1
|
Tomlinson PR, Knox RG, Perisic O, Su H, Brierley GV, Williams RL, Semple RK. Paradoxical dominant negative activity of an immunodeficiency-associated activating PIK3R1 variant. eLife 2025; 13:RP94420. [PMID: 39835783 PMCID: PMC11750134 DOI: 10.7554/elife.94420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.
Collapse
Affiliation(s)
- Patsy R Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Rachel G Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- The National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Olga Perisic
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Helen Su
- Laboratory of Clinical Immunology & Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of HealthBethesdaUnited States
| | - Gemma V Brierley
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- Department of Comparative Biomedical Science, The Royal Veterinary CollegeLondonUnited Kingdom
| | | | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
- The National Institute for Health Research Cambridge Biomedical Research CentreCambridgeUnited Kingdom
- Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
2
|
Tomlinson PR, Knox R, Perisic O, Su HC, Brierley GV, Williams RL, Semple RK. Paradoxical dominant negative activity of an immunodeficiency-associated activating PIK3R1 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565250. [PMID: 38077044 PMCID: PMC10705566 DOI: 10.1101/2023.11.02.565250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.
Collapse
Affiliation(s)
- Patsy R. Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Rachel Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Helen C. Su
- Laboratory of Clinical Immunology & Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Gemma V. Brierley
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Department of Comparative Biomedical Science, The Royal Veterinary College, London NW1 0TU, UK
| | | | - Robert K. Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Cannarella R, Curto R, Condorelli RA, Lundy SD, La Vignera S, Calogero AE. Molecular insights into Sertoli cell function: how do metabolic disorders in childhood and adolescence affect spermatogonial fate? Nat Commun 2024; 15:5582. [PMID: 38961093 PMCID: PMC11222552 DOI: 10.1038/s41467-024-49765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Male infertility is a major public health concern globally with unknown etiology in approximately half of cases. The decline in total sperm count over the past four decades and the parallel increase in childhood obesity may suggest an association between these two conditions. Here, we review the molecular mechanisms through which obesity during childhood and adolescence may impair future testicular function. Several mechanisms occurring in obesity can interfere with the delicate metabolic processes taking place at the testicular level during childhood and adolescence, providing the molecular substrate to hypothesize a causal relationship between childhood obesity and the risk of low sperm counts in adulthood.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Scott D Lundy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Kim CW, Lee JM, Park SW. Divergent roles of the regulatory subunits of class IA PI3K. Front Endocrinol (Lausanne) 2024; 14:1152579. [PMID: 38317714 PMCID: PMC10839044 DOI: 10.3389/fendo.2023.1152579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85β. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85β. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85β has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85β have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85β promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85β regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85β, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.
Collapse
Affiliation(s)
- Cho-Won Kim
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Junsik M. Lee
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
| | - Sang Won Park
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Krishnan H, Ahmed S, Hubbard SR, Miller WT. Biochemical characterization of the Drosophila insulin receptor kinase and longevity-associated mutants. FASEB J 2024; 38:e23355. [PMID: 38071609 PMCID: PMC11284340 DOI: 10.1096/fj.202301948r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Drosophila melanogaster (fruit fly) insulin receptor (D-IR) is highly homologous to the human counterpart. Like the human pathway, D-IR responds to numerous insulin-like peptides to activate cellular signals that regulate growth, development, and lipid metabolism in fruit flies. Allelic mutations in the D-IR kinase domain elevate life expectancy in fruit flies. We developed a robust heterologous expression system to express and purify wild-type and longevity-associated mutant D-IR kinase domains to investigate enzyme kinetics and substrate specificities. D-IR exhibits remarkable similarities to the human insulin receptor kinase domain but diverges in substrate preferences. We show that longevity-associated mutations reduce D-IR catalytic activity. Deletion of the unique kinase insert domain portion or mutations proximal to activating tyrosines do not influence kinase activity, suggesting their potential role in substrate recruitment and downstream signaling. Through biochemical investigations, this study enhances our comprehension of D-IR's role in Drosophila physiology, complementing genetic studies and expanding our knowledge on the catalytic functions of this conserved signaling pathway.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Stevan R. Hubbard
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Department of Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
7
|
Vidal S, Bouzaher YH, El Motiam A, Seoane R, Rivas C. Overview of the regulation of the class IA PI3K/AKT pathway by SUMO. Semin Cell Dev Biol 2022; 132:51-61. [PMID: 34753687 DOI: 10.1016/j.semcdb.2021.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is a major regulator of metabolism, migration, survival, proliferation, and antiviral immunity. Both an overactivation and an inhibition of the PI3K/AKT pathway are related to different pathologies. Activation of this signaling pathway is tightly controlled through a multistep process and its deregulation can be associated with aberrant post-translational modifications including SUMOylation. Here, we review the complex modulation of the PI3K/AKT pathway by SUMOylation and we discuss its putative incvolvement in human disease.
Collapse
Affiliation(s)
- Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Ibadurrahman W, Hanif N, Hermawan A. Functional network analysis of p85 and PI3K as potential gene targets and mechanism of oleanolic acid in overcoming breast cancer resistance to tamoxifen. J Genet Eng Biotechnol 2022; 20:66. [PMID: 35482141 PMCID: PMC9050990 DOI: 10.1186/s43141-022-00341-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/04/2022] [Indexed: 12/24/2022]
Abstract
Background Tamoxifen resistance in estrogen receptor positive (ER+) breast cancer therapy increases, which is the leading cause of cancer treatment failure, as it can impair patients’ prognoses, cause cancer recurrence, metastasis, and death. Combination therapy with compounds is needed to overcome tamoxifen resistance. Oleanolic acid (OA) was known to increase tamoxifen sensitivity in tamoxifen-resistant breast cancer; however, the molecular mechanism of OA and its involvement in overcoming tamoxifen resistance remain unknown and need further investigation. This study was conducted to identify the potential gene targets and molecular mechanisms of OA in overcoming tamoxifen resistance. Results A bioinformatic approach for functional network analysis was used in silico by utilizing secondary data in the Gene Expression Omnibus (GEO) database and analyzing them with GEO2R to obtain data on differentially expressed genes (DEGs). The DEG data were further examined with Database for Annotation, Visualization, and Integrated Discovery (DAVID), STRING, cBioPortal website, and Cytoscape with its plugin CytoHubba. Molecular docking was performed to predict the binding properties of OA on the protein encoded by the potential gene. CD44, FGFR2, PIK3R1, and MDM2 were designated as potential target genes (PTGs), and PIK3R1 was suspected as the potential gene for OA to overcome tamoxifen resistance. Molecular docking confirms that OA can inhibit p85 activation. PIK3R1 is suggested to be the potential gene for OA in overcoming tamoxifen resistance in breast cancer therapy. Conclusion The predicted molecular mechanism of OA in overcoming tamoxifen resistance involves inhibiting p85 activation, leading to the inhibition of the downstream activity of the PI3K signaling pathway, causing breast cancer to respond to tamoxifen therapy once again. Results of this study need to be validated by further studies, including in vitro and in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00341-4.
