1
|
Ghosh M, Gupta PK, Jena S, Rana S. The interaction of methotrexate with the human C5a and its potential therapeutic implications. Comput Biol Chem 2025; 114:108283. [PMID: 39579472 DOI: 10.1016/j.compbiolchem.2024.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Methotrexate (MTX) is an antimetabolite drug that mimics folate and inhibits dihydrofolic acid reductase, resulting in the impairment of malignant growth in actively proliferating tissues. MTX is approved by the FDA for primarily treating non-Hodgkin lymphoma, lymphoblastic leukemia, and osteosarcoma. In addition, MTX is also prescribed as a preferred anti-rheumatic medication for the management of rheumatoid arthritis, including psoriasis, indicating that MTX has a multipronged mechanism of action. MTX is also known to exert anti-inflammatory effects, and interestingly, the role of C5a, a pro-inflammatory glycoprotein of the complement system, is well established in several chronic inflammatory diseases, including rheumatoid arthritis and psoriasis, through the recruitment of C5a receptors (C5aR1/C5aR2) expressed in both immune and non-immune cells. Notably, through drug repurposing studies, we have earlier shown that non-steroidal anti-inflammatory drugs (NSAIDS) can potentially neutralize the function of C5a. Though MTX binds to serum albumin and can affect the immune system, whether its interaction with C5a could be therapeutically beneficial due to the downregulation of both extracellular and intracellular signaling of C5a is not yet established in the literature. In the current study, we have hypothesized and provided preliminary evidence through computational studies that MTX can strongly bind to the hotspot regions on C5a involved in the interactions with its receptors, which is likely to alter the downstream signaling of C5a and contribute to the overall therapeutic efficacy of MTX.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Shobhan Jena
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
2
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
3
|
Asano S, Ono A, Sakamoto K, Hayata-Takano A, Nakazawa T, Tanimoto K, Hashimoto H, Ago Y. Vasoactive intestinal peptide receptor 2 signaling promotes breast cancer cell proliferation by enhancing the ERK pathway. Peptides 2023; 161:170940. [PMID: 36603770 DOI: 10.1016/j.peptides.2023.170940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a class B G protein-coupled receptor with the neuropeptide VIP as a ligand. Increased VIPR2 mRNA expression and/or VIPR2 gene copy number has been documented in several cancers including breast carcinoma. However, the pathophysiological role of increased VIPR2 in the proliferation of breast cancer cells remains largely unknown. In this study, we found that VIPR2 overexpression in MCF-7 and MDA-MB-231 cells, human breast cancer cell lines, promoted cell proliferation. Increased VIPR2 also exacerbated intraperitoneal proliferation of breast cancer MDA-MB-231 cells in a tumor nude mouse model in vivo. Treatment with KS-133, a VIPR2-selective antagonist peptide, significantly inhibited VIP-induced cell proliferation in VIPR2-overexpressing MCF-7 and MDA-MB-231 cells. Overexpressed VIPR2 caused increases in the levels of cAMP and phosphorylated extracellular signal-regulated kinase (ERK), which involves a VIPR2 signaling pathway through Gs protein. Additionally, phosphorylation of vasodilator-stimulated phosphoprotein (Ser157) and cAMP response element binding protein (Ser133) in VIPR2-overexpressing MCF-7 cells was greater than that in control cells, suggesting the increased PKA activity. Moreover, an inhibitor of mitogen-activated protein kinase kinase, U0126, attenuated tumor proliferation in exogenous VIPR2-expressing MCF-7 and MDA-MB-231 cells at the same level as observed in EGFP-expressing cells treated with U0126. Together, these findings suggest that VIPR2 controls breast tumor growth by regulating the cAMP/PKA/ERK signaling pathway, and the excessive expression of VIPR2 may lead to an exacerbation of breast carcinoma.
Collapse
Affiliation(s)
- Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| | - Ami Ono
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, 501-0475 Gifu, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Laboratory of Molecular Biology, Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Osaka 565-0871, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan.
| |
Collapse
|
4
|
Murganti F, Derks W, Baniol M, Simonova I, Trus P, Neumann K, Khattak S, Guan K, Bergmann O. FUCCI-Based Live Imaging Platform Reveals Cell Cycle Dynamics and Identifies Pro-proliferative Compounds in Human iPSC-Derived Cardiomyocytes. Front Cardiovasc Med 2022; 9:840147. [PMID: 35548410 PMCID: PMC9081338 DOI: 10.3389/fcvm.2022.840147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 01/23/2023] Open
Abstract
One of the major goals in cardiac regeneration research is to replace lost ventricular tissue with new cardiomyocytes. However, cardiomyocyte proliferation drops to low levels in neonatal hearts and is no longer efficient in compensating for the loss of functional myocardium in heart disease. We generated a human induced pluripotent stem cell (iPSC)-derived cardiomyocyte-specific cell cycle indicator system (TNNT2-FUCCI) to characterize regular and aberrant cardiomyocyte cycle dynamics. We visualized cell cycle progression in TNNT2-FUCCI and found G2 cycle arrest in endoreplicating cardiomyocytes. Moreover, we devised a live-cell compound screening platform to identify pro-proliferative drug candidates. We found that the alpha-adrenergic receptor agonist clonidine induced cardiomyocyte proliferation in vitro and increased cardiomyocyte cell cycle entry in neonatal mice. In conclusion, the TNNT2-FUCCI system is a versatile tool to characterize cardiomyocyte cell cycle dynamics and identify pro-proliferative candidates with regenerative potential in the mammalian heart.
Collapse
Affiliation(s)
| | - Wouter Derks
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Marion Baniol
- Karolinska Institute, Cell and Molecular Biology (CMB), Stockholm, Sweden
| | - Irina Simonova
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Palina Trus
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Katrin Neumann
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- Royal College of Surgeons Ireland (RCSI) in Bahrain, Adliya, Bahrain
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- Karolinska Institute, Cell and Molecular Biology (CMB), Stockholm, Sweden
- *Correspondence: Olaf Bergmann
| |
Collapse
|
5
|
Zheng K, Smith JS, Eiger DS, Warman A, Choi I, Honeycutt CC, Boldizsar N, Gundry JN, Pack TF, Inoue A, Caron MG, Rajagopal S. Biased agonists of the chemokine receptor CXCR3 differentially signal through Gα i:β-arrestin complexes. Sci Signal 2022; 15:eabg5203. [PMID: 35316095 PMCID: PMC9890572 DOI: 10.1126/scisignal.abg5203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and signal through the proximal effectors, G proteins and β-arrestins, to influence nearly every biological process. The G protein and β-arrestin signaling pathways have largely been considered separable; however, direct interactions between Gα proteins and β-arrestins have been described that appear to be part of a distinct GPCR signaling pathway. Within these complexes, Gαi/o, but not other Gα protein subtypes, directly interacts with β-arrestin, regardless of the canonical Gα protein that is coupled to the GPCR. Here, we report that the endogenous biased chemokine agonists of CXCR3 (CXCL9, CXCL10, and CXCL11), together with two small-molecule biased agonists, differentially formed Gαi:β-arrestin complexes. Formation of the Gαi:β-arrestin complexes did not correlate well with either G protein activation or β-arrestin recruitment. β-arrestin biosensors demonstrated that ligands that promoted Gαi:β-arrestin complex formation generated similar β-arrestin conformations. We also found that Gαi:β-arrestin complexes did not couple to the mitogen-activated protein kinase ERK, as is observed with other receptors such as the V2 vasopressin receptor, but did couple with the clathrin adaptor protein AP-2, which suggests context-dependent signaling by these complexes. These findings reinforce the notion that Gαi:β-arrestin complex formation is a distinct GPCR signaling pathway and enhance our understanding of the spectrum of biased agonism.
