1
|
Hu Y, Sun Y, Li T, Han W, Wang P. Identification of rat Vstm1 with conservative anti-inflammatory effect between rat and human homologs. Genomics 2024; 116:110774. [PMID: 38163574 DOI: 10.1016/j.ygeno.2023.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Human VSTM1 (also known as SIRL1) is an inhibitory immune checkpoint receptor involved in leukocyte activation. Identification of the homologous genes in other species, such as mice and rats, will undoubtedly contribute to functional studies and clinical applications. Here, we successfully cloned the Vstm1 gene in rats, as supported by high-throughput sequencing data. However, Vstm1 is degenerated to a pseudogene in the mouse genome. Rat Vstm1 mRNA contains a complete open reading frame (ORF) of 630 nucleotides encoding 209 amino acids. Rat Vstm1 is highly expressed in bone marrow, especially in granulocytes. The expression levels of Vstm1 gradually increase with the development of granulocytes in bone marrow but are downregulated in response to inflammatory stimuli. Rat VSTM1 does not have an immunoreceptor tyrosine-based inhibitory motif (ITIM), however, it shows a conservative function of inflammatory inhibition with human VSTM1, and both are anti-correlated with many inflammatory cytokines, such as IL-1α and TNF-α. In bone marrow-derived macrophages (BMDMs), either rat or human VSTM1 suppressed the secretion of inflammatory cytokines in response to LPS stimulation. Further analysis in lung cancer microenvironment revealed that VSTM1 is mainly expressed in myeloid cells, anti-correlated with inflammatory cytokines and associated with tumor development and metastasis.
Collapse
Affiliation(s)
- Yuzhe Hu
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Yingzhe Sun
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Ting Li
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Wenling Han
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China.
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China.
| |
Collapse
|
2
|
De Gois S, Slama P, Pietrancosta N, Erdozain AM, Louis F, Bouvrais-Veret C, Daviet L, Giros B. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane. J Biol Chem 2015; 290:17848-17862. [PMID: 26048990 DOI: 10.1074/jbc.m115.646315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking.
Collapse
Affiliation(s)
- Stéphanie De Gois
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada
| | - Patrick Slama
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Nicolas Pietrancosta
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; CNRS, UMR 8601, 75006 Paris, France
| | - Amaia M Erdozain
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Franck Louis
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Caroline Bouvrais-Veret
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | | | - Bruno Giros
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada.
| |
Collapse
|
3
|
CTR9, a component of PAF complex, controls elongation block at the c-Fos locus via signal-dependent regulation of chromatin-bound NELF dissociation. PLoS One 2013; 8:e61055. [PMID: 23593388 PMCID: PMC3623864 DOI: 10.1371/journal.pone.0061055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
PAF complex (PAFc) is an RNA polymerase II associated factor that controls diverse steps of transcription. Although it is generally associated with actively transcribed genes, a repressive PAFc has also been suggested. Here, we report that PAFc regulates the transition from transcription initiation to transcription elongation. PAFc repressed IL-6-induced, but not TNF-α-induced, immediate early gene expression. PAFc constitutively associated with the 5'-coding region of the c-Fos locus, then transiently dissociated upon IL-6 stimulation. When CTR9, a component of PAFc, was depleted, higher levels of serine 5-phosphorylated or serine 2-phosphorylated forms of RNA Polymerase II were associated with the unstimulated c-Fos locus. We also observed an increased association of CDK9, a kinase component of the pTEF-b elongation factor, with the c-Fos locus in the CTR9-depleted condition. Furthermore, association of negative elongation factor, NELF, which is required to proceed to the elongation phase, was significantly reduced by CTR9 depletion, whereas elongation factor SPT5 recruitment was enhanced by CTR9 depletion. Finally, the chromatin association of CTR9 was specifically controlled by IL-6-induced kinase activity, because a JAK2 kinase inhibitor, AG-490, blocked its association. In conclusion, our data suggest that PAFc controls the recruitment of NELF and SPT5 to target loci in a signal- and locus-specific manner.
