNA kinks, we propose that HMGB proteins facilitate RAG1/2-RSS interactions by recognizing a distorted DNA structure induced by RAG1/2 binding. The resulting complex must be sufficiently dynamic to enable the series of RAG1/2-mediated chemical reactions on the DNA.
Collapse
Affiliation(s)
- Yan Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
42
|
Becker NA, Kahn JD, Maher LJ. Bacterial repression loops require enhanced DNA flexibility. J Mol Biol 2005; 349:716-30. [PMID: 15893770 DOI: 10.1016/j.jmb.2005.04.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 04/04/2005] [Accepted: 04/16/2005] [Indexed: 11/15/2022]
Abstract
The Escherichia coli lac operon provides a classic paradigm for understanding regulation of gene transcription. It is now appreciated that lac promoter repression involves cooperative binding of the bidentate lac repressor tetramer to pairs of lac operators via DNA looping. We have adapted components of this system to create an artificial assay of DNA flexibility in E.coli. This approach allows for systematic study of endogenous and exogenous proteins as architectural factors that enhance apparent DNA flexibility in vivo. We show that inducer binding does not completely remove repression loops but it does alter their geometries. Deletion of the E.coli HU protein drastically destabilizes small repression loops, an effect that can be partially overcome by expression of a heterologous mammalian HMG protein. These results emphasize that the inherent torsional inflexibility of DNA restrains looping and must be modulated in vivo.
Collapse
Affiliation(s)
- Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
43
|
Skoko D, Wong B, Johnson RC, Marko JF. Micromechanical Analysis of the Binding of DNA-Bending Proteins HMGB1, NHP6A, and HU Reveals Their Ability To Form Highly Stable DNA−Protein Complexes†. Biochemistry 2004; 43:13867-74. [PMID: 15504049 DOI: 10.1021/bi048428o] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanical response generated by binding of the nonspecific DNA-bending proteins HMGB1, NHP6A, and HU to single tethered 48.5 kb lambda-DNA molecules is investigated using DNA micromanipulation. As protein concentration is increased, the force needed to extend the DNA molecule increases, due to its compaction by protein-generated bending. Most significantly, we find that for each of HMGB1, NHP6A, and HU there is a well-defined protein concentration, not far above the binding threshold, above which the proteins do not spontaneously dissociate. In this regime, the amount of protein bound to the DNA, as assayed by the degree to which the DNA is compacted, is unperturbed either by replacing the surrounding protein solution with protein-free buffer or by straightening of the molecule by applied force. Thus, the stability of the protein-DNA complexes formed is dependent on the protein concentration during the binding. HU is distinguished by a switch to a DNA-stiffening function at the protein concentration where the formation of highly stable complexes occurs. Finally, introduction of competitor DNA fragments into the surrounding solution disassembles the stable DNA complexes with HMGB1, NHP6A, and HU within seconds. Since spontaneous dissociation of protein does not occur on a time scale of hours, we conclude that this rapid protein exchange in the presence of competitor DNA must occur only via "direct" DNA-DNA contact. We therefore observe that protein transport along DNA by direct transfers occurs even for proteins such as NHP6A and HU that have only one DNA-binding domain.
Collapse
Affiliation(s)
- Dunja Skoko
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607-7059, USA.
| | | | | | | |
Collapse
|
44
|
Kamau E, Bauerle KT, Grove A. The Saccharomyces cerevisiae high mobility group box protein HMO1 contains two functional DNA binding domains. J Biol Chem 2004; 279:55234-40. [PMID: 15507436 DOI: 10.1074/jbc.m409459200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High mobility group box (HMGB) proteins are architectural proteins whose HMG DNA binding domains confer significant preference for distorted DNA, such as 4-way junctions. HMO1 is one of 10 Saccharomyces cerevisiae HMGB proteins, and it is required for normal growth and plasmid maintenance and for regulating the susceptibility of yeast chromatin to nuclease. Using electrophoretic mobility shift assays, we have shown here that HMO1 binds 26-bp duplex DNA with K(d) = 39.6 +/- 5.0 nm and that its divergent box A domain participates in DNA interactions, albeit with low affinity. HMO1 has only modest preference for DNA with altered conformations, including DNA with nicks, gaps, overhangs, or loops, as well as for 4-way junction structures and supercoiled DNA. HMO1 binds 4-way junctions with half-maximal saturation of 19.6 +/- 2.2 nm, with only a modest increase in affinity in the absence of magnesium ions (half-maximal saturation 6.1 +/- 1.1 nm). Whereas the box A domain contributes modest structure-specific binding, the box B domain is required for high affinity binding. HMO1 bends DNA, as measured by DNA cyclization assays, facilitating cyclization of 136-, 105-, and 87-bp DNA, but not 75-bp DNA, and it has a significantly longer residence time on DNA minicircles compared with linear duplex DNA. The unique DNA binding properties of HMO1 are consistent with global roles in the maintenance of chromatin structure.
