1
|
Bujisic B, Lee HG, Xu L, Weissbein U, Rivera C, Topisirovic I, Lee JT. 7SL RNA and signal recognition particle orchestrate a global cellular response to acute thermal stress. Nat Commun 2025; 16:1630. [PMID: 39952919 PMCID: PMC11828898 DOI: 10.1038/s41467-025-56351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025] Open
Abstract
Non-coding 7SL RNA is an ancestor to mammalian Alu and B1 SINE RNAs and is thought to function exclusively within the Signal Recognition Particle (SRP), aiding in the translocation of secretory proteins into the endoplasmic reticulum for export. Here, we discover a function of 7SL/SRP unrelated to protein secretion. Under acute heat shock, 7SL and SRP together selectively arrest cellular transcription and translation machineries during early response to stress. Under thermal stress, 7SL is upregulated, accumulates in the nucleus, and binds to target genes repressed by heat shock. Concurrently, in the cytosol, SRP binds to ribosomes and inhibits new protein synthesis. Translational suppression occurs independently of the signal peptide and is abrogated by depleting SRP. Translation inhibition extends to the mitochondria, as nuclear-encoded genes with mitochondrial functions are enriched among SRP targets. Thus, apart from its role in protein export, 7SL/SRP orchestrates a global response to acute stress that encompasses the nucleus, cytosol, and mitochondria across transcription and translation.
Collapse
Affiliation(s)
- Bojan Bujisic
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Hun-Goo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Lilei Xu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Uri Weissbein
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Carlos Rivera
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology and Departments of Biochemistry and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Moldovan JB, Yin J, Moran JV. Identification of a minimal Alu domain required for retrotransposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628748. [PMID: 39868163 PMCID: PMC11760393 DOI: 10.1101/2024.12.16.628748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alu elements are primate-specific retrotransposon sequences that comprise ~11% of human genomic DNA. Alu sequences contain an internal RNA polymerase III promoter and the resultant Alu RNA transcripts mobilize by a replicative process termed retrotransposition. Alu retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p). Current models propose that Alu RNA binds to signal recognition particle proteins 9 and 14 (SRP9/14) and localizes to ribosomes, which allows Alu to 'hijack' L1 ORF2p. Here, we used HeLa cell-based retrotransposition assays to define a minimal Alu domain necessary for retrotransposition. We demonstrate that Alu transcripts expressed from a cytomegalovirus (CMV) RNA polymerase II promoter can efficiently undergo retrotransposition. The use of an external CMV promoter to express Alu RNA allowed us to construct separation-of-function mutations to examine the effects of large deletions within the Alu sequence on retrotransposition. Deletion mutagenesis demonstrated that a 46 nucleotide (nt) domain located at the 5' end of the Alu RNA transcript is necessary for Alu retrotransposition. Consistent with current models, the 46 nt 5' Alu domain associates with SRP9/14 in HeLa-HA cell extracts and can promote a single round of retrotransposition in HeLa-HA cells. We propose that the 46 nt 5' Alu domain forms a discrete structure that allows for SRP 9/14 binding and ribosomal association, thereby allowing the Alu poly(A) tract to compete with the L1 poly(A) tail for ORF2p RNA binding to mediate its retrotransposition.
Collapse
Affiliation(s)
- John B. Moldovan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Yin
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John V. Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
5
|
Gussakovsky D, Booy EP, Brown MJF, McKenna SA. Nuclear SRP9/SRP14 heterodimer transcriptionally regulates 7SL and BC200 RNA expression. RNA (NEW YORK, N.Y.) 2023; 29:1185-1200. [PMID: 37156570 PMCID: PMC10351891 DOI: 10.1261/rna.079649.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
The SRP9/SRP14 heterodimer is a central component of signal recognition particle (SRP) RNA (7SL) processing and Alu retrotransposition. In this study, we sought to establish the role of nuclear SRP9/SRP14 in the transcriptional regulation of 7SL and BC200 RNA. 7SL and BC200 RNA steady-state levels, rate of decay, and transcriptional activity were evaluated under SRP9/SRP14 knockdown conditions. Immunofluorescent imaging, and subcellular fractionation of MCF-7 cells, revealed a distinct nuclear localization for SRP9/SRP14. The relationship between this localization and transcriptional activity at 7SL and BC200 genes was also examined. These findings demonstrate a novel nuclear function of SRP9/SRP14 establishing that this heterodimer transcriptionally regulates 7SL and BC200 RNA expression. We describe a model in which SRP9/SRP14 cotranscriptionally regulate 7SL and BC200 RNA expression. Our model is also a plausible pathway for regulating Alu RNA transcription and is consistent with the hypothesized roles of SRP9/SRP14 transporting 7SL RNA into the nucleolus for posttranscriptional processing, and trafficking of Alu RNA for retrotransposition.
Collapse
Affiliation(s)
- Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
6
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles 2020; 10:e12043. [PMID: 33391635 PMCID: PMC7769857 DOI: 10.1002/jev2.12043] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous particles released from the cells through different biogenetic and secretory mechanisms. We now conceive EVs as shuttles mediating cellular communication, carrying a variety of molecules resulting from intracellular homeostatic mechanisms. The RNA is a widely detected cargo and, impressively, a recognized functional intermediate that elects EVs as modulators of cancer cell phenotypes, determinants of disease spreading, cell surrogates in regenerative medicine, and a source for non-invasive molecular diagnostics. The mechanistic elucidation of the intracellular events responsible for the engagement of RNA into EVs will significantly improve the comprehension and possibly the prediction of EV "quality" in association with cell physiology. Interestingly, the application of multidisciplinary approaches, including biochemical as well as cell-based and computational strategies, is increasingly revealing an active RNA-packaging process implicating RNA-binding proteins (RBPs) in the sorting of coding and non-coding RNAs. In this review, we provide a comprehensive view of RBPs recently emerging as part of the EV biology, considering the scenarios where: (i) individual RBPs were detected in EVs along with their RNA substrates, (ii) RBPs were detected in EVs with inferred RNA targets, and (iii) EV-transcripts were found to harbour sequence motifs mirroring the activity of RBPs. Proteins so far identified are members of the hnRNP family (hnRNPA2B1, hnRNPC1, hnRNPG, hnRNPH1, hnRNPK, and hnRNPQ), as well as YBX1, HuR, AGO2, IGF2BP1, MEX3C, ANXA2, ALIX, NCL, FUS, TDP-43, MVP, LIN28, SRP9/14, QKI, and TERT. We describe the RBPs based on protein domain features, current knowledge on the association with human diseases, recognition of RNA consensus motifs, and the need to clarify the functional significance in different cellular contexts. We also summarize data on previously identified RBP inhibitor small molecules that could also be introduced in EV research as potential modulators of vesicular RNA sorting.
Collapse
Affiliation(s)
- Fabrizio Fabbiano
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Jessica Corsi
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Gurrieri
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Caterina Trevisan
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Vito G. D'Agostino
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
7
|
Scarpato M, Angelini C, Cocca E, Pallotta MM, Morescalchi MA, Capriglione T. Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish? Chromosome Res 2016; 23:533-44. [PMID: 26363800 DOI: 10.1007/s10577-015-9484-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.