Collapse
Affiliation(s)
- Wilfan Ibadurrahman
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Naufa Hanif
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia. .,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
9
|
Skolariki A, D’Costa J, Little M, Lord S. Role of PI3K/Akt/mTOR pathway in mediating endocrine resistance: concept to clinic. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:172-199. [PMID: 36046843 PMCID: PMC9400772 DOI: 10.37349/etat.2022.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/11/2022] [Indexed: 01/06/2023] Open
Abstract
The majority of breast cancers express the estrogen receptor (ER) and for this group of patients, endocrine therapy is the cornerstone of systemic treatment. However, drug resistance is common and a focus for breast cancer preclinical and clinical research. Over the past 2 decades, the PI3K/Akt/mTOR axis has emerged as an important driver of treatment failure, and inhibitors of mTOR and PI3K are now licensed for the treatment of women with advanced ER-positive breast cancer who have relapsed on first-line hormonal therapy. This review presents the preclinical and clinical data that led to this new treatment paradigm and discusses future directions.
Collapse
Affiliation(s)
- Aglaia Skolariki
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Jamie D’Costa
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| | - Martin Little
- Department of Oncology, Churchill Hospital, OX3 7LE Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Churchill Hospital, OX3 7LE Oxford, UK
| |
Collapse
|
10
|
Cannarella R, Mancuso F, Arato I, Lilli C, Bellucci C, Gargaro M, Curto R, Aglietti MC, La Vignera S, Condorelli RA, Luca G, Calogero AE. Sperm-carried IGF2 downregulated the expression of mitogens produced by Sertoli cells: A paracrine mechanism for regulating spermatogenesis? Front Endocrinol (Lausanne) 2022; 13:1010796. [PMID: 36523595 PMCID: PMC9744929 DOI: 10.3389/fendo.2022.1010796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Insulin-like growth factor 2 (IGF2) mRNA has been found in human and mouse spermatozoa. It is currently unknown whether the IGF2 protein is expressed in human spermatozoa and, if so, its possible role in the cross-talk between germ and Sertoli cells (SCs) during spermatogenesis. METHODS To accomplish this, we analyzed sperm samples from four consecutive Caucasian men. Furthermore, to understand its role during the spermatogenetic process, porcine SCs were incubated with increasing concentrations (0.33, 3.33, and 10 ng/mL) of recombinant human IGF2 (rhIGF2) for 48 hours. Subsequently, the experiments were repeated by pre-incubating SCs with the non-competitive insulin-like growth factor 1 receptor (IGF1R) inhibitor NVP-AEW541. The following outcomes were evaluated: 1) Gene expression of the glial cell-line derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and stem cell factor (SCF) mitogens; 2) gene and protein expression of follicle-stimulating hormone receptor (FSHR), anti-Müllerian hormone (AMH), and inhibin B; 3) SC proliferation. RESULTS We found that the IGF2 protein was present in each of the sperm samples. IGF2 appeared as a cytoplasmic protein localized in the equatorial and post-acrosomal segment and with a varying degree of expression in each cell. In SCs, IGF2 significantly downregulated GDNF gene expression in a concentration-dependent manner. FGF2 and SCF were downregulated only by the highest concentration of IGF2. Similarly, IGF2 downregulated the FSHR gene and FSHR, AMH, and inhibin B protein expression. Finally, IGF2 significantly suppressed the SC proliferation rate. All these findings were reversed by pre-incubation with NVP-AEW541, suggesting an effect mediated by the interaction of IGF2 with the IGFR. CONCLUSION In conclusion, sperm IGF2 seems to downregulate the expression of mitogens, which are known to be physiologically released by the SCs to promote gonocyte proliferation and spermatogonial fate adoption. These findings suggest the presence of paracrine regulatory mechanisms acting on the seminiferous epithelium during spermatogenesis, by which germ cells can influence the amount of mitogens released by the SCs, their sensitivity to FSH, and their rate of proliferation.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- *Correspondence: Rossella Cannarella,
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Iva Arato
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria C. Aglietti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovani Luca
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Cancer-associated mutations in the p85α N-terminal SH2 domain activate a spectrum of receptor tyrosine kinases. Proc Natl Acad Sci U S A 2021; 118:2101751118. [PMID: 34507989 PMCID: PMC8449365 DOI: 10.1073/pnas.2101751118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphoinositide 3-kinase activation typically occurs following stimulation by upstream receptor tyrosine kinases (RTKs), which alleviate p110α inhibition by p85α. p85α and p110α driver mutations have been reported to activate p110α by disrupting the inhibitory interface between p85α and p110α. This study revealed that driver mutations in the p85α N-terminal SH2 domain can enhance p110α activity by inducing the activation of multiple RTKs. Furthermore, combination treatment with RTK and AKT inhibitors provides synergistic therapeutic efficacy. This previously uncharacterized oncogenic mechanism presents the exploitable vulnerability of a class of p85α mutant tumors. The phosphoinositide 3-kinase regulatory subunit p85α is a key regulator of kinase signaling and is frequently mutated in cancers. In the present study, we showed that in addition to weakening the inhibitory interaction between p85α and p110α, a group of driver mutations in the p85α N-terminal SH2 domain activated EGFR, HER2, HER3, c-Met, and IGF-1R in a p110α-independent manner. Cancer cells expressing these mutations exhibited the activation of p110α and the AKT pathway. Interestingly, the activation of EGFR, HER2, and c-Met was attributed to the ability of driver mutations to inhibit HER3 ubiquitination and degradation. The resulting increase in HER3 protein levels promoted its heterodimerization with EGFR, HER2, and c-Met, as well as the allosteric activation of these dimerized partners; however, HER3 silencing abolished this transactivation. Accordingly, inhibitors of either AKT or the HER family reduced the oncogenicity of driver mutations. The combination of these inhibitors resulted in marked synergy. Taken together, our findings provide mechanistic insights and suggest therapeutic strategies targeting a class of recurrent p85α mutations.
Collapse
|
12
|
Kearney AL, Norris DM, Ghomlaghi M, Kin Lok Wong M, Humphrey SJ, Carroll L, Yang G, Cooke KC, Yang P, Geddes TA, Shin S, Fazakerley DJ, Nguyen LK, James DE, Burchfield JG. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. eLife 2021; 10:e66942. [PMID: 34253290 PMCID: PMC8277355 DOI: 10.7554/elife.66942] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/30/2021] [Indexed: 01/16/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)-Akt network is tightly controlled by feedback mechanisms that regulate signal flow and ensure signal fidelity. A rapid overshoot in insulin-stimulated recruitment of Akt to the plasma membrane has previously been reported, which is indicative of negative feedback operating on acute timescales. Here, we show that Akt itself engages this negative feedback by phosphorylating insulin receptor substrate (IRS) 1 and 2 on a number of residues. Phosphorylation results in the depletion of plasma membrane-localised IRS1/2, reducing the pool available for interaction with the insulin receptor. Together these events limit plasma membrane-associated PI3K and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) synthesis. We identified two Akt-dependent phosphorylation sites in IRS2 at S306 (S303 in mouse) and S577 (S573 in mouse) that are key drivers of this negative feedback. These findings establish a novel mechanism by which the kinase Akt acutely controls PIP3 abundance, through post-translational modification of the IRS scaffold.
