1
|
D'Antona S, Porro D, Gallivanone F, Bertoli G. Characterization of cell cycle, inflammation, and oxidative stress signaling role in non-communicable diseases: Insights into genetic variants, microRNAs and pathways. Comput Biol Med 2024; 174:108346. [PMID: 38581999 DOI: 10.1016/j.compbiomed.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Non-Communicable Diseases (NCDs) significantly impact global health, contributing to over 70% of premature deaths, as reported by the World Health Organization (WHO). These diseases have complex and multifactorial origins, involving genetic, epigenetic, environmental and lifestyle factors. While Genome-Wide Association Study (GWAS) is widely recognized as a valuable tool for identifying variants associated with complex phenotypes; the multifactorial nature of NCDs necessitates a more comprehensive exploration, encompassing not only the genetic but also the epigenetic aspect. For this purpose, we employed a bioinformatics-multiomics approach to examine the genetic and epigenetic characteristics of NCDs (i.e. colorectal cancer, coronary atherosclerosis, squamous cell lung cancer, psoriasis, type 2 diabetes, and multiple sclerosis), aiming to identify novel biomarkers for diagnosis and prognosis. Leveraging GWAS summary statistics, we pinpointed Single Nucleotide Polymorphisms (SNPs) independently associated with each NCD. Subsequently, we identified genes linked to cell cycle, inflammation and oxidative stress mechanisms, revealing shared genes across multiple diseases, suggesting common functional pathways. From an epigenetic perspective, we identified microRNAs (miRNAs) with regulatory functions targeting these genes of interest. Our findings underscore critical genetic pathways implicated in these diseases. In colorectal cancer, the dysregulation of the "Cytokine Signaling in Immune System" pathway, involving LAMA5 and SMAD7, regulated by Hsa-miR-21-5p, Hsa-miR-103a-3p, and Hsa-miR-195-5p, emerged as pivotal. In coronary atherosclerosis, the pathway associated with "binding of TCF/LEF:CTNNB1 to target gene promoters" displayed noteworthy implications, with the MYC factor controlled by Hsa-miR-16-5p as a potential regulatory factor. Squamous cell lung carcinoma analysis revealed significant pathways such as "PTK6 promotes HIF1A stabilization," regulated by Hsa-let-7b-5p. In psoriasis, the "Endosomal/Vacuolar pathway," involving HLA-C and Hsa-miR-148a-3p and Hsa-miR-148b-3p, was identified as crucial. Type 2 Diabetes implicated the "Regulation of TP53 Expression" pathway, controlled by Hsa-miR-106a-5p and Hsa-miR-106b-5p. In conclusion, our study elucidates the genetic framework and molecular mechanisms underlying NCDs, offering crucial insights into potential genetic/epigenetic biomarkers for diagnosis and prognosis. The specificity of pathways and related miRNAs in different pathologies highlights promising candidates for further clinical validation, with the potential to advance personalized treatments and alleviate the global burden of NCDs.
Collapse
Affiliation(s)
- Salvatore D'Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesca Gallivanone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Gloria Bertoli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| |
Collapse
|
2
|
Shen JS, Balaji U, Shigeyasu K, Okugawa Y, Jabbarzadeh-Tabrizi S, Day TS, Arning E, Marshall J, Cheng SH, Gu J, Schiffmann R, Bottiglieri T, Goel A. Dysregulated DNA methylation in the pathogenesis of Fabry disease. Mol Genet Metab Rep 2022; 33:100919. [PMID: 36186841 PMCID: PMC9519376 DOI: 10.1016/j.ymgmr.2022.100919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of α-galactosidase A and subsequent accumulation of glycosphingolipids with terminal α-D-galactosyl residues. The molecular process through which this abnormal metabolism of glycosphingolipids causes multisystem dysfunction in Fabry disease is not fully understood. We sought to determine whether dysregulated DNA methylation plays a role in the development of this disease. In the present study, using isogenic cellular models derived from Fabry patient endothelial cells, we tested whether manipulation of α-galactosidase A activity and glycosphingolipid metabolism affects DNA methylation. Bisulfite pyrosequencing revealed that changes in α-galactosidase A activity were associated with significantly altered DNA methylation in the androgen receptor promoter, and this effect was highly CpG loci-specific. Methylation array studies showed that α-galactosidase A activity and glycosphingolipid levels were associated with differential methylation of numerous CpG sites throughout the genome. We identified 15 signaling pathways that may be susceptible to methylation alterations in Fabry disease. By incorporating RNA sequencing data, we identified 21 genes that have both differential mRNA expression and methylation. Upregulated expression of collagen type IV alpha 1 and alpha 2 genes correlated with decreased methylation of these two genes. Methionine levels were elevated in Fabry patient cells and Fabry mouse tissues, suggesting that a perturbed methionine cycle contributes to the observed dysregulated methylation patterns. In conclusion, this study provides evidence that α-galactosidase A deficiency and glycosphingolipid storage may affect DNA methylation homeostasis and highlights the importance of epigenetics in the pathogenesis of Fabry disease and, possibly, of other lysosomal storage disorders.