Collapse
Affiliation(s)
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "M. Picone", CNR, via P. Castellino, 80131, Napoli, Italy
| | - Ennio Cocca
- IBBR-CNR, via P. Castellino, 80131, Napoli, Italy
| | - Maria M Pallotta
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Maria A Morescalchi
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy
| | - Teresa Capriglione
- Dipartimento di Biologia, Università di Napoli Federico II, via Cinthia 21, 80126, Napoli, Italy.
| |
Collapse
|
8
|
Servant G, Deininger PL. Insertion of Retrotransposons at Chromosome Ends: Adaptive Response to Chromosome Maintenance. Front Genet 2016; 6:358. [PMID: 26779254 PMCID: PMC4700185 DOI: 10.3389/fgene.2015.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023] Open
Abstract
The telomerase complex is a specialized reverse transcriptase (RT) that inserts tandem DNA arrays at the linear chromosome ends and contributes to the protection of the genetic information in eukaryotic genomes. Telomerases are phylogenetically related to retrotransposons, encoding also the RT activity required for the amplification of their sequences throughout the genome. Intriguingly the telomerase gene is lost from the Drosophila genome and tandem retrotransposons replace telomeric sequences at the chromosome extremities. This observation suggests the versatility of RT activity in counteracting the chromosome shortening associated with genome replication and that retrotransposons can provide this activity in case of a dysfunctional telomerase. In this review paper, we describe the major classes of retroelements present in eukaryotic genomes in order to point out the differences and similarities with the telomerase complex. In a second part, we discuss the insertion of retroelements at the ends of chromosomes as an adaptive response for dysfunctional telomeres.
Collapse
Affiliation(s)
| | - Prescott L. Deininger
- Tulane Cancer Center, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LAUSA
| |
Collapse
|
9
|
Daniel C, Behm M, Öhman M. The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci 2015; 72:4063-76. [PMID: 26223268 PMCID: PMC11113721 DOI: 10.1007/s00018-015-1990-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 01/18/2023]
Abstract
The human genome is under constant invasion by retrotransposable elements. The most successful of these are the Alu elements; with a copy number of over a million, they occupy about 10 % of the entire genome. Interestingly, the vast majority of these Alu insertions are located in gene-rich regions, and one-third of all human genes contains an Alu insertion. Alu sequences are often embedded in gene sequence encoding pre-mRNAs and mature mRNAs, usually as part of their intron or UTRs. Once transcribed, they can regulate gene expression as well as increase the number of RNA isoforms expressed in a tissue or a species. They also regulate the function of other RNAs, like microRNAs, circular RNAs, and potentially long non-coding RNAs. Mechanistically, Alu elements exert their effects by influencing diverse processes, such as RNA editing, exonization, and RNA processing. In so doing, they have undoubtedly had a profound effect on human evolution.
Collapse
Affiliation(s)
- Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Mikaela Behm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Bousset L, Mary C, Brooks MA, Scherrer A, Strub K, Cusack S. Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation. RNA (NEW YORK, N.Y.) 2014; 20:1955-1962. [PMID: 25336584 PMCID: PMC4238359 DOI: 10.1261/rna.047209.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/04/2014] [Indexed: 06/04/2023]
Abstract
The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5' and 3' extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present the 3.2 Å resolution crystal structure of a chimeric Alu domain, comprising Alu RNA from the archaeon Pyrococcus horikoshii bound to the human Alu binding proteins SRP9/14. The structure reveals how intricate tertiary interactions stabilize the RNA 5' domain structure and how an extra, archaeal-specific, terminal stem helps constrain the Alu RNA into the active closed conformation. In this conformation, highly conserved noncanonical base pairs allow unusually tight side-by-side packing of 5' and 3' RNA stems within the SRP9/14 RNA binding surface. The biological relevance of this structure is confirmed by showing that a reconstituted full-length chimeric archaeal-human SRP is competent to elicit elongation arrest in vitro. The structure will be useful in refining our understanding of how the SRP Alu domain interacts with the ribosome.
Collapse
Affiliation(s)
- Luc Bousset
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France
| | - Camille Mary
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Geneva 4, Switzerland
| | - Mark A Brooks
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France
| | - Anne Scherrer
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Geneva 4, Switzerland
| | - Katharina Strub
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Geneva 4, Switzerland
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France
| |
Collapse
|
11
|
Negishi M, Wongpalee SP, Sarkar S, Park J, Lee KY, Shibata Y, Reon BJ, Abounader R, Suzuki Y, Sugano S, Dutta A. A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins. PLoS One 2014; 9:e95216. [PMID: 24748121 PMCID: PMC3991591 DOI: 10.1371/journal.pone.0095216] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cell physiology, but many of which have no known function. CDKN1A/p21 is an important inhibitor of the cell-cycle, regulator of the DNA damage response and effector of the tumor suppressor p53, playing a crucial role in tumor development and prevention. In order to identify a regulator for tumor progression, we performed an siRNA screen of human lncRNAs required for cell proliferation, and identified a novel lncRNA, APTR, that acts in trans to repress the CDKN1A/p21 promoter independent of p53 to promote cell proliferation. APTR associates with the promoter of CDKN1A/p21 and this association requires a complementary-Alu sequence encoded in APTR. A different module of APTR associates with and recruits the Polycomb repressive complex 2 (PRC2) to epigenetically repress the p21 promoter. A decrease in APTR is necessary for the induction of p21 after heat stress and DNA damage by doxorubicin, and the levels of APTR and p21 are anti-correlated in human glioblastomas. Our data identify a new regulator of the cell-cycle inhibitor CDKN1A/p21 that acts as a proliferative factor in cancer cell lines and in glioblastomas and demonstrate that Alu elements present in lncRNAs can contribute to targeting regulatory lncRNAs to promoters.
Collapse
Affiliation(s)
- Masamitsu Negishi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Somsakul P. Wongpalee
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Sukumar Sarkar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Jonghoon Park
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Kyung Yong Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Brian J. Reon
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Roger Abounader
- Department of Microbiology, Neurology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yutaka Suzuki
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Darby MM, Sabunciyan S. Repetitive Elements and Epigenetic Marks in Behavior and Psychiatric Disease. ADVANCES IN GENETICS 2014; 86:185-252. [DOI: 10.1016/b978-0-12-800222-3.00009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Spengler RM, Oakley CK, Davidson BL. Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet 2013; 23:1783-93. [PMID: 24234653 DOI: 10.1093/hmg/ddt569] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA target sites reside within TE sequences, but there is little experimental evidence supporting a role for TEs in the birth of miRNAs, or as platform for gene regulation by miRNAs. In this work, we validate miRNAs and target sites derived from TE families prevalent in the human genome, including the ancient long interspersed nuclear element 2 (LINE2/L2), mammalian-wide interspersed repeat (MIR) retrotransposons and the primate-specific Alu family. We show that genes with 3' untranslated region (3' UTR) MIR elements are enriched for let-7 targets and that these sites are conserved and responsive to let-7 expression. We also demonstrate that 3' UTR-embedded Alus are a source of miR-24 and miR-122 target sites and that a subset of active genomic Alus provide for de novo target site creation. Finally, we report that although the creation of miRNA genes by Alu elements is relatively uncommon relative to their overall genomic abundance, Alu-derived miR-1285-1 is efficiently processed from its genomic locus and regulates genes with target sites contained within homologous elements. Taken together, our data provide additional evidence for TEs as a source for miRNAs and miRNA target sites, with instances of conservation through the course of mammalian evolution.