Collapse
Affiliation(s)
- Alison L Kearney
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Dougall M Norris
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Milad Ghomlaghi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Martin Kin Lok Wong
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Luke Carroll
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Guang Yang
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Kristen C Cooke
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of SydneySydneyAustralia
- Computational Systems Biology Group, Children's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Thomas A Geddes
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- Computational Systems Biology Group, Children's Medical Research Institute, University of SydneyWestmeadAustralia
| | - Sungyoung Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of CambridgeCambridgeUnited Kingdom
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash UniversityClaytonAustralia
- Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
- School of Medical Sciences, University of SydneySydneyAustralia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of SydneySydneyAustralia
| |
Collapse
|
13
|
Zhang M, Jang H, Nussinov R. PI3K Driver Mutations: A Biophysical Membrane-Centric Perspective. Cancer Res 2021; 81:237-247. [PMID: 33046444 PMCID: PMC7855922 DOI: 10.1158/0008-5472.can-20-0911] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022]
Abstract
Ras activates its effectors at the membrane. Active PI3Kα and its associated kinases/phosphatases assemble at membrane regions enriched in signaling lipids. In contrast, the Raf kinase domain extends into the cytoplasm and its assembly is away from the crowded membrane surface. Our structural membrane-centric outlook underscores the spatiotemporal principles of membrane and signaling lipids, which helps clarify PI3Kα activation. Here we focus on mechanisms of activation driven by PI3Kα driver mutations, spotlighting the PI3Kα double (multiple) activating mutations. Single mutations can be potent, but double mutations are stronger: their combination is specific, a single strong driver cannot fully activate PI3K, and two weak drivers may or may not do so. In contrast, two strong drivers may successfully activate PI3K, where one, for example, H1047R, modulates membrane interactions facilitating substrate binding at the active site (km) and the other, for example, E542K and E545K, reduces the transition state barrier (ka), releasing autoinhibition by nSH2. Although mostly unidentified, weak drivers are expected to be common, so we ask here how common double mutations are likely to be and why PI3Kα with double mutations responds effectively to inhibitors. We provide a structural view of hotspot and weak driver mutations in PI3Kα activation, explain their mechanisms, compare these with mechanisms of Raf activation, and point to targeting cell-specific, chromatin-accessible, and parallel (or redundant) pathways to thwart the expected emergence of drug resistance. Collectively, our biophysical outlook delineates activation and highlights the challenges of drug resistance.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Comparative Analysis and Molecular Evolution of Class I PI3K Regulatory Subunit p85α Reveal the Structural Similarity Between nSH2 and cSH2 Domains. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases. Structure 2019; 28:145-156.e5. [PMID: 31831213 DOI: 10.1016/j.str.2019.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022]
Abstract
The class I phosphoinositide 3-kinases (PI3Ks) are key signaling enzymes composed of a heterodimer of a p110 catalytic subunit and a p85 regulatory subunit, with PI3K mutations being causative of multiple human diseases including cancer, primary immunodeficiencies, and developmental disorders. Mutations in the p85α regulatory subunit encoded by PIK3R1 can both activate PI3K through oncogenic truncations in the iSH2 domain, or inhibit PI3K through developmental disorder mutations in the cSH2 domain. Using a combined biochemical and hydrogen deuterium exchange mass spectrometry approach we have defined the molecular basis for how these mutations alter the activity of p110α/p110δ catalytic subunits. We find that the oncogenic Q572∗ truncation of PIK3R1 disrupts all p85-inhibitory inputs, with p110α being hyper-activated compared with p110δ. In addition, we find that the R649W mutation in the cSH2 of PIK3R1 decreases sensitivity to activation by receptor tyrosine kinases. This work reveals unique insight into isoform-specific regulation of p110s by p85α.
Collapse
|
16
|
Lieberthal W, Tang M, Abate M, Lusco M, Levine JS. AMPK-mediated activation of Akt protects renal tubular cells from stress-induced apoptosis in vitro and ameliorates ischemic AKI in vivo. Am J Physiol Renal Physiol 2019; 317:F1-F11. [DOI: 10.1152/ajprenal.00553.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have reported that preconditioning renal tubular cells (RTCs) with A-769662 [a pharmacological activator of AMP-activated protein kinase (AMPK)] reduces apoptosis of RTCs induced by subsequent stress and ameliorates the severity of ischemic acute kidney injury (AKI) in mice. In the present study, we examined the role of the phosphoinositide 3-kinase (PI3K)/Akt pathway in mediating these effects. Using shRNA, we developed knockdown (KD) RTCs to confirm that any novel effects of A-769662 are mediated specifically by AMPK. We reduced expression of the total β-domain of AMPK in KD RTCs by >80%. Control RTCs were transfected with “scrambled” shRNA. Preconditioning control RTCs with A-769662 increased both the phosphorylation (activity) of AMPK and survival of these cells when exposed to subsequent stress, but neither effect was observed in KD cells. These data demonstrate that activation of AMPK by A-769662 is profoundly impaired in KD cells. A-769662 activated PI3K and Akt in control but not KD RTCs. These data provide novel evidence that activation of the PI3K/Akt pathway by A-769662 is mediated specifically through activation of AMPK and not by a nonspecific mechanism. We also demonstrate that, in control RTCs, Akt plays a role in mediating the antiapoptotic effects of A-769662. In addition, we provide evidence that AMPK ameliorates the severity of ischemic AKI in mice and that this effect is also partially mediated by Akt. Finally, we provide evidence that AMPK activates PI3K by inhibiting mechanistic target of rapamycin complex 1 and preventing mechanistic target of rapamycin complex 1-mediated inhibition of insulin receptor substrate-1-associated activation of PI3K.
Collapse
Affiliation(s)
- Wilfred Lieberthal
- Division of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
- Division of Nephrology, Department of Medicine, Northport Veterans Affairs Hospital, Northport, New York
| | - Meiyi Tang
- Division of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| | - Mersema Abate
- Division of Nephrology, Department of Medicine, Stony Brook University Medical Center, Stony Brook, New York
| | - Mark Lusco
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jerrold S. Levine
- Division of Nephrology, Department of Medicine, Jesse Brown Veterans Affairs Hospital, Chicago, Illinois
| |
Collapse
|
17
|
Bresnick AR, Backer JM. PI3Kβ-A Versatile Transducer for GPCR, RTK, and Small GTPase Signaling. Endocrinology 2019; 160:536-555. [PMID: 30601996 PMCID: PMC6375709 DOI: 10.1210/en.2018-00843] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family includes eight distinct catalytic subunits and seven regulatory subunits. Only two PI3Ks are directly regulated downstream from G protein-coupled receptors (GPCRs): the class I enzymes PI3Kβ and PI3Kγ. Both enzymes produce phosphatidylinositol 3,4,5-trisposphate in vivo and are regulated by both heterotrimeric G proteins and small GTPases from the Ras or Rho families. However, PI3Kβ is also regulated by direct interactions with receptor tyrosine kinases (RTKs) and their tyrosine phosphorylated substrates, and similar to the class II and III PI3Ks, it binds activated Rab5. The unusually complex regulation of PI3Kβ by small and trimeric G proteins and RTKs leads to a rich landscape of signaling responses at the cellular and organismic levels. This review focuses first on the regulation of PI3Kβ activity in vitro and in cells, and then summarizes the biology of PI3Kβ signaling in distinct tissues and in human disease.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
18
|
Abstract
RES-529 (previously named Palomid 529, P529) is a phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathway inhibitor that interferes with the pathway through both mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) dissociation. This compound is currently being developed in oncology and ophthalmology. The oncology focus is for the treatment of glioblastoma, where it has received orphan designation by the US Food and Drug Administration, and prostate cancer. We present a review of the PI3K/AKT/mTOR pathway, its role in tumorigenesis, and the potential of RES-529 in cancer treatment. RES-529 inhibits mTORC1/mTORC2 activity in various cancer cell lines, as noted by decreased phosphorylation of substrates including ribosomal protein S6, 4E-BP1, and AKT, leading to cell growth inhibition and death, with activity generally in the range of 5–15 μmol/l. In animal tumor models where the PI3K/AKT/mTOR pathway is abnormally activated (i.e. glioblastoma, prostate cancer, and breast cancer), RES-529 reduces tumor growth by as much as 78%. RES-529 treatment is synergistic with radiation therapy, chemotherapy, and hormonal therapy in reducing tumor growth, potentially by preventing PI3K/AKT/mTOR pathway activation associated with these treatments. Furthermore, this compound has shown antiangiogenic activity in several animal models. mTORC1 and mTORC2 have redundant and distinct activities that contribute toward oncogenesis. Current inhibitors of this pathway have primarily targeted mTORC1, but have shown limited clinical efficacy. Inhibitors of mTORC1 and mTORC2 such as RES-529 may therefore have the potential to overcome the deficiencies found in targeting only mTORC1.