Collapse
|
4
|
Chen Y, Yamaguchi Y, Tsugeno Y, Yamamoto J, Yamada T, Nakamura M, Hisatake K, Handa H. DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. Genes Dev 2009; 23:2765-77. [PMID: 19952111 DOI: 10.1101/gad.1834709] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription elongation factor DSIF/Spt4-Spt5 is capable of promoting and inhibiting RNA polymerase II elongation and is involved in the expression of various genes. While it has been known for many years that DSIF inhibits elongation in collaboration with the negative elongation factor NELF, how DSIF promotes elongation is largely unknown. Here, an activity-based biochemical approach was taken to understand the mechanism of elongation activation by DSIF. We show that the Paf1 complex (Paf1C) and Tat-SF1, two factors implicated previously in elongation control, collaborate with DSIF to facilitate efficient elongation. In human cells, these factors are recruited to the FOS gene in a temporally coordinated manner and contribute to its high-level expression. We also show that elongation activation by these factors depends on P-TEFb-mediated phosphorylation of the Spt5 C-terminal region. A clear conclusion emerging from this study is that a set of elongation factors plays nonredundant, cooperative roles in elongation. This study also shows unambiguously that Paf1C, which is generally thought to have chromatin-related functions, is involve directlyd in elongation control.
Collapse
Affiliation(s)
- Yexi Chen
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Xu XL, Li K, Peng ZZ, Zhao SH, Yu M, Fan B, Zhu MJ, Xu SP, Du YQ, Liu B. Molecular characterization, expression and association analysis of the porcine CMYA4 gene with carcass traits. J Anim Breed Genet 2008; 125:234-9. [PMID: 18717965 DOI: 10.1111/j.1439-0388.2008.00719.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
CMYA4 (cardiomyopathy-associated 4) gene plays an important role in thick filament assembly. In this study, we obtained the mRNA sequence including the full coding sequence and the partial 5' untranslated region of the porcine CMYA4 gene by using the rapid amplification of cDNA ends and reverse transcriptase polymerase chain reaction (RT-PCR) and the sequence was deposited in the GenBank nucleotide database (DQ_286571). The human (NM_173167) and mouse (NM_178680) homologues have a 91% and 87% identity with the porcine CMYA4 gene, respectively. The sequence contains an open reading frame encoding 930 amino acid residues, and the amino terminus of the predicted CMYA4 protein contains three tandem repeats belonging to the tetratricopeptide repeat family. Semi-quantitative RT-PCR results showed that the porcine CMYA4 gene is expressed exclusively in striated muscle tissue. An A558G single nucleotide polymorphism in the CMYA4 intron 15 detected as an MspI PCR-restriction fragment length polymorphism showed allele frequency differences among 225 unrelated pigs from six breeds. Association of the genotypes with growth and carcass traits showed that different genotypes of the CMYA4 gene were significantly associated with the backfat thickness of the area between sixth and seventh ribs (p < 0.05) and backfat thickness at the shoulder (p < 0.05).
Collapse
Affiliation(s)
- X L Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education & Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Youn MY, Yoo HS, Kim MJ, Hwang SY, Choi Y, Desiderio SV, Yoo JY. hCTR9, a component of Paf1 complex, participates in the transcription of interleukin 6-responsive genes through regulation of STAT3-DNA interactions. J Biol Chem 2007; 282:34727-34. [PMID: 17911113 DOI: 10.1074/jbc.m705411200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAF, which is composed of Paf1, Cdc73, Ctr9, Leo1, and Rtf1, is a novel complex with multiple functions in transcription-related activities. The PAF complex interacts with histone-modifying enzymes and RNA polymerase II to regulate transcription. With general transcription regulatory potential in yeast, Hyrax/Cdc73 has been reported to associate with beta-catenin to control Wnt/Wg signal-specific transcription in Drosophila. Here, we present the first evidence of IL-6 signal-specific transcriptional regulation by SH2BP1/CTR9 in mammals. Upon LPS injection of mice, we observed transient induction of the mammalian PAF complex in the liver. Inhibition of CTR9 specifically abrogated expression of IL-6-responsive genes, but had no effect on genes constitutively expressed or induced by interferon-beta, TNFalpha, or IL-1beta. The PAF complex was found in the promoter regions of IL-6-responsive HP and FGGgamma, but not in the promoter region of constitutively active GAPDH. Transcriptional activation by STAT3 was inhibited when CTR9 siRNA was introduced, whereas transcriptional activation was enhanced by mCtr9 overexpression. IL-6-activated Stat3 was found to co-localize and interact with CTR9. In CTR9-depleted cells, decreased STAT3 association with the promoter regions, as well as impaired K4-trimethylation of histone H3 in the coding regions, of target genes was observed. These data suggest that CTR9 participates in the transcription of IL-6-responsive genes through the regulation of DNA association of STAT3 and modification of histone methylation.
Collapse
Affiliation(s)
- Min-Young Youn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Rozenblatt-Rosen O, Hughes CM, Nannepaga SJ, Shanmugam KS, Copeland TD, Guszczynski T, Resau JH, Meyerson M. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 2005; 25:612-20. [PMID: 15632063 PMCID: PMC543415 DOI: 10.1128/mcb.25.2.612-620.2005] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parafibromin, the product of the HRPT2 (hyperparathyroidism-jaw tumor syndrome 2) tumor suppressor gene, is the human homologue of yeast Cdc73, part of the yeast RNA polymerase II/Paf1 complex known to be important for histone modification and connections to posttranscriptional events. By purifying cellular parafibromin and characterizing its associated proteins, we have identified a human counterpart to the yeast Paf1 complex including homologs of Leo1, Paf1, and Ctr9. Like the yeast complex, the parafibromin complex associates with the nonphosphorylated and Ser2 and Ser5 phosphorylated forms of the RNA polymerase II large subunit. Immunofluorescence experiments show that parafibromin is a nuclear protein. In addition, cotransfection data suggest that parafibromin can interact with a histone methyltransferase complex that methylates histone H3 on lysine 4. Some mutant forms of parafibromin lack association with hPaf1 complex members and with the histone methyltransferase complex, suggesting that disruption of these complexes may correlate with the oncogenic process.
Collapse
Affiliation(s)
- Orit Rozenblatt-Rosen
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Machida K, Mayer BJ. The SH2 domain: versatile signaling module and pharmaceutical target. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:1-25. [PMID: 15680235 DOI: 10.1016/j.bbapap.2004.10.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 09/29/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
The Src homology 2 (SH2) domain is the most prevalent protein binding module that recognizes phosphotyrosine. This approximately 100-amino-acid domain is highly conserved structurally despite being found in a wide variety proteins. Depending on the nature of neighboring protein module(s), such as catalytic domains and other protein binding domains, SH2-containing proteins play many different roles in cellular protein tyrosine kinase (PTK) signaling pathways. Accumulating evidence indicates SH2 domains are highly versatile and exhibit considerable flexibility in how they bind to their ligands. To illustrate this functional versatility, we present three specific examples: the SAP, Cbl and SOCS families of SH2-containing proteins, which play key roles in immune responses, termination of PTK signaling, and cytokine responses. In addition, we highlight current progress in the development of SH2 domain inhibitors designed to antagonize or modulate PTK signaling in human disease. Inhibitors of the Grb2 and Src SH2 domains have been extensively studied, with the aim of targeting the Ras pathway and osteoclastic bone resorption, respectively. Despite formidable difficulties in drug design due to the lability and poor cell permeability of negatively charged phosphorylated SH2 ligands, a variety of structure-based strategies have been used to reduce the size, charge and peptide character of such ligands, leading to the development of high-affinity lead compounds with potent cellular activities. These studies have also led to new insights into molecular recognition by the SH2 domain.
Collapse
Affiliation(s)
- Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3301, USA.
| | | |
Collapse
|
9
|
Fang ZQ, Guan DY, Liang SH. Regulation of gene transcription in rat with liver cancer by traditional Chinese medicine. Shijie Huaren Xiaohua Zazhi 2003; 11:276-280. [DOI: 10.11569/wcjd.v11.i3.276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the regulatory effects of YAF Compositus and its modified Compositus: Gingrefang, Huoxuefang and Jianpifang on liver cancer and their transcription the genes in rats.
METHODS: DEN was used to induce the liver cancer in rats. All rats were divided into seven groups: normal group, model group, four therapy groups and FT-207 group. The survival rate, liver weight, body weight, liver weight/body weight, and pathological change of liver tissues were observed. Immunocytochemical change of AFP and DD-PCR was used to display the different transcriptional expression of cDNA fragments between normal liver tissues and DEN-induced liver cancer tissues. Northern blotting was used to verify the different transcription of these cDNA fragments.