Collapse
|
14
|
Goodier JL, Cheung LE, Kazazian HH. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 2013; 41:7401-19. [PMID: 23749060 PMCID: PMC3753637 DOI: 10.1093/nar/gkt512] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/07/2013] [Accepted: 05/12/2013] [Indexed: 12/22/2022] Open
Abstract
LINE1s occupy 17% of the human genome and are its only active autonomous mobile DNA. L1s are also responsible for genomic insertion of processed pseudogenes and >1 million non-autonomous retrotransposons (Alus and SVAs). These elements have significant effects on gene organization and expression. Despite the importance of retrotransposons for genome evolution, much about their biology remains unknown, including cellular factors involved in the complex processes of retrotransposition and forming and transporting L1 ribonucleoprotein particles. By co-immunoprecipitation of tagged L1 constructs and mass spectrometry, we identified proteins associated with the L1 ORF1 protein and its ribonucleoprotein. These include RNA transport proteins, gene expression regulators, post-translational modifiers, helicases and splicing factors. Many cellular proteins co-localize with L1 ORF1 protein in cytoplasmic granules. We also assayed the effects of these proteins on cell culture retrotransposition and found strong inhibiting proteins, including some that control HIV and other retroviruses. These data suggest candidate cofactors that interact with the L1 to modulate its activity and increase our understanding of the means by which the cell coexists with these genomic 'parasites'.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
15
|
Jády BE, Ketele A, Kiss T. Human intron-encoded Alu RNAs are processed and packaged into Wdr79-associated nucleoplasmic box H/ACA RNPs. Genes Dev 2012; 26:1897-910. [PMID: 22892240 PMCID: PMC3435494 DOI: 10.1101/gad.197467.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/16/2012] [Indexed: 11/25/2022]
Abstract
Alu repetitive sequences are the most abundant short interspersed DNA elements in the human genome. Full-length Alu elements are composed of two tandem sequence monomers, the left and right Alu arms, both derived from the 7SL signal recognition particle RNA. Since Alu elements are common in protein-coding genes, they are frequently transcribed into pre-mRNAs. Here, we demonstrate that the right arms of nascent Alu transcripts synthesized within pre-mRNA introns are processed into metabolically stable small RNAs. The intron-encoded Alu RNAs, termed AluACA RNAs, are structurally highly reminiscent of box H/ACA small Cajal body (CB) RNAs (scaRNAs). They are composed of two hairpin units followed by the essential H (AnAnnA) and ACA box motifs. The mature AluACA RNAs associate with the four H/ACA core proteins: dyskerin, Nop10, Nhp2, and Gar1. Moreover, the 3' hairpin of AluACA RNAs carries two closely spaced CB localization motifs, CAB boxes (UGAG), which bind Wdr79 in a cumulative fashion. In contrast to canonical H/ACA scaRNPs, which concentrate in CBs, the AluACA RNPs accumulate in the nucleoplasm. Identification of 348 human AluACA RNAs demonstrates that intron-encoded AluACA RNAs represent a novel, large subgroup of H/ACA RNAs, which are apparently confined to human or primate cells.
Collapse
Affiliation(s)
- Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
| | | | | |
Collapse
|
16
|
Roy-Engel AM. LINEs, SINEs and other retroelements: do birds of a feather flock together? Front Biosci (Landmark Ed) 2012; 17:1345-61. [PMID: 22201808 DOI: 10.2741/3991] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mobile elements account for almost half of the mass of the human genome. Only the retroelements from the non-LTR (long terminal repeat) retrotransposon family, which include the LINE-1 (L1) and its non-autonomous partners, are currently active and contributing to new insertions. Although these elements seem to share the same basic amplification mechanism, the activity and success of the different types of retroelements varies. For example, Alu-induced mutagenesis is responsible for the majority of the documented instances of human disease induced by insertion of retroelements. Using copy number in mammals as an indicator, some SINEs have been vastly more successful than other retroelements, such as the retropseudogenes and even L1, likely due to differences in post-insertion selection and ability to overcome cellular controls. SINE and LINE integration can be differentially influenced by cellular factors, indicating some differences between in their amplification mechanisms. We focus on the known aspects of this group of retroelements and highlight their similarities and differences that may significantly influence their biological impact.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Tulane University, Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane Cancer Center, SL-66 1430 Tulane Ave., New Orleans, LA 70112.
| |
Collapse
|
17
|
Abstract
Alu elements are primate-specific repeats and comprise 11% of the human genome. They have wide-ranging influences on gene expression. Their contribution to genome evolution, gene regulation and disease is reviewed.
Collapse
|
18
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
19
|
Kroutter EN, Belancio VP, Wagstaff BJ, Roy-Engel AM. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition. PLoS Genet 2009; 5:e1000458. [PMID: 19390602 PMCID: PMC2666806 DOI: 10.1371/journal.pgen.1000458] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/25/2009] [Indexed: 01/26/2023] Open
Abstract
Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing. SINE retroelement amplification has been extremely successful in the human genome. Although these non-autonomous elements parasitize factors from LINEs, both the human Alu and the cumulative rodent SINEs have generated over one million copies in their respective hosts. Alu-induced mutagenesis is responsible for the majority of the documented instances of human retroelement insertion-induced disease. Our data indicate that SINEs require a shorter period of time to complete insertion than L1s, possibly contributing to the ability of Alu elements to effectively parasitize L1 components. We demonstrate that RNA polymerase changes the timing Alu requires to complete retrotransposition and creates the need for the L1 ORF1protein in addition to ORF2p. We postulate that the way cells manage pol III and pol II (mRNA) transcripts affects the timing of a transcript going through the retrotransposition pathway. We propose a model that highlights some of the critical differences of LINE and SINE transcripts that likely play a crucial role in their retrotransposition process.
