1
|
Desai M, Sun B. Positions of cysteine residues reveal local clusters and hidden relationships to Sequons and Transmembrane domains in Human proteins. Sci Rep 2024; 14:25886. [PMID: 39468182 PMCID: PMC11519667 DOI: 10.1038/s41598-024-77056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Membrane proteins often possess critical structural features, such as transmembrane domains (TMs), N-glycosylation, and disulfide bonds (SS bonds), which are essential to their structure and function. Here, we extend the study of the motifs carrying N-glycosylation, i.e. the sequons, and the Cys residues supporting the SS bonds, to the whole human proteome with a particular focus on the Cys positions in human proteins with respect to those of sequons and TMs. As the least abundant amino acid residue in protein sequences, the positions of Cys residues in proteins are not random but rather selected through evolution. We discovered that the frequency of Cys residues in proteins is length dependent, and the frequency of CC gaps formed between adjacent Cys residues can be used as a classifier to distinguish proteins with special structures and functions, such as keratin-associated proteins (KAPs), extracellular proteins with EGF-like domains, and nuclear proteins with zinc finger C2H2 domains. Most importantly, by comparing the positions of Cys residues to those of sequons and TMs, we discovered that these structural features can form dense clusters in highly repeated and mutually exclusive modalities in protein sequences. The evolutionary advantages of such complementarity among the three structural features are discussed, particularly in light of structural dynamics in proteins that are lacking from computational predictions. The discoveries made here highlight the sequence-structure-function axis in biological organisms that can be utilized in future protein engineering toward synthetic biology.
Collapse
Affiliation(s)
- Manthan Desai
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Department of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
2
|
Chaturvedi N, Ahmad K, Yadav BS, Lee EJ, Sonkar SC, Marina N, Choi I. Understanding Calcium-Dependent Conformational Changes in S100A1 Protein: A Combination of Molecular Dynamics and Gene Expression Study in Skeletal Muscle. Cells 2020; 9:181. [PMID: 31936886 PMCID: PMC7016722 DOI: 10.3390/cells9010181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
The S100A1 protein, involved in various physiological activities through the binding of calcium ions (Ca2+), participates in several protein-protein interaction (PPI) events after Ca2+-dependent activation. The present work investigates Ca2+-dependent conformational changes in the helix-EF hand-helix using the molecular dynamics (MD) simulation approach that facilitates the understanding of Ca2+-dependent structural and dynamic distinctions between the apo and holo forms of the protein. Furthermore, the process of ion binding by inserting Ca2+ into the bulk of the apo structure was simulated by molecular dynamics. Expectations of the simulation were demonstrated using cluster analysis and a variety of structural metrics, such as interhelical angle estimation, solvent accessible surface area, hydrogen bond analysis, and contact analysis. Ca2+ triggered a rise in the interhelical angles of S100A1 on the binding site and solvent accessible surface area. Significant configurational regulations were observed in the holo protein. The findings would contribute to understanding the molecular basis of the association of Ca2+ with the S100A1 protein, which may be an appropriate study to understand the Ca2+-mediated conformational changes in the protein target. In addition, we investigated the expression profile of S100A1 in myoblast differentiation and muscle regeneration. These data showed that S100A1 is expressed in skeletal muscles. However, the expression decreases with time during the process of myoblast differentiation.
Collapse
Affiliation(s)
- Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Brijesh Singh Yadav
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Subash Chandra Sonkar
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjang Hospital, New Delhi-110029, India;
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| |
Collapse
|
3
|
Kuroi K, Kamijo M, Ueki M, Niwa Y, Hiramatsu H, Nakabayashi T. Time-resolved FTIR study on the structural switching of human galectin-1 by light-induced disulfide bond formation. Phys Chem Chem Phys 2020; 22:1137-1144. [DOI: 10.1039/c9cp04881b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The light-induced disulfide bond technique, which we have previously developed, has enabled the time-resolved measurement of the disulfide-induced conformational switching of the lectin protein human galectin-1.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| | - Mana Kamijo
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Mutsuki Ueki
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yusuke Niwa
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| |
Collapse
|
4
|
Ngwa VM, Axford DS, Healey AN, Nowak SJ, Chrestensen CA, McMurry JL. A versatile cell-penetrating peptide-adaptor system for efficient delivery of molecular cargos to subcellular destinations. PLoS One 2017; 12:e0178648. [PMID: 28552994 PMCID: PMC5446193 DOI: 10.1371/journal.pone.0178648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
Cell penetrating peptides have long held great potential for delivery of biomolecular cargos for research, therapeutic and diagnostic purposes. They allow rapid, relatively nontoxic passage of a wide variety of biomolecules through the plasma membranes of living cells. However, CPP-based research tools and therapeutics have been stymied by poor efficiency in release from endosomes and a great deal of effort has been made to solve this ‘endosomal escape problem.’ Previously, we showed that use of a reversible, noncovalent coupling between CPP and cargo using calmodulin and a calmodulin binding motif allowed efficient delivery of cargo proteins to the cytoplasm in baby hamster kidney and other mammalian cell lines. The present report demonstrates the efficacy of our CPP-adaptor scheme for efficient delivery of model cargos to the cytoplasm using a variety of CPPs and adaptors. Effective overcoming of the endosomal escape problem is further demonstrated by the delivery of cargo to the nucleus, endoplasmic reticulum and peroxisomes by addition of appropriate subcellular localization signals to the cargos. CPP-adaptors were also used to deliver cargo to myotubes, demonstrating the feasibility of the system as an alternative to transfection for the manipulation of hard-to-transfect cells.