RESULTS: Both YAF Composita and its modified Composita could improve the general condition of rats with liver cancer, especially Qingrefang and Huoxuefang. Different Composita inhibited the growth of cancer and synthesis of AFP, especially YAF Composita and Qingrefang. 9 genes important for the transformation of cancer were selected with DD-PCR and Northern blotting. YAF Composita and its modified Composita had capabilities to regulate differently the genetic transcription: DD-29 decreased 51-78%, DD11 and DD-25 decreased 60% and 78% respectively, near to that of normal liver tissue.
CONCLUSION: Both YAF Composita and its modified Composita can be directly used to treat the liver cancer, and to regulate the transcription of the different genes in the tissues.
Collapse
|
10
|
Metzler DE, Metzler CM, Sauke DJ. How Macromolecules Associate. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 2000; 74:10417-29. [PMID: 11044086 PMCID: PMC110916 DOI: 10.1128/jvi.74.22.10417-10429.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a herpes simplex virus type 2 (HSV-2) mutant with a deletion in the RR1 (ICP10) PK domain (ICP10DeltaPK) and an MEK inhibitor (PD98059) to examine the role of ICP10 PK in virus growth. In HSV-2-infected cells, ICP10 PK binds and phosphorylates the GTPase activating protein Ras-GAP. In vitro binding and peptide competition assays indicated that Ras-GAP N-SH2 and PH domains, respectively, bind ICP10 at phosphothreonines 117 and 141 and a WD40-like motif at positions 160 to 173. Binding and phosphorylation did not occur in cells infected with ICP10DeltaPK. GTPase activity was significantly lower in HSV-2- than in ICP10DeltaPK-infected cells. Conversely, the levels of activated Ras and mitogen-activated protein kinase (MAPK), and the expression and stabilization of the transcription factor c-Fos were significantly increased in cells infected with HSV-2 or a revertant virus [HSV-2(R)] but not with ICP10DeltaPK. PD98059 inhibited MAPK activation and induction-stabilization of c-Fos. Expression from the ICP10 promoter was increased in cells infected with HSV-2 but not with ICP10DeltaPK, and increased expression was ablated by PD98059. ICP10 DNA formed a complex with nuclear extracts from HSV-2-infected cells which was supershifted by c-Fos antibody and was not seen with extracts from ICP10DeltaPK-infected cells. Complex formation was abrogated by PD98059. Onset of HSV-2 replication was significantly delayed by PD98059 (14 h versus 2 h in untreated cells), a delay similar to that seen for ICP10DeltaPK. The data indicate that Ras-GAP phosphorylation by ICP10 PK is involved in the activation of the Ras/MEK/MAPK mitogenic pathway and c-Fos induction and stabilization. This results in increased ICP10 expression and the timely onset of HSV-2 growth.
Collapse
Affiliation(s)
- C C Smith
- Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
12
|
Hooper JD, Baker E, Ogbourne SM, Sutherland GR, Antalis TM. Cloning of the cDNA and localization of the gene encoding human NRBP, a ubiquitously expressed, multidomain putative adapter protein. Genomics 2000; 66:113-8. [PMID: 10843813 DOI: 10.1006/geno.2000.6167] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adapter proteins modulate multiple signaling pathways by regulating the aggregation of other factors into signaling complexes. Here we have identified a novel human cDNA encoding NRBP, a multidomain putative adapter protein containing (i) two putative nuclear receptor binding motifs (LXXLL), (ii) a putative binding domain for Src homology-2 (SH2) domain containing proteins, (iii) a kinase-like domain, (iv) a bipartite nuclear localization signal, and (v) three sequences rich in glutamic acid, serine, proline, and threonine (PEST) residues. The NRBP mRNA transcript, of approximately 2.4 kb, was ubiquitously expressed in a wide range of normal human tissues and 15 human tumor cell lines. The NRBP cDNA is predicted to encode a polypeptide of 535 amino acids with a molecular mass of 59.8 kDa. Translation of NRBP mRNA in vitro reveals three translation products of 60, 51, and 43 kDa, suggesting that translation of NRBP may initiate at multiple sites. The NRBP gene was localized to human chromosome 2p23, near the location of the NCOA1 gene encoding the nuclear receptor coactivator, steroid receptor coactivator-1 (SRC-1). The features of NRBP predict a function as an adapter protein potentially linking signaling pathways involving nuclear receptors and SH2 domain containing proteins.