Collapse
Affiliation(s)
- Emily N. Kroutter
- Tulane Cancer Center SL-66, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, New Orleans, Louisiana, United States of America
- Tulane Center for Aging, Tulane School of Medicine, New Orleans, Louisiana, United States of America
| | - Bradley J. Wagstaff
- Tulane Cancer Center SL-66, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Astrid M. Roy-Engel
- Tulane Cancer Center SL-66, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
20
|
Borodulina OR, Kramerov DA. Transcripts synthesized by RNA polymerase III can be polyadenylated in an AAUAAA-dependent manner. RNA (NEW YORK, N.Y.) 2008; 14:1865-1873. [PMID: 18658125 PMCID: PMC2525947 DOI: 10.1261/rna.1006608] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 06/09/2008] [Indexed: 05/26/2023]
Abstract
It is well known that nearly all eukaryotic mRNAs contain a 3' poly(A) tail. A polyadenylation signal (AAUAAA) nearby the 3' end of pre-mRNA is required for poly(A) synthesis. The protein complex involved in the pre-mRNA polyadenylation is coupled with RNA polymerase II during the transcription of a gene. According to the commonly accepted view, only RNAs synthesized by RNA polymerase II can be polyadenylated in an AAUAAA-dependent manner. Here we report the polyadenylation of short interspersed elements (SINEs) B2 and VES transcripts generated by RNA polymerase III. HeLa cells were transfected with SINE constructs with or without polyadenylation signals. The analyses of the SINE transcripts showed that only the RNAs with the AAUAAA-signal contained poly(A) tails. Polyadenylated B2 RNA was found to be much more stable in cells than B2 RNA without a poly(A) tail.
Collapse
Affiliation(s)
- Olga R Borodulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | | |
Collapse
|
21
|
Rho JH, Qin S, Wang JY, Roehrl MHA. Proteomic expression analysis of surgical human colorectal cancer tissues: up-regulation of PSB7, PRDX1, and SRP9 and hypoxic adaptation in cancer. J Proteome Res 2008; 7:2959-72. [PMID: 18549262 DOI: 10.1021/pr8000892] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Colorectal adenocarcinoma is one of the worldwide leading causes of cancer deaths. Discovery of specific biomarkers for early detection of cancer progression and the identification of underlying pathogenetic mechanisms are important tasks. Global proteomic approaches have thus far been limited by the large dynamic range of molecule concentrations in tissues and the lack of selective enrichment of the low-abundance proteome. We studied paired cancerous and normal clinical tissue specimens from patients with colorectal adenocarcinomas by heparin affinity fractionation enrichment (HAFE) followed by 2-D PAGE and tandem mass spectrometric (MS/MS) identification. Fifty-six proteins were found to be differentially expressed, of which 32 low-abundance proteins were only detectable after heparin affinity enrichment. MS/MS was used to identify 5 selected differentially expressed proteins as proteasome subunit beta type 7 (PSB7), hemoglobin alpha subunit (HBA), peroxiredoxin-1 (PRDX1), argininosuccinate synthase (ASSY), and signal recognition particle 9 kDa protein (SRP9). This is the first proteomic study detecting the differential expression of these proteins in human colorectal cancer tissue. Several of the proteins are functionally related to tissue hypoxia and hypoxic adaptation. The relative specificities of PSB7, PRDX1, and SRP9 overexpression in colon cancer were investigated by Western blot analysis of patients with colon adenocarcinomas and comparison with a control cohort of patients with lung adenocarcinomas. Furthermore, immunohistochemistry on tissue sections was used to define the specific locations of PSB7, PRDX1, and SRP9 up-regulation within heterogeneous primary human tumor tissue. Overexpression of the three proteins was restricted to the neoplastic cancer cell population within the tumors, demonstrating both cytoplasmic and nuclear localization of PSB7 and predominantly cytoplasmic localization of PRDX1 and SRP9. In summary, we describe heparin affinity fractionation enrichment (HAFE) as a prefractionation tool for the study of the human primary tissue proteome and the discovery of PSB7, PRDX1, and SRP9 up-regulation as candidate biomarkers of colon cancer.
Collapse
Affiliation(s)
- Jung-hyun Rho
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
22
|
Dewannieux M, Heidmann T. L1-mediated retrotransposition of murine B1 and B2 SINEs recapitulated in cultured cells. J Mol Biol 2005; 349:241-7. [PMID: 15890192 DOI: 10.1016/j.jmb.2005.03.068] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/22/2005] [Accepted: 03/25/2005] [Indexed: 01/08/2023]
Abstract
SINEs are short interspersed nucleotide elements with transpositional activity, present at a high copy number (up to a million) in mammalian genomes. They are 80-400 bp long, non-coding sequences which derive either from the 7SL RNA (e.g. human Alus, murine B1s) or tRNA (e.g. murine B2s) polymerase III-driven genes. We have previously demonstrated that Alus very efficiently divert the enzymatic machinery of the autonomous L1 LINE (long interspersed nucleotide element) retrotransposons to transpose at a high rate. Here we show, using an ex vivo assay for transposition, that both B1 and B2 SINEs can be mobilized by murine LINEs, with the hallmarks of a bona fide retrotransposition process, including target site duplications of varying lengths and integrations into A-rich sequences. Despite different phylogenetic origins, transposition of the tRNA-derived B2 sequences is as efficient as that of the human Alus, whereas that of B1s is 20-100-fold lower despite a similar high copy number of these elements in the mouse genome. We provide evidence, via an appropriate nucleotide substitution within the B1 sequence in a domain essential for its intracellular targeting, that the current B1 SINEs are not optimal for transposition, a feature most probably selected for the host sake in the course of evolution.
Collapse
Affiliation(s)
- Marie Dewannieux
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, UMR 8122 CNRS, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif Cedex, France
| | | |
Collapse
|
23
|
Liang SH, Hassett C, Omiecinski CJ. Alternative promoters determine tissue-specific expression profiles of the human microsomal epoxide hydrolase gene (EPHX1). Mol Pharmacol 2005; 67:220-30. [PMID: 15465926 PMCID: PMC4091896 DOI: 10.1124/mol.104.005579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microsomal epoxide hydrolase (EPHX1) catalyzes hydration reactions that determine the cellular disposition of reactive epoxide derivatives. Whereas the previously defined EPHX1 exon 1 sequence (E1) is derived from a promoter proximal to exon 2 of the EPHX1 coding region, in this investigation, we identified an alternative EPHX1 exon 1 sequence, E1-b, originating from a gene promoter localized approximately 18.5 kb upstream of exon 2. Northern hybridizations demonstrated that the E1-b variant is widely expressed and that the E1-b promoter functions as the primary driver of EPHX1 expression in human tissues. In contrast, the E1 promoter directs expression only in the liver. To examine the basis for liver-specific usage of the E1 promoter, we identified several potential cis-regulatory elements that included GATA (-110/-105) and hepatocyte nuclear factor 3 (HNF3) (-96/-88) motifs. GATA-4 was the principal GATA family member interacting with its respective motif, whereas both HNF3alpha and HNF3beta were capable of interacting with the HNF3 element. GATA-4 and HNF3alpha/HNF3beta DNA binding complexes were enriched in hepatic cells. Site-directed mutagenesis and transactivation analyses of the E1 promoter revealed that GATA-4 is probably a principal factor that regulates liver-specific expression of the E1 variant, with HNF3alpha and HNF3beta acting to negatively regulate GATA-4 function in hepatic cells.
