1
|
Terrell JR, Taylor SJ, Schneider AL, Lu Y, Vernon TN, Xhani S, Gumpper RH, Luo M, Wilson WD, Steidl U, Poon GMK. DNA selection by the master transcription factor PU.1. Cell Rep 2023; 42:112671. [PMID: 37352101 PMCID: PMC10479921 DOI: 10.1016/j.celrep.2023.112671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The master transcriptional regulator PU.1/Spi-1 engages DNA sites with affinities spanning multiple orders of magnitude. To elucidate this remarkable plasticity, we have characterized 22 high-resolution co-crystallographic PU.1/DNA complexes across the addressable affinity range in myeloid gene transactivation. Over a purine-rich core (such as 5'-GGAA-3') flanked by variable sequences, affinity is negotiated by direct readout on the 5' flank via a critical glutamine (Q226) sidechain and by indirect readout on the 3' flank by sequence-dependent helical flexibility. Direct readout by Q226 dynamically specifies PU.1's characteristic preference for purines and explains the pathogenic mutation Q226E in Waldenström macroglobulinemia. The structures also reveal how disruption of Q226 mediates strand-specific inhibition by DNA methylation and the recognition of non-canonical sites, including the authentic binding sequence at the CD11b promoter. A re-synthesis of phylogenetic and structural data on the ETS family, considering the centrality of Q226 in PU.1, unifies the model of DNA selection by ETS proteins.
Collapse
Affiliation(s)
- J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Samuel J Taylor
- Departments of Cell Biology, Oncology, and Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Blood Cancer Institute, and the Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amelia L Schneider
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yue Lu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Tyler N Vernon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Suela Xhani
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Ryan H Gumpper
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Ulrich Steidl
- Departments of Cell Biology, Oncology, and Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Blood Cancer Institute, and the Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
2
|
Esaki S, Evich MG, Erlitzki N, Germann MW, Poon GMK. Multiple DNA-binding modes for the ETS family transcription factor PU.1. J Biol Chem 2017; 292:16044-16054. [PMID: 28790174 DOI: 10.1074/jbc.m117.798207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.
Collapse
Affiliation(s)
| | | | | | | | - Gregory M K Poon
- From the Departments of Chemistry and .,the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
3
|
Le Bihan YV, Matot B, Pietrement O, Giraud-Panis MJ, Gasparini S, Le Cam E, Gilson E, Sclavi B, Miron S, Le Du MH. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:409-19. [DOI: 10.1107/s0907444912049311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/30/2012] [Indexed: 11/11/2022]
|
4
|
The role of ets factors in tumor angiogenesis. JOURNAL OF ONCOLOGY 2010; 2010:767384. [PMID: 20454645 PMCID: PMC2863161 DOI: 10.1155/2010/767384] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/06/2010] [Accepted: 03/02/2010] [Indexed: 12/14/2022]
Abstract
Angiogenesis is a critical component of tumor growth. A number of growth factors, including VEGF, FGF, and HGF, have been implicated as angiogenic growth factors that promote tumor angiogenesis in different types of cancer. Ets-1 is the prototypic member of the Ets transcription factor family. Ets-1 is known to be a downstream mediator of angiogenic growth factors. Expression of Ets-1 in a variety of different tumors is associated with increased angiogenesis. A role for other selected members of the Ets transcription factor family has also been shown to be important for the development of tumor angiogenesis. Because Ets factors also express a number of other important genes involved in cell growth, they contribute not only to tumor growth, but to disease progression. Targeting Ets factors in mouse tumor models through the use of dominant-negative Ets proteins or membrane permeable peptides directed at competitively inhibiting the DNA binding domain has now demonstrated the therapeutic potential of inhibiting selected Ets transcription factors to limit tumor growth and disease progression.
Collapse
|
5
|
Suwa Y, Nakamura T, Toma S, Ikemizu S, Kai H, Yamagata Y. Preparation, crystallization and preliminary X-ray diffraction analysis of the DNA-binding domain of the Ets transcription factor in complex with target DNA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:171-4. [PMID: 18323600 PMCID: PMC2374153 DOI: 10.1107/s1744309108002662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/24/2008] [Indexed: 11/10/2022]
Abstract
The Ets2 transcription factor is a member of the Ets transcription-factor family. Ets2 plays a role in the malignancy of cancer and in Down's syndrome by regulating the transcription of various genes. The DNA-binding domain of Ets2 (Ets domain; ETSD), which contains residues that are highly conserved among Ets transcription-factor family members, was expressed as a GST-fusion protein. The aggregation of ETSD produced after thrombin cleavage could be prevented by treatment with NDSB-195 (nondetergent sulfobetaine 195). ETSD was crystallized in complex with DNA containing the Ets2 target sequence (GGAA) by the hanging-drop vapour-diffusion method. The best crystals were grown using 25% PEG 3350, 80 mM magnesium acetate, 50 mM sodium cacodylate pH 5.0/5.5 as the reservoir at 293 K. The crystals belonged to space group C2, with unit-cell parameters a = 85.89, b = 95.52, c = 71.89 A, beta = 101.7 degrees and a V(M) value of 3.56 A(3) Da(-1). Diffraction data were collected to a resolution of 3.0 A.
Collapse
Affiliation(s)
- Yoshiaki Suwa
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Sachiko Toma
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Shinji Ikemizu
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuriko Yamagata
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
6
|
Huang X, Brown C, Ni W, Maynard E, Rigby AC, Oettgen P. Critical role for the Ets transcription factor ELF-1 in the development of tumor angiogenesis. Blood 2005; 107:3153-60. [PMID: 16352813 PMCID: PMC1895750 DOI: 10.1182/blood-2005-08-3206] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Ets transcription factors regulate a wide variety of biologic processes. Several members have been shown to play a role in regulating angiogenesis and vascular development. For example, the Ets factor ELF-1 is enriched in the developing vasculature of the embryo, where it regulates the expression of the Tie2 gene. We have determined that ELF-1 and Tie2 expression is also enriched in tumor blood vessels, and have identified a short peptide, 34 amino acids in length, corresponding to the terminal portion of the highly conserved ETS domain that potently blocks the function of ELF-1. A tailored ELF-1 blocking peptide, containing a 12-amino acid HIV-1 TAT protein, readily crosses the cell membrane and enters into the nucleus of endothelial cells, leading to a marked reduction in the expression of ELF-1 gene targets including Tie2 and endothelial nitric oxide synthase. Furthermore, the ELF-1 blocking peptide potently inhibits angiopoietin-1-mediated endothelial cell migration. Systemic administration of this peptide markedly attenuates B16 melanoma tumor growth and tumor-associated angiogenesis in nude mice. These results support the function of ELF-1 in the regulation of Tie2 gene expression during the development of tumor angiogenesis.
Collapse
MESH Headings
- Angiopoietin-2/metabolism
- Angiopoietin-2/pharmacology
- Animals
- Cell Line, Tumor
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Ephrin-A2/genetics
- Ephrin-A2/metabolism
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Nitric Oxide Synthase Type III/biosynthesis
- Nitric Oxide Synthase Type III/genetics
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-ets/metabolism
- Proto-Oncogene Proteins c-ets/pharmacology
- Receptor, TIE-2/biosynthesis
- Receptor, TIE-2/genetics
Collapse
Affiliation(s)
- Xuling Huang
- Beth Israel Deaconess Medical Center, Division of Cardiology, Department of Medicine, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
7
|
Kopp JL, Wilder PJ, Desler M, Kim JH, Hou J, Nowling T, Rizzino A. Unique and selective effects of five Ets family members, Elf3, Ets1, Ets2, PEA3, and PU.1, on the promoter of the type II transforming growth factor-beta receptor gene. J Biol Chem 2004; 279:19407-20. [PMID: 14976186 DOI: 10.1074/jbc.m314115200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3, a member of the Ets transcription factor family. The TbetaR-II gene behaves as a tumor suppressor and it is expressed in nearly all cell types, whereas Elf3 is expressed primarily in epithelial cells. Hence, the TbetaR-II gene is likely to be regulated by other Ets proteins in nonepithelial cells. In this study, we examined the effects of four other Ets family members (Ets1, Ets2, PEA3, and PU.1) on TbetaR-II promoter/reporter constructs that contain the two essential ets sites of this gene. These studies employed F9 embryonal carcinoma cells and their differentiated cells, because transcription of the TbetaR-II gene increases after F9 cells differentiate. Here we demonstrate that Ets2, which is expressed in F9-differentiated cells along with Elf3, does not stimulate or bind to the TbetaR-II promoter in these cells. In contrast, PEA3 stimulates the TbetaR-II promoter in F9-differentiated cells, but it inhibits this promoter in F9 cells. Thus, the effects of PEA3 on the TbetaR-II promoter are cell context-dependent. We also show that the effects of Elf3 are cell context-dependent. Elf3 strongly stimulates the TbetaR-II promoter in F9-differentiated cells, but not in F9 cells. In contrast to Elf3 and PEA3, Ets1 strongly stimulates this promoter in both F9 cells and F9-differentiated cells. Finally, we show that PU.1 exerts little or no effect on the activity of the TbetaR-II promoter. Together, our findings indicate that Elf3 is not the only Ets protein capable of stimulating the TbetaR-II promoter. Importantly, our findings also indicate that each of the five Ets proteins influences the TbetaR-II promoter in a unique manner because of important differences in their biochemical properties or their patterns of cellular expression.
Collapse
Affiliation(s)
- Janel L Kopp
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Pio F, Assa-Munt N, Yguerabide J, Maki RA. Mutants of ETS domain PU.1 and GGAA/T recognition: free energies and kinetics. Protein Sci 1999; 8:2098-109. [PMID: 10548056 PMCID: PMC2144130 DOI: 10.1110/ps.8.10.2098] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ETS family members display specific DNA binding site preferences. As an example, PU.1 and ETS-1 recognize different DNA sequences with a core element centered over 5'-GGAA-3' and 5'-GGAA/T-3', respectively. To understand the molecular basis of this recognition, we carried out site-directed mutagenesis experiments followed by DNA binding studies that use electrophoretic mobility shift assay (EMSA) and surface plasmon resonance methods. EMSA experiments identified amino acid changes A231S and/or N236Y as being important for PU.1 recognition of both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. To confirm these data and obtain accurate binding parameters, we performed kinetic studies using surface plasmon resonance on these mutants. The N236Y substitution revealed a weak protein-DNA interaction with the 5'-GGAA-3' containing oligonucleotide caused by a faster release of the protein from the DNA (k(off) tenfold higher than the wild-type protein). With the double mutant A231S-N236Y, we obtained an increase in binding affinity and stability toward both 5'-GGAA-3' and 5'-GGAT-3' containing oligonucleotides. We propose that substitution of alanine for serine introduces an oxygen atom that can accept hydrogen and interact with potential water molecules or other atoms to make an energetically favorable hydrogen bond with both 5'-GGAA-3' and 5'-GGAT-3' oligonucleotides. The free energy of dissociation for the double mutant A231S-N236Y with 5'-GGAA-3' (delta deltaG((A231S-N236Y) - (N236Y)) = -1.2 kcal mol confirm the stabilizing effect of this mutant in the protein-DNA complex formation. We conclude that N236Y mutation relaxes the specificity toward 5'-GGAA-3' and 5'-GGAT-3' sequences, while A231S mutation modulates the degree of specificity toward 5'-GGAA-3' and 5'GGAT-3' sequences. This study explains why wild-type PU.1 does not recognize 5'-GGAT-3' sequences and in addition broadens our understanding of 5'-GGAA/T-3' recognition by ETS protein family members.
Collapse
Affiliation(s)
- F Pio
- The Burnham Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
9
|
Oettgen P, Alani RM, Barcinski MA, Brown L, Akbarali Y, Boltax J, Kunsch C, Munger K, Libermann TA. Isolation and characterization of a novel epithelium-specific transcription factor, ESE-1, a member of the ets family. Mol Cell Biol 1997; 17:4419-33. [PMID: 9234700 PMCID: PMC232296 DOI: 10.1128/mcb.17.8.4419] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report here the isolation of a novel, highly tissue-restricted member of the ets transcription factor/oncogene family, ESE-1 (for epithelium-specific Ets), which has features distinct from those of any other ets-related factor. ESE-1 contains two putative DNA binding domains: an ETS domain, which is unique in that the 5' half shows relatively weak homology to known ets factors, and an A/T hook domain, found in HMG proteins and various other nuclear factors. In contrast to any known ets factors, ESE-1 is expressed exclusively in epithelial cells. ESE-1 expression is induced during terminal differentiation of the epidermis and in a primary human keratinocyte differentiation system. The keratinocyte terminal differentiation marker gene, SPRR2A, is a putative target for ESE-1, since SPRR2A expression during keratinocyte differentiation correlates with induction of ESE-1 expression, and ESE-1 binds with high affinity to and transactivates the ets binding site in the SPRR2A promoter. ESE-1 also binds to and transactivates the enhancer of the Endo A gene, a potential target for ESE-1 in simple epithelia. Due to the important role that other ets factors play in cellular differentiation, ESE-1 is expected to be a critical regulator of epithelial cell differentiation.
Collapse
Affiliation(s)
- P Oettgen
- Division of Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pio F, Kodandapani R, Ni CZ, Shepard W, Klemsz M, McKercher SR, Maki RA, Ely KR. New insights on DNA recognition by ets proteins from the crystal structure of the PU.1 ETS domain-DNA complex. J Biol Chem 1996; 271:23329-37. [PMID: 8798534 DOI: 10.1074/jbc.271.38.23329] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transcription factors belonging to the ets family regulate gene expression and share a conserved ETS DNA-binding domain that binds to the core sequence 5'-(C/A)GGA(A/T)-3'. The domain is similar to alpha+beta ("winged") helix-turn-helix DNA-binding proteins. The crystal structure of the PU.1 ETS domain complexed to a 16-base pair oligonucleotide revealed a pattern for DNA recognition from a novel loop-helix-loop architecture (Kodandapani, R., Pio, F., Ni. C.-Z., Piccialli, G., Klemsz, M., McKercher, S., Maki, R. A., and Ely, K. R. (1996) Nature 380, 456-460). Correlation of this model with mutational analyses and chemical shift data on other ets proteins confirms this complex as a paradigm for ets DNA recognition. The second helix in the helix-turn-helix motif lies deep in the major groove with specific contacts with bases in both strands in the core sequence made by conserved residues in alpha3. On either side of this helix, two loops contact the phosphate backbone. The DNA is bent (8 degrees) but uniformly curved without distinct kinks. ETS domains bind DNA as a monomer yet make extensive DNA contacts over 30 A. DNA bending likely results from phosphate neutralization of the phosphate backbone in the minor groove by both loops in the loop-helix-loop motif. Contacts from these loops stabilize DNA bending and may mediate specific base interactions by inducing a bend toward the protein.
Collapse
Affiliation(s)
- F Pio
- La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kodandapani R, Pio F, Ni CZ, Piccialli G, Klemsz M, McKercher S, Maki RA, Ely KR. A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 1996; 380:456-60. [PMID: 8602247 DOI: 10.1038/380456a0] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Ets family of transcription factors, of which there are now about 35 members regulate gene expression during growth and development. They share a conserved domain of around 85 amino acids which binds as a monomer to the DNA sequence 5'-C/AGGAA/T-3'. We have determined the crystal structure of an ETS domain complexed with DNA, at 2.3-A resolution. The domain is similar to alpha + beta (winged) 'helix-turn-helix' proteins and interacts with a ten-base-pair region of duplex DNA which takes up a uniform curve of 8 degrees. The domain contacts the DNA by a novel loop-helix-loop architecture. Four of amino acids that directly interact with the DNA are highly conserved: two arginines from the recognition helix lying in the major groove, one lysine from the 'wing' that binds upstream of the core GGAA sequence, and another lysine, from the 'turn' of the 'helix-turn-helix' motif, which binds downstream and on the opposite strand.
Collapse
Affiliation(s)
- R Kodandapani
- La Jolla Cancer Research Center at the Burnham Institute, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|