Collapse
Affiliation(s)
- Edwin Kamau
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
45
|
Patenge N, Elkin SK, Oettinger MA. ATP-dependent remodeling by SWI/SNF and ISWI proteins stimulates V(D)J cleavage of 5 S arrays. J Biol Chem 2004; 279:35360-7. [PMID: 15201272 DOI: 10.1074/jbc.m405790200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of V(D)J recombination is critical for the generation of a fully developed immune repertoire. The molecular mechanisms underlying the regulation of antigen receptor gene assembly are beginning to be revealed. Here we studied the influence of chromatin modifications on V(D)J cleavage of a polynucleosomal substrate, in which V(D)J cleavage is greatly reduced compared with naked DNA. ATP-dependent remodeling by human SWI/SNF (hSWI/SNF) in the presence of HMG1 led to a substantial increase of cleavage by the recombination activation gene (RAG) proteins. Either BRG1, the ATPase subunit of hSWI/SNF, or SNF2h, the ATPase of human ISWI complexes, was capable of stimulating V(D)J cleavage of the array, although these remodelers act by different mechanisms. No effect of histone hyperacetylation was detectable in this system. As is observed on naked DNA, in the presence of core RAG1, the full-length RAG2 protein proved to be more active than core RAG2 on these polynucleosomal arrays, reinforcing the importance of the RAG2 C-terminal domain for efficient recombination. Comparison of 5 S array cleavage by the RAG proteins or by the restriction enzyme HhaI after remodeling by hSWI/SNF suggested that RAG proteins and HhaI might have different requirements for maximal accessibility of the substrate.
Collapse
Affiliation(s)
- Nadja Patenge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
46
|
Fragiadakis GS, Tzamarias D, Alexandraki D. Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. EMBO J 2004; 23:333-42. [PMID: 14739928 PMCID: PMC1271752 DOI: 10.1038/sj.emboj.7600043] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 11/25/2003] [Indexed: 11/09/2022] Open
Abstract
We found Nhp6a/b yeast HMG-box chromatin-associated architectural factors and Ssn6 (Cyc8) corepressor to be crucial transcriptional coactivators of FRE2 gene. FRE2 encoding a plasma membrane ferric reductase is induced by the iron-responsive, DNA-binding, transcriptional activator Aft1. We have shown that Nhp6 interacts directly with the Aft1 N-half, including the DNA-binding region, to facilitate Aft1 binding at FRE2 UAS. Ssn6 also interacts directly with the Aft1 N-half and is recruited on FRE2 promoter only in the presence of both Aft1 and Nhp6. This Nhp6/Ssn6 role in Aft1-mediated transcription is FRE2 promoter context specific, and both regulators are required for activation-dependent chromatin remodeling. Our results provide the first in vivo biochemical evidence for nonsequence-specific HMG-box protein-facilitated recruitment of a yeast gene-specific transactivator to its DNA target site and for Nhp6-mediated Ssn6 promoter recruitment. Ssn6 has an explicitly coactivating role on FRE2 promoter only upon induction. Therefore, transcriptional activation in response to iron availability involves multiple protein interactions between the Aft1 iron-responsive DNA-binding factor and global regulators such as Nhp6 and Ssn6.