Collapse
Affiliation(s)
- Shun-Hsin Liang
- Center of Molecular Toxicology, 115 Henning, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
24
|
Zhu QS, Qian B, Levy D. Regulation of human microsomal epoxide hydrolase gene (EPHX1) expression by the transcription factor GATA-4. ACTA ACUST UNITED AC 2004; 1676:251-60. [PMID: 14984931 DOI: 10.1016/j.bbaexp.2004.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 11/17/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a crucial role in the metabolism of numerous xenobiotics as well as in mediating the hepatic sodium-dependent uptake of bile acids that are involved in numerous physiological processes including the regulation of cholesterol metabolism. The transcription factors and nuclear receptors that control the constitutive and inducible expression of the mEH gene (EPHX1), however, have not been described. To characterize these factors, a series of 5'-deletion constructs have been transfected into human liver-derived HepG2 cells as well as non-hepatic HeLa cells. Promoter activity analysis indicated the presence of a positive regulatory element in the -80/-70 bp region. Sequence analysis revealed a putative GATA site at -79/-74 bp as well as an additional site at -31/-26 bp. Electrophoretic mobility shift assays with an anti-GATA-4 antibody confirmed that GATA-4 bound to these two sites with a dissociation constant of 1.56 nM (-79 site) and 0.65 nM (-31 site). Coexpression of GATA-4 stimulated EPHX1 promoter activity up to 7.5-fold in a dose-dependent manner. Endogenous EPHX1 message in HepG2 cells was also significantly increased by overexpression of GATA-4. Mutating the -79 element resulted in a 65% loss of promoter activity, while mutating the -31 element had no effect on basal activity but greatly reduced the response to additional GATA-4. In HeLa cells, which do not express GATA-4, EPHX1 activity was negligible; however, activity could be reconstituted by the addition of exogenous GATA-4. These results demonstrate that GATA-4 plays a critical role in regulating EPHX1 expression.
Collapse
Affiliation(s)
- Qin-shi Zhu
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
25
|
Characterization of the human polymeric immunoglobulin receptor(PIGR) 3'UTR and differential expression ofPIGR mRNA during colon tumorigenesis. J Biomed Sci 2003. [DOI: 10.1007/bf02256332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
26
|
Abstract
The eukaryotic genome has undergone a series of epidemics of amplification of mobile elements that have resulted in most eukaryotic genomes containing much more of this 'junk' DNA than actual coding DNA. The majority of these elements utilize an RNA intermediate and are termed retroelements. Most of these retroelements appear to amplify in evolutionary waves that insert in the genome and then gradually diverge. In humans, almost half of the genome is recognizably derived from retroelements, with the two elements that are currently actively amplifying, L1 and Alu, making up about 25% of the genome and contributing extensively to disease. The mechanisms of this amplification process are beginning to be understood, although there are still more questions than answers. Insertion of new retroelements may directly damage the genome, and the presence of multiple copies of these elements throughout the genome has longer-term influences on recombination events in the genome and more subtle influences on gene expression.
Collapse
Affiliation(s)
- Prescott L Deininger
- Tulane Cancer Center, Department of Environmental Health Sciences, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
27
|
Roy-Engel AM, Salem AH, Oyeniran OO, Deininger L, Hedges DJ, Kilroy GE, Batzer MA, Deininger PL. Active Alu element "A-tails": size does matter. Genome Res 2002; 12:1333-44. [PMID: 12213770 PMCID: PMC186649 DOI: 10.1101/gr.384802] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Long and short interspersed elements (LINEs and SINEs) are retroelements that make up almost half of the human genome. L1 and Alu represent the most prolific human LINE and SINE families, respectively. Only a few Alu elements are able to retropose, and the factors determining their retroposition capacity are poorly understood. The data presented in this paper indicate that the length of Alu "A-tails" is one of the principal factors in determining the retropositional capability of an Alu element. The A stretches of the Alu subfamilies analyzed, both old (Alu S and J) and young (Ya5), had a Poisson distribution of A-tail lengths with a mean size of 21 and 26, respectively. In contrast, the A-tails of very recent Alu insertions (disease causing) were all between 40 and 97 bp in length. The L1 elements analyzed displayed a similar tendency, in which the "disease"-associated elements have much longer A-tails (mean of 77) than do the elements even from the young Ta subfamily (mean of 41). Analysis of the draft sequence of the human genome showed that only about 1000 of the over one million Alu elements have tails of 40 or more adenosine residues in length. The presence of these long A stretches shows a strong bias toward the actively amplifying subfamilies, consistent with their playing a major role in the amplification process. Evaluation of the 19 Alu elements retrieved from the draft sequence of the human genome that are identical to the Alu Ya5a2 insert in the NF1 gene showed that only five have tails with 40 or more adenosine residues. Sequence analysis of the loci with the Alu elements containing the longest A-tails (7 of the 19) from the genomes of the NF1 patient and the father revealed that there are at least two loci with A-tails long enough to serve as source elements within our model. Analysis of the A-tail lengths of 12 Ya5a2 elements in diverse human population groups showed substantial variability in both the Alu A-tail length and sequence homogeneity. On the basis of these observations, a model is presented for the role of A-tail length in determining which Alu elements are active.
Collapse
Affiliation(s)
- Astrid M Roy-Engel
- Tulane Cancer Center, SL-66, Department of Environmental Health Sciences, Tulane University-Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The heterogeneous, short RNAs produced from the high, copy, short mobile elements (SINEs) interact with proteins to form RNA-protein (RNP) complexes. In particular, the BC1 RNA, which is transcribed to high levels specifically in brain and testis from one locus of the ID SINE family, exists as a discrete RNP complex. We expressed a series of altered BC1, and other SINE-related RNAs, in several cell lines and tested for the mobility of the resulting RNP complexes in a native PAGE assay to determine which portions of these SINE RNAs contribute to protein binding. When different SINE RNAs were substituted for the BC1 ID sequence, the resulting RNPs exhibited the same mobility as BC1. This indicates that the protein(s) binding to the ID portion of BC1 is not sequence specific and may be more dependent upon the secondary structure of the RNA. It also suggests that all SINE RNAs may bind a similar set of cellular proteins. Deletion of the A-rich region of BC1 RNA has a marked effect on the mobility of the RNP. Rodent cell lines exhibit a slightly different mobility for this shifted complex when compared to human cell lines, reflecting evolutionary differences in one or more of the protein components. On the basis of mobility change observed in RNP complexes when the A-rich region is removed, we decided to examine poly(A) binding protein (PABP) as a candidate member of the RNP. An antibody against the C terminus of PABP is able to immunoprecipitate BC1 RNA, confirming PABP's presence in the BC1 RNP. Given the ubiquitous role of poly(A) regions in the retrotransposition process, these data suggest that PABP may contribute to the SINE retrotransposition process.