Collapse
Affiliation(s)
- Kevin Zheng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey S. Smith
- Harvard Medical School, Boston, MA 02115, USA.,Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115, USA.,Department of Dermatology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.,Dermatology Program, Boston Children’s Hospital, Boston, MA 02115, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dylan S. Eiger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Anmol Warman
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Issac Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Noelia Boldizsar
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Jaimee N. Gundry
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F. Pack
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27110, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Marc G. Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Corresponding author.
| |
Collapse
|
6
|
van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ, Tobin AB, Sexton PM, Christopoulos A. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front Pharmacol 2021; 11:606656. [PMID: 33584282 PMCID: PMC7878563 DOI: 10.3389/fphar.2020.606656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Emma T. van der Westhuizen
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - K. H. Christopher Choy
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Simon McKenzie-Nickson
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Sophie J. Bradley
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- Centre for Translational Pharmacology, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute for Pharmaceutical Research, Monash University, Parkville, VIC, Australia
| |
Collapse
|
7
|
Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, Eiger DS, Warman A, Xiong X, Ma Z, Viswanathan G, Levitan IM, Rochelle LK, Staus DP, Snyder JC, Kahsai AW, Caron MG, Rajagopal S. Noncanonical scaffolding of G αi and β-arrestin by G protein-coupled receptors. Science 2021; 371:science.aay1833. [PMID: 33479120 DOI: 10.1126/science.aay1833] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/29/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) are common drug targets and canonically couple to specific Gα protein subtypes and β-arrestin adaptor proteins. G protein-mediated signaling and β-arrestin-mediated signaling have been considered separable. We show here that GPCRs promote a direct interaction between Gαi protein subtype family members and β-arrestins regardless of their canonical Gα protein subtype coupling. Gαi:β-arrestin complexes bound extracellular signal-regulated kinase (ERK), and their disruption impaired both ERK activation and cell migration, which is consistent with β-arrestins requiring a functional interaction with Gαi for certain signaling events. These results introduce a GPCR signaling mechanism distinct from canonical G protein activation in which GPCRs cause the formation of Gαi:β-arrestin signaling complexes.
Collapse
Affiliation(s)
- Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Pack
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Japan
| | - Claudia Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin Zheng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Issac Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Dylan S Eiger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Anmol Warman
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Xinyu Xiong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhiyuan Ma
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Gayathri Viswanathan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Ian M Levitan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lauren K Rochelle
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P Staus
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Joshua C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Alem W Kahsai
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Marc G Caron
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Chen M, Cecon E, Karamitri A, Gao W, Gerbier R, Ahmad R, Jockers R. Melatonin MT 1 and MT 2 receptor ERK signaling is differentially dependent on G i/o and G q/11 proteins. J Pineal Res 2020; 68:e12641. [PMID: 32080899 DOI: 10.1111/jpi.12641] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) transmit extracellular signals into cells by activating G protein- and β-arrestin-dependent pathways. Extracellular signal-regulated kinases (ERKs) play a central role in integrating these different linear inputs coming from a variety of GPCRs to regulate cellular functions. Here, we investigated human melatonin MT1 and MT2 receptors signaling through the ERK1/2 cascade by employing different biochemical techniques together with pharmacological inhibitors and siRNA molecules. We show that ERK1/2 activation by both receptors is exclusively G protein-dependent, without any participation of β-arrestin1/2 in HEK293 cells. ERK1/2 activation by MT1 is only mediated though Gi/o proteins, while MT2 is dependent on the cooperative activation of Gi/o and Gq/11 proteins. In the absence of Gq/11 proteins, however, MT2 -induced ERK1/2 activation switches to a β-arrestin1/2-dependent mode. The signaling cascade downstream of G proteins is the same for both receptors and involves activation of the PI3K/PKCζ/c-Raf/MEK/ERK cascade. The differential G protein dependency of MT1 - and MT2 -mediated ERK activation was confirmed at the level of EGR1 and FOS gene expression, two ERK1/2 target genes. Gi/o /Gq/11 cooperativity was also observed in Neuroscreen-1 cells expressing endogenous MT2 , whereas in the mouse retina, where MT2 is engaged into MT1 /MT2 heterodimers, ERK1/2 signaling is exclusively Gi/o -dependent. Collectively, our data reveal differential signaling modes of MT1 and MT2 in terms of ERK1/2 activation, with an unexpected Gi/o /Gq/11 cooperativity exclusively for MT2 . The plasticity of ERK activation by MT2 is highlighted by the switch to a β-arrestin1/2-dependent mode in the absence of Gq/11 proteins and by the switch to a Gi/o mode when engaged into MT1 /MT2 heterodimers, revealing a new mechanism underlying tissue-specific responses to melatonin.
Collapse
Affiliation(s)
- Min Chen
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Erika Cecon
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | | | - Wenwen Gao
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Romain Gerbier
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Raise Ahmad
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| |
Collapse
|
9
|
Cao Z, Yan L, Shen Z, Chen Y, Shi Y, He X, Zhou N. A novel splice variant of Gαq-coupled Bombyx CAPA-PVK receptor 1 functions as a specific Gαi/o-linked receptor for CAPA-PK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118718. [PMID: 32289337 DOI: 10.1016/j.bbamcr.2020.118718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023]
Abstract
Alternative splicing enables G protein-coupled receptor (GPCR) genes to greatly increase the number of structurally and functionally distinct receptor isoforms. However, the functional role and relevance of the individual GPCR splice variants in regulating physiological processes are still to be assessed. A naturally occurring alternative splice variant of Bombyx CAPA-PVK receptor, BomCAPA-PVK-R1-Δ341, has been shown to act as a dominant-negative protein to regulate cell surface expression and function of the canonical CAPA-PVK receptor. Herein, using functional assays, we identify the splice variant Δ341 as a specific receptor for neuropeptide CAPA-PK, and upon activation, Δ341 signals to ERK1/2 pathway. Further characterization demonstrates that Δ341 couples to Gαi/o, distinct from the Gαq-coupled canonical CAPA-PVK receptor, triggering ERK1/2 phosphorylation through Gβγ-PI3K-PKCζ signaling cascade. Moreover, our ELISA data show that the ligand-dependent internalization of the splice variant Δ341 is significantly impaired due to lack of GRKs-mediated phosphorylation sites. Our findings highlight the potential of this knowledge for molecular, pharmacological and physiological studies on GPCR splice variants in the future.
Collapse
Affiliation(s)
- Zheng Cao
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lili Yan
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Chen
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Shi
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Parra-Mercado GK, Fuentes-Gonzalez AM, Hernandez-Aranda J, Diaz-Coranguez M, Dautzenberg FM, Catt KJ, Hauger RL, Olivares-Reyes JA. CRF 1 Receptor Signaling via the ERK1/2-MAP and Akt Kinase Cascades: Roles of Src, EGF Receptor, and PI3-Kinase Mechanisms. Front Endocrinol (Lausanne) 2019; 10:869. [PMID: 31920979 PMCID: PMC6921279 DOI: 10.3389/fendo.2019.00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
In the present study, we determined the cellular regulators of ERK1/2 and Akt signaling pathways in response to human CRF1 receptor (CRF1R) activation in transfected COS-7 cells. We found that Pertussis Toxin (PTX) treatment or sequestering Gβγ reduced CRF1R-mediated activation of ERK1/2, suggesting the involvement of a Gi-linked cascade. Neither Gs/PKA nor Gq/PKC were associated with ERK1/2 activation. Besides, CRF induced EGF receptor (EGFR) phosphorylation at Tyr1068, and selective inhibition of EGFR kinase activity by AG1478 strongly inhibited the CRF1R-mediated phosphorylation of ERK1/2, indicating the participation of EGFR transactivation. Furthermore, CRF-induced ERK1/2 phosphorylation was not altered by pretreatment with batimastat, GM6001, or an HB-EGF antibody indicating that metalloproteinase processing of HB-EGF ligands is not required for the CRF-mediated EGFR transactivation. We also observed that CRF induced Src and PYK2 phosphorylation in a Gβγ-dependent manner. Additionally, using the specific Src kinase inhibitor PP2 and the dominant-negative-SrcYF-KM, it was revealed that CRF-stimulated ERK1/2 phosphorylation depends on Src activation. PP2 also blocked the effect of CRF on Src and EGFR (Tyr845) phosphorylation, further demonstrating the centrality of Src. We identified the formation of a protein complex consisting of CRF1R, Src, and EGFR facilitates EGFR transactivation and CRF1R-mediated signaling. CRF stimulated Akt phosphorylation, which was dependent on Gi/βγ subunits, and Src activation, however, was only slightly dependent on EGFR transactivation. Moreover, PI3K inhibitors were able to inhibit not only the CRF-induced phosphorylation of Akt, as expected, but also ERK1/2 activation by CRF suggesting a PI3K dependency in the CRF1R ERK signaling. Finally, CRF-stimulated ERK1/2 activation was similar in the wild-type CRF1R and the phosphorylation-deficient CRF1R-Δ386 mutant, which has impaired agonist-dependent β-arrestin-2 recruitment; however, this situation may have resulted from the low β-arrestin expression in the COS-7 cells. When β-arrestin-2 was overexpressed in COS-7 cells, CRF-stimulated ERK1/2 phosphorylation was markedly upregulated. These findings indicate that on the base of a constitutive CRF1R/EGFR interaction, the Gi/βγ subunits upstream activation of Src, PYK2, PI3K, and transactivation of the EGFR are required for CRF1R signaling via the ERK1/2-MAP kinase pathway. In contrast, Akt activation via CRF1R is mediated by the Src/PI3K pathway with little contribution of EGFR transactivation.