Collapse
Affiliation(s)
- J D Hooper
- Cellular Oncology Laboratory, University of Queensland, Brisbane, Queensland, 4029, Australia
| | | | | | | | | |
Collapse
|
13
|
Cho YS, Han MK, Choi YB, Yun Y, Shin J, Kim UH. Direct interaction of the CD38 cytoplasmic tail and the Lck SH2 domain. Cd38 transduces T cell activation signals through associated Lck. J Biol Chem 2000; 275:1685-90. [PMID: 10636863 DOI: 10.1074/jbc.275.3.1685] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD38 ligation has been shown to induce activation of intracellular signaling cascade in T lymphocytes through a Lck-dependent pathway. However, it is not clear how Lck initiates the CD38-mediated signaling process. In the present study, we showed that CD38 and Lck were physically associated through the cytoplasmic tail and the Src homology 2 domain, respectively. This was evidenced by coimmunoprecipitation of Lck with CD38 and Lck with isolated CD38 cytoplasmic domain from T cell lysate, cell lysate of COS-7 cells cotransfected with cDNAs of Lck and CD38, or a mixture of in vitro translated CD38 and Lck. Because the CD38 cytoplasmic domain does not contain any tyrosine residue, the interaction should be independent of phosphotyrosine. The interaction was further confirmed by in vitro interaction between a purified Lck Src homology 2 domain and a nonphosphosynthetic peptide corresponding to the membrane proximal region of the CD38 cytoplasmic domain. In addition, CD38 ligation resulted in an elevated tyrosine kinase activity of the CD38-associated Lck and ultimate activation of interleukin-2 gene transcription. Furthermore, expression of a kinase-deficient Lck mutant suppressed interleukin-2 gene activation in a dose-dependent manner. These results strongly suggested that CD38 ligation indeed tranduced signals for T cell activation using its associated Lck.
Collapse
Affiliation(s)
- Y S Cho
- Department of Biochemistry and Institute for Medical Sciences, Chonbuk National University Medical School, Chonju, 561-182 Korea
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module found in multiple copies in a number of functionally different proteins that facilitates specific interactions with a partner protein(s). Three-dimensional structural data have shown that a TPR motif contains two antiparallel alpha-helices such that tandem arrays of TPR motifs generate a right-handed helical structure with an amphipathic channel that might accommodate the complementary region of a target protein. Most TPR-containing proteins are associated with multiprotein complexes, and there is extensive evidence indicating that TPR motifs are important to the functioning of chaperone, cell-cycle, transcription, and protein transport complexes. The TPR motif may represent an ancient protein-protein interaction module that has been recruited by different proteins and adapted for specific functions. BioEssays 1999;21:932-939.
Collapse
Affiliation(s)
- G L Blatch
- Protein-Structure-Function Research Programme, Department of Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
15
|
Abstract
The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module found in multiple copies in a number of functionally different proteins that facilitates specific interactions with a partner protein(s). Three-dimensional structural data have shown that a TPR motif contains two antiparallel alpha-helices such that tandem arrays of TPR motifs generate a right-handed helical structure with an amphipathic channel that might accommodate the complementary region of a target protein. Most TPR-containing proteins are associated with multiprotein complexes, and there is extensive evidence indicating that TPR motifs are important to the functioning of chaperone, cell-cycle, transcription, and protein transport complexes. The TPR motif may represent an ancient protein-protein interaction module that has been recruited by different proteins and adapted for specific functions. BioEssays 1999;21:932-939.
Collapse
Affiliation(s)
- G L Blatch
- Protein-Structure-Function Research Programme, Department of Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
16
|
Lichtenberg H, Heyer M, Höfer M. Tpr1, a Schizosaccharomyces pombe protein involved in potassium transport. FEBS Lett 1999; 457:363-8. [PMID: 10471809 DOI: 10.1016/s0014-5793(99)01068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Schizosaccharomyces pombe Tpr1 was isolated as suppressor of the Saccharomyces cerevisiae Delta trk1,2 potassium uptake deficient phenotype. Tpr1, for tetratrico peptide repeat, encodes a 1039 amino acid residues protein with several reiterated TPR units displaying significant homology to p150(TSP), a recently identified phosphoprotein of mouse, to S. cerevisiae CTR9 and to related sequences of human, Caenorhabditis elegans, Methanoccocus jannaschii and Arabidopsis thaliana. Expression of Tpr1 restored growth on 0.2 mM K(+) media, induced K(+) transport with a K(T) of 4.6 mM and resumed inward currents of -90 pA at -250 mV (pH 7.2) conducting K(+) and other alkali-metal ions. The tetratrico peptide repeat is a degenerate motif of 34 amino acids that is repeated several times within TPR-containing proteins and has been suggested to mediate protein-protein interactions. The sequence and putative binding properties of Tpr1 suggest the protein unlikely as transporter but involved in the enhancement of K(+) uptake via conventional carriers.
Collapse
Affiliation(s)
- H Lichtenberg
- Botanisches Institut der Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | | | | |
Collapse
|
17
|
Koch C, Wollmann P, Dahl M, Lottspeich F. A role for Ctr9p and Paf1p in the regulation G1 cyclin expression in yeast. Nucleic Acids Res 1999; 27:2126-34. [PMID: 10219085 PMCID: PMC148432 DOI: 10.1093/nar/27.10.2126] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Entry into the cell cycle in budding yeast involves transcriptional activation of G1cyclin genes and DNA synthesis genes when cells reach a critical size in late G1. Expression of G1cyclins CLN1 and CLN2 is regulated by the transcription factor SBF (composed of Swi4p and Swi6p) and depends on the cyclin-dependent Cdc28 protein kinase and cyclin Cln3p. To identify novel regulators of SBF-dependent gene expression we screened for mutants that fail to activate transcription of G1cyclins. We found mutations in a gene called CTR9. ctr9 mutants are inviable at 37 degrees C and accumulate large cells. CTR9 is identical to CDP1. CTR9 encodes a conserved nuclear protein of 125 kDa containing several TPR repeats implicated in protein-protein interactions. We show that Ctr9p is a component of a high molecular weight protein complex. Using immuno-affinity chromatography we found that Ctr9p associates with polypeptides of 50 and 65 kDa. By mass spectrometry these were identified as Cdc73p and Paf1p. We show that Paf1p, like Ctr9p, is required for efficient CLN2 transcription, whereas Cdc73p is not. Paf1p and Cdc73p were previously reported to be RNA poly-merase II-associated proteins, suggesting that the Ctr9p complex may interact with the general transcription apparatus.
Collapse
Affiliation(s)
- C Koch
- Institut für Genetik der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany.
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- B J Mayer
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Moir RD, Sethy-Coraci I, Puglia K, Librizzi MD, Willis IM. A tetratricopeptide repeat mutation in yeast transcription factor IIIC131 (TFIIIC131) facilitates recruitment of TFIIB-related factor TFIIIB70. Mol Cell Biol 1997; 17:7119-25. [PMID: 9372943 PMCID: PMC232568 DOI: 10.1128/mcb.17.12.7119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transcription factor IIIC (TFIIIC) plays an important role in assembling the initiation factor TFIIIB on genes transcribed by RNA polymerase III (Pol III). In Saccharomyces cerevisiae, assembly of the TFIIIB complex by promoter-bound TFIIIC is thought to be initiated by its tetratricopeptide repeat (TPR)-containing subunit, TFIIIC131, which interacts directly with the TFIIB-related factor, TFIIIB70/Brf1. In this work, we have identified 10 dominant mutations in TFIIIC131 that increase Pol III gene transcription. All of these mutations are found within a discrete 53-amino-acid region of the protein encompassing TPR2. Biochemical studies of one of the mutations (PCF1-2) show that the increase in transcription is due to an increase in the recruitment of TFIIIB70 to TFIIC-DNA. The PCF1-2 mutation does not affect the affinity of TFIIIC for DNA, and the differential in both transcription and TFIIIB complex assembly is observed at saturating levels of TFIIIB70. This indicates that mutant and wild-type TFIIIC-DNA complexes have the same affinity for TFIIIB70 and suggests that the increased recruitment of this factor is achieved by a nonequilibrium binding mechanism. A novel mechanism of activation in which the TPR mutations facilitate a conformational change in TFIIIC that is required for TFIIIB70 binding is proposed. The implications of this model for the regulation of processes involving TPR proteins are discussed.
Collapse
Affiliation(s)
- R D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
20
|
Abstracts. Folia Microbiol (Praha) 1997. [DOI: 10.1007/bf02819002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|