Collapse
Affiliation(s)
- Verra M. Ngwa
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - David S. Axford
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Allison N. Healey
- New Echota Biotechnology, Kennesaw, Georgia, United States of America
| | - Scott J. Nowak
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Carol A. Chrestensen
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Jonathan L. McMurry
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Molecular Basis of S100A1 Activation at Saturating and Subsaturating Calcium Concentrations. Biophys J 2016; 110:1052-63. [PMID: 26958883 DOI: 10.1016/j.bpj.2015.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
Abstract
The S100A1 protein mediates a wide variety of physiological processes through its binding of calcium (Ca(2+)) and endogenous target proteins. S100A1 presents two Ca(2+)-binding domains: a high-affinity "canonical" EF (cEF) hand and a low-affinity "pseudo" EF (pEF) hand. Accumulating evidence suggests that both Ca(2+)-binding sites must be saturated to stabilize an open state conducive to peptide recognition, yet the pEF hand's low affinity limits Ca(2+) binding at normal physiological concentrations. To understand the molecular basis of Ca(2+) binding and open-state stabilization, we performed 100 ns molecular dynamics simulations of S100A1 in the apo/holo (Ca(2+)-free/bound) states and a half-saturated state, for which only the cEF sites are Ca(2+)-bound. Our simulations indicate that the pattern of oxygen coordination about Ca(2+) in the cEF relative to the pEF site contributes to the former's higher affinity, whereas Ca(2+) binding strongly reshapes the protein's conformational dynamics by disrupting β-sheet coupling between EF hands. Moreover, modeling of the half-saturated configuration suggests that the open state is unstable and reverts toward a closed state in the absence of the pEF Ca(2+) ion. These findings indicate that Ca(2+) binding at the cEF site alone is insufficient to stabilize opening; thus, posttranslational modification of the protein may be required for target peptide binding at subsaturating intracellular Ca(2+) levels.
Collapse
|
6
|
Designing proteins to combat disease: Cardiac troponin C as an example. Arch Biochem Biophys 2016; 601:4-10. [PMID: 26901433 DOI: 10.1016/j.abb.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/04/2016] [Indexed: 01/18/2023]
Abstract
Throughout history, muscle research has led to numerous scientific breakthroughs that have brought insight to a more general understanding of all biological processes. Potentially one of the most influential discoveries was the role of the second messenger calcium and its myriad of handling and sensing systems that mechanistically control muscle contraction. In this review we will briefly discuss the significance of calcium as a universal second messenger along with some of the most common calcium binding motifs in proteins, focusing on the EF-hand. We will also describe some of our approaches to rationally design calcium binding proteins to palliate, or potentially even cure cardiovascular disease. Considering not all failing hearts have the same etiology, genetic background and co-morbidities, personalized therapies will need to be developed. We predict designer proteins will open doors for unprecedented personalized, and potentially, even generalized medicines as gene therapy or protein delivery techniques come to fruition.
Collapse
|
7
|
Kumar RP, Ranaghan MJ, Ganjei AY, Oprian DD. Crystal Structure of Recoverin with Calcium Ions Bound to Both Functional EF Hands. Biochemistry 2015; 54:7222-8. [PMID: 26584024 DOI: 10.1021/acs.biochem.5b01160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recoverin (Rv), a small Ca(2+)-binding protein that inhibits rhodopsin kinase (RK), has four EF hands, two of which are functional (EF2 and EF3). Activation requires Ca(2+) in both EF hands, but crystal structures have never been observed with Ca(2+) ions in both sites; all previous structures have Ca(2+) bound to only EF3. We suspected that this was due to an intermolecular crystal contact between T80 and a surface glutamate (E153) that precluded coordination of a Ca(2+) ion in EF2. We constructed the E153A mutant, determined its X-ray crystal structure to 1.2 Å resolution, and showed that two Ca(2+) ions are bound, one in EF3 and one in EF2. Additionally, several other residues are shown to adopt conformations in the 2Ca(2+) structure not seen previously and not seen in a second structure of the E153A mutant containing Na(+) instead of Ca(2+) in the EF2 site. The side-chain rearrangements in these residues form a 28 Å allosteric cascade along the surface of the protein connecting the Ca(2+)-binding site of EF2 with the active-site pocket responsible for binding RK.
Collapse
Affiliation(s)
- Ramasamy P Kumar
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Matthew J Ranaghan
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Allen Y Ganjei
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Daniel D Oprian
- Department of Biochemistry, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
8
|
Distinctive malfunctions of calmodulin mutations associated with heart RyR2-mediated arrhythmic disease. Biochim Biophys Acta Gen Subj 2015; 1850:2168-76. [PMID: 26164367 DOI: 10.1016/j.bbagen.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/22/2015] [Accepted: 07/02/2015] [Indexed: 01/11/2023]
Abstract
Calmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF). Herein, we describe how two CPVT- (N54I & N98S) and three LQTS-associated (D96V, D130G & F142L) CaM mutations result in alteration of their biochemical and biophysical properties. Ca(2+)-binding studies indicate that the CPVT-associated CaM mutations, N54I & N98S, exhibit the same or a 3-fold reduced Ca(2+)-binding affinity, respectively, versus wild-type CaM, whereas the LQTS-associated CaM mutants, D96V, D130G & F142L, display more profoundly reduced Ca(2+)-binding affinity. In contrast, all five CaM mutations confer a disparate RyR2 interaction and modulation of [(3)H]ryanodine binding to RyR2, regardless of CPVT or LQTS association. Our findings suggest that the clinical presentation of CPVT or LQTS associated with these five CaM mutations may involve both altered intrinsic Ca(2+)-binding as well as defective interaction with RyR2.
Collapse
|
9
|
Abstract
Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF-VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.