Collapse
Affiliation(s)
- G. Karina Parra-Mercado
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Alma M. Fuentes-Gonzalez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Judith Hernandez-Aranda
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | - Monica Diaz-Coranguez
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
| | | | - Kevin J. Catt
- Section on Hormonal Regulation, Program on Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA Healthcare System, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - J. Alberto Olivares-Reyes
- Laboratory of Signal Transduction, Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City, Mexico
- *Correspondence: J. Alberto Olivares-Reyes
| |
Collapse
|
11
|
Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH, Pani B, Kim J, Ahn S, Rajagopal S, Reiter E, Bouvier M, Shenoy SK, Laporte SA, Rockman HA, Lefkowitz RJ. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 2018; 11:11/549/eaat7650. [PMID: 30254056 DOI: 10.1126/scisignal.aat7650] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four Gs-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β2 adrenergic receptors (β2ARs) and β1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V2 and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein-deleted cells to GPCR behavior in native systems.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bianca Plouffe
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lama Yamani
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Suneet Kaur
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Shen Z, Yang X, Chen Y, Shi L. CAPA periviscerokinin-mediated activation of MAPK/ERK signaling through Gq-PLC-PKC-dependent cascade and reciprocal ERK activation-dependent internalized kinetics of Bom-CAPA-PVK receptor 2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:1-15. [PMID: 29730398 DOI: 10.1016/j.ibmb.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A27 is a specific receptor for B. mori capability (CAPA) periviscerokinin (PVK), that is, Bom-CAPA-PVK receptor 2. Upon stimulation of Bom-CAPA-PVK-1 or -PVK-2, Bom-CAPA-PVK receptor 2 significantly increases cAMP-response element-controlled luciferase activity and Ca2+ mobilization in a Gq inhibitor-sensitive manner. However, the underlying mechanism(s) for CAPA/CAPA receptor system mediation of extracellular signal-regulated kinases1/2 (ERK1/2) activation remains to be explained further. Here, we discovered that Bom-CAPA-PVK receptor 2 stimulated ERK1/2 phosphorylation in a dose- and time-dependent manner in response to Bom-CAPA-PVK-1 or -PVK-2 with similar potencies. Furthermore, ERK1/2 phosphorylation can be inhibited by Gq inhibitor UBO-QIC, PLC inhibitor U73122, protein kinase C (PKC) inhibitor Go 6983, phospholipase D (PLD) inhibitor FIPI and Ca2+ chelators EGTA and BAPTA-AM. Moreover, Bom-CAPA-PVK-R2-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ-specific inhibitors, phosphatidylinositol 3-kinase (PI3K)-specific inhibitor Wortmannin and Src-specific inhibitor PP2. Our data also demonstrate that receptor tyrosine kinase (RTK) transactivation pathways are involved in the mechanisms of Bom-CAPA-PVK receptor to ERK1/2 phosphorylation. In addition, β-arrestin1/2 is not involved in Bom-CAPA-PVK-R2-mediated ERK1/2 activation but required for the agonist-independent, ERK1/2 activation-dependent internalization of the G protein-coupled receptor (GPCR).
Collapse
Affiliation(s)
- Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyuan Yang
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Chen
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
13
|
Transducin β-Subunit Can Interact with Multiple G-Protein γ-Subunits to Enable Light Detection by Rod Photoreceptors. eNeuro 2018; 5:eN-NWR-0144-18. [PMID: 29911170 PMCID: PMC6001135 DOI: 10.1523/eneuro.0144-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022] Open
Abstract
The heterotrimeric G-protein transducin mediates visual signaling in vertebrate photoreceptor cells. Many aspects of the function of transducin were learned from knock-out mice lacking its individual subunits. Of particular interest is the knockout of its rod-specific γ-subunit (Gγ1). Two studies using independently generated mice documented that this knockout results in a considerable >60-fold reduction in the light sensitivity of affected rods, but provided different interpretations of how the remaining α-subunit (Gαt) mediates phototransduction without its cognate Gβ1γ1-subunit partner. One study found that the light sensitivity reduction matched a corresponding reduction in Gαt content in the light-sensing rod outer segments and proposed that Gαt activation is supported by remaining Gβ1 associating with other Gγ subunits naturally expressed in photoreceptors. In contrast, the second study reported the same light sensitivity loss but a much lower, only approximately sixfold, reduction of Gαt and proposed that the light responses of these rods do not require Gβγ at all. To resolve this controversy and elucidate the mechanism driving visual signaling in Gγ1 knock-out rods, we analyzed both mouse lines side by side. We first determined that the outer segments of both mice have identical Gαt content, which is reduced ∼65-fold from the wild-type (WT) level. We further demonstrated that the remaining Gβ1 is present in a complex with endogenous Gγ2 and Gγ3 subunits and that these complexes exist in wild-type rods as well. Together, these results argue against the idea that Gαt alone supports light responses of Gγ1 knock-out rods and suggest that Gβ1γ1 is not unique in its ability to mediate vertebrate phototransduction.
Collapse
|
14
|
Dissecting the signaling features of the multi-protein complex GPCR/β-arrestin/ERK1/2. Eur J Cell Biol 2018; 97:349-358. [DOI: 10.1016/j.ejcb.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/14/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
|
15
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
16
|
Cortada M, Levano S, Bodmer D. Brimonidine Protects Auditory Hair Cells from in vitro-Induced Toxicity of Gentamicin. Audiol Neurootol 2017; 22:125-134. [PMID: 28889125 DOI: 10.1159/000479218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Brimonidine, an alpha-2 adrenergic receptor (α2-AR) agonist, has neuroprotective effects in the visual system and in spiral ganglion neurons. Auditory hair cells (HCs) express all 3 α2-AR subtypes, but their roles in HCs remain unknown. This study investigated the effects of brimonidine on auditory HCs that were also exposed to gentamicin, which is toxic to HCs. Organ of Corti explants were exposed to gentamicin in the presence or absence of brimonidine, and the α2-AR protein expression levels and Erk1/2 and Akt phosphorylation levels were determined. Brimonidine had a protective effect on auditory HCs against gentamicin-induced toxicity that was blocked by yohimbine. This suggested that the protective effect of brimonidine on HCs was mediated by the α2-AR. None of the treatments altered α2-AR protein expression levels, and brimonidine did not significantly change the activation levels of the Erk1/2 and Akt proteins. These observations indicated that brimonidine, acting directly via α2-AR, protects HCs from gentamicin-induced toxicity. Therefore, brimonidine shows potential for preventing or treating sensorineural hearing loss.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
17
|
Harun-Or-Rashid M, Konjusha D, Galindo-Romero C, Hallböök F. Endothelin B Receptors on Primary Chicken Müller Cells and the Human MIO-M1 Müller Cell Line Activate ERK Signaling via Transactivation of Epidermal Growth Factor Receptors. PLoS One 2016; 11:e0167778. [PMID: 27930693 PMCID: PMC5145189 DOI: 10.1371/journal.pone.0167778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/21/2016] [Indexed: 01/17/2023] Open
Abstract
Injury to the eye or retina triggers Müller cells, the major glia cell of the retina, to dedifferentiate and proliferate. In some species they attain retinal progenitor properties and have the capacity to generate new neurons. The epidermal growth factor receptor (EGFR) system and extracellular signal-regulated kinase (ERK) signaling are key regulators of these processes in Müller cells. The extracellular signals that modulate and control these processes are not fully understood. In this work we studied whether endothelin receptor signaling can activate EGFR and ERK signaling in Müller cells. Endothelin expression is robustly upregulated at retinal injury and endothelin receptors have been shown to transactivate EGFRs in other cell types. We analyzed the endothelin signaling system in chicken retina and cultured primary chicken Müller cells as well as the human Müller cell line MIO-M1. The Müller cells were stimulated with receptor agonists and treated with specific blockers to key enzymes in the signaling pathway or with siRNAs. We focused on endothelin receptor mediated transactivation of EGFRs by using western blot analysis, quantitative reverse transcriptase PCR and immunocytochemistry. The results showed that chicken Müller cells and the human Müller cell line MIO-M1 express endothelin receptor B. Stimulation by the endothelin receptor B agonist IRL1620 triggered phosphorylation of ERK1/2 and autophosphorylation of (Y1173) EGFR. The effects could be blocked by Src-kinase inhibitors (PP1, PP2), EGFR-inhibitor (AG1478), EGFR-siRNA and by inhibitors to extracellular matrix metalloproteinases (GM6001), consistent with a Src-kinase mediated endothelin receptor response that engage ligand-dependent and ligand-independent EGFR activation. Our data suggest a mechanism for how injury-induced endothelins, produced in the retina, may modulate the Müller cell responses by Src-mediated transactivation of EGFRs. The data give support to a view in which endothelins among several other functions, serve as an injury-signal that regulate the gliotic response of Müller cells.