Collapse
|
19
|
Law NC, White MF, Hunzicker-Dunn ME. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway. J Biol Chem 2016; 291:27160-27169. [PMID: 27856640 DOI: 10.1074/jbc.m116.763235] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser318, Ser346, Ser612, and Ser789, and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R.
Collapse
Affiliation(s)
- Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| | - Morris F White
- the Division of Endocrinology, Dept. of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164 and
| |
Collapse
|
20
|
Huang-Doran I, Tomlinson P, Payne F, Gast A, Sleigh A, Bottomley W, Harris J, Daly A, Rocha N, Rudge S, Clark J, Kwok A, Romeo S, McCann E, Müksch B, Dattani M, Zucchini S, Wakelam M, Foukas LC, Savage DB, Murphy R, O'Rahilly S, Barroso I, Semple RK. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations. JCI Insight 2016; 1:e88766. [PMID: 27766312 PMCID: PMC5070960 DOI: 10.1172/jci.insight.88766] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. C-terminal mutations in human PIK3R1 are associated with severe insulin resistance in the absence of dyslipidemia or hepatic steatosis.
Collapse
Affiliation(s)
- Isabel Huang-Doran
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Patsy Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Felicity Payne
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Alexandra Gast
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom.,National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge, United Kingdom
| | - William Bottomley
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Julie Harris
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Allan Daly
- Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Nuno Rocha
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Simon Rudge
- Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Clark
- Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
| | - Albert Kwok
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Emma McCann
- Department of Clinical Genetics, Glan Clwyd Hospital, Rhyl, United Kingdom
| | - Barbara Müksch
- Department of Pediatrics, Children's Hospital, Cologne, Germany
| | - Mehul Dattani
- Section of Genetics and Epigenetics in Health and Disease, Genetics and Genomic Medicine Programme, UCL Institute of Child Health, London, United Kingdom
| | - Stefano Zucchini
- Pediatric Endocrine Unit, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Michael Wakelam
- Inositide Laboratory, Babraham Institute, Cambridge, United Kingdom
| | - Lazaros C Foukas
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David B Savage
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Stephen O'Rahilly
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Inês Barroso
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom.,Metabolic Disease Group, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
21
|
Insulin resistance and diabetes caused by genetic or diet-induced KBTBD2 deficiency in mice. Proc Natl Acad Sci U S A 2016; 113:E6418-E6426. [PMID: 27708159 DOI: 10.1073/pnas.1614467113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We describe a metabolic disorder characterized by lipodystrophy, hepatic steatosis, insulin resistance, severe diabetes, and growth retardation observed in mice carrying N-ethyl-N-nitrosourea (ENU)-induced mutations. The disorder was ascribed to a mutation of kelch repeat and BTB (POZ) domain containing 2 (Kbtbd2) and was mimicked by a CRISPR/Cas9-targeted null allele of the same gene. Kbtbd2 encodes a BTB-Kelch family substrate recognition subunit of the Cullin-3-based E3 ubiquitin ligase. KBTBD2 targeted p85α, the regulatory subunit of the phosphoinositol-3-kinase (PI3K) heterodimer, causing p85α ubiquitination and proteasome-mediated degradation. In the absence of KBTBD2, p85α accumulated to 30-fold greater levels than in wild-type adipocytes, and excessive p110-free p85α blocked the binding of p85α-p110 heterodimers to IRS1, interrupting the insulin signal. Both transplantation of wild-type adipose tissue and homozygous germ line inactivation of the p85α-encoding gene Pik3r1 rescued diabetes and hepatic steatosis phenotypes of Kbtbd2-/- mice. Kbtbd2 was down-regulated in diet-induced obese insulin-resistant mice in a leptin-dependent manner. KBTBD2 is an essential regulator of the insulin-signaling pathway, modulating insulin sensitivity by limiting p85α abundance.
Collapse
|
22
|
Kim YS, Yoo A, Son JW, Kim HY, Lee YJ, Hwang S, Lee KY, Lee YJ, Ayata C, Kim HH, Koh SH. Early Activation of Phosphatidylinositol 3-Kinase after Ischemic Stroke Reduces Infarct Volume and Improves Long-Term Behavior. Mol Neurobiol 2016; 54:5375-5384. [DOI: 10.1007/s12035-016-0063-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
23
|
Ghosh P. The untapped potential of tyrosine-based G protein signaling. Pharmacol Res 2016; 105:99-107. [PMID: 26808081 DOI: 10.1016/j.phrs.2016.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
Abstract
Tyrosine-based and trimeric G protein-based signaling are the two most widely studied and distinct mechanisms for signal transduction in eukaryotes. How each of them relay signals across the plasma membrane independently of each other has been extensively characterized; however, an understanding of how they work together remained obscure. Recently, a rapidly emerging paradigm has revealed that tyrosine based signals are relayed via G proteins, and that the cross-talk between the two hubs are more robustly and sophisticatedly integrated than was previously imagined. More importantly, by straddling the two signaling hubs that are most frequently targeted for their therapeutic significance, the tyrosine-based G-protein signaling pathway has its own growing list of pathophysiologic importance, both as therapeutic target in a variety of disease states, and by paving the way for personalized medicine. The fundamental principles of this emerging paradigm and its pharmacologic potential are discussed.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Medicine and Department of Cell and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-0651, United States.
| |
Collapse
|
24
|
Law NC, Hunzicker-Dunn ME. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation. J Biol Chem 2015; 291:4547-60. [PMID: 26702053 DOI: 10.1074/jbc.m115.698761] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT.
Collapse
Affiliation(s)
- Nathan C Law
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| | - Mary E Hunzicker-Dunn
- From the School of Molecular Biosciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
25
|
de la Cruz-Herrera CF, Baz-Martínez M, Lang V, El Motiam A, Barbazán J, Couceiro R, Abal M, Vidal A, Esteban M, Muñoz-Fontela C, Nieto A, Rodríguez MS, Collado M, Rivas C. Conjugation of SUMO to p85 leads to a novel mechanism of PI3K regulation. Oncogene 2015; 35:2873-80. [DOI: 10.1038/onc.2015.356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/17/2015] [Accepted: 08/22/2015] [Indexed: 12/19/2022]
|
26
|
Downregulated AEG-1 together with inhibited PI3K/Akt pathway is associated with reduced viability of motor neurons in an ALS model. Mol Cell Neurosci 2015; 68:303-13. [PMID: 26320681 DOI: 10.1016/j.mcn.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/16/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1) has been reported to regulate the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and is also regulated by it. This study investigated how AEG-1 participates in the survival pathway of motor neurons in amyotrophic lateral sclerosis (ALS). We found reduced levels of AEG-1 in ALS motor neurons, both in vivo and in vitro, compared to wild type controls. Moreover, AEG-1 silencing demonstrated inhibition of the PI3K/Akt pathway and increased cell apoptosis. Additionally, the PI3K/Akt pathway in mSOD1 cells was unresponsive under serum deprivation conditions compared to wtSOD1 cells. These results suggest that AEG-1 deficiency, together with the inhibited PI3K/Akt pathway was associated with decreased viability of ALS motor neurons. However, the mRNA levels of AEG-1 were still lower in mSOD1 cells compared to the control groups, though the signaling pathway was activated by application of a PI3-K activator. This suggests that in ALS motor neurons, some unknown interruption exists in the PI3K/Akt/CREB/AEG-1 feedback loop, thus attenuating the protection by this signaling pathway. Together, these findings support that AEG-1 is a critical factor for cell survival, and the disrupted PI3K/Akt/CREB/AEG-1cycle is involved in the death of injured motor neurons and pathogenesis of ALS.
Collapse
|
27
|
Song X, Fan PD, Bantikassegn A, Guha U, Threadgill DW, Varmus H, Politi K. ERBB3-independent activation of the PI3K pathway in EGFR-mutant lung adenocarcinomas. Cancer Res 2015; 75:1035-45. [PMID: 25596284 DOI: 10.1158/0008-5472.can-13-1625] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ERBB3, a member of the EGFR family of receptor tyrosine kinases, has been implicated in activation of the PI3K pathway in human lung adenocarcinomas driven by EGFR mutations. We investigated the contribution of ERBB3 to the initiation, progression, and therapeutic response of EGFR-induced lung adenocarcinomas using tetracycline- and tamoxifen-inducible transgenic mouse models. Deletion of Erbb3 at the time of induction of mutant EGFR had no effect on tumorigenesis, demonstrating that ERBB3 is not required to initiate tumorigenesis. Tumors that developed in the absence of ERBB3 remained sensitive to EGFR tyrosine kinase inhibitors and retained activation of the PI3K-AKT pathway. Interestingly, acute loss of Erbb3 suppressed further growth of established EGFR(L858R)-mediated lung tumors. Four weeks after deletion of Erbb3, the tumors exhibited phosphorylation of EGFR, of the adaptor proteins GAB1 and GAB2, and of the downstream signaling molecules AKT and ERK, suggesting that alternative signaling pathways could compensate for loss of Erbb3. Similar to our observations with mouse tumors, we found that GAB adaptor proteins play a role in ERBB3-independent activation of the PI3K pathway by mutant EGFR in EGFR-mutant human cell lines. Finally, in such cell lines, increased levels of phosphorylation of ERBB2 or MET were associated with reduced sensitivity to acute loss of ERBB3, suggesting remarkable plasticity in the signaling pathways regulated by mutant EGFR with important therapeutic implications.
Collapse
Affiliation(s)
- Xiaoling Song
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Pang-Dian Fan
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Amlak Bantikassegn
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Udayan Guha
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David W Threadgill
- Department of Veterinary Pathobiology and Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - Harold Varmus
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Katerina Politi
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut. Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York.
| |
Collapse
|
28
|
Hakuno F, Fukushima T, Yoneyama Y, Kamei H, Ozoe A, Yoshihara H, Yamanaka D, Shibano T, Sone-Yonezawa M, Yu BC, Chida K, Takahashi SI. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Front Endocrinol (Lausanne) 2015; 6:73. [PMID: 26074875 PMCID: PMC4443775 DOI: 10.3389/fendo.2015.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Laboratory of Biomedical Chemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bu-Chin Yu
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
29
|
Kang Y, Regmi SC, Kim MY, Banskota S, Gautam J, Kim DH, Kim JA. Anti-angiogenic activity of macrolactin A and its succinyl derivative is mediated through inhibition of class I PI3K activity and its signaling. Arch Pharm Res 2014; 38:249-60. [PMID: 25547980 DOI: 10.1007/s12272-014-0535-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/20/2014] [Indexed: 02/01/2023]
Abstract
In the current study, macrolactin compounds, macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), were investigated for their anti-angiogenic activities and action mechanism. MA and SMA inhibited in vitro and in vivo angiogenesis induced by three different classes of pro-angiogenic factors, VEGF, IL-8, and TNF-α. SMA exhibited stronger anti-angiogenic activity than MA, and such anti-angiogenic activity of SMA was consistently observed in MDA-MB-231 human breast cancer cell-inoculated CAM assay showing dose-dependent suppression of tumor growth and tumor-induced angiogenesis. In an in vitro PI3K competitive activity assay, SMA induced concentration-dependent inhibition of class I PI3K isoforms, p110α, p110β, p110δ, and p110γ. In addition, non-receptor tyrosine kinase c-Src, which is involved in the activation of PI3K heterodimer, was suppressed by MA and SMA. Correspondingly, MA and SMA significantly inhibited the stimulus-induced phosphorylation of Akt, mTOR, p70S6K, and ribosomal S6 in human umbilical vein endothelial cells (HUVECs). At the same time, the stimulus-induced production of reactive oxygen species (ROS) and activation of NF-κB were significantly suppressed by MA and SMA. Moreover, the macrolactins suppressed NF-κB-regulated HSP90 protein expression, which stabilizes phosphorylated Akt and NADPH oxidase. Suppression of NF-κB in macrolactin-treated HUVECs with concurrent inhibition of rS6 indicates that MAs effectively block angiogenesis through down-regulation of genes related to angiogenesis at both transcriptional and translational levels. Taken together, the results demonstrate that anti-angiogenic effect of MA and SMA is mediated through inhibition of PI3K/Akt and NADPH oxidase-derived ROS/NF-κB signaling pathways. These results further indicate that MA and SMA may be applicable for treatment of various diseases associated with angiogenesis.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Morán J, Garrido P, Cabello E, Alonso A, González C. Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats. Exp Gerontol 2014; 58:104-12. [PMID: 25086228 DOI: 10.1016/j.exger.2014.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 01/29/2023]
Abstract
Menopause leads to a decrease in estrogen production that increases central insulin resistance, contributing to the development of neurodegenerative diseases. We have evaluated the influence of aging and estradiol or genistein treatments on some key stages of the insulin signaling pathway in the cerebral cortex. Young and aged female Wistar rats were ovariectomized and treated acutely with 17β-estradiol (1.4μg/kg body weight), two doses of genistein (10 or 40mg/kg body weight), or vehicle. The cortical expression of several key insulin signaling pathway components was analyzed by western blotting. Our results showed an age-related deterioration in the interactions between the regulatory subunit of phosphatidylinositol 3-kinase (p85α) and the activated form of insulin receptor substrate 1 (p-IRS1tyr612), as well as between p85α and the 46kDa isoform of the estrogen receptor α (ERα46). Moreover, aging also decreased the translocation of glucose transporter-4 (GLUT4) to the plasma membrane. 17β-Estradiol but not genistein reduced the negative impact of aging on central insulin sensitivity by favoring this GLUT4 translocation, and therefore could be neuroprotective against the associated neurodegenerative diseases. However, protein kinase B (Akt) activation by genistein suggests that other possible mechanisms are involved in the neuroprotective effects of this phytoestrogen during the aging process.
Collapse
Affiliation(s)
- Javier Morán
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Pablo Garrido
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Estefanía Cabello
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Ana Alonso
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Celestino González
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| |
Collapse
|
31
|
Landis J, Shaw LM. Insulin receptor substrate 2-mediated phosphatidylinositol 3-kinase signaling selectively inhibits glycogen synthase kinase 3β to regulate aerobic glycolysis. J Biol Chem 2014; 289:18603-13. [PMID: 24811175 DOI: 10.1074/jbc.m114.564070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insulin receptor substrate 1 (IRS-1) and IRS-2 are cytoplasmic adaptor proteins that mediate the activation of signaling pathways in response to ligand stimulation of upstream cell surface receptors. Despite sharing a high level of homology and the ability to activate PI3K, only Irs-2 positively regulates aerobic glycolysis in mammary tumor cells. To determine the contribution of Irs-2-dependent PI3K signaling to this selective regulation, we generated an Irs-2 mutant deficient in the recruitment of PI3K. We identified four tyrosine residues (Tyr-649, Tyr-671, Tyr-734, and Tyr-814) that are essential for the association of PI3K with Irs-2 and demonstrate that combined mutation of these tyrosines inhibits glucose uptake and lactate production, two measures of aerobic glycolysis. Irs-2-dependent activation of PI3K regulates the phosphorylation of specific Akt substrates, most notably glycogen synthase kinase 3β (Gsk-3β). Inhibition of Gsk-3β by Irs-2-dependent PI3K signaling promotes glucose uptake and aerobic glycolysis. The regulation of unique subsets of Akt substrates by Irs-1 and Irs-2 may explain their non-redundant roles in mammary tumor biology. Taken together, our study reveals a novel mechanism by which Irs-2 signaling preferentially regulates tumor cell metabolism and adds to our understanding of how this adaptor protein contributes to breast cancer progression.
Collapse
Affiliation(s)
- Justine Landis
- From the Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Leslie M Shaw
- From the Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
32
|
Huemer F, Bartsch R, Gnant M. The PI3K/AKT/MTOR Signaling Pathway: The Role of PI3K and AKT Inhibitors in Breast Cancer. CURRENT BREAST CANCER REPORTS 2014. [DOI: 10.1007/s12609-014-0139-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart--deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc 2013; 2:e000433. [PMID: 24275630 PMCID: PMC3886738 DOI: 10.1161/jaha.113.000433] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marina Bayeva
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | | | | |
Collapse
|
34
|
Westley RL, May FEB. A twenty-first century cancer epidemic caused by obesity: the involvement of insulin, diabetes, and insulin-like growth factors. Int J Endocrinol 2013; 2013:632461. [PMID: 23983688 PMCID: PMC3747439 DOI: 10.1155/2013/632461] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 03/25/2013] [Indexed: 02/08/2023] Open
Abstract
Obesity has reached epidemic proportions in the developed world. The progression from obesity to diabetes mellitus type 2, via metabolic syndrome, is recognised, and the significant associated increase in the risk of major human cancers acknowledged. We review the molecular basis of the involvement of morbidly high concentrations of endogenous or therapeutic insulin and of insulin-like growth factors in the progression from obesity to diabetes and finally to cancer. Epidemiological and biochemical studies establish the role of insulin and hyperinsulinaemia in cancer risk and progression. Insulin-like growth factors, IGF-1 and IGF-2, secreted by visceral or mammary adipose tissue have significant paracrine and endocrine effects. These effects can be exacerbated by increased steroid hormone production. Structural studies elucidate how each of the three ligands, insulin, IGF-1, and IGF-2, interacts differently with isoforms A and B of the insulin receptor and with type I IGF receptor and explain how these protagonists contribute to diabetes-associated cancer. The above should inform appropriate treatment of cancers that arise in obese individuals and in those with diabetes mellitus type 2. Novel drugs that target the insulin and insulin-like growth factor signal transduction pathways are in clinical trial and should be effective if appropriate biomarker-informed patient stratification is implemented.
Collapse
Affiliation(s)
- Rosalyne L. Westley
- Northern Institute for Cancer Research, Faculty of Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Felicity E. B. May
- Northern Institute for Cancer Research, Faculty of Medical Sciences, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
35
|
Garrido P, Morán J, Alonso A, González S, González C. 17β-estradiol activates glucose uptake via GLUT4 translocation and PI3K/Akt signaling pathway in MCF-7 cells. Endocrinology 2013; 154:1979-89. [PMID: 23546602 DOI: 10.1210/en.2012-1558] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relationship between estrogen and some types of breast cancer has been clearly established. However, although several studies have demonstrated the relationship between estrogen and glucose uptake via phosphatidylinositol 3-kinase (PI3K)/Akt in other tissues, not too much is known about the possible cross talk between them for development and maintenance of breast cancer. This study was designed to test the rapid effects of 17β-estradiol (E2) or its membrane-impermeable form conjugated with BSA (E2BSA) on glucose uptake in a positive estrogen receptor (ER) breast cancer cell line, through the possible relationship between key components of the PI3K/Akt signaling pathway and acute steroid treatment. MCF-7 human breast cancer cells were cultured in standard conditions. Then 10 nM E2 or E2BSA conjugated were administered before obtaining the cell lysates. To study the glucose uptake, the glucose fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose was used. We report an ER-dependent activation of some of the key steps of the PI3K/Akt signaling pathway cascade that leads cells to improve some mechanisms that finally increase glucose uptake capacity. Our data suggest that both E2 and E2BSA enhance the entrance of the fluorescent glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose, and also activates PI3K/Akt signaling pathway, leading to translocation of glucose transporter 4 to the plasma membrane in an ERα-dependent manner. E2 enhances ER-dependent rapid signaling triggered, partially in the plasma membrane, allowing ERα-positive MCF-7 breast cancer cells to increase glucose uptake, which could be essential to meet the energy demands of the high rate of proliferation.
Collapse
Affiliation(s)
- Pablo Garrido
- Department of Functional Biology, Physiology Area, University of Oviedo, c/ Julian Claveria s/n, 33006, Oviedo, Spain
| | | | | | | | | |
Collapse
|
36
|
Novel approaches to inhibitor design for the p110β phosphoinositide 3-kinase. Trends Pharmacol Sci 2013; 34:149-53. [PMID: 23411347 DOI: 10.1016/j.tips.2012.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022]
Abstract
Phosphoinositide (PI) 3-kinases are essential regulators of cellular proliferation, survival, metabolism, and motility that are frequently dysregulated in human disease. The design of inhibitors to target the PI 3-kinase/mTOR pathway is a major area of investigation by both academic laboratories and the pharmaceutical industry. This review focuses on the Class IA PI 3-kinase p110β, which plays a unique role in thrombogenesis and in the growth of tumors with deletion or loss-of-function mutation of the Phosphatase and Tensin Homolog (PTEN) lipid phosphatase. Several p110β-selective inhibitors that target the ATP-binding site in the kinase domain have been identified. However, recent discoveries regarding the regulatory mechanisms that control p110β activity suggest alternative strategies by which to disrupt signaling by this PI 3-kinase isoform. This review summarizes the current status of p110β-specific inhibitors and discusses how these new insights into p110 regulation might be used to devise novel pharmacological inhibitors.
Collapse
|
37
|
Layton MJ, Saad M, Church NL, Pearson RB, Mitchell CA, Phillips WA. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity. BMC BIOCHEMISTRY 2012; 13:30. [PMID: 23270540 PMCID: PMC3546864 DOI: 10.1186/1471-2091-13-30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/22/2012] [Indexed: 02/08/2023]
Abstract
Background The α-isoform of the Type 1A Phosphoinositide 3-kinases (PI3Kα) has protein kinase activity as well as phosphoinositide lipid kinase activity. The best described substrate for its protein kinase activity is its regulatory subunit, p85α, which becomes phosphorylated on Serine 608. Phosphorylation of Serine 608 has been reported to down-regulate its lipid kinase activity. Results We have assessed whether oncogenic mutants of PI3Kα, which have up-regulated lipid kinase activity, have altered levels of Serine 608 phosphorylation compared to wild type PI3Kα, and whether differential phosphorylation of Serine 608 contributes to increased activity of oncogenic forms of PI3Kα with point mutations in the helical or the kinase domains. Despite markedly increased lipid kinase activity, protein kinase activity was not altered in oncogenic compared to wild type forms of PI3Kα. By manipulating levels of phosphorylation of Serine 608 in vitro, we found no evidence that the protein kinase activity of PI3Kα affects its phosphoinositide lipid kinase activity in either wild-type or oncogenic mutants of PI3Kα. Conclusions Phosphorylation of p85α S608 is not a significant regulator of wild-type or oncogenic PI3Kα lipid kinase activity.
Collapse
Affiliation(s)
- Meredith J Layton
- The Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | |
Collapse
|
38
|
The early activation of PI3K strongly enhances the resistance of cortical neurons to hypoxic injury via the activation of downstream targets of the PI3K pathway and the normalization of the levels of PARP activity, ATP, and NAD⁺. Mol Neurobiol 2012; 47:757-69. [PMID: 23254998 DOI: 10.1007/s12035-012-8382-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/29/2012] [Indexed: 01/29/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) plays several important roles in neuronal survival. Activation of the pathway is essential for the neuroprotective mechanisms of materials that shield neuronal cells from many stressful conditions. However, there have been no reports to date about the effect of the direct activation of the pathway in hypoxic injury of neuronal cells. We investigated whether the direct activation of the PI3K pathway inhibits neuronal cell death induced by hypoxia. Primary cultured cortical neurons (PCCNs) were exposed to hypoxic conditions (less than 1 mol% O2) and/or treated with PI3K activator. Hypoxia reduced the viability of PCCNs in a time-dependent manner, but treatment with PI3K significantly restored viability in a concentration-dependent manner. Among the signaling proteins involved in the PI3K pathway, those associated with survival, including Akt and glycogen synthase kinase-3β, were decreased shortly after exposure to hypoxia and those associated with cell death, including BAX, apoptosis-induced factor, cytochrome c, caspase-9, caspase-3, and poly(ADP-ribose) polymerase (PARP), were increased. However, treatment with PI3K activator normalized the expression levels of those signaling proteins. PARP activity and levels of ATP and NAD(+) altered by hypoxia were also normalized with direct PI3K activation. All these findings suggest that direct and early activation is important for protecting neuronal cells from hypoxic injury.
Collapse
|
39
|
PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. Proc Natl Acad Sci U S A 2012; 109:E2979-88. [PMID: 23045700 DOI: 10.1073/pnas.1205661109] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Controlled maturation of ovarian follicles is necessary for fertility. Follicles are restrained at an immature stage until stimulated by FSH secreted by pituitary gonadotropes. FSH acts on granulosa cells within the immature follicle to inhibit apoptosis, promote proliferation, stimulate production of steroid and protein hormones, and induce ligand receptors and signaling intermediates. The phosphoinositide 3-kinase (PI3K)/AKT (protein kinase B) pathway is a pivotal signaling corridor necessary for transducing the FSH signal. We report that protein kinase A (PKA) mediates the actions of FSH by signaling through multiple targets to activate PI3K/AKT. PKA uses a route that promotes phosphorylation of insulin receptor substrate-1 (IRS-1) on Tyr(989), a canonical binding site for the 85-kDa regulatory subunit of PI3K that allosterically activates the catalytic subunit. PI3K activation leads to activation of AKT through phosphorylation of AKT on Thr(308) and Ser(473). The adaptor growth factor receptor bound protein 2-associated binding protein 2 (GAB2) is present in a preformed complex with PI3K heterodimer and IRS-1, it is an A-kinase anchoring protein that binds the type I regulatory subunit of PKA, and it is phosphorylated by PKA on Ser(159). Overexpression of GAB2 enhances FSH-stimulated AKT phosphorylation. GAB2, thus, seems to coordinate signals from the FSH-stimulated rise in cAMP that leads to activation of PI3K/AKT. The ability of PKA to commandeer IRS-1 and GAB2, adaptors that normally integrate receptor/nonreceptor tyrosine kinase signaling into PI3K/AKT, reveals a previously unrecognized route for PKA to activate a pathway that promotes proliferation, inhibits apoptosis, enhances translation, and initiates differentiation of granulosa cells.
Collapse
|
40
|
Geetha T, Zheng C, Vishwaprakash N, Broderick TL, Babu JR. Sequestosome 1/p62, a scaffolding protein, is a newly identified partner of IRS-1 protein. J Biol Chem 2012; 287:29672-8. [PMID: 22761437 DOI: 10.1074/jbc.m111.322404] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH(2) domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
41
|
Hofmann BT, Jücker M. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain. Cell Signal 2012; 24:1950-4. [PMID: 22735814 DOI: 10.1016/j.cellsig.2012.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/18/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α.
Collapse
Affiliation(s)
- Bianca T Hofmann
- Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Germany
| | | |
Collapse
|
42
|
Lin C, Ear J, Pavlova Y, Mittal Y, Kufareva I, Ghassemian M, Abagyan R, Garcia-Marcos M, Ghosh P. Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration. Sci Signal 2012; 4:ra64. [PMID: 21954290 DOI: 10.1126/scisignal.2002049] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GIV (Gα-interacting vesicle-associated protein; also known as Girdin) enhances Akt activation downstream of multiple growth factor- and G protein (heterotrimeric guanosine 5'-triphosphate-binding protein)-coupled receptors to trigger cell migration and cancer invasion. We demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at tyrosine-1764 and tyrosine-1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the amino- and carboxyl-terminal Src homology 2 domains of p85α, a regulatory subunit of PI3K; stabilized receptor association with PI3K; and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIV-PI3K interaction a potential therapeutic target within the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Changsheng Lin
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Burke JE, Vadas O, Berndt A, Finegan T, Perisic O, Williams RL. Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Structure 2011; 19:1127-37. [PMID: 21827948 PMCID: PMC3155019 DOI: 10.1016/j.str.2011.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/06/2011] [Accepted: 06/07/2011] [Indexed: 12/12/2022]
Abstract
Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110β and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.
Collapse
Affiliation(s)
- John E Burke
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Zhang X, Vadas O, Perisic O, Anderson K, Clark J, Hawkins P, Stephens L, Williams R. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol Cell 2011; 41:567-78. [PMID: 21362552 PMCID: PMC3670040 DOI: 10.1016/j.molcel.2011.01.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/07/2010] [Accepted: 12/22/2010] [Indexed: 12/21/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110β/p85β complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110β catalytic subunit, which is essential for lipid kinase activity. In vitro, p110β basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110β. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities.
Collapse
Affiliation(s)
- Xuxiao Zhang
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Oscar Vadas
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Olga Perisic
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Karen E. Anderson
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Jonathan Clark
- Babraham Bioscience Technologies, Cambridge, CB22 3AT, UK
| | - Phillip T. Hawkins
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Len R. Stephens
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Roger L. Williams
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
45
|
Abstract
Docking proteins comprise a distinct category of intracellular, noncatalytic signalling protein, that function downstream of a variety of receptor and receptor-associated tyrosine kinases and regulate diverse physiological and pathological processes. The growth factor receptor bound 2-associated binder/Daughter of Sevenless, insulin receptor substrate, fibroblast growth factor receptor substrate 2 and downstream of tyrosine kinases protein families fall into this category. This minireview focuses on the structure, function and regulation of these proteins.
Collapse
Affiliation(s)
- Tilman Brummer
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
46
|
Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Proc Natl Acad Sci U S A 2010; 107:15547-52. [PMID: 20713702 DOI: 10.1073/pnas.1009652107] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer-specific mutations in the iSH2 (inter-SH2) and nSH2 (N-terminal SH2) domains of p85alpha, the regulatory subunit of phosphatidylinositide 3-kinase (PI3K), show gain of function. They induce oncogenic cellular transformation, stimulate cellular proliferation, and enhance PI3K signaling. Quantitative determinations of oncogenic activity reveal large differences between individual mutants of p85alpha. The mutant proteins are still able to bind to the catalytic subunits p110alpha and p110beta. Studies with isoform-specific inhibitors of p110 suggest that expression of p85 mutants in fibroblasts leads exclusively to an activation of p110alpha, and p110alpha is the sole mediator of p85 mutant-induced oncogenic transformation. The characteristics of the p85 mutants are in agreement with the hypothesis that the mutations weaken an inhibitory interaction between p85alpha and p110alpha while preserving the stabilizing interaction between p85alpha iSH2 and the adapter-binding domain of p110alpha.
Collapse
|
47
|
Sinnamon RH, McDevitt P, Pietrak BL, Leydon VR, Xue Y, Lehr R, Qi H, Burns M, Elkins P, Ward P, Vincentini G, Fisher D, Grimes M, Brandt M, Auger KR, Ho T, Johanson K, Jones CS, Schwartz B, Sweitzer TD, Kirkpatrick RB. Baculovirus production of fully-active phosphoinositide 3-kinase alpha as a p85alpha-p110alpha fusion for X-ray crystallographic analysis with ATP competitive enzyme inhibitors. Protein Expr Purif 2010; 73:167-76. [PMID: 20457255 DOI: 10.1016/j.pep.2010.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/05/2023]
Abstract
Phosphoinositide 3-kinases have been targeted for therapeutic research because they are key components of a cell signaling cascade controlling proliferation, growth, and survival. Direct activation of the PI3Kalpha pathway contributes to the development and progression of solid tumors in breast, endometrial, colon, ovarian, and gastric cancers. In the context of a drug discovery effort, the availability of a robust crystallographic system is a means to understand the subtle differences between ATP competitive inhibitor interactions with the active site and their selectivity against other PI3Kinase enzymes. To generate a suitable recombinant design for this purpose, a p85alpha-p110alpha fusion system was developed which enabled the expression and purification of a stoichiometrically homogeneous, constitutively active enzyme for structure determination with potent ATP competitive inhibitors (Raha et al., in preparation) [56]. This approach has yielded preparations with activity and inhibition characteristics comparable to those of the full-length PI3Kalpha from which X-ray diffracting crystals were grown with inhibitors bound in the active site.
Collapse
Affiliation(s)
- Robert H Sinnamon
- Biological Reagents and Assay Development Department, Molecular Discovery Research, GlaxoSmithKline, Upper Providence, 1250 South Collegeville Rd., Collegeville, PA 19426, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ghigo A, Damilano F, Braccini L, Hirsch E. PI3K inhibition in inflammation: Toward tailored therapies for specific diseases. Bioessays 2010; 32:185-196. [PMID: 20162662 DOI: 10.1002/bies.200900150] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, the availability of genetically modified animals has enabled the discovery of interesting roles for phosphatidylinositol 3-kinase-gamma (PI3Kgamma) and -delta (PI3Kdelta) in different cell types orchestrating innate and adaptive immune responses. Therefore, these PI3K isoforms appear to be attractive drug targets for the treatment of diseases caused by unrestrained immune reactions. Currently, pharmacological targeting of PI3Kgamma and/or PI3Kdelta represents one of the most promising challenges for companies interested in the development of novel safe treatments for inflammatory diseases. In this review we provide a general outline of PI3Kgamma- and PI3Kdelta-specific functions in distinct subsets of inflammatory cells. We also discuss the therapeutic impact of novel compounds targeting PI3Kgamma, PI3Kdelta or both, in mouse models of autoimmune disorders (systemic lupus erythematosus (SLE) and rheumatoid arthritis), respiratory diseases (allergic asthma and chronic obstructive pulmonary disease) and cardiovascular dysfunctions (atherosclerosis and myocardial infarction).
Collapse
Affiliation(s)
- Alessandra Ghigo
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Federico Damilano
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Laura Braccini
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
49
|
Sen KI, Wu H, Backer JM, Gerfen GJ. The structure of p85ni in class IA phosphoinositide 3-kinase exhibits interdomain disorder. Biochemistry 2010; 49:2159-66. [PMID: 20131869 DOI: 10.1021/bi902171d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of the class IA PI 3-kinase involves inhibition and stabilization of the catalytic subunit (p110) by the regulatory subunit (p85). Regulation is achieved by two major contacts: a stable interface involving the adapter-binding domain (ABD) of p110 and the inter-SH2 (iSH2) domain of p85 and a regulatory interaction between the N-terminal SH2 (nSH2) domain of p85 and the helical domain of p110. In the present study, we have examined the relative orientation of the nSH2 and iSH2 of p85alpha using site-directed spin labeling and pulsed EPR. Surprisingly, both distance measurements and distance distributions suggest that the nSH2 domain is highly disordered relative to the iSH2 domain. Molecular modeling based on EPR distance restraints suggests that the nSH2 domain moves in a hinge-like manner, sampling a torus space around the proximal end of the iSH2 domain. These data have important implications for the mechanism by which p85/p110 dimers are regulated by phosphopeptides.
Collapse
Affiliation(s)
- K Ilker Sen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
50
|
Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 2010; 285:5204-11. [PMID: 20018868 PMCID: PMC2820748 DOI: 10.1074/jbc.m109.077818] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/07/2009] [Indexed: 01/01/2023] Open
Abstract
Increased O-linked beta-N-acetylglucosamine (O-GlcNAc) is associated with insulin resistance in muscle and adipocytes. Upon insulin treatment of insulin-responsive adipocytes, O-GlcNAcylation of several proteins is increased. Key insulin signaling proteins, including IRS-1, IRS-2, and PDK1, are substrates for OGT, suggesting potential O-GlcNAc control points within the pathway. To elucidate the roles of O-GlcNAc in dampening insulin signaling (Vosseller, K., Wells, L., Lane, M. D., and Hart, G. W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 5313-5318), we focused on the pathway upstream of AKT. Increasing O-GlcNAc in 3T3-L1 adipocytes decreases phosphoinositide 3-kinase (PI3K) interactions with both IRS-1 and IRS-2. Elevated O-GlcNAc also reduces phosphorylation of the PI3K p85 binding motifs (YXXM) of IRS-1 and results in a concomitant reduction in tyrosine phosphorylation of Y(608)XXM in IRS-1, one of the two main PI3K p85 binding motifs. Additionally, insulin signaling stimulates the interaction of OGT with PDK1. We conclude that one of the steps at which O-GlcNAc contributes to insulin resistance is by inhibiting phosphorylation at the Y(608)XXM PI3K p85 binding motif in IRS-1 and possibly at PDK1 as well.
Collapse
Affiliation(s)
- Stephen A. Whelan
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Wagner B. Dias
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | | | - M. Daniel Lane
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| | - Gerald W. Hart
- From the Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185
| |
Collapse
|