Collapse
|
10
|
Lai M, Brun D, Edelstein SJ, Le Novère N. Modulation of calmodulin lobes by different targets: an allosteric model with hemiconcerted conformational transitions. PLoS Comput Biol 2015; 11:e1004063. [PMID: 25611683 PMCID: PMC4303274 DOI: 10.1371/journal.pcbi.1004063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 11/26/2014] [Indexed: 01/30/2023] Open
Abstract
Calmodulin is a calcium-binding protein ubiquitous in eukaryotic cells, involved in numerous calcium-regulated biological phenomena, such as synaptic plasticity, muscle contraction, cell cycle, and circadian rhythms. It exibits a characteristic dumbell shape, with two globular domains (N- and C-terminal lobe) joined by a linker region. Each lobe can take alternative conformations, affected by the binding of calcium and target proteins. Calmodulin displays considerable functional flexibility due to its capability to bind different targets, often in a tissue-specific fashion. In various specific physiological environments (e.g. skeletal muscle, neuron dendritic spines) several targets compete for the same calmodulin pool, regulating its availability and affinity for calcium. In this work, we sought to understand the general principles underlying calmodulin modulation by different target proteins, and to account for simultaneous effects of multiple competing targets, thus enabling a more realistic simulation of calmodulin-dependent pathways. We built a mechanistic allosteric model of calmodulin, based on an hemiconcerted framework: each calmodulin lobe can exist in two conformations in thermodynamic equilibrium, with different affinities for calcium and different affinities for each target. Each lobe was allowed to switch conformation on its own. The model was parameterised and validated against experimental data from the literature. In spite of its simplicity, a two-state allosteric model was able to satisfactorily represent several sets of experiments, in particular the binding of calcium on intact and truncated calmodulin and the effect of different skMLCK peptides on calmodulin's saturation curve. The model can also be readily extended to include multiple targets. We show that some targets stabilise the low calcium affinity T state while others stabilise the high affinity R state. Most of the effects produced by calmodulin targets can be explained as modulation of a pre-existing dynamic equilibrium between different conformations of calmodulin's lobes, in agreement with linkage theory and MWC-type models.
Collapse
Affiliation(s)
- Massimo Lai
- Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| | - Denis Brun
- EMBL-EBI, Hinxton, United Kingdom
- Amadeus IT Group, Sophia Antipolis, France
| | | | - Nicolas Le Novère
- Babraham Institute, Cambridge, United Kingdom
- EMBL-EBI, Hinxton, United Kingdom
| |
Collapse
|
11
|
Antunes G, Sebastião AM, Simoes de Souza FM. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium. PLoS One 2014; 9:e105531. [PMID: 25144232 PMCID: PMC4140790 DOI: 10.1371/journal.pone.0105531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought.
Collapse
Affiliation(s)
- Gabriela Antunes
- Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal; Laboratory of Neural Systems, Psychobiology Sector, Department of Psychology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Maria Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal
| | - Fabio Marques Simoes de Souza
- Neurosciences Unit, Institute of Molecular Medicine, University of Lisbon, Lisbon, Portugal; Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
12
|
Senguen FT, Grabarek Z. X-ray structures of magnesium and manganese complexes with the N-terminal domain of calmodulin: insights into the mechanism and specificity of metal ion binding to an EF-hand. Biochemistry 2012; 51:6182-94. [PMID: 22803592 DOI: 10.1021/bi300698h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calmodulin (CaM), a member of the EF-hand superfamily, regulates many aspects of cell function by responding specifically to micromolar concentrations of Ca(2+) in the presence of an ~1000-fold higher concentration of cellular Mg(2+). To explain the structural basis of metal ion binding specificity, we have determined the X-ray structures of the N-terminal domain of calmodulin (N-CaM) in complexes with Mg(2+), Mn(2+), and Zn(2+). In contrast to Ca(2+), which induces domain opening in CaM, octahedrally coordinated Mg(2+) and Mn(2+) stabilize the closed-domain, apo-like conformation, while tetrahedrally coordinated Zn(2+) ions bind at the protein surface and do not compete with Ca(2+). The relative positions of bound Mg(2+) and Mn(2+) within the EF-hand loops are similar to those of Ca(2+); however, the Glu side chain at position 12 of the loop, whose bidentate interaction with Ca(2+) is critical for domain opening, does not bind directly to either Mn(2+) or Mg(2+), and the vacant ligand position is occupied by a water molecule. We conclude that this critical interaction is prevented by specific stereochemical constraints imposed on the ligands by the EF-hand β-scaffold. The structures suggest that Mg(2+) contributes to the switching off of calmodulin activity and possibly other EF-hand proteins at the resting levels of Ca(2+). The Mg(2+)-bound N-CaM structure also provides a unique view of a transiently bound hydrated metal ion and suggests a role for the hydration water in the metal-induced conformational change.
Collapse
Affiliation(s)
- F Timur Senguen
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | | |
Collapse
|
13
|
Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 2012; 52:819-37. [PMID: 22178977 DOI: 10.1016/j.freeradbiomed.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Histone acetylation via CBP/p300 coordinates the expression of proinflammatory cytokines in the activation phase of inflammation, particularly through mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducers and activators of transcription (STAT) pathways. In contrast, histone deacetylases (HDACs) and protein phosphatases are mainly involved in the attenuation phase of inflammation. The role of reactive oxygen species (ROS) in the inflammatory cascade is much more important than expected. Mitochondrial ROS act as signal-transducing molecules that trigger proinflammatory cytokine production via inflammasome-independent and inflammasome-dependent pathways. The major source of ROS in acute inflammation seems to be NADPH oxidases, whereas NF-κB, protein phosphatases, and HDACs are the major targets of ROS and redox signaling in this process. There is a cross-talk between oxidative stress and proinflammatory cytokines through serine/threonine protein phosphatases, tyrosine protein phosphatases, and MAPKs that greatly contributes to amplification of the uncontrolled inflammatory cascade and tissue injury in acute pancreatitis. Chromatin remodeling during induction of proinflammatory genes would depend primarily on phosphorylation of transcription factors and their binding to gene promoters together with recruitment of histone acetyltransferases. PP2A should be considered a key modulator of the inflammatory cascade in acute pancreatitis through the ERK/NF-κB pathway and histone acetylation.