Collapse
Affiliation(s)
- Neva West
- Tulane Cancer Center, SL-66, Department of Environmental Health Sciences, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
29
|
Alemán C, Roy-Engel AM, Shaikh TH, Deininger PL. Cis-acting influences on Alu RNA levels. Nucleic Acids Res 2000; 28:4755-61. [PMID: 11095687 PMCID: PMC115182 DOI: 10.1093/nar/28.23.4755] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human short interspersed repeated element (SINE), Alu, amplifies through a poorly understood RNA-mediated mechanism, termed retroposition. There are over one million copies of Alu per haploid human genome. The copies show some internal variations in sequence and are very heterogeneous in chromosomal environment. However, very few Alu elements actively amplify. The amplification rate has decreased greatly in the last 40 million years. Factors influencing Alu transcription would directly affect an element's retroposition capability. Therefore, we evaluated several features that might influence expression from individual Alu elements. The influence of various internal sequence variations and 3' unique flanks on full-length Alu RNA steady-state levels was determined. Alu subfamily diagnostic mutations do not significantly alter the amount of Alu RNA observed. However, sequences containing random mutations throughout the right half of selected genomic Alu elements altered Alu RNA steady-state levels in cultured cells. In addition, sequence variations at the 3' unique end of the transcript also significantly altered the Alu RNA levels. In general, sequence mutations and 3' end sequences contribute to Alu RNA levels, suggesting that the master Alu element(s) have a multitude of individual differences that collectively gives them a selective advantage over other Alu elements.
Collapse
Affiliation(s)
- C Alemán
- Tulane Cancer Center, SL-66, and Department of Environmental Health Sciences, Tulane University-Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
30
|
Stuart JJ, Egry LA, Wong GH, Kaspar RL. The 3' UTR of human MnSOD mRNA hybridizes to a small cytoplasmic RNA and inhibits gene expression. Biochem Biophys Res Commun 2000; 274:641-8. [PMID: 10924331 DOI: 10.1006/bbrc.2000.3189] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human MnSOD localizes to the mitochondria and plays a key protective role by detoxifying oxygen free radicals. The MnSOD mRNA 3' UTR contains a 280-bp region (Alu-like element or Alu-E) that shows high homology to human Alu and 7SL sequences. MnSOD 3' UTR probes hybridize to a specific cytoplasmic RNA species of approximately 300 nucleotides. This antisense RNA is most likely 7SL RNA based on its size, ubiquitousness, high levels, and lack of inducibility. Hybridization of this small RNA to the MnSOD 3' UTR may modulate posttranscriptional MnSOD gene expression. This regulation could occur by several means including inhibition of translation and mRNA destabilization. Regulation at the level of translational initiation does not seem to occur as MnSOD mRNA containing the Alu-E is efficiently bound by ribosomes. To test the role of the MnSOD 3' UTR, and in particular the Alu-E in gene expression, luciferase reporter gene constructs were made containing various regions of the MnSOD 3' UTR including the Alu-E. These constructs were transfected into human A549 lung carcinoma cells and luciferase activity was measured. Reporter constructs containing the MnSOD 3' UTR and the Alu-E repress luciferase activity. Taken together, these results suggest that naturally occurring antisense RNA may bind MnSOD mRNA and repress its expression. These results also suggest that other mRNAs containing Alu elements may be similarly repressed.
Collapse
Affiliation(s)
- J J Stuart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84602, USA
| | | | | | | |
Collapse
|
31
|
Politz JC, Yarovoi S, Kilroy SM, Gowda K, Zwieb C, Pederson T. Signal recognition particle components in the nucleolus. Proc Natl Acad Sci U S A 2000; 97:55-60. [PMID: 10618370 PMCID: PMC26615 DOI: 10.1073/pnas.97.1.55] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein composed of an Alu domain and an S domain. The S domain contains unique sequence SRP RNA and four SRP proteins: SRP19, SRP54, SRP68, and SRP72. SRP interacts with ribosomes to bring translating membrane and secreted proteins to the endoplasmic reticulum (ER) for proper processing. Additionally, SRP RNA is a member of a family of small nonribosomal RNAs found recently in the nucleolus, suggesting that the nucleolus is more plurifunctional than previously realized. It was therefore of interest to determine whether other SRP components localize to this intranuclear site. In transfected rat fibroblasts, green fluorescent protein fusions of SRP19, SRP68, and SRP72 localized to the nucleolus, as well as to the cytoplasm, as expected. SRP68 also accumulated in the ER, consistent with its affinity for the ER-bound SRP receptor. SRP54 was detected in the cytoplasm as a green fluorescent protein fusion and in immunofluorescence studies, but was not detected in the nucleolus. In situ hybridization experiments also revealed endogenous SRP RNA in the nucleolus. These results demonstrate that SRP RNA and three SRP proteins visit the nucleolus, suggesting that partial SRP assembly, or another unidentified activity of the SRP components, occurs at the nucleolus. SRP54 apparently interacts with nascent SRP beyond the nucleolus, consistent with in vitro reconstitution experiments showing that SRP19 must bind to SRP RNA before SRP54 binds. Our findings support the notion that the nucleolus is the site of assembly and/or interaction between the family of ribonucleoproteins involved in protein synthesis, in addition to ribosomes themselves.
Collapse
Affiliation(s)
- J C Politz
- Department of Biochemistry, University of Massachusetts Medical School, 377 Plantation Street, Suite 337, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Available data on possible genetic impacts of mammalian retroposons are reviewed. Most important is the growing number of established examples showing the involvement of retroposons in modulation of expression of protein-coding genes transcribed by RNA polymerase II (Pol II). Retroposons contain conserved blocks of nucleotide sequence for binding of some important Pol II transcription factors as well as sequences involved in regulation of stability of mRNA. Moreover, these mobile genes provide short regions of sequence homology for illegitimate recombinations, leading to diverse genome rearrangements during evolution. Therefore, mammalian retroposons representing a significant fraction of noncoding DNA cannot be considered at present as junk DNA but as important genetic symbionts driving the evolution of regulatory networks controlling gene expression.
Collapse
Affiliation(s)
- N V Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| |
Collapse
|
33
|
Jacobson MR, Pederson T. Localization of signal recognition particle RNA in the nucleolus of mammalian cells. Proc Natl Acad Sci U S A 1998; 95:7981-6. [PMID: 9653126 PMCID: PMC20915 DOI: 10.1073/pnas.95.14.7981] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The signal recognition particle (SRP) of eukaryotic cells is a cytoplasmic ribonucleoprotein machine that arrests the translational elongation of nascent secretory and membrane proteins and facilitates their transport into the endoplasmic reticulum. The spatial pathway of SRP RNA processing and ribonucleoprotein assembly in the cell is not known. In the present investigation, microinjection of fluorescently tagged SRP RNA into the nucleus of mammalian cells was used to examine its intranuclear sites of localization. Microinjection of SRP RNA into the nuclei of normal rat kidney (NRK) epithelial cells maintained at 37 degreesC on the microscope stage resulted in a very rapid initial localization in nucleoli, followed by a progressive decline of nucleolar signal and an increase of fluorescence at discrete sites in the cytoplasm. Nuclear microinjection of a molecule corresponding to a major portion of the Alu domain of SRP RNA revealed a pattern of rapid nucleolar localization followed by cytoplasmic appearance of signal that was similar to the results obtained with full-length SRP RNA. In contrast, a molecule corresponding to the S domain of SRP RNA did not display nucleolar localization to the extent observed with full-length SRP RNA. An SRP RNA molecule lacking helix 6 of the S domain displayed normal nucleolar localization, whereas one lacking helix 8 of the S domain did not. These results, obtained by direct, real-time observation of fluorescent RNA molecules inside the nucleus of living mammalian cells, suggest that the processing of SRP RNA or its ribonucleoprotein assembly into the SRP involves a nucleolar phase.