Collapse
Affiliation(s)
- Jin-Song Shen
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
- Corresponding author at: 4D Molecular Therapeutics, 5858 Horton St., Suite 455, Emeryville, CA 94608, United States of America.
| | - Uthra Balaji
- Baylor Scott & White Research Institute, Biostatistics, Dallas, TX, United States of America
| | - Kunitoshi Shigeyasu
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| | - Siamak Jabbarzadeh-Tabrizi
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Taniqua S. Day
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Erland Arning
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - John Marshall
- Sanofi Genzyme, 49 New York Avenue, Framingham, MA 01701, United States of America
| | - Seng H. Cheng
- Sanofi Genzyme, 49 New York Avenue, Framingham, MA 01701, United States of America
| | - Jinghua Gu
- Baylor Scott & White Research Institute, Biostatistics, Dallas, TX, United States of America
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, 3434 Live Oak Street, Dallas, TX 75024, United States of America
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute, Dallas, TX, United States of America
| |
Collapse
|
3
|
Long-Distance Repression by Human Silencers: Chromatin Interactions and Phase Separation in Silencers. Cells 2022; 11:cells11091560. [PMID: 35563864 PMCID: PMC9101175 DOI: 10.3390/cells11091560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional genome organization represents an additional layer in the epigenetic regulation of gene expression. Active transcription controlled by enhancers or super-enhancers has been extensively studied. Enhancers or super-enhancers can recruit activators or co-activators to activate target gene expression through long-range chromatin interactions. Chromatin interactions and phase separation play important roles in terms of enhancer or super-enhancer functioning. Silencers are another major type of cis-regulatory element that can mediate gene regulation by turning off or reducing gene expression. However, compared to active transcription, silencer studies are still in their infancy. This review covers the current knowledge of human silencers, especially the roles of chromatin interactions and phase separation in silencers. This review also proposes future directions for human silencer studies.
Collapse
|
4
|
Donner I, Sipilä LJ, Plaketti RM, Kuosmanen A, Forsström L, Katainen R, Kuismin O, Aavikko M, Romsi P, Kariniemi J, Aaltonen LA. Next-generation sequencing in a large pedigree segregating visceral artery aneurysms suggests potential role of COL4A1/COL4A2 in disease etiology. Vascular 2021; 30:842-847. [PMID: 34281442 DOI: 10.1177/17085381211033157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Visceral artery aneurysms (VAAs) can be fatal if ruptured. Although a relatively rare incident, it holds a contemporary mortality rate of approximately 12%. VAAs have multiple possible causes, one of which is genetic predisposition. Here, we present a striking family with seven individuals affected by VAAs, and one individual affected by a visceral artery pseudoaneurysm. METHODS We exome sequenced the affected family members and the parents of the proband to find a possible underlying genetic defect. As exome sequencing did not reveal any feasible protein-coding variants, we combined whole-genome sequencing of two individuals with linkage analysis to find a plausible non-coding culprit variant. Variants were ranked by the deep learning framework DeepSEA. RESULTS Two of seven top-ranking variants, NC_000013.11:g.108154659C>T and NC_000013.11:g.110409638C>T, were found in all VAA-affected individuals, but not in the individual affected by the pseudoaneurysm. The second variant is in a candidate cis-regulatory element in the fourth intron of COL4A2, proximal to COL4A1. CONCLUSIONS As type IV collagens are essential for the stability and integrity of the vascular basement membrane and involved in vascular disease, we conclude that COL4A1 and COL4A2 are strong candidates for VAA susceptibility genes.
Collapse
Affiliation(s)
- Iikki Donner
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Lauri J Sipilä
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Roosa-Maria Plaketti
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Anna Kuosmanen
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Linda Forsström
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, 60664Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit, Medical Research Center Oulu, 60664Oulu University Hospitaland University of Oulu, Oulu, Finland
| | - Mervi Aavikko
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), HiLIFE, 3835University of Helsinki, Helsinki, Finland
| | - Pekka Romsi
- Department of Vascular Surgery, 60664Oulu University Hospital, Oulu, Finland
| | - Juho Kariniemi
- Department of Radiology, 60664Oulu University Hospital, Oulu, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, 3835University of Helsinki, Helsinki, Finland.,Genome-Scale Biology Research Program, Research Programs Unit, 3835University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Abstract
Over the past decade, studies have repeatedly found single-nucleotide polymorphisms located in the collagen ( COL) 4A1 and COL4A2 genes to be associated with cardiovascular disease (CVD), and the 13q34 locus harboring these genes is one of ~160 genome-wide significant risk loci for coronary artery disease. COL4A1 and COL4A2 encode the α1- and α2-chains of collagen type IV, a major component of basement membranes in various tissues including arteries. Despite the growing body of evidence indicating a role for collagen type IV in CVD, remarkably few studies have aimed to directly investigate such a role. The purpose of this review is to summarize the clinical reports linking 13q34 to coronary artery disease, atherosclerosis, and artery stiffening and to assemble the scattered pieces of evidence from experimental studies based on vascular cells and tissue collectively supporting a role for collagen type IV in atherosclerosis and other macrovascular disease conditions.