Collapse
Affiliation(s)
- Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
14
|
Nirschl M, Ottl J, Vörös J. Conformational Changes of Calmodulin on Calcium and Peptide Binding Monitored by Film Bulk Acoustic Resonators. BIOSENSORS 2011; 1:164-76. [PMID: 25585566 PMCID: PMC4264349 DOI: 10.3390/bios1040164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/04/2011] [Accepted: 12/12/2011] [Indexed: 11/21/2022]
Abstract
Film bulk acoustic resonators (FBAR) are mass sensitive, label-free biosensors that allow monitoring of the interaction between biomolecules. In this paper we use the FBAR to measure the binding of calcium and the CaMKII peptide to calmodulin. Because the mass of the calcium is too small to be detected, the conformational change caused by the binding process is measured by monitoring the resonant frequency and the motional resistance of the FBAR. The resonant frequency is a measure for the amount of mass coupled to the sensor while the motional resistance is influenced by the viscoelastic properties of the adsorbent. The measured frequency shift during the calcium adsorptions was found to be strongly dependent on the surface concentration of the immobilized calmodulin, which indicates that the measured signal is significantly influenced by the amount of water inside the calmodulin layer. By plotting the measured motional resistance against the frequency shift, a mass adsorption can be distinguished from processes involving measurable conformational changes. With this method three serial processes were identified during the peptide binding. The results show that the FBAR is a promising technology for the label-free measurement of conformational changes.
Collapse
Affiliation(s)
- Martin Nirschl
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Johannes Ottl
- Novartis Institute of Biomedical Research Basel, CPC/LFP, Novartis Pharma AG, Postfach, Basel CH 4002, Switzerland.
| | - Janos Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich Gloriastrasse 35, 8092 Zurich, Switzerland.
| |
Collapse
|
15
|
The effect of macromolecular crowding, ionic strength and calcium binding on calmodulin dynamics. PLoS Comput Biol 2011; 7:e1002114. [PMID: 21829336 PMCID: PMC3145654 DOI: 10.1371/journal.pcbi.1002114] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/23/2011] [Indexed: 11/20/2022] Open
Abstract
The flexibility in the structure of calmodulin (CaM) allows its binding to over 300 target proteins in the cell. To investigate the structure-function relationship of CaM, we combined methods of computer simulation and experiments based on circular dichroism (CD) to investigate the structural characteristics of CaM that influence its target recognition in crowded cell-like conditions. We developed a unique multiscale solution of charges computed from quantum chemistry, together with protein reconstruction, coarse-grained molecular simulations, and statistical physics, to represent the charge distribution in the transition from apoCaM to holoCaM upon calcium binding. Computationally, we found that increased levels of macromolecular crowding, in addition to calcium binding and ionic strength typical of that found inside cells, can impact the conformation, helicity and the EF hand orientation of CaM. Because EF hand orientation impacts the affinity of calcium binding and the specificity of CaM's target selection, our results may provide unique insight into understanding the promiscuous behavior of calmodulin in target selection inside cells. Proteins are workhorses for driving biological functions inside cells. Calmodulin (CaM) is a protein that can carry cellular signals by triggered conformational changes due to calcium binding that alters target binding. Interestingly, CaM is able to bind over 300 targets. One of the challenges in characterizing CaM's ability to bind multiple targets lies in that CaM is a flexible protein and its structure is easily modulated by the physicochemical changes in its surroundings, particularly inside a complex cellular milieu. In order to determine structure-function relationships of CaM, we employed a combined approach of experiments, computer simulations and statistical physics in the investigation of the effect of calcium-binding, salt concentration, and macromolecular crowding on CaM. The results revealed unique folding energy landscapes of CaM in the absence and presence of calcium ions and the structural implications of CaM are interpreted under cell-like conditions. Further, a large conformational change in CaM in response to environmental impacts, dictates the packing of local helices that may be critical to its function of target binding and recognition among vast target selections.
Collapse
|
16
|
Banta S, Wheeldon IR, Blenner M. Protein Engineering in the Development of Functional Hydrogels. Annu Rev Biomed Eng 2010; 12:167-86. [PMID: 20420519 DOI: 10.1146/annurev-bioeng-070909-105334] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027;
| | - Ian R. Wheeldon
- Department of Chemical Engineering, Columbia University, New York, New York 10027;
| | - Mark Blenner
- Current address: Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
17
|
Mabuchi Y, Mabuchi K, Stafford WF, Grabarek Z. Modular structure of smooth muscle Myosin light chain kinase: hydrodynamic modeling and functional implications. Biochemistry 2010; 49:2903-17. [PMID: 20196616 DOI: 10.1021/bi901963e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Smooth muscle myosin light chain kinase (smMLCK) is a calcium-calmodulin complex-dependent enzyme that activates contraction of smooth muscle. The polypeptide chain of rabbit uterine smMLCK (Swiss-Prot entry P29294) contains the catalytic/regulatory domain, three immunoglobulin-related motifs (Ig), one fibronectin-related motif (Fn3), a repetitive, proline-rich segment (PEVK), and, at the N-terminus, a unique F-actin-binding domain. We have evaluated the spatial arrangement of these domains in a recombinant 125 kDa full-length smMLCK and its two catalytically active C-terminal fragments (77 kDa, residues 461-1147, and 61 kDa, residues 461-1002). Electron microscopic images of smMLCK cross-linked to F-actin show particles at variable distances (11-55 nm) from the filament, suggesting that a well-structured C-terminal segment of smMLCK is connected to the actin-binding domain by a long, flexible tether. We have used structural homology and molecular dynamics methods to construct various all-atom representation models of smMLCK and its two fragments. The theoretical sedimentation coefficients computed with HYDROPRO were compared with those determined by sedimentation velocity. We found agreement between the predicted and observed sedimentation coefficients for models in which the independently folded catalytic domain, Fn3, and Ig domains are aligned consecutively on the long axis of the molecule. The PEVK segment is modeled as an extensible linker that enables smMLCK to remain bound to F-actin and simultaneously activate the myosin heads of adjacent myosin filaments at a distance of >or=40 nm. The structural properties of smMLCK may contribute to the elasticity of smooth muscle cells.