Collapse
Affiliation(s)
- M R Jacobson
- Worcester Foundation for Biomedical Research and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester Foundation Campus, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
34
|
Kremerskothen J, Zopf D, Walter P, Cheng JG, Nettermann M, Niewerth U, Maraia RJ, Brosius J. Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain. Neurosci Lett 1998; 245:123-6. [PMID: 9605471 DOI: 10.1016/s0304-3940(98)00215-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BC200 RNA is a brain-specific, small non-messenger RNA with a somatodendritic localization in primate neurons and a constituent of a ribonucleoprotein (RNP) complex. The primary and secondary structure of the 5' domain of BC200 RNA resembles that of the Alu domain of 7SL RNA, which is an integral part of the signal recognition particle (SRP). This would predict that similar proteins bind to this defined domain of both RNA species in vitro and in vivo. The data presented in this paper reveal that a protein that binds BC200 RNA in vivo is immunoreactive with antibodies against SRP9. This further supports the notion that the 5' domain of the BC200 RNA can fold into structures similar to the SRP Alu domain and, as a result, bind identical or similar proteins in vivo. The SRP9 protein binds only as dimer with SRP14 protein to the Alu domain of 7SL RNA to form a subdomain that, in SRP, is functional in translation arrest. Therefore, our data also indicate that the neuronal BC200 RNP is a candidate for regulating decentralized protein biosynthesis in dendrites, possibly with a mechanism that resembles translation arrest of the SRP.
Collapse
Affiliation(s)
- J Kremerskothen
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang J, Su SF, Dresser MJ, Schaner ME, Washington CB, Giacomini KM. Na(+)-dependent purine nucleoside transporter from human kidney: cloning and functional characterization. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:F1058-65. [PMID: 9435697 DOI: 10.1152/ajprenal.1997.273.6.f1058] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many purine nucleosides and their analogs are actively transported in the kidney. Using homology cloning strategies and reverse transcriptase-polymerase chain reactions, we isolated a cDNA encoding a Na(+)-dependent nucleoside transporter, hSPNT1, from human kidney. Functional expression in Xenopus laevis oocytes identified hSPNT1 as a Na(+)-dependent nucleoside transporter that selectively transports purine nucleosides but also transports uridine. The Michaelis constant (K(m)) of uridine (80 microM) in interacting with hSPNT1 was substantially higher than that of inosine (4.5 microM). hSPNT1 (658 amino acids) is 81% identical to the previously cloned rat Na(+)-nucleoside transporter, SPNT, but differs markedly from SPNT in terms of its primary structure in the NH2 terminus. In addition, an Alu repetitive element (approximately 282 bp) is present in the 3'-untranslated region of the hSPNT1 cDNA. Northern analysis revealed that multiple transcripts of hSPNT1 are widely distributed in human tissues including human kidney. In contrast, rat SPNT transcripts are absent in kidney and highly localized to liver and intestine. The hSPNT1 gene was localized to chromosome 15. This is the first demonstration of a purine nucleoside transporter in human kidney.
Collapse
Affiliation(s)
- J Wang
- Department of Biopharmaceutical Sciences, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
36
|
Shaikh TH, Roy AM, Kim J, Batzer MA, Deininger PL. cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. J Mol Biol 1997; 271:222-34. [PMID: 9268654 DOI: 10.1006/jmbi.1997.1161] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated and sequenced twenty-six cDNAs derived from primary Alu transcripts. Most cDNAs (22/26) sequenced end in multiple T residues, known to be at the termination for RNA polymerase III-directed transcripts. We conclude that these cDNAs were derived from authentic, RNA polymerase III-directed primary Alu transcripts. Sequence alignment of the cDNAs with Alu consensus sequences show that the cDNAs belong to different, previously described Alu subfamilies. The sequence variation observed in the 3' non-Alu regions of each of the cDNAs led us to conclude that they were derived from different genomic loci, thus demonstrating that multiple Alu loci are transcriptionally active. The subfamily distribution of the cDNAs suggests that transcriptional activity is biased towards evolutionarily younger Alu subfamilies, with a strong selection for the consensus sequence in the first 42 bases and the promoter B box. Sequence data from seven cDNAs derived from small cytoplasmic Alu (scAlu) transcripts, a processed form of Alu transcripts, also have a similar bias towards younger Alu subfamilies. About half of these cDNAs are due to processing or degradation, but the other half appear to be due to the formation of a cryptic RNA polymerase III termination signal in multiple loci. Using our sequence data, we have isolated a transcriptionally active genomic Alu element belonging to the Ya5 subfamily. In vitro transcription studies of this element suggest that its flanking sequences contribute to its transcriptional activity. The role of flanking sequences and other factors involved in transcriptional activity of Alu elements are discussed.
Collapse
Affiliation(s)
- T H Shaikh
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, 1901 Perdido St, New Orleans, LA, 70112, USA
| | | | | | | | | |
Collapse
|
37
|
Kritzik MR, Ziober AF, Dicharry S, Conrad DJ, Sigal E. Characterization and sequence of an additional 15-lipoxygenase transcript and of the human gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:267-81. [PMID: 9224951 DOI: 10.1016/s0167-4781(97)00005-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
15-lipoxygenase is a lipid-peroxidating enzyme that oxidizes fatty acids, such as those esterified to cellular membranes. It has been implicated in the oxidative modification of low-density lipoprotein and is thus thought to contribute to the development of atherosclerosis. The enzyme has also been shown to be specifically induced by interleukin-4 in human blood monocytes. Two 15-lipoxygenase-hybridizing messages were detected in these cells; one (2.7 kb) corresponds to the previously isolated cDNA for 15-lipoxygenase, while the other (4 kb) was of unknown origin. We have isolated and characterized this 4 kb transcript. Our experiments show that it has 1.2 kb additional sequence in its 3' untranslated region, and that it is generated from genomic sequences through differential polyA site selection. We present studies to address the functional significance of the extended 3'UTR. Selection of an upstream polyadenylation signal results in production of the 2.7 kb transcript. In addition, we present here for the first time the cloning and sequence of the human 15-lipoxygenase gene, as well as the identification of regulatory elements in the promoter region of this gene.
Collapse
Affiliation(s)
- M R Kritzik
- Institute of Biochemistry and Cell Biology, Syntex Discovery Research, Palo Alto, CA, USA
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Cheng JG, Tiedge H, Brosius J. Expression of dendritic BC200 RNA, component of a 11.4S ribonucleoprotein particle, is conserved in humans and simians. Neurosci Lett 1997; 224:206-10. [PMID: 9131672 DOI: 10.1016/s0304-3940(97)13471-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Primate BC200 RNA, a brain-specific small cytoplasmic RNA, is one of the few known cell type specific non-messenger RNAs. It originated from a monomeric Alu short interspersed repetitive element (SINE) in primates. In situ hybridization using rhesus monkey (Macaca mulatta) brain sections reveals a similar cellular and sub-cellular distribution as in human brain. In addition to confirming its dendritic location, the distribution in an old world monkey indicates a discrete regional and subcellular location of BC200 RNA. We also report that BC200 RNA exists as a ribonucleoprotein (RNP) particle in vivo. In sucrose gradients, the BC200 particle has a sedimentation constant of about 11.4 S, significantly more than the corresponding 200 nucleotide long naked RNA (approximately 7.6 S).