Collapse
Affiliation(s)
- L B Steffensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - L M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark
| |
Collapse
|
6
|
The highly expressed COL4A1 genes contributes to the proliferation and migration of the invasive ductal carcinomas. Oncotarget 2017; 8:58172-58183. [PMID: 28938546 PMCID: PMC5601642 DOI: 10.18632/oncotarget.17345] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Invasive ductal carcinoma is a kind of very typical breast cancer. The goal of our research was to figure out the molecular mechanism of Invasive ductal carcinoma and to find out its potential therapy targets. RESULTS The total amount of 478 differentially expressed genes in Invasive ductal carcinoma which compared with normal breast epithelial cells were recognized. Functional enrichment analysis proved the most part of differentially expressed genes had connection with ECM-receptor interaction. The two genes lists were contrasted in PPI network, and miRNA regulation networks, The most two crucial genes were identified in our study, which may be helpful to improve Invasive ductal carcinoma treatment. Additionally, experimental results shows that the COL4A1 gene, one of identified genes, played important roles in both of proliferation and colony formation in Invasive ductal carcinoma. CONCLUSIONS Invasive ductal carcinoma could have connection with ECM-receptor mutations. These 9 vital genes could be an important part in the progression of Invasive ductal carcinoma and be offered as therapy targets and prognosis indicator. and the experimental results showed that one of the most crucial genes, COL4A1, was the key gene that influence the proliferation and colony formation of the Invasive ductal carcinoma cell.
Collapse
|
7
|
Yang W, Ng FL, Chan K, Pu X, Poston RN, Ren M, An W, Zhang R, Wu J, Yan S, Situ H, He X, Chen Y, Tan X, Xiao Q, Tucker AT, Caulfield MJ, Ye S. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet 2016; 12:e1006127. [PMID: 27389912 PMCID: PMC4936713 DOI: 10.1371/journal.pgen.1006127] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/25/2016] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD risk.
Collapse
Affiliation(s)
- Wei Yang
- Shantou University Medical College, Shantou, China
| | - Fu Liang Ng
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Kenneth Chan
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Royal Free Hospital, University College London, London, United Kingdom
| | - Xiangyuan Pu
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Robin N. Poston
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Meixia Ren
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Weiwei An
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ruoxin Zhang
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jingchun Wu
- Shantou University Medical College, Shantou, China
| | - Shunying Yan
- First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Haiteng Situ
- First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xinjie He
- First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yequn Chen
- First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xuerui Tan
- First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qingzhong Xiao
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Arthur T. Tucker
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mark J. Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Shu Ye
- Shantou University Medical College, Shantou, China
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Biomedical Research Centre in Cardiovascular Disease, Leicester, United Kingdom
| |
Collapse
|
8
|
Ha TT, Sadleir LG, Mandelstam SA, Paterson SJ, Scheffer IE, Gecz J, Corbett MA. A mutation in COL4A2 causes autosomal dominant porencephaly with cataracts. Am J Med Genet A 2015; 170A:1059-63. [PMID: 26708157 DOI: 10.1002/ajmg.a.37527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/09/2015] [Indexed: 12/25/2022]
Abstract
Mutations in COL4A1 are well described and result in brain abnormalities manifesting with severe neurological deficits including cerebral palsy, intellectual disability, and focal epilepsy. Families with mutations in COL4A2 are now emerging with a similar phenotype. We describe a family with an autosomal dominant disorder comprising porencephaly, focal epilepsy, and lens opacities, which was negative for mutations in COL4A1. Using whole exome sequencing of three affected individuals from three generations, we identified a rare variant in COL4A2. This COL4A2 (c.2399G>A, p.G800E, CCDS41907.1) variant was predicted to be damaging by multiple bioinformatics tools and affects an invariable glycine residue that is essential for the formation of collagen IV heterotrimers. The cataracts identified in this family expand the phenotypic spectrum associated with mutations in COL4A2 and highlight the increasing overlap with phenotypes associated with COL4A1 mutations.