Collapse
Affiliation(s)
- George S Fragiadakis
- Institute of Molecular Biology and Biotechnology-FORTH, University of Crete, Vassilika Vouton, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Greece
| | - Dimitris Tzamarias
- Institute of Molecular Biology and Biotechnology-FORTH, University of Crete, Vassilika Vouton, Heraklion, Crete, Greece
- School of Science and Technology, Hellenic Open University, Greece
| | - Despina Alexandraki
- Institute of Molecular Biology and Biotechnology-FORTH, University of Crete, Vassilika Vouton, Heraklion, Crete, Greece
- Department of Biology, University of Crete, Greece
| |
Collapse
|
47
|
Chromosomal HMG-box proteins. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
48
|
Ruone S, Rhoades AR, Formosa T. Multiple Nhp6 molecules are required to recruit Spt16-Pob3 to form yFACT complexes and to reorganize nucleosomes. J Biol Chem 2003; 278:45288-95. [PMID: 12952948 DOI: 10.1074/jbc.m307291200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Nhp6 protein contains a DNA-binding motif that is similar to those found in the high mobility group B family of chromatin proteins. Nhp6 bound to nucleosomes and made at least two changes in them: the nucleosomal DNA became more sensitive to DNase I at specific sites, and the nucleosomes became competent to bind Spt16-Pob3 to form yFACT.nucleosome complexes. Both changes occurred at similar concentrations of Nhp6, suggesting that they reflect the same structural reorganization of the nucleosome. Nucleosomes have multiple binding sites for Nhp6, and structural reorganization was associated with a concentration of Nhp6 about 10-fold higher than that needed for simple binding. We propose that the coordinated action of multiple Nhp6 molecules is required to convert nucleosomes to an alternative form as the first step in a two-step reorganization of nucleosomes with the second step being dependent on Spt16-Pob3. The presence of linker DNA had only subtle effects on these processes, indicating that both Nhp6 and yFACT act on core nucleosome structure rather than on the interaction between nucleosomes and adjacent DNA. These results suggest that Nhp6 and the related high mobility group B proteins may have a general role in promoting rearrangements of chromatin by initiating the destabilization of core nucleosomal structure.
Collapse
Affiliation(s)
- Susan Ruone
- University of Utah School of Medicine, Department of Biochemistry, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
49
|
Esposito D, Gerard GF. The Escherichia coli Fis protein stimulates bacteriophage lambda integrative recombination in vitro. J Bacteriol 2003; 185:3076-80. [PMID: 12730167 PMCID: PMC154068 DOI: 10.1128/jb.185.10.3076-3080.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli nucleoid-associated protein Fis was previously shown to be involved in bacteriophage lambda site-specific recombination in vivo, enhancing the levels of both integrative recombination and excisive recombination. While purified Fis protein was shown to stimulate in vitro excision, Fis appeared to have no effect on in vitro integration reactions even though a 15-fold drop in lysogenization frequency had previously been observed in fis mutants. We demonstrate here that E. coli Fis protein does stimulate integrative lambda recombination in vitro but only under specific conditions which likely mimic natural in vivo recombination more closely than the standard conditions used in vitro. In the presence of suboptimal concentrations of Int protein, Fis stimulates the rate of integrative recombination significantly. In addition, Fis enhances the recombination of substrates with nonstandard topologies which may be more relevant to the process of in vivo phage lambda recombination. These data support the hypothesis that Fis may play an essential role in lambda recombination in the host cell.
Collapse
|
50
|
Abstract
A synthetic cruciform DNA (X-DNA) was used for screening cellular extracts of Saccharomyces cerevisiae for X-DNA-binding activity. Three X-DNA-binding proteins with apparent molecular mass of 28kDa, 26kDa and 24kDa, estimated by SDS-PAGE, were partially purified. They were identified as N-terminal fragments originating from the same putative protein, encoded by the open reading frame YHR146W, which we named CRP1 (cruciform DNA-recognising protein 1). Expression of CRP1 in Escherichia coli showed that Crp1p is subject to efficient proteolysis at one specific site. Cleavage leads to an N-terminal subpeptide of approximately 160 amino acid residues that is capable of binding specifically X-DNA with an estimated dissociation constant (K(d)) of 800nM, and a C-terminal subpeptide of approximately 305 residues without intrinsic X-DNA-binding activity. The N-terminal subpeptide is of a size similarly to that of the fragments identified in yeast, suggesting that the same cleavage process occurs in the yeast and the E.coli background. This makes the action of a site-specific protease unlikely and favours the possibility of an autoproteolytic activity of Crp1p. The DNA-binding domain of Crp1p was mapped to positions 120-141. This domain can act autonomously as an X-DNA-binding peptide and provides a new, lysine-rich DNA-binding domain different from those of known cruciform DNA-binding proteins (CBPs). As reported earlier for several other CBPs, Crp1p exerts an enhancing effect on the cleavage of X-DNA by endonuclease VII from bacteriophage T4.
Collapse
Affiliation(s)
- Ulrich Rass
- Institut für Genetik der Universität zu Köln, Zülpicher Strasse 47, Köln, Germany.
| | | |
Collapse
|