Collapse
Affiliation(s)
| | - Dardan Konjusha
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
18
|
Elevated levels of alpha-synuclein blunt cellular signal transduction downstream of Gq protein-coupled receptors. Cell Signal 2016; 30:82-91. [PMID: 27871937 DOI: 10.1016/j.cellsig.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/21/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023]
Abstract
Alpha-synuclein is central to Parkinson's disease pathogenesis and pathology, however its precise functions are still unclear. It has been shown to bind both PLCβ1 and MAPKs, but how this property influences the downstream signaling of Gq protein-coupled receptors has not been elucidated. Here we show that recombinant expression of alpha-synuclein in human neuroblastoma cells enhances cellular levels of PLCβ1 but blunts its signaling pathway, preventing the agonist-dependent rise of cytoplasmic Ca2+. In addition, overexpressing alpha-synuclein abolishes the activation of ERK1/2 upon agonist stimulation, indicating an upstream action in the signal transduction pathway. This data demonstrates that alpha-synuclein, when recombinantly expressed, interferes with the normal signaling of Gq-protein coupled receptors, which are then dysfunctional. Since many neurotransmitter systems utilize these receptor signaling pathways to mediate different abilities affected in Parkinson's disease, we argue this novel perspective might be helpful in designing treatment strategies for some of the non-motor symptoms in Parkinson's disease and synucleinopathies.
Collapse
|
19
|
Jiang X, Yang J, Shen Z, Chen Y, Shi L, Zhou N. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:78-88. [PMID: 27318251 DOI: 10.1016/j.ibmb.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingwen Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Zhangfei Shen
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yajie Chen
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liangen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Naiming Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
20
|
Ryu JM, Han HJ. Autotaxin-LPA axis regulates hMSC migration by adherent junction disruption and cytoskeletal rearrangement via LPAR1/3-dependent PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways. Stem Cells 2015; 33:819-32. [PMID: 25376707 DOI: 10.1002/stem.1882] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022]
Abstract
Bioactive molecules and stem cell-based regenerative engineering is emerging a promising approach for regenerating tissues. Autotaxin (ATX) is a key enzyme that regulates lysophosphatidic acid (LPA) levels in biological fluids, which exerts a wide range of cellular functions. However, the biological role of ATX in human umbilical cord blood-derived mesenchymal stem cells (hMSCs) migration remains to be fully elucidated. In this study, we observed that hMSCs, which were stimulated with LPA, accelerated wound healing, and LPA increased the migration of hMSCs into a wound site in a mouse skin wound healing model. In an experiment to investigate the effect of LPA on hMSC migration, ATX and LPA increased hMSC migration in a dose-dependent manner, and LPA receptor 1/3 siRNA transfections inhibited the ATX-induced cell migration. Furthermore, LPA increased Ca(2+) influx and PKC phosphorylation, which were blocked by Gαi and Gαq knockdown as well as by Ptx pretreatment. LPA increased GSK3β phosphorylation and β-catenin activation. LPA induced the cytosol to nuclear translocation of β-catenin, which was inhibited by PKC inhibitors. LPA stimulated the binding of β-catenin on the E-box located in the promoter of the CDH-1 gene and decreased CDH-1 promoter activity. In addition, the ATX and LPA-induced increase in hMSC migration was blocked by β-catenin siRNA transfection. LPA-induced PKC phosphorylation is also involved in Rac1 and CDC42 activation, and Rac1 and CDC42 knockdown abolished LPA-induced F-actin reorganization. In conclusion, ATX/LPA stimulates the migration of hMSCs through LPAR1/3-dependent E-cadherin reduction and cytoskeletal rearrangement via PKC/GSK3β/β-catenin and PKC/Rho GTPase pathways.
Collapse
Affiliation(s)
- Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea; BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
21
|
Gutiérrez-Fernández MJ, Higareda-Mendoza AE, Gómez-Correa CA, Pardo-Galván MA. The eukaryotic translation initiation factor 3f (eIF3f) interacts physically with the alpha 1B-adrenergic receptor and stimulates adrenoceptor activity. BMC BIOCHEMISTRY 2015; 16:25. [PMID: 26497985 PMCID: PMC4619320 DOI: 10.1186/s12858-015-0054-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022]
Abstract
Background eIF3f is a multifunctional protein capable of interacting with proteins involved in different cellular processes, such as protein synthesis, DNA repair, and viral mRNA edition. In human cells, eIF3f is related to cell cycle and proliferation, and its deregulation compromises cell viability. Results We here report that, in native conditions, eIF3f physically interacts with the alpha 1B-adrenergic receptor, a plasma membrane protein considered as a proto-oncogene, and involved in vasoconstriction and cell proliferation. The complex formed by eIF3f and alpha 1B-ADR was found in human and mouse cell lines. Upon catecholamine stimulation, eIF3f promotes adrenoceptor activity in vitro, independently of the eIF3f proline- and alanine-rich N-terminal region. Conclusions The eIF3f/alpha adrenergic receptor interaction opens new insights regarding adrenoceptor-related transduction pathways and proliferation control in human cells. The eIf3f/alpha 1B-ADR complex is found in mammals and is not tissue specific.
Collapse
Affiliation(s)
- Mario Javier Gutiérrez-Fernández
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3 Ciudad Universitaria Avenida Francisco J. Múgica S/N, Morelia, Michoacán, 58030, México. .,Present address: Universidad Tecnológica de Morelia, Morelia, Michoacán, 58200, México.
| | - Ana Edith Higareda-Mendoza
- División de Estudios de Posgrado de la Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58020, México.
| | - César Adrián Gómez-Correa
- Present address: Universidad Tecnológica de Morelia, Morelia, Michoacán, 58200, México. .,División de Estudios de Posgrado de la Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58020, México.
| | - Marco Aurelio Pardo-Galván
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3 Ciudad Universitaria Avenida Francisco J. Múgica S/N, Morelia, Michoacán, 58030, México.
| |
Collapse
|
22
|
Küsters-Vandevelde HVN, Küsters B, van Engen-van Grunsven ACH, Groenen PJTA, Wesseling P, Blokx WAM. Primary melanocytic tumors of the central nervous system: a review with focus on molecular aspects. Brain Pathol 2015; 25:209-26. [PMID: 25534128 DOI: 10.1111/bpa.12241] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
Primary melanocytic tumors of the central nervous system (CNS) represent a spectrum of rare tumors. They can be benign or malignant and occur in adults as well as in children, the latter often in the context of neurocutaneous melanosis. Until recently, the genetic alterations in these tumors were largely unknown. This is in contrast with cutaneous and uveal melanomas, which are known to harbor distinct oncogenic mutations that can be used as targets for treatment with small-molecule inhibitors in the advanced setting. Recently, novel insights in the molecular alterations underlying primary melanocytic tumors of the CNS were obtained, including different oncogenic mutations in tumors in adult patients (especially GNAQ, GNA11) vs. children (especially NRAS). In this review, the focus is on molecular characteristics of primary melanocytic tumors of the CNS. We summarize what is known about their genetic alterations and discuss implications for pathogenesis and differential diagnosis with other pigmented tumors in or around the CNS. Finally, new therapeutic options with targeted therapy are discussed.
Collapse
|
23
|
Cholinergic transactivation of the EGFR in HaCaT keratinocytes stimulates a flotillin-1 dependent MAPK-mediated transcriptional response. Int J Mol Sci 2015; 16:6447-63. [PMID: 25803106 PMCID: PMC4394542 DOI: 10.3390/ijms16036447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Acetylcholine and its receptors regulate numerous cellular processes in keratinocytes and other non-neuronal cells. Muscarinic acetylcholine receptors are capable of transactivating the epidermal growth factor receptor (EGFR) and, downstream thereof, the mitogen-activated protein kinase (MAPK) cascade, which in turn regulates transcription of genes involved in cell proliferation and migration. We here show that cholinergic stimulation of human HaCaT keratinocytes results in increased transcription of matrix metalloproteinase MMP-3 as well as several ligands of the epidermal growth factor family. Since both metalloproteinases and the said ligands are involved in the transactivation of the EGFR, this transcriptional upregulation may provide a positive feed-forward loop for EGFR/MAPK activation. We here also show that the cholinergic EGFR and MAPK activation and the upregulation of MMP-3 and EGF-like ligands are dependent on the expression of flotillin-1 which we have previously shown to be a regulator of MAPK signaling.