Collapse
Affiliation(s)
- Thuong T Ha
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington South, New Zealand
| | - Simone A Mandelstam
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Radiology, University of Melbourne, Royal Children's Hospital Parkville, Melbourne, Victoria, Australia
- Florey Institute of Neurosciences and Mental Health, Heidelberg, Victoria, Australia
| | - Sarah J Paterson
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington South, New Zealand
| | - Ingrid E Scheffer
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
- Florey Institute of Neurosciences and Mental Health, Heidelberg, Victoria, Australia
- Department of Neurology, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| | - Jozef Gecz
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark A Corbett
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Xia XY, Li N, Cao X, Wu QY, Li TF, Zhang C, Li WW, Cui YX, Li XJ, Xue CY. A novel COL4A1 gene mutation results in autosomal dominant non-syndromic congenital cataract in a Chinese family. BMC MEDICAL GENETICS 2014; 15:97. [PMID: 25124159 PMCID: PMC4236509 DOI: 10.1186/s12881-014-0097-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/07/2014] [Indexed: 01/31/2023]
Abstract
Background Almost one-third of congenital cataracts are primarily autosomal dominant disorders, which are also called autosomal dominant congenital cataract, resulting in blindness and clouding of the lens. The purpose of this study was to identify the disease-causing mutation in a Chinese family affected by bilateral, autosomal dominant congenital cataract. Methods The detection of candidate gene mutation and the linkage analysis of microsatellite markers were performed for the known candidate genes. Molecular mapping and cloning of candidate genes were used in all affected family members to screen for potential genetic mutations and the mutation was confirmed by single enzyme digestion. Results The proband was diagnosed with isolated, congenital cataract without the typical clinical manifestations of cataract, which include diabetes, porencephaly, sporadic intracerebral hemorrhage, and glomerulopathy. A novel mutation, c.2345 G > C (Gly782Ala), in exon 31 of the collagen type IV αlpha1 (COL4A1) gene, which encodes the collagen alpha-1(IV) chain, was found to be associated with autosomal dominant congenital cataract in a Chinese family. This mutation was not found in unaffected family members or in 200 unrelated controls. Sequence analysis confirmed that the Gly782 amino acid residue is highly conserved. Conclusions The novel mutation (c.2345 G > C) of the COL4A1 gene is the first report of a non-syndromic, autosomal dominant congenital cataract, thereby highlighting the important role of type IV collagen in the physiological and optical properties of the lens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiao-Jun Li
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, People's Republic of China.
| | | |
Collapse
|
11
|
Kuo DS, Labelle-Dumais C, Gould DB. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum Mol Genet 2012; 21:R97-110. [PMID: 22914737 PMCID: PMC3459649 DOI: 10.1093/hmg/dds346] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/14/2012] [Indexed: 01/15/2023] Open
Abstract
Heterotrimers composed of collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) constitute one of the most abundant components of nearly all basement membranes. Accordingly, mutations in COL4A1 or COL4A2 are pleiotropic and contribute to a broad spectrum of disorders, including myopathy, glaucoma and hemorrhagic stroke. Here, we summarize the contributions of COL4A1 and COL4A2 mutations in human disease, integrate knowledge gained from model organisms and evaluate the implications for pathogenic mechanisms and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Douglas B. Gould
- Department of Ophthalmology
- Department of Anatomy and
- Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Sund M, Maeshima Y, Kalluri R. Bifunctional promoter of type IV collagen COL4A5 and COL4A6 genes regulates the expression of alpha5 and alpha6 chains in a distinct cell-specific fashion. Biochem J 2006; 387:755-61. [PMID: 15598179 PMCID: PMC1135006 DOI: 10.1042/bj20041870] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type IV collagen is present ubiquitously in basement membranes. A bifunctional promoter regulates the expression of the alpha1/alpha2 genes, and the alpha3/alpha4 and the alpha5/alpha6 genes are also considered to be regulated by putative bifunctional promoters. Unlike the other type IV collagen chains, the alpha5(IV) and alpha6(IV) chains do not always co-localize and are present in distinct basement membranes. To address such dichotomy in the alpha5(IV) and alpha6(IV) gene regulation, we cloned a mouse genomic DNA fragment containing the promoter region between the two transcription start sites of these genes and we then placed this putative promoter sequence between the chloramphenicol acetyltransferase and Luciferase reporter genes, so that these genes would be transcribed in opposite directions in this unique construct. Glomerular endothelial cells and mesangial cells generate the kidney glomerular basement membrane, which always contains the alpha5(IV) chain but not the alpha6(IV) chain. In contrast, the basement membranes of Bowman's capsule and distal tubuli (produced by the tubular epithelial cells) contain the alpha6(IV) chain. We demonstrate that, in response to TGF-beta (transforming growth factor beta), epidermal growth factor, vascular endothelial growth factor and platelet-derived growth factor, expression from the alpha5(IV) gene is significantly enhanced in the glomerular endothelial cells and mesangial cells, but not expression from the alpha6(IV) gene. In contrast, the expression from the alpha6(IV) gene, and not that from the alpha5(IV) gene, was significantly enhanced in response to growth factors in the tubular epithelial cells. Our results demonstrate that the proximal bifunctional promoter regulates the expression of the alpha5(IV) and alpha6(IV) genes in a cell-specific manner and offers the first demonstration of the promoter plasticity in growth factor regulation of type IV collagen genes in different tissues of the body.