Collapse
Affiliation(s)
- J G Cheng
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
40
|
Chang DY, Newitt JA, Hsu K, Bernstein HD, Maraia RJ. A highly conserved nucleotide in the Alu domain of SRP RNA mediates translation arrest through high affinity binding to SRP9/14. Nucleic Acids Res 1997; 25:1117-22. [PMID: 9092618 PMCID: PMC146575 DOI: 10.1093/nar/25.6.1117] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Binding of the signal recognition particle (SRP) to signal sequences during translation leads to an inhibition of polypeptide elongation known as translation arrest. The arrest activity is mediated by a discrete domain comprised of the Alu portion of SRP RNA and a 9 and 14 kDa polypeptide heterodimer (SRP9/14). Although very few nucleotides in SRP RNA are conserved throughout evolution, the remarkable conservation of G24, which resides in the region of SRP9/14 interaction, suggests that it is essential for translation arrest. To understand the functional significance of the G24 residue, we made single base substitutions in SRP RNA at this position and analyzed the ability of the mutants to bind SRP9/14 and to reconstitute functional SRPs. Mutation of G24 to C reduced binding to SRP9/14 by at least 50-fold, whereas mutation to A and U reduced binding approximately 2- and 5-fold respectively. The mutant RNAs could nevertheless assemble into SRPs at high subunit concentrations. SRPs reconstituted with mutant RNAs were not significantly defective in translation arrest assays, indicating that the conserved guanosine does not interact directly with the translational machinery. Taken together, these results demonstrate that G24 plays an important role in the translation arrest function of SRP by mediating high affinity binding of SRP9/14.
Collapse
Affiliation(s)
- D Y Chang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Sarrowa J, Chang DY, Maraia RJ. The decline in human Alu retroposition was accompanied by an asymmetric decrease in SRP9/14 binding to dimeric Alu RNA and increased expression of small cytoplasmic Alu RNA. Mol Cell Biol 1997; 17:1144-51. [PMID: 9032241 PMCID: PMC231839 DOI: 10.1128/mcb.17.3.1144] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Alu interspersed elements are inserted into the genome by a retroposition process that occurs via dimeric Alu RNA and causes genetic disorders in humans. Alu RNA is labile and can be diverted to a stable left monomer transcript known as small cytoplasmic Alu (scAlu) RNA by RNA 3' processing, although the relationship between Alu RNA stability, scAlu RNA production, and retroposition has been unknown. In vivo, Alu and scAlu transcripts interact with the Alu RNA-binding subunit of signal recognition particle (SRP) known as SRP9/14. We examined RNAs corresponding to Alu sequences that were differentially active during primate evolution, as well as an Alu RNA sequence that is currently active in humans. Mutations that accompanied Alu RNA evolution led to changes in a conserved structural motif also found in SRP RNAs that are associated with thermodynamic destabilization and decreased affinity of the Alu right monomer for SRP9/14. In contrast to the right monomer, the Alu left monomer maintained structural integrity and high affinity for SRP9/14, indicating that scAlu RNA has been under selection during human evolution. Loss of Alu right monomer affinity for SRP9/14 is associated with scAlu RNA production from Alu elements in vivo. Moreover, the loss in affinity coincided with decreased rates of Alu amplification during primate evolution. This indicates that stability of the Alu right monomer is a critical determinant of Alu retroposition. These results provide insight into Alu mobility and evolution and into how retroposons may interact with host proteins during genome evolution.
Collapse
Affiliation(s)
- J Sarrowa
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
42
|
Bovia F, Wolff N, Ryser S, Strub K. The SRP9/14 subunit of the human signal recognition particle binds to a variety of Alu-like RNAs and with higher affinity than its mouse homolog. Nucleic Acids Res 1997; 25:318-26. [PMID: 9016560 PMCID: PMC146433 DOI: 10.1093/nar/25.2.318] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The heterodimeric subunit, SRP9/14, of the signal recognition particle (SRP) has previously been found to bind to scAlu and scB1 RNAs in vitro and to exist in large excess over SRP in anthropoid cells. Here we show that human and mouse SRP9/14 bind with high affinities to other Alu-like RNAs of different evolutionary ages including the neuron-specific BC200 RNA. The relative dissociation constants of the different RNA-protein complexes are inversely proportional to the evolutionary distance between the Alu RNA species and 7SL RNA. In addition, the human SRP9/14 binds with higher affinity than mouse SRP9/14 to all RNAs analyzed and this difference is not explained by the additional C-terminal domain present in the anthropoid SRP14. The conservation of high affinity interactions between SRP9/14 and Alu-like RNAs strongly indicates that these Alu-like RNPs exist in vivo and that they have cellular functions. The observation that human SRP9/14 binds better than its mouse counterpart to distantly related Alu RNAs, such as recently transposed elements, suggests that the anthropoid-specific excess of SRP9/14 may have a role in controlling Alu amplification rather than in compensating a defect in SRP assembly and functions.
Collapse
Affiliation(s)
- F Bovia
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
43
|
Chang DY, Hsu K, Maraia RJ. Monomeric scAlu and nascent dimeric Alu RNAs induced by adenovirus are assembled into SRP9/14-containing RNPs in HeLa cells. Nucleic Acids Res 1996; 24:4165-70. [PMID: 8932367 PMCID: PMC146241 DOI: 10.1093/nar/24.21.4165] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nearly 1 000 000 copies of Alu interspersed elements comprise approximately 5% of human DNA. Alu elements cause gene disruptions by a process known as retrotransposition, in which dimeric Alu RNA is a presumed intermediate. Dimeric Alu transcripts are labile, giving rise to stable left monomeric scAlu RNAs whose levels are tightly regulated. Induction of Alu RNA by viral infection or cell stress leads to a dramatic increase in dimeric Alu transcripts, while scAlu RNA increases modestly. Each monomer of the dimeric Alu element shares sequence homology with the 7SL RNA component of the signal recognition particle (SRP). The SRP protein known as SRP9/14 is also found in a discrete complex with scAlu RNA, although whether dimeric Alu RNA is associated with SRP9/14 had been unknown. Here we show that antiserum to human SRP9 immunoprecipitates both scAlu RNA and dimeric Alu RNAs and that these RNPs accumulate after adenovirus infection, while levels of SRP9, SRP14, SRP54 and 7SL SRP RNA are unaffected. Dimeric Alu RNAs are also associated with the La protein, indicating that these are indeed nascent RNA polymerase III transcripts. This report documents that induced Alu transcripts are assembled into SRP9/14-containing RNPs in vivo while SRP levels are unchanged. Implications for Alu RNA metabolism and evolution are discussed.
Collapse
Affiliation(s)
- D Y Chang
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|