Collapse
|
24
|
Thompson A, Kanamarlapudi V. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway. Biochem Pharmacol 2015; 93:72-84. [DOI: 10.1016/j.bcp.2014.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
|
25
|
Chen L, He X, Zhang Y, Chen X, Lai X, Shao J, Shi Y, Zhou N. Melatonin receptor type 1 signals to extracellular signal-regulated kinase 1 and 2 via Gi and Gs dually coupled pathways in HEK-293 cells. Biochemistry 2014; 53:2827-39. [PMID: 24724723 DOI: 10.1021/bi500092e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pineal gland hormone melatonin exerts its regulatory roles in a variety of physiological and pathological responses through two G protein-coupled receptors, melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), which have been recognized as promising targets in the treatment of a number of human diseases and disorders. The MT1 receptor was identified nearly 20 years ago; however, the molecular mechanisms by which MT1-mediated signaling affects physiology remain to be further elucidated. In this study, using HEK293 cells stably expressing the human MT1 receptor, melatonin induced a concentration-dependent activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). The melatonin-mediated phosphorylation of ERK1/2 at later time points (≥5 min) was strongly suppressed by pretreatment with pertussis toxin, but only a slight, if any, inhibition of ERK1/2 activation at early time points (≤2 min) was detected. Further experiments demonstrated that the Gβγ subunit, phosphoinositide 3-kinase, and calcium-insensitive protein kinase C were involved in the MT1-mediated activation of ERK1/2 at later time points (≥5 min). Moreover, results derived from cAMP assays combined with a MT1 mutant indicated that the human MT1 receptor could also couple to Gs protein, stimulating intracellular cAMP formation, and that the MT1-induced activation of ERK1/2 at early time points (≤2 min) was mediated by the Gs/cAMP/PKA cascade. Our findings may provide new insights into the pharmacological effects and physiological functions modulated by the MT1-mediated activation of ERK1/2.
Collapse
Affiliation(s)
- Linjie Chen
- Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Li G, Wang HQ, Wang LH, Chen RP, Liu JP. Distinct pathways of ERK1/2 activation by hydroxy-carboxylic acid receptor-1. PLoS One 2014; 9:e93041. [PMID: 24671202 PMCID: PMC3966839 DOI: 10.1371/journal.pone.0093041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/28/2014] [Indexed: 11/19/2022] Open
Abstract
Mechanistic investigations have shown that, upon agonist activation, hydroxy-carboxylic acid receptor-1(HCA1) couples to a Gi protein and inhibits adenylate cyclase activity, leading to inhibition of liberation of free fatty acid. However, the underlying molecular mechanisms for HCA1 signaling remain largely unknown. Using CHO-K1 cells stably expressing HCA1, and L6 cells, which endogenously express rat HCA1 receptors, we found that activation of ERK1/2 by HCA1 was rapid, peaking at 5 min, and was significantly blocked by pertussis toxin. Furthermore, time course experiments with different kinase inhibitors demonstrated that HCA1 induced ERK1/2 activation via the extracellular Ca2+, PKC and IGF-I receptor transactivation-dependent pathways. In addition, we observed that pretreated the cells with M119K, an inhibitor of Gβγ subunit-dependent signaling, effectively attenuated the ERK1/2 activation triggered by HCA1, suggesting a critical role for βγ-subunits in HCA1-activated ERK1/2 phosphorylation. Furthermore, the present results also indicated that the arrestin2/3 were not required for ERK1/2 activation. In conclusion, our findings demonstrate that upon binding to agonist, HCA1 receptors initially activate Gi, leading to dissociation of the Gβγ subunit from activated Gi, and subsequently induce ERK1/2 activation via two distinct pathways: one PKC-dependent pathway and the other IGF-IR transactivation-dependent pathway. Our results provide the first in-depth evidence that defines the molecular mechanism of HCA1-mediated ERK1/2 activation.
Collapse
Affiliation(s)
- Guo Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hui-qian Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Li-hui Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ru-ping Chen
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun-ping Liu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Abstract
The four members of the mammalian arrestin family, two visual and two nonvisual, share the property of stimulus-dependent docking to G protein-coupled receptors. This conformational selectivity permits them to function in receptor desensitization, as arrestin binding sterically inhibits G protein coupling. The two nonvisual arrestins further act as adapter proteins, linking receptors to the clathrin-dependent endocytic machinery and regulating receptor sequestration, intracellular trafficking, recycling, and degradation. Arrestins also function as ligand-regulated scaffolds, recruiting catalytically active proteins into receptor-based multiprotein "signalsome" complexes. Arrestin binding thus marks the transition from a transient G protein-coupled state on the plasma membrane to a persistent arrestin-coupled state that continues to signal as the receptor internalizes. Two of the earliest discovered and most studied arrestin-dependent signaling pathways involve regulation of Src family nonreceptor tyrosine kinases and the ERK1/2 mitogen-activated kinase cascade. In each case, arrestin scaffolding imposes constraints on kinase activity that dictate signal duration and substrate specificity. Evidence suggests that arrestin-bound ERK1/2 and Src not only play regulatory roles in receptor desensitization and trafficking but also mediate longer term effects on cell growth, migration, proliferation, and survival.
Collapse
Affiliation(s)
- Erik G Strungs
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | |
Collapse
|
28
|
Eishingdrelo H, Kongsamut S. Minireview: Targeting GPCR Activated ERK Pathways for Drug Discovery. Curr Chem Genom Transl Med 2013; 7:9-15. [PMID: 24396730 PMCID: PMC3854659 DOI: 10.2174/2213988501307010009] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Accepted: 04/15/2013] [Indexed: 02/07/2023] Open
Abstract
It has become clear in recent years that multiple signal transduction pathways are employed upon GPCR
activation. One of the major cellular effectors activated by GPCRs is extracellular signal-regulated kinase (ERK). Both G-protein and β-arrestin mediated signaling pathways can lead to ERK activation. However, depending on activation
pathway, the subcellular destination of activated ERK1/2 may be different. G-protein -dependent ERK activation results in the translocation of active ERK to the nucleus, whereas ERK activated via an arrestin-dependent mechanism remains largely in the cytoplasm. The subcellular location of activated ERK1/2 determines the downstream signaling cascade. Many substrates of ERK1/2 are found in the nucleus: nuclear transcription factors that participate in gene transcription, cell proliferation and differentiation. ERK1/2 substrates are also found in cytosol and other cellular organelles: they may play roles in translation, mitosis, apoptosis and cross-talk with other signaling pathways. Therefore, determining specific subcellular locations of activated ERK1/2 mediated by GPCR ligands would be important in correlating signaling pathways with cellular physiological functions. While GPCR-stimulated selective ERK pathway activation has been studied in several receptor systems, exploitation of these different signaling cascades for therapeutics has not yet been seriously
pursued. Many old drug candidates were identified from screens based on G-protein signaling assays, and their activity on β-arrestin signaling pathways being mostly unknown, especially regarding their subcellular ERK pathways. With today’s knowledge of complicated GPCR signaling pathways, drug discovery can no longer rely on single-pathway approaches. Since ERK activation is an important signaling pathway and associated with many physiological functions, targeting the ERK pathway, especially specific subcellular activation pathways should provide new avenues for GPCR drug discovery.
Collapse
Affiliation(s)
- Haifeng Eishingdrelo
- BioInvenu Corporation, 50 Williams Parkway, East Hanover, New Jersey, 07936, USA
| | | |
Collapse
|
29
|
Yu L, Al-Khalili O, Duke BJ, Stockand JD, Eaton DC, Bao HF. The inhibitory effect of Gβγ and Gβ isoform specificity on ENaC activity. Am J Physiol Renal Physiol 2013; 305:F1365-73. [PMID: 23863469 DOI: 10.1152/ajprenal.00009.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epithelial Na(+) channel (ENaC) activity, which determines the rate of renal Na(+) reabsorption, can be regulated by G protein-coupled receptors. Regulation of ENaC by Gα-mediated downstream effectors has been studied extensively, but the effect of Gβγ dimers on ENaC is unclear. A6 cells endogenously contain high levels of Gβ1 but low levels of Gβ3, Gβ4, and Gβ5 were detected by Q-PCR. We tested Gγ2 combined individually with Gβ1 through Gβ5 expressed in A6 cells, after which we recorded single-channel ENaC activity. Among the five β and γ2 combinations, β1γ2 strongly inhibits ENaC activity by reducing both ENaC channel number (N) and open probability (Po) compared with control cells. In contrast, the other four β-isoforms combined with γ2 have no significant effect on ENaC activity. By using various inhibitors to probe Gβ1γ2 effects on ENaC regulation, we found that Gβ1γ2-mediated ENaC inhibition involved activation of phospholipase C-β and its enzymatic products that induce protein kinase C and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural Univ., Nanjing 210095, China.
| | | | | | | | | | | |
Collapse
|
30
|
Ockenga W, Kühne S, Bocksberger S, Banning A, Tikkanen R. Non-neuronal functions of the m2 muscarinic acetylcholine receptor. Genes (Basel) 2013; 4:171-97. [PMID: 24705159 PMCID: PMC3899973 DOI: 10.3390/genes4020171] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/10/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022] Open
Abstract
Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Wymke Ockenga
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Sina Kühne
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Simone Bocksberger
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| |
Collapse
|
31
|
G Protein-Coupled Receptors in cancer: biochemical interactions and drug design. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:143-73. [PMID: 23415094 DOI: 10.1016/b978-0-12-394587-7.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G Protein-Coupled Receptors (GPCRs) share the same topology made of seven-transmembrane segments and represent the largest family of membrane receptors. Initially associated with signal transduction in differentiated cells, GPCRs and heterotrimeric G proteins were shown to behave as proto-oncogenes whose overexpression or activating mutations confer transforming properties. The first part of this review focuses on the link between biochemical interactions of a GPCR with other receptors, such as dimerization or multiprotein complexes, and their oncogenic properties. Alteration of these interactions or deregulation of transduction cascades can promote uncontrolled cell proliferation or cell transformation that leads to tumorigenicity and malignancy. The second part concerns the design of drugs specifically targeting these complex interactions and their promise in cancer therapy.
Collapse
|
32
|
Klein MT, Vinson PN, Niswender CM. Approaches for probing allosteric interactions at 7 transmembrane spanning receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 115:1-59. [PMID: 23415091 PMCID: PMC5482179 DOI: 10.1016/b978-0-12-394587-7.00001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, allosteric modulation of 7 transmembrane spanning receptors (7TMRs) has become a highly productive and exciting field of receptor pharmacology and drug discovery efforts. Positive and negative allosteric modulators (PAMs and NAMs, respectively) present a number of pharmacological and therapeutic advantages over conventional orthosteric ligands, including improved receptor-subtype selectivity, a lower propensity to induce receptor desensitization, the preservation of endogenous temporal and spatial activation of receptors, greater chemical flexibility for optimization of drug metabolism and pharmacokinetic parameters, and saturability of effect at target receptors, thus improving safety concerns and risk of overdose. Additionally, the relatively new concept of allosteric modulator-mediated receptor signal bias opens up a number of intriguing possibilities for PAMs, NAMs, and allosteric agonists, including the potential to selectively activate therapeutically beneficial signaling cascades, which could yield a superior tissue selectivity and side effect profile of allosteric modulators. However, there are a number of considerations and caveats that must be addressed when screening for and characterizing the properties of 7TMR allosteric modulators. Mode of pharmacology, methodology used to monitor receptor activity, detection of appropriate downstream analytes, selection of orthosteric probe, and assay time-course must all be considered when implementing any high-throughput screening campaign or when characterizing the properties of active compounds. Yet compared to conventional agonist/antagonist drug discovery programs, these elements of assay design are often a great deal more complicated when working with 7TMRs allosteric modulators. Moreover, for classical pharmacological methodologies and analyses, like radioligand binding and the assessment of compound affinity, the properties of allosteric modulators yield data that are more nuanced than orthosteric ligand-receptor interactions. In this review, we discuss the current methodologies being used to identify and characterize allosteric modulators, lending insight into the approaches that have been most successful in accurately and robustly identifying hit compounds. New label-free technologies capable of detecting phenotypic cellular changes in response to receptor activation are powerful tools well suited for assessing subtle or potentially masked cellular responses to allosteric modulation of 7TMRs. Allosteric modulator-induced receptor signal bias and the assay systems available to probe the various downstream signaling outcomes of receptor activation are also discussed.
Collapse
Affiliation(s)
- Michael T Klein
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
33
|
Zhou Q, Li G, Deng XY, He XB, Chen LJ, Wu C, Shi Y, Wu KP, Mei LJ, Lu JX, Zhou NM. Activated human hydroxy-carboxylic acid receptor-3 signals to MAP kinase cascades via the PLC-dependent PKC and MMP-mediated EGFR pathways. Br J Pharmacol 2012; 166:1756-73. [PMID: 22289163 DOI: 10.1111/j.1476-5381.2012.01875.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE 3-Hydroxy-octanoate, recently identified as a ligand for, the orphan GPCR, HCA(3), is of particular interest given its ability to treat lipid disorders and atherosclerosis. Here we demonstrate the pathway of HCA(3)-mediated activation of ERK1/2. EXPERIMENTAL APPROACH Using CHO-K1 cells stably expressing HCA(3) receptors and A431 cells, a human epidermoid cell line with high levels of endogenous expression of functional HCA(3) receptors, HCA(3)-mediated activation of ERK1/2 was measured by Western blot. KEY RESULTS HCA(3)-mediated activation of ERK1/2 was rapid, peaking at 5 min, and was Pertussis toxin sensitive. Our data, obtained by time course analyses in combination with different kinase inhibitors, demonstrated that on agonist stimulation, HCA(3) receptors evoked ERK1/2 activation via two distinct pathways, the PLC/PKC pathway at early time points (≤ 2 min) and the MMP/ epidermal growth factor receptor (EGFR) transactivation pathway with a maximum response at 5 min. Furthermore, our present results also indicated that the βγ-subunits of the G(i) protein play a critical role in HCA(3)-activated ERK1/2 phosphorylation, whereas β-arrestins and Src were not required for ERK1/2 activation. CONCLUSIONS AND IMPLICATIONS We have described the molecular mechanisms underlying the coupling of human HCA(3) receptors to the ERK1/2 MAP kinase pathway in CHO-K1 and A431 cells, which implicate the G(i) protein-initiated, PLC/PKC -and platelet-derived growth factor receptor/EGFR transactivation-dependent pathways. These observations may provide new insights into the pharmacological effects and the physiological functions modulated by the HCA(3)-mediated activation of ERK1/2.
Collapse
Affiliation(s)
- Q Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Science, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hildebrand D, Sahr A, Wölfle SJ, Heeg K, Kubatzky KF. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling. Cell Commun Signal 2012; 10:22. [PMID: 22852877 PMCID: PMC3441383 DOI: 10.1186/1478-811x-10-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022] Open
Abstract
Background Lipopolysaccharide (LPS)-triggered Toll-like receptor (TLR) 4-signalling belongs to the key innate defence mechanisms upon infection with Gram-negative bacteria and triggers the subsequent activation of adaptive immunity. There is an active crosstalk between TLR4-mediated and other signalling cascades to secure an effective immune response, but also to prevent excessive inflammation. Many pathogens induce signalling cascades via secreted factors that interfere with TLR signalling to modify and presumably escape the host response. In this context heterotrimeric G proteins and their coupled receptors have been recognized as major cellular targets. Toxigenic strains of Gram-negative Pasteurella multocida produce a toxin (PMT) that constitutively activates the heterotrimeric G proteins Gαq, Gα13 and Gαi independently of G protein-coupled receptors through deamidation. PMT is known to induce signalling events involved in cell proliferation, cell survival and cytoskeleton rearrangement. Results Here we show that the activation of heterotrimeric G proteins through PMT suppresses LPS-stimulated IL-12p40 production and eventually impairs the T cell-activating ability of LPS-treated monocytes. This inhibition of TLR4-induced IL-12p40 expression is mediated by Gαi-triggered signalling as well as by Gβγ-dependent activation of PI3kinase and JNK. Taken together we propose the following model: LPS stimulates TLR4-mediated activation of the NFĸB-pathway and thereby the production of TNF-α, IL-6 and IL-12p40. PMT inhibits the production of IL-12p40 by Gαi-mediated inhibition of adenylate cyclase and cAMP accumulation and by Gβγ-mediated activation of PI3kinase and JNK activation. Conclusions On the basis of the experiments with PMT this study gives an example of a pathogen-induced interaction between G protein-mediated and TLR4-triggered signalling and illustrates how a bacterial toxin is able to interfere with the host’s immune response.
Collapse
Affiliation(s)
- Dagmar Hildebrand
- Department für Infektiologie, Medizinische Mikrobiologie und Hygiene, Im Neuenheimer, Feld 324, D-69120, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
35
|
Konno Y, Ashida T, Inaba Y, Ito T, Tanabe H, Maemoto A, Ayabe T, Mizukami Y, Fujiya M, Kohgo Y. Isoleucine, an Essential Amino Acid, Induces the Expression of Human <i>β</i> Defensin 2 through the Activation of the G-Protein Coupled Receptor-ERK Pathway in the Intestinal Epithelia. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.34077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Lanzafame AA, Christopoulos A, Mitchelson F. Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308263] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Liu F, He K, Yang X, Xu N, Liang Z, Xu M, Zhao X, Han Q, Zhang Y. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway. PLoS One 2011; 6:e21520. [PMID: 21738688 PMCID: PMC3125289 DOI: 10.1371/journal.pone.0021520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/30/2011] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) activate mitogen-activated protein kinases through a number of distinct pathways in cells. Increasing evidence has suggested that endosomal signaling has an important role in receptor signal transduction. Here we investigated the involvement of endocytosis in α1A-adrenergic receptor (α1A-AR)-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Agonist-mediated endocytic traffic of α1A-AR was assessed by real-time imaging of living, stably transfected human embryonic kidney 293A cells (HEK-293A). α1A-AR was internalized dynamically in cells with agonist stimulation, and actin filaments regulated the initial trafficking of α1A-AR. α1A-AR-induced activation of ERK1/2 but not p38 MAPK was sensitive to disruption of endocytosis, as demonstrated by 4°C chilling, dynamin mutation and treatment with cytochalasin D (actin depolymerizing agent). Activation of protein kinase C (PKC) and C-Raf by α1A-AR was not affected by 4°C chilling or cytochalasin D treatment. U73122 (a phospholipase C [PLC] inhibitor) and Ro 31–8220 (a PKC inhibitor) inhibited α1B-AR- but not α1A-AR-induced ERK1/2 activation. These data suggest that the endocytic pathway is involved in α1A-AR-induced ERK1/2 activation, which is independent of Gq/PLC/PKC signaling.
Collapse
Affiliation(s)
- Fei Liu
- Institute of Vascular Medicine, Peking University Third Hospital, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Kangmin He
- Institute of Vascular Medicine, Peking University Third Hospital, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Xinxing Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Biodynamic Optical Imaging Center, Peking University, Beijing, China
| | - Ning Xu
- Institute of Vascular Medicine, Peking University Third Hospital, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Zhangyi Liang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Biodynamic Optical Imaging Center, Peking University, Beijing, China
| | - Ming Xu
- Institute of Vascular Medicine, Peking University Third Hospital, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Xinsheng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Biodynamic Optical Imaging Center, Peking University, Beijing, China
| | - Qide Han
- Institute of Vascular Medicine, Peking University Third Hospital, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
38
|
Jurič DM, Mele T, Čarman-Kržan M. Involvement of histaminergic receptor mechanisms in the stimulation of NT-3 synthesis in astrocytes. Neuropharmacology 2011; 60:1309-17. [DOI: 10.1016/j.neuropharm.2011.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 12/12/2022]
|
39
|
Webb JG, Yang X, Crosson CE. Bradykinin activation of extracellular signal-regulated kinases in human trabecular meshwork cells. Exp Eye Res 2011; 92:495-501. [PMID: 21426904 PMCID: PMC3104070 DOI: 10.1016/j.exer.2011.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 12/20/2022]
Abstract
Bradykinin stimulation of B(2) kinin receptors has been shown to promote matrix metallo-proteinase (MMP) secretion from trabecular meshwork cells and to increase conventional outflow facility. Because acute secretion of MMPs can be dependent on the activity of extracellular signal-regulated MAP kinases (ERK1/2), experiments were performed to determine bradykinin effects on ERK1/2 in cultured human trabecular meshwork cells and the relationship of these effects to MMP-9 release. Treatment of cells with bradykinin produced a rapid 4-to 6-fold increase in ERK1/2 phosphorylation. Stimulation of ERK1/2 activity peaked within 2 min and then declined to control levels by 60 min. The response maximum occurred with 100nM bradykinin and the estimated EC₅₀ was 0.7nM. Treatment of cells with the B₂ kinin receptor agonist, Tyr⁸- bradykinin, also stimulated ERK1/2 phosphorylation while the B₁ agonist, Lys- [Des-Arg⁹]- bradykinin had no significant effect. In addition, activation of ERK1/2 by bradykinin or Tyr⁸- bradykinin was blocked by the selective B₂ receptor antagonist, Hoe-140. Inhibition of MAP kinase kinase (MEK) with U0126 also blocked bradykinin-induced ERK1/2 phosphorylation. Suppression of protein kinase C activity with the nonselective inhibitor, GF109203X, or by down-regulation with phorbol ester, diminished, but did not eliminate, bradykinin activation of ERK1/2. A similar decrease of ERK1/2 stimulation was observed when Src kinase was inhibited by 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Finally, blockade of bradykinin-induced ERK1/2 activation substantially reduced the peptide's action to stimulate MMP-9 release into the extracellular environment. The data demonstrate that bradykinin promotes ERK1/2 activation in human trabecular meshwork cells. The effect is mediated by B₂ kinin receptors, involves two different signaling pathways, and results in increased secretion of MMP-9.
Collapse
Affiliation(s)
- Jerry G Webb
- Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
40
|
|
41
|
|
42
|
|
43
|
Dani N, Mayo E, Stilla A, Marchegiani A, Di Paola S, Corda D, Di Girolamo M. Mono-ADP-ribosylation of the G protein betagamma dimer is modulated by hormones and inhibited by Arf6. J Biol Chem 2010; 286:5995-6005. [PMID: 21148312 DOI: 10.1074/jbc.m110.112466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mono-ADP-ribosylation is a reversible post-translational modification that can modulate the functions of target proteins. We have previously demonstrated that the β subunit of heterotrimeric G proteins is endogenously mono-ADP-ribosylated, and once modified, the βγ dimer is inactive toward its effector enzymes. To better understand the physiological relevance of this post-translational modification, we have studied its hormonal regulation. Here, we report that Gβ subunit mono-ADP-ribosylation is differentially modulated by G protein-coupled receptors. In intact cells, hormone stimulation of the thrombin receptor induces Gβ subunit mono-ADP-ribosylation, which can affect G protein signaling. Conversely, hormone stimulation of the gonadotropin-releasing hormone receptor (GnRHR) inhibits Gβ subunit mono-ADP-ribosylation. We also provide the first demonstration that activation of the GnRHR can activate the ADP-ribosylation factor Arf6, which in turn inhibits Gβ subunit mono-ADP-ribosylation. Indeed, removal of Arf6 from purified plasma membranes results in loss of GnRHR-mediated inhibition of Gβ subunit mono-ADP-ribosylation, which is fully restored by re-addition of purified, myristoylated Arf6. We show that Arf6 acts as a competitive inhibitor of the endogenous ADP-ribosyltransferase and is itself modified by this enzyme. These data provide further understanding of the mechanisms that regulate endogenous ADP-ribosylation of the Gβ subunit, and they demonstrate a novel role for Arf6 in hormone regulation of Gβ subunit mono-ADP-ribosylation.
Collapse
Affiliation(s)
- Nadia Dani
- G Protein-mediated Signalling Laboratory, Consorzio Mario Negri Sud, Via Nazionale, 8/A 66030 Santa Maria Imbaro (Chieti), Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kirui JK, Xie Y, Wolff DW, Jiang H, Abel PW, Tu Y. Gbetagamma signaling promotes breast cancer cell migration and invasion. J Pharmacol Exp Ther 2010; 333:393-403. [PMID: 20110378 PMCID: PMC2872950 DOI: 10.1124/jpet.109.164814] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Signaling through G protein-coupled receptors (GPCRs) promotes breast cancer metastasis. G proteins convey GPCR signals by dissociating into Galpha and Gbetagamma subunits. The aim of the present study was to determine whether blockade of Gbetagamma signaling suppresses breast cancer cell migration and invasion, which are critical components of metastasis. Conditioned media (CM) of NIH-3T3 fibroblasts are widely used as chemoattractants in in vitro cancer metastasis studies. Expression of a Gbetagamma scavenger peptide attenuated NIH-3T3 CM-induced migration and invasion of both metastatic breast cancer MDA-MB-231 and MDA-MB-436 cells by 40 to 50% without effects on cell viability. Migration and invasion of cells in response to NIH-3T3 CM were also blocked by 8-(4,5,6-trihydroxy-3-oxo-3H-xanthen-9-yl)-1-naph-thalene-carboxylic acid) (M119K), a Gbetagamma inhibitor, with maximum inhibition exceeding 80% and half-maximal inhibitory concentration (IC50) values of 1 to 2 microM. M119K also attenuated Rac-dependent formation of lamellipodia, a key structure required for metastasis. Constitutively active Rac1 rescued Gbetagamma blockade-mediated inhibition of breast cancer cell migration, whereas dominant negative Rac1 inhibited cell migration similar to Gbetagamma blockade. Furthermore, M119K suppressed Gi protein-coupled CXC chemokine receptor 4 (CXCR4)-dependent MDA-MB-231 cell migration by 80% with an IC50 value of 1 microM, whereas tyrosine kinase receptor-dependent cell migration was significantly less inhibited. However, CXCR4-dependent inhibition of adenylyl cyclase, a Gialpha-mediated response in MDA-MB-231 cells, was not blocked by M119K but was blocked by pertussis toxin, which selectively inactivates Gialpha. This report is the first to directly demonstrate the role of Gbetagamma in cancer cell migration and invasion and suggests that targeting Gbetagamma signaling pathways may provide a novel strategy for suppressing breast cancer metastasis.
Collapse
Affiliation(s)
- Joseph K Kirui
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | | | |
Collapse
|
45
|
Resende RR, Adhikari A. Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation. Cell Commun Signal 2009; 7:20. [PMID: 19712465 PMCID: PMC2744676 DOI: 10.1186/1478-811x-7-20] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/27/2009] [Indexed: 11/14/2022] Open
Abstract
Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases.
Collapse
Affiliation(s)
- Rodrigo R Resende
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| | | |
Collapse
|
46
|
Cooper MA. Signal transduction profiling using label-free biosensors. J Recept Signal Transduct Res 2009; 29:224-33. [DOI: 10.1080/10799890903047825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Peptide YY induces intestinal proliferation in peptide YY knockout mice with total enteral nutrition after massive small bowel resection. J Pediatr Gastroenterol Nutr 2009; 48:517-25. [PMID: 19367178 DOI: 10.1097/mpg.0b013e31818c5fd8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE In previous research, peptide YY (PYY) administered in supraphysiological doses did not induce significant proliferative effects in rats that were allowed to feed ad libitum after massive small bowel resection (SBR). The main reason may well have been the interference of endogenous PYY released from L cells in the distal bowel in response to the presence of augmented unabsorbed intraluminal nutrients. The purpose of the present study was to explore the effect of PYY on intestinal proliferation with total enteral nutrition (TEN) in a SBR model of PYY knockout (Pyy(-/-)) mice, which do not produce endogenous PYY. MATERIALS AND METHODS Pyy(-/-) mice were assigned into 3 experimental groups: sham mice (sham group) underwent bowel transection and reanastomosis, and received TEN; SBR mice (SBR group) underwent a 50% small bowel resection, and received TEN; and SBR-PYY mice (SBR-PYY group) underwent a 50% small bowel resection, received TEN, and were treated with PYY1-36 subcutaneously from day 2 postoperatively. Parameters of enterocyte proliferation and apoptosis were determined on day 8 following operation. RESULTS SBR-PYY mice demonstrated a significant increase in (vs SBR) bowel and mucosal weights, mucosal DNA and protein, villus height, and crypt depth in jejunum and ileum. SBR-PYY mice also showed an increased crypt cell proliferation index in jejunum and ileum and decreased villus cell apoptotic index in ileum compared with SBR animals. CONCLUSIONS In an SBR model of Pyy(-/-) mice, PYY induces proliferation of residual intestine with TEN.
Collapse
|
48
|
Lents NH, Irintcheva V, Goel R, Wheeler LW, Baldassare JJ. The rapid activation of N-Ras by alpha-thrombin in fibroblasts is mediated by the specific G-protein Galphai2-Gbeta1-Ggamma5 and occurs in lipid rafts. Cell Signal 2009; 21:1007-14. [PMID: 19250965 DOI: 10.1016/j.cellsig.2009.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/18/2009] [Accepted: 02/18/2009] [Indexed: 11/20/2022]
Abstract
alpha-thrombin is a potent mitogen for fibroblasts and initiates a rapid signal transduction pathway leading to the activation of Ras and the stimulation of cell cycle progression. While the signaling events downstream of Ras have been studied in significant detail and appear well conserved across many species and cell types, the precise molecular events beginning with thrombin receptor activation and leading to the activation of Ras are not as well understood. In this study, we examined the immediate events in the rapid response to alpha-thrombin, in a single cell type, and found that an unexpected degree of specificity exists in the pathway linking alpha-thrombin to Ras activation. Specifically, although IIC9 cells express all three Ras isoforms, only N-Ras is rapidly activated by alpha-thrombin. Further, although several Galpha subunits associate with PAR1 and are released following stimulation, only Galpha(i2) couples to the rapid activation of Ras. Similarly, although IIC9 cells express many Gbeta and Ggamma subunits, only a subset associates with Galpha(i2), and of those, only a single Gbetagamma dimer, Gbeta(1)gamma(5), participates in the rapid activation of N-Ras. We then hypothesized that co-localization into membrane microdomains called lipid rafts, or caveolae, is at least partially responsible for this degree of specificity. Accordingly, we found that all components localize to lipid rafts and that disruption of caveolae abolishes the rapid activation of N-Ras by alpha-thrombin. We thus report the molecular elucidation of an extremely specific and rapid signal transduction pathway linking alpha-thrombin stimulation to the activation of Ras.
Collapse
Affiliation(s)
- Nathan H Lents
- Department of Sciences at John Jay College of Criminal Justice, City University of New York, New York, NY 10019, USA.
| | | | | | | | | |
Collapse
|
49
|
Lee AW, Pfaff DW. Hormone effects on specific and global brain functions. J Physiol Sci 2008; 58:213-20. [PMID: 18505601 DOI: 10.2170/physiolsci.rv007008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 05/24/2008] [Indexed: 11/05/2022]
Abstract
The first demonstration of how biochemical changes in neurons in specific parts of the brain direct a complete mammalian behavior derived from the effects of estrogens in hypothalamic neurons that facilitate lordosis behavior, the primary reproductive behavior of female quadrupeds (Pfaff. Estrogens and Brain Function. 1980; Pfaff. Drive: Neurobiological and Molecular Mechanisms of Sexual Motivation. 1999). Sex behaviors depend on sexual arousal that in turn depends on a primitive function: generalized CNS arousal (Pfaff. Brain Arousal and Information Theory. 2006). Here we summarize one of the ways in which a generalized arousal transmitter, norepinephrine, can influence the electrical excitability of ventromedial hypothalamic cells in a way that will foster female sex behavior.
Collapse
Affiliation(s)
- A W Lee
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
50
|
Reduced troponin I phosphorylation and increased Ca(2+)-dependent ATP-consumption in triton X-skinned fiber preparations from Galphaq overexpressor mice. Mol Cell Biochem 2008; 314:133-41. [PMID: 18473122 DOI: 10.1007/s11010-008-9774-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 04/22/2008] [Indexed: 01/08/2023]
Abstract
Overexpression of the Galphaq-protein has been shown to result in hypertrophic and dilated cardiomyopathy. This study investigated Ca(2+ )sensitivity of tension and myosin-ATPase activity in skinned fiber preparations of male and female wildtype (WT; n = 12) and transgenic mice with a cardiac specific overexpression of the Galphaq-protein (Galphaq-OE; n = 11). In addition, the phosphorylation status of troponin I was measured. Ca(2+) sensitivity of tension was increased in Galphaq-OE with a significant reduction in the half-maximum Ca(2+) concentration (EC(50)) compared to WT. Similarly, Ca(2+) sensitivity of myosin ATPase activity was increased in Galphaq-OE when comparing Galphaq-OE to WT. Maximum Ca(2+)-dependent tension and ATPase activity were both enhanced in Galphaq-OE compared to WT littermates. Phosphorylation of troponin I was significantly reduced in Galphaq-OE compared to WT. In the above experiments, no gender specific differences were observed in either Gaq-OE or in WT. We conclude that, in mice, increased expression of the Galphaq-protein induces alterations of myofibrillar function and energy consumption, which are also characteristics of human heart failure. This may result from a decreased phosphorylation of troponin I in Galphaq-OE.
Collapse
|