Collapse
Affiliation(s)
- Malin Sund
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Yohei Maeshima
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Raghu Kalluri
- Center for Matrix Biology, Department of Medicine, DANA 514, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Brucet M, Marqués L, Sebastián C, Lloberas J, Celada A. Regulation of murine Tap1 and Lmp2 genes in macrophages by interferon gamma is mediated by STAT1 and IRF-1. Genes Immun 2004; 5:26-35. [PMID: 14735146 DOI: 10.1038/sj.gene.6364035] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genes of the transporter associated with antigen processing (Tap)-1, and the low molecular weight peptide (Lmp)-2, are crucial for class I major histocompatibility complex function and share a common bidirectional promoter. In murine bone marrow-derived macrophages, interferon gamma (IFN-gamma) induced Tap-1 and upregulated Lmp-2, which is constitutively expressed at low levels. The IFN-gamma-induction was independent of early gene synthesis. The mRNA induced by IFN-gamma was very stable. In macrophages from STAT1 knockout mice, IFN-gamma did not induce the expression of Tap-1 or Lmp-2. Several areas in the promoter can be controlled by IFN-gamma, such as proximal and distal GAS boxes in the direction of the Tap-1 gene, NFgammaB and IRF-1 boxes. By making deletions of the promoter, we found that only the proximal GAS and IRF-1 boxes are required for IFN-gamma induction of Tap-1 and Lmp-2. Experiments using nuclear extracts from macrophages treated for 30 min with IFN-gamma and gel shift analysis indicated that STAT1 binds to the GAS box. The nuclear extracts from macrophages treated for at least 2 h with IFN-gamma bound to the IRF-1 box. These results indicate that both STAT1 and IRF-1 are required for the IFN-gamma induction of Tap-1 and Lmp-2 genes.
Collapse
Affiliation(s)
- M Brucet
- Group of Macrophage Biology, Institute of Biomedical Research of Barcelona, Barcelona Science Park, University of Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Marqués L, Brucet M, Lloberas J, Celada A. STAT1 regulates lipopolysaccharide- and TNF-alpha-dependent expression of transporter associated with antigen processing 1 and low molecular mass polypeptide 2 genes in macrophages by distinct mechanisms. THE JOURNAL OF IMMUNOLOGY 2004; 173:1103-10. [PMID: 15240699 DOI: 10.4049/jimmunol.173.2.1103] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transporter associated with Ag processing 1 and low molecular mass polypeptide 2 (LMP2) are essential for class I MHC function and share a common bidirectional promoter. In murine bone marrow-derived macrophages, LPS and TNF-alpha induced Tap1 and up-regulated Lmp2, which is constitutively expressed at low levels. These two genes are induced by LPS and TNF-alpha with distinct kinetics, at 6 and 12-24 h, respectively. Using macrophages derived from the TNF-alpha receptors of knockout mice, we found that induction by LPS is not due to the autocrine production of TNF-alpha. In macrophages from STAT-1 knockout mice, neither LPS nor TNF-alpha induced the expression of Tap1 or Lmp2. The shared promoter contains several areas that can be controlled by STAT-1, such as the proximal and distal IFN-gamma activation site (GAS) boxes in the direction of the Tap1 gene. By making deletions of the promoter, we determined that only the proximal GAS box is required for LPS induction of Tap1 and Lmp2. In contrast, TNF-alpha induction of these two genes is dependent on the IFN regulatory factor-1 and NF-kappaB boxes, and not on the GAS box. Our experiments using gel shift analysis and Abs indicated that STAT1 binds to the GAS box in nuclear extracts from LPS-treated macrophages. The nuclear extracts obtained from macrophages treated with TNF-alpha bound to the IFN regulatory factor-1 and NF-kappaB boxes. These results show that LPS and TNF-alpha regulate the induction of Tap1 and Lmp2 through STAT1, but use distinct areas of the promoter.
Collapse
Affiliation(s)
- Laura Marqués
- Macrophage Biology Group, Institute of Biomedical Research of Barcelona, Barcelona Science Park, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Heidet L, Borza DB, Jouin M, Sich M, Mattei MG, Sado Y, Hudson BG, Hastie N, Antignac C, Gubler MC. A human-mouse chimera of the alpha3alpha4alpha5(IV) collagen protomer rescues the renal phenotype in Col4a3-/- Alport mice. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1633-44. [PMID: 14507670 DOI: 10.1016/s0002-9440(10)63520-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Collagen IV is a major structural component of basement membranes. In the glomerular basement membrane (GBM) of the kidney, the alpha3, alpha4, and alpha5(IV) collagen chains form a distinct network that is essential for the long-term stability of the glomerular filtration barrier, and is absent in most patients affected with Alport syndrome, a progressive inherited nephropathy associated with mutation in COL4A3, COL4A4, or COL4A5 genes. To investigate, in vivo, the regulation of the expression, assembly, and function of the alpha3alpha4alpha5(IV) protomer, we have generated a yeast artificial chromosome transgenic line of mice carrying the human COL4A3-COL4A4 locus. Transgenic mice expressed the human alpha3 and alpha4(IV) chains in a tissue-specific manner. In the kidney, when expressed onto a Col4a3(-/-) background, the human alpha3(IV) chain restored the expression of and co-assembled with the mouse alpha4 and alpha5(IV) chains specifically at sites where the human alpha3(IV) was expressed, demonstrating that the expression of all three chains is required for network assembly. The co-assembly of the human and mouse chains into a hybrid network in the GBM restores a functional GBM and rescues the Alport phenotype, providing further evidence that defective assembly of the alpha3-alpha4-alpha5(IV) protomer, caused by mutations in any of the three chains, is the pathogenic mechanism responsible for the disease. This line of mice, humanized for the alpha3(IV) collagen chain, will also provide a valuable model for studying the pathogenesis of Goodpasture syndrome, an autoimmune disease caused by antibodies against this chain.
Collapse
Affiliation(s)
- Laurence Heidet
- INSERM U574, Hôpital Necker-Enfants Malades, Université René Descartes, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cheng CK, Hoo RLC, Chow BKC, Leung PCK. Functional cooperation between multiple regulatory elements in the untranslated exon 1 stimulates the basal transcription of the human GnRH-II gene. Mol Endocrinol 2003; 17:1175-91. [PMID: 12663744 DOI: 10.1210/me.2002-0418] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The wide distribution of GnRH-II and conservation of its structure over all vertebrate classes suggest that the neuropeptide possesses vital biological functions. Although recent studies have shown that the expression of the human GnRH-II gene is regulated by cAMP and estrogen, the molecular mechanisms governing its basal transcription remain poorly understood. Using the neuronal TE-671 and placental JEG-3 cells, we showed that the minimal human GnRH-II promoter was located between nucleotide -1124 and -750 (relative to the translation start codon) and that the untranslated exon 1 was important to produce full promoter activity. Two putative E-box binding sites and one Ets-like element were identified within the first exon, and mutational analysis demonstrated that these cis-acting elements functioned cooperatively to stimulate the human GnRH-II gene transcription. EMSAs, UV cross-linking, and Southwestern blot analyses indicated that the basic helix-loop-helix transcription factor AP-4 bound specifically to the two E-box binding sites, whereas an unidentified protein bound to the Ets-like element. The functional importance of AP-4 in controlling human GnRH-II gene transcription was demonstrated by overexpression of sense and antisense full-length AP-4 cDNAs. Taken together, our present data demonstrate a novel mechanism in stimulating basal human GnRH-II gene transcription mediated by cooperative actions of multiple regulatory elements within the untranslated first exon of the gene.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada V6H 3V5
| | | | | | | |
Collapse
|
17
|
Chen Y, Keller JM. Transcriptional state and chromatin structure of the murine entactin and laminin gamma1 genes. J Cell Biochem 2002; 82:225-33. [PMID: 11527148 DOI: 10.1002/jcb.1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The positions of nucleosomes in the proximal 5' regions of the coordinately regulated murine entactin/nidogen and laminin gamma1 genes have been identified in four different transcriptional states--constitutively off, basal, induced, and constitutively induced. In the entactin gene a 450 base pair (bp) region of open chromatin is present between three positioned nucleosomes and the transcriptional start site in the basal, induced, and constitutively induced states. Additionally there is a 200 bp open chromatin region at approximately -2.1 kbp that is only present in the induced and constitutively induced states. In the laminin gamma1 gene, a 650 bp region of nucleosome-free chromatin is present between nucleosomes positioned at approximately -750 and +120 in all transcriptionally active states. These results suggest that basal co-expression of these genes requires sites present in these near upstream regions. The induction to high levels appears to involve additional sites and possibly the production of new and/or the modification of existing trans-acting factors.
Collapse
Affiliation(s)
- Y Chen
- Department of Biochemistry and Molecular Biology, Finch University of Health Sciences/The Chicago Medical School, North Chicago, IL 60064, USA
| | | |
Collapse
|
18
|
Ogbourne SM, Antalis TM. Characterisation of PAUSE-1, a powerful silencer in the human plasminogen activator inhibitor type 2 gene promoter. Nucleic Acids Res 2001; 29:3919-27. [PMID: 11574673 PMCID: PMC60233 DOI: 10.1093/nar/29.19.3919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor traditionally regarded as a regulator of fibrinolysis and extracellular matrix degradation. More recently, PAI-2 has been implicated in diverse processes such as keratinocyte differentiation, cell death and viral pathogenesis. The PAI-2 promoter tightly regulates PAI-2 gene expression in a cell-specific manner and this control is mediated, in part, by the upstream silencer element, PAUSE-1. Here we have defined PAUSE-1 and investigated its activity as a silencer. A series of mutations were generated within the PAUSE-1 element and analysed for transcription factor binding and transcriptional silencing activity. These studies have defined the minimal functional PAUSE-1 element as TCTN(x)AGAN(3)T(4), where x = 0, 2 or 4. Examination of related elements present in other promoters, such as the human IFNbeta promoter, suggests that PAUSE-1 is a member of a family of universal silencers with the consensus sequence TCTN(x)AGA. UV crosslinking analyses determined that the PAUSE-1 binding protein was approximately 67 kDa. Insertion of PAUSE-1 into the heterologous (SV40) or the minimal PAI-2 promoters silenced transcription by 2.5-fold. These data show that PAUSE-1 acts as a powerful silencer of PAI-2 gene transcription and is likely to be important in the silencing of other genes as well.
Collapse
Affiliation(s)
- S M Ogbourne
- Cancer Metastasis Laboratory, Queensland Cancer Fund Experimental Oncology Program, University of Queensland, 4029 Queensland, Australia
| | | |
Collapse
|
19
|
Abstract
Alport syndrome (AS) is a genetically heterogeneous disease arising from mutations in genes coding for basement membrane type IV collagen. About 80% of AS is X-linked, due to mutations in COL4A5, the gene encoding the alpha 5 chain of type IV collagen (alpha 5[IV]). A subtype of X-linked Alport syndrome (XLAS) in which diffuse leiomyomatosis is an associated feature reflects deletion mutations involving the adjacent COL4A5 and COL4A6 genes. Most other patients have autosomal recessive Alport syndrome (ARAS) due to mutations in COL4A3 or COL4A4, which encode the alpha 3(IV) and alpha 4(IV) chains, respectively. Autosomal dominant AS has been mapped to chromosome 2 in the region of COL4A3 and COL4A4. The features of AS reflect derangements of basement membrane structure and function resulting from changes in type IV collagen expression. The primary pathologic event appears to be the loss from basement membranes of a type IV collagen network composed of alpha 3, alpha 4, and alpha 5(IV) chains. While this network is not critical for normal glomerulogenesis, its absence appears to provoke the overexpression of other extracellular matrix proteins, such as the alpha 1 and alpha 2(IV) chains, in glomerular basement membranes, leading to glomerulosclerosis. The diagnosis of AS still relies heavily on histologic studies, although routine application of molecular genetic diagnosis will probably be available in the future. Absence of epidermal basement membrane expression of alpha 5(IV) is diagnostic of XLAS, so in some cases kidney biopsy may not be necessary for diagnosis. Analysis of renal expression of alpha 3(IV)-alpha 5(IV) chains may be a useful adjunct to routine renal biopsy studies, especially when ultrastructural changes in the GBM are ambiguous. There are no specific therapies for AS. Spontaneous and engineered animal models are being used to study genetic and pharmacologic therapies. Renal transplantation for AS is usually very successful. Occasional patients develop anti-GBM nephritis of the allograft, almost always resulting in graft loss.
Collapse
Affiliation(s)
- C E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis 55455, USA.
| |
Collapse
|
20
|
Chatterjee-Kishore M, Kishore R, Hicklin DJ, Marincola FM, Ferrone S. Different requirements for signal transducer and activator of transcription 1alpha and interferon regulatory factor 1 in the regulation of low molecular mass polypeptide 2 and transporter associated with antigen processing 1 gene expression. J Biol Chem 1998; 273:16177-83. [PMID: 9632673 DOI: 10.1074/jbc.273.26.16177] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The components of the antigen processing machinery, low molecular mass polypeptide (LMP) 2 and transporter associated with antigen processing (TAP) 1, are encoded by closely linked genes within the major histocompatibility complex class II subregion. Although the two genes share a bi-directional promoter, LMP2 and TAP1 have differential cellular expression. TAP1 is expressed constitutively. However, LMP2 expression requires induction by interferon-gamma in most cells. The regulatory elements within the LMP2/TAP1 promoter and the transcription factors that bind these elements have been defined. However, how these transactivators regulate differential TAP1 and LMP2 gene transcription is not known. We have addressed this question by analyzing three human melanoma cell lines with distinct phenotypes of LMP2 and TAP1 expression. Whereas binding of either interferon regulatory factor 1 or Stat1 to the overlapping interferon consensus sequence-2/GAS is sufficient for regulating transcription of the TAP1 gene, binding of both factors is required for LMP2 gene transcription. This conclusion is supported by restoration of LMP2 gene transcription following transfection of wild type Stat1alpha or interferon regulatory factor 1 cDNA into cells lacking these transcription factors. The flexibility in the regulation of the TAP1 gene may reflect its role in maintaining immune surveillance. Furthermore, lack of LMP2 gene transcription in quiescent human cells suggests that LMP2 expression reflects a state of cell activation.
Collapse
Affiliation(s)
- M Chatterjee-Kishore
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
21
|
Ogbourne S, Antalis TM. Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes. Biochem J 1998; 331 ( Pt 1):1-14. [PMID: 9512455 PMCID: PMC1219314 DOI: 10.1042/bj3310001] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanisms controlling transcription and its regulation are fundamental to our understanding of molecular biology and, ultimately, cellular biology. Our knowledge of transcription initiation and integral factors such as RNA polymerase is considerable, and more recently our understanding of the involvement of enhancers and complexes such as holoenzyme and mediator has increased dramatically. However, an understanding of transcriptional repression is also essential for a complete understanding of promoter structure and the regulation of gene expression. Transcriptional repression in eukaryotes is achieved through 'silencers', of which there are two types, namely 'silencer elements' and 'negative regulatory elements' (NREs). Silencer elements are classical, position-independent elements that direct an active repression mechanism, and NREs are position-dependent elements that direct a passive repression mechanism. In addition, 'repressors' are DNA-binding trasncription factors that interact directly with silencers. A review of the recent literature reveals that it is the silencer itself and its context within a given promoter, rather than the interacting repressor, that determines the mechanism of repression. Silencers form an intrinsic part of many eukaryotic promoters and, consequently, knowledge of their interactive role with enchancers and other transcriptional elements is essential for our understanding of gene regulation in eukaryotes.
Collapse
Affiliation(s)
- S Ogbourne
- Queensland Cancer Fund Experimental Oncology Program, The Queensland Institute of Medical Research, Brisbane, 4029 Queensland, Australia
| | | |
Collapse
|
22
|
Momota R, Sugimoto M, Oohashi T, Kigasawa K, Yoshioka H, Ninomiya Y. Two genes, COL4A3 and COL4A4 coding for the human alpha3(IV) and alpha4(IV) collagen chains are arranged head-to-head on chromosome 2q36. FEBS Lett 1998; 424:11-6. [PMID: 9537506 DOI: 10.1016/s0014-5793(98)00128-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We first isolated and characterized genomic DNA fragments that cover the 5' flanking sequences of COL4A3 and COL4A4 encoding the human basement membrane alpha3(IV) and alpha4(IV) collagen chains, respectively. Nucleotide sequence analysis indicated that the two genes are arranged head-to-head. To determine transcription start site for COL4A4 gene, we performed RACE and RNase protection assays, indicating that there are two alternative transcripts presumably derived from two different promoters. Interestingly, one transcription start site (from exon 1') of COL4A4 is only 5 bp away from the reported transcription start site of COL4A3, whereas the other transcript (from exon 1) starts 373 nucleotides downstream from the first one, generating the two kinds of transcripts that differ in the 5' UTR regions. Expression of these two transcripts appears tissue-specific; exon 1 transcript was expressed predominantly in epithelial cells, while exon 1' transcript showed rather ubiquitous and low expression. The nucleotide sequence of the promoter region is composed of dense CpG dinucleotides, GC boxes, CTC boxes and a CCAAT box but no TATA box. These results provide information to delineate the promoter activity for the tissue-specific expression of the six type IV collagen genes and basement membrane assembly in different tissues and organs.
Collapse
Affiliation(s)
- R Momota
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Wight PA, Dobretsova A. The first intron of the myelin proteolipid protein gene confers cell type-specific expression by a transcriptional repression mechanism in non-expressing cell types. Gene 1997; 201:111-7. [PMID: 9409778 DOI: 10.1016/s0378-1119(97)00435-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chimeric genes containing portions of the mouse myelin proteolipid protein (PLP) gene fused to the lacZ reporter gene were used to detect the effect of PLP intron 1 sequences on cell type-specific expression. A transfected fusion gene containing PLP intron 1 sequences was expressed in an oligodendrocyte cell line but not in a liver cell line, consistent with endogenous PLP gene expression. However, an analogous fusion gene missing the first intron was expressed in either oligodendrocyte or liver transfected cells. These studies suggest that transcriptional repressor element(s) located in PLP intron 1 are important in extinguishing expression in non-glial cell types and that the promoter alone functions in an indiscriminate manner. This moderately large intron (>8 kb) was sequenced to aid in future fine mapping of these cell-specific regulatory element(s).
Collapse
Affiliation(s)
- P A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock 72205, USA.
| | | |
Collapse
|
24
|
Abstract
The biological importance of complex interactions between cells and extracellular matrix has become widely recognized. For normal epithelial cells, contact with the matrix is limited to the basement membrane. Our understanding of the composition and assembly of basement membranes is increasing, as is our understanding of the mechanisms by which synthesis and degradation of basement membranes are controlled. Basement membrane abnormalities may result from disease and may cause disease. Papers in this edition of the Journal of Pathology discuss changes in basement membrane composition in disease, and add yet another link to the many connections between basement membranes, fibrosis and the control of cell proliferation.
Collapse
|
25
|
Huang F, Gallo V. Gene structure of the rat kainate receptor subunit KA2 and characterization of an intronic negative regulatory region. J Biol Chem 1997; 272:8618-27. [PMID: 9079693 DOI: 10.1074/jbc.272.13.8618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have isolated and analyzed the structure of the gene grik5 (glutamate receptor ionotropic kainate 5), encoding the rat kainate receptor subunit KA2. Six overlapping DNA fragments containing the entire grik5 gene were identified in a rat genomic library. grik5 is a unique gene composed of 20 exons that together span over 54 kilobases (kb). Reporter gene analysis demonstrated that 2 kb of grik5 5'-flanking sequence confers tissue-specific expression on a chloramphenicol acetyltransferase gene in vitro. We show that (i) the first intron of grik5 (3.4 kb) inhibited transcription of the chloramphenicol acetyltransferase gene driven by the 2-kb grik5 5'-flanking region; (ii) the negative regulatory element was located within 500 bp of the 3'-end of intron 1, and this 500-bp fragment selectively bound nuclear proteins isolated from neural and nonneural cells; (iii) the effect of the negative regulatory element on grik5 transcription was orientation- and distance-independent; and (iv) a 24-nucleotide sequence (CTTTCTGTGGCCTCTGACCTTTCC) was identified as the binding site for nuclear proteins within the 500-bp fragment, as determined by footprinting and gel shift assays. We conclude that an intronic element that displays features of a silencer modulates grik5 transcription.
Collapse
Affiliation(s)
- F Huang
- Section on Molecular Neurobiology of Glia, Laboratory of Cellular and Molecular Neurophysiology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- C E Kashtan
- University of Minnesota Medical School, Department of Pediatrics, Minneapolis 55455, USA.
| | | |
Collapse
|