Collapse
Affiliation(s)
- Yasuko Mabuchi
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829, USA
| | | | | | | |
Collapse
|
18
|
Ono M, Yano M, Hino A, Suetomi T, Xu X, Susa T, Uchinoumi H, Tateishi H, Oda T, Okuda S, Doi M, Kobayashi S, Yamamoto T, Koseki N, Kyushiki H, Ikemoto N, Matsuzaki M. Dissociation of calmodulin from cardiac ryanodine receptor causes aberrant Ca(2+) release in heart failure. Cardiovasc Res 2010; 87:609-17. [PMID: 20388639 DOI: 10.1093/cvr/cvq108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Calmodulin (CaM) is well known to modulate the channel function of the cardiac ryanodine receptor (RyR2). However, the possible role of CaM on the aberrant Ca(2+) release in diseased hearts remains unclear. In this study, we investigated the state of RyR2-bound CaM and channel dysfunctions in pacing-induced failing hearts. METHODS AND RESULTS The characteristics of CaM binding to RyR2 and the role of CaM on the aberrant Ca(2+) release were assessed in normal and failing canine hearts. The affinity of CaM binding to RyR2 was lower in failing sarcoplasmic reticulum (SR) than in normal SR. Addition of FK506, which dissociates FKBP12.6 from RyR2, to normal SR reduced the CaM-binding affinity. Dantrolene restored a normal level of the CaM-binding affinity in either FK506-treated (normal) SR or failing SR, suggesting that the defective inter-domain interaction between the N-terminal domain and the central domain of RyR2 (the therapeutic target of dantrolene) is involved in the reduction of the CaM-binding affinity in failing hearts. In saponin-permeabilized cardiomyocytes, the frequency of spontaneous Ca(2+) sparks was much more increased in failing cardiomyocytes than in normal cardiomyocytes, whereas the addition of a high concentration of CaM attenuated the aberrant increase of Ca(2+) sparks. CONCLUSION The defective inter-domain interaction between N-terminal and central domains within RyR2 reduces the binding affinity of CaM to RyR2, thereby causing the spontaneous Ca(2+) release events in failing hearts. Correction of the defective CaM binding may be a new strategy to protect against the aberrant Ca(2+) release in heart failure.
Collapse
Affiliation(s)
- Makoto Ono
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Metal binding discrimination of the calmodulin Q41C/K75C mutant on Ca2+ and La3+. Sci China Chem 2010. [DOI: 10.1007/s11426-010-0059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Xu X, Yano M, Uchinoumi H, Hino A, Suetomi T, Ono M, Tateishi H, Oda T, Okuda S, Doi M, Kobayashi S, Yamamoto T, Ikeda Y, Ikemoto N, Matsuzaki M. Defective calmodulin binding to the cardiac ryanodine receptor plays a key role in CPVT-associated channel dysfunction. Biochem Biophys Res Commun 2010; 394:660-6. [PMID: 20226167 DOI: 10.1016/j.bbrc.2010.03.046] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
Abstract
Calmodulin (CaM), one of the accessory proteins of the cardiac ryanodine receptor (RyR2), is known to play a significant role in the channel regulation of the RyR2. However, the possible involvement of calmodulin in the pathogenic process of catecholaminergic polymorphic ventricular tachycardia (CPVT) has not been investigated. In this study, we investigated the state of RyR2-bound CaM and channel dysfunctions using a knock-in (KI) mouse model with CPVT-linked RyR2 mutation (R2474S). Without added effectors, the affinity of CaM binding to the RyR2 was indistinguishable between KI and WT hearts. In response to cAMP (1 micromol/L), the RyR2 phosphorylation at Ser2808 increased in both WT and KI hearts to the same extent. However, cAMP caused a significant decrease of the CaM-binding affinity in KI hearts, but the affinity was unchanged in WT. Dantrolene restored a normal level of CaM-binding affinity in the cAMP-treated KI hearts, suggesting that defective inter-domain interaction between the N-terminal domain and the central domain of the RyR2 (the target of therapeutic effect of dantrolene) is involved in the cAMP-induced reduction of the CaM-binding affinity. In saponin-permeabilized cardiomyocytes, the addition of cAMP increased the frequency of spontaneous Ca(2+) sparks to a significantly larger extent in KI cardiomyocytes than in WT cardiomyocytes, whereas the addition of a high concentration of CaM attenuated the aberrant increase of Ca(2+) sparks. In conclusion, CPVT mutation causes defective inter-domain interaction, significant reduction in the ability of CaM binding to the RyR2, spontaneous Ca(2+) leak, and then lethal arrhythmia.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li J, Jia Z, Zhou W, Wei Q. Calcineurin regulatory subunit B is a unique calcium sensor that regulates calcineurin in both calcium-dependent and calcium-independent manner. Proteins 2009; 77:612-23. [DOI: 10.1002/prot.22474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Humar M, Graetz C, Roesslein M, Goebel U, Geiger KK, Heimrich B, Pannen BHJ. Heterocyclic thioureylenes protect from calcium-dependent neuronal cell death. Mol Pharmacol 2009; 75:667-76. [PMID: 19103761 DOI: 10.1124/mol.108.052183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium-dependent cell death occurs in neurodegenerative diseases and ischemic or traumatic brain injury. We analyzed whether thioureylenes can act in a neuroprotective manner by pharmacological suppression of calcium-dependent pathological pathways. In human neuroblastoma (SK-N-SH) cells, thioureylenes (thiopental, carbimazole) inhibited the calcium-dependent neuronal protein phosphatase (PP)-2B, the activation of the proapoptotic transcription factor nuclear factor of activated T-cells, BAD-induced initiation of caspase-3, and poly-(ADP-ribose)-polymerase cleavage. Caspase-3-independent cell death was attenuated by carbimazole and the protein kinase C (PKC) delta inhibitor rottlerin by a PP-2B-independent mechanism. Neuroprotective effects were mediated by the redox-active sulfur of thioureylenes. Furthermore, we observed that the route of calcium mobilization was differentially linked to caspase-dependent or independent cell death and that BAD dephosphorylation did not necessarily induce intrinsic caspase activation. In addition, a new 30- to 35-kDa caspase-3 fragment with an unknown function was identified. In organotypic hippocampal slice cultures, thioureylenes inhibited caspase-3 activation or reduced N-methyl-d-aspartate and kainic acid receptor-mediated cell death that was independent of caspase-3. Because prolonged inhibition of caspase-3 resulted in caspase-independent cellular damage, different types of cell death must be taken under therapeutic consideration. Here we show that thioureylenes in combination with PKCdelta inhibitors might represent a promising therapeutic approach to attenuate neuronal damage.
Collapse
Affiliation(s)
- Matjaz Humar
- Department of Anesthesiology and Critical Care Medicine, Center for Clinical Research, University Hospital Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lieto-Trivedi A, Coluccio LM. Calcium, nucleotide, and actin affect the interaction of mammalian Myo1c with its light chain calmodulin. Biochemistry 2008; 47:10218-26. [PMID: 18729383 DOI: 10.1021/bi8011059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the interaction of mammalian class I myosin, Myo1c, with its light chain calmodulin, we expressed (with calmodulin) truncation mutants consisting of the Myo1c motor domain followed by 0-4 presumed calmodulin-binding (IQ) domains (Myo1c (0IQ)-Myo1c (4IQ)). The amount of calmodulin associating with the Myo1c heavy chain increased with increasing number of IQ domains from Myo1c (0IQ) to Myo1c (3IQ). No calmodulin beyond that associated with Myo1c (3IQ) was found with Myo1c (4IQ) despite its availability, showing that Myo1c binds three molecules of calmodulin with no evidence of a fourth IQ domain. Unlike Myo1c (0IQ), the basal ATPase activity of Myo1c (1IQ) was >10-fold higher in Ca (2+) vs EGTA +/- exogenous calmodulin, showing that regulation is by Ca (2+) binding to calmodulin on the first IQ domain. The K m and V max of the actin-activated Mg (2+)-ATPase activity were largely independent of the number of IQ domains present and moderately affected by Ca (2+). In binding assays, some calmodulin pelleted with Myo1c heavy chain when actin was present, but a considerable fraction remained in the supernatant, suggesting that calmodulin is displaced most likely from the second IQ domain. The Myo1c heavy chain associated with actin in a nucleotide-dependent fashion. In ATP a smaller proportion of calmodulin pelleted with the heavy chain, suggesting that Myo1c undergoes nucleotide-dependent conformational changes that affect the affinity of calmodulin for the heavy chain. The studies support a model in which Myo1c in the inner ear is regulated by both Ca (2+) and nucleotide, which exert their effects on motor activity through the light-chain-binding region.
Collapse
Affiliation(s)
- Alena Lieto-Trivedi
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, Massachusetts 02472, USA
| | | |
Collapse
|
24
|
Valeyev NV, Bates DG, Heslop-Harrison P, Postlethwaite I, Kotov NV. Elucidating the mechanisms of cooperative calcium-calmodulin interactions: a structural systems biology approach. BMC SYSTEMS BIOLOGY 2008; 2:48. [PMID: 18518982 PMCID: PMC2435525 DOI: 10.1186/1752-0509-2-48] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 06/02/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND Calmodulin is an important multifunctional molecule that regulates the activities of a large number of proteins in the cell. Calcium binding induces conformational transitions in calmodulin that make it specifically active to particular target proteins. The precise mechanisms underlying calcium binding to calmodulin are still, however, quite poorly understood. RESULTS In this study, we adopt a structural systems biology approach and develop a mathematical model to investigate various types of cooperative calcium-calmodulin interactions. We compare the predictions of our analysis with physiological dose-response curves taken from the literature, in order to provide a quantitative comparison of the effects of different mechanisms of cooperativity on calcium-calmodulin interactions. The results of our analysis reduce the gap between current understanding of intracellular calmodulin function at the structural level and physiological calcium-dependent calmodulin target activation experiments. CONCLUSION Our model predicts that the specificity and selectivity of CaM target regulation is likely to be due to the following factors: variations in the target-specific Ca2+ dissociation and cooperatively effected dissociation constants, and variations in the number of Ca2+ ions required to bind CaM for target activation.
Collapse
Affiliation(s)
- Najl V Valeyev
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Declan G Bates
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Pat Heslop-Harrison
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
- Systems Biology Lab, Department of Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Ian Postlethwaite
- Systems Biology Lab, Department of Engineering, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Nikolay V Kotov
- Biophysics & Bionics Lab, Department of Physics, Kazan State University, Kazan 420008, Russia
| |
Collapse
|
25
|
Valeyev NV, Heslop-Harrison P, Postlethwaite I, Kotov NV, Bates DG. Multiple calcium binding sites make calmodulin multifunctional. ACTA ACUST UNITED AC 2008; 4:66-73. [DOI: 10.1039/b713461d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Humar M, Dohrmann H, Stein P, Andriopoulos N, Goebel U, Heimrich B, Roesslein M, Schmidt R, Schwer CI, Hoetzel A, Loop T, Pahl HL, Geiger KK, Pannen BHJ. Repression of T-cell function by thionamides is mediated by inhibition of the activator protein-1/nuclear factor of activated T-cells pathway and is associated with a common structure. Mol Pharmacol 2007; 72:1647-56. [PMID: 17878268 DOI: 10.1124/mol.107.038141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of hyperthyroidism by thionamides is associated with immunomodulatory effects, but the mechanism of thionamide-induced immunosuppression is unclear. Here we show that thionamides directly inhibit interleukin-2 cytokine expression, proliferation, and the activation (CD69 expression) of primary human T lymphocytes. Inhibition of immune function was associated with a repression of DNA binding of the cooperatively acting immunoregulatory transcription factors activator protein 1 (AP-1) and nuclear factor of activated T-cells (NFAT). Likewise, thionamides block the GTPase p21Ras, the mitogen-activated protein kinases, and impair the calcineurin/calmodulin-dependent NFAT dephosphorylation and nuclear translocation. The potency of inhibition correlated with the chemical reactivity of the thionamide-associated sulfur group. Taken together, our data demonstrate that thio-derivates with a common heterocyclic thioureylene-structure mediate a direct suppression of immune functions in T-cells via inhibition of the AP-1/NFAT pathway. Our observations may also explain the clinical and pathological resolution of some secondary, calcineurin, and mitogen-activated protein kinase-associated diseases upon thionamide treatment in hyperthyroid patients. This offers a new therapeutic basis for the development and application of heterocyclic thio-derivates.
Collapse
Affiliation(s)
- Matjaz Humar
- Center for Clinical Research, Breisacher Strasse 66, D-79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Murphy WL, Dillmore WS, Modica J, Mrksich M. Dynamic Hydrogels: Translating a Protein Conformational Change into Macroscopic Motion. Angew Chem Int Ed Engl 2007; 46:3066-9. [PMID: 17366501 DOI: 10.1002/anie.200604808] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- William L Murphy
- Department of Chemistry, Howard Hughes Medical Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
28
|
Murphy W, Dillmore W, Modica J, Mrksich M. Dynamic Hydrogels: Translating a Protein Conformational Change into Macroscopic Motion. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 2006; 359:509-25. [PMID: 16678204 DOI: 10.1016/j.jmb.2006.03.066] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/25/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| |
Collapse
|
30
|
Wang X, Ellis JS, Lyle EL, Sundaram P, Thompson M. Conformational chemistry of surface-attached calmodulin detected by acoustic shear wave propagation. MOLECULAR BIOSYSTEMS 2006; 2:184-92. [PMID: 16880936 DOI: 10.1039/b600186f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thickness shear-mode acoustic wave device, operated in a flow-through format, was used to detect the binding of ions or peptides to surface-attached calmodulin. On-line surface attachment of the protein was achieved by immobilisation of the biotinylated molecule via a neutravidin-biotin linkage onto the surface of the gold electrode of the detector. The interaction between calmodulin, and calcium and magnesium ions induced an increase in resonant frequency and a decrease in motional resistance, which were reversible on washing with buffer. Interestingly, the changes in resonant frequency and motional resistance induced by the binding were opposite to the normal operation of the detector. The response was interpreted as a decrease in surface coupling (partial slip at the liquid/solid interface) instigated by exposure of hydrophobic domains on the protein, and an increase in the thickness, and hence effective wavelength, of the acoustic device, corresponding to an increase in the length of calmodulin by 1.5 A. This result is consistent with the literature value of 4 A. In addition, the interaction of the protein with peptide together with calcium ions was detected successfully, despite the relatively low molecular mass of the 2-kDa peptide. These results confirm the potential of acoustic wave physics for the detection of changes in the conformational chemistry of monolayer of biochemical macromolecules at the solid/liquid interface.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, CanadaM5S 3H6
| | | | | | | | | |
Collapse
|
31
|
Gangopadhyay JP, Ikemoto N. Role of the Met3534-Ala4271 region of the ryanodine receptor in the regulation of Ca2+ release induced by calmodulin binding domain peptide. Biophys J 2005; 90:2015-26. [PMID: 16387763 PMCID: PMC1386780 DOI: 10.1529/biophysj.105.074328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CaMBP, a peptide corresponding to the 3614-3643 calmodulin (CaM) binding region of the ryanodine receptor (RyR1), is known to activate RyR1 Ca2+ channel. To analyze the mechanism of channel regulation by the CaMBP-RyR1 interaction, we investigated a), CaMBP binding to RyR1, b), induced local conformational changes in the CaMBP binding region of RyR1 using the fluorescent conformational probe badan attached to CaMBP (CaMBP-badan), and c), effects of "a" and "b" on SR Ca2+ release. We also monitored the interaction of CaMBP-badan with CaM and a peptide corresponding to the Met3534-Ala4271 region of RyR1 (R3534-4271) as a control. At lower peptide concentrations (< or =15 microM), CaMBP binding to RyR1 increased the intensity of badan fluorescence emission at a shorter wavelength (the state resembling CaMBP-badan/Ca-CaM) and induced Ca2+ release. Further increase in CaMBP concentration (up to approximately 50 microM) produced more binding of CaMBP accompanied by further increase in the badan fluorescence emission but at a longer wavelength (the state resembling CaMBP-badan/apo-CaM) and inhibited Ca2+ release. Binding of CaMBP-badan to R3534-4271 increased the intensity of badan fluorescence, showing the similar concentration-dependent red-shift of the emission maximum. It is proposed that CaMBP interacts with two classes of binding sites located in the Met3534-Ala4271 region of RyR1, which activate and inhibit the Ca2+ channel, respectively.
Collapse
|
32
|
Grabarek Z. Structure of a Trapped Intermediate of Calmodulin: Calcium Regulation of EF-hand Proteins from a New Perspective. J Mol Biol 2005; 346:1351-66. [PMID: 15713486 DOI: 10.1016/j.jmb.2005.01.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/27/2004] [Accepted: 01/03/2005] [Indexed: 11/19/2022]
Abstract
Calmodulin (CaM) is a multifunctional Ca2+-binding protein that regulates the activity of many enzymes in response to changes in the intracellular Ca2+ concentration. There are two globular domains in CaM, each containing a pair of helix-loop-helix Ca2+-binding motifs called EF-hands. Ca2+-binding induces the opening of both domains thereby exposing hydrophobic pockets that provide binding sites for the target enzymes. Here, I present a 2.4 A resolution structure of a calmodulin mutant (CaM41/75) in which the N-terminal domain is locked in the closed conformation by a disulfide bond. CaM41/75 crystallized in a tetragonal lattice with the Ca2+ bound in all four EF-hands. In the closed N-terminal domain Ca ions are coordinated by the four protein ligands in positions 1, 3, 5 and 7 of the loop, and by two solvent ligands. The glutamate side-chain in the 12th position of the loop (Glu31 in site I and Glu67 in site II), which in the wild-type protein provides a bidentate Ca2+ ligand, remains in a distal position. Based on a comparison of CaM41/75 with other CaM and troponin C structures a detailed two-step mechanism of the Ca2+-binding process is proposed. Initially, the Ca2+ binds to the N-terminal part of the loop, thus generating a rigid link between the incoming helix (helix A, or helix C) and the central beta structure involving the residues in the sixth, seventh and eighth position of the loop. Then, the exiting helix (helix B or helix D) rotates causing the glutamate ligand in the 12th position to move into the vicinity of the immobilized Ca2+. An adjustment of the phi, psi backbone dihedral angles of the Ile residue in the eighth position is necessary and sufficient for the helix rotation and functions as a hinge. The model allows for a significant independence of the Ca2+-binding sites in a two-EF-hand domain.
Collapse
Affiliation(s)
- Zenon Grabarek
- Boston Biomedical Research Institute, Watertown, MA 02472, USA.
| |
Collapse
|
33
|
Brinkmeyer S, Eckert R, Ragg H. Reformable intramolecular cross-linking of the N-terminal domain of heparin cofactor II. ACTA ACUST UNITED AC 2004; 271:4275-83. [PMID: 15511233 DOI: 10.1111/j.1432-1033.2004.04367.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of a heparin cofactor II (HCII)-thrombin Michaelis complex has revealed extensive contacts encompassing the N-terminal domain of HCII and exosite I of the proteinase. In contrast, the location of the N-terminal extension in the uncomplexed inhibitor was unclear. Using a disulfide cross-linking strategy, we demonstrate that at least three different sites (positions 52, 54 and 68) within the N terminus may be tethered in a reformable manner to position 195 in the loop region between helix D and strand s2A of the HCII molecule, suggesting that the N-terminal domain may interact with the inhibitor scaffold in a permissive manner. Cross-linking of the N terminus to the HCII body does not strongly affect the inhibition of alpha-chymotrypsin, indicating that the reactive site loop sequences of the engineered inhibitor variants, required for interaction with one of the HCII target enzymes, are normally accessible. In contrast, intramolecular tethering of the N-terminal extension results in a drastic decrease of alpha-thrombin inhibitory activity, both in the presence and in the absence of glycosaminoglycans. Treatment with dithiothreitol and iodoacetamide restores activity towards alpha-thrombin, suggesting that release of the N terminus of HCII is an important component of the multistep interaction between the inhibitor and alpha-thrombin.
Collapse
Affiliation(s)
- Stephan Brinkmeyer
- Department of Biotechnology, Faculty of Technology, University of Bielefeld, Germany
| | | | | |
Collapse
|
34
|
Gangopadhyay JP, Grabarek Z, Ikemoto N. Fluorescence probe study of Ca2+-dependent interactions of calmodulin with calmodulin-binding peptides of the ryanodine receptor. Biochem Biophys Res Commun 2004; 323:760-8. [PMID: 15381065 DOI: 10.1016/j.bbrc.2004.08.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Indexed: 11/25/2022]
Abstract
We have used a highly environment-sensitive fluorescent probe 6-bromoacetyl-2-dimethylaminonaphthalene (badan) to study the interaction between calmodulin (CaM) and a CaM-binding peptide of the ryanodine receptor (CaMBP) and its sub-fragments F1 and F4. Badan was attached to the Thr34Cys mutant of CaM (CaM-badan). Ca(2+) increase in a physiological range of Ca(2+) (0.1-2 microM) produced about 40 times increase in the badan fluorescence. Upon binding to CaMBP, the badan fluorescence of apo-CaM showed a small increase at a slow rate; whereas that of Ca-CaM showed a large decrease at a very fast rate. Upon binding of CaM to the badan-labeled CaMBP, the badan fluorescence showed a small and slow increase at low Ca(2+), and a large and fast increase at high Ca(2+). Thus, the badan probe attached to CaM Cys(34) can be used to monitor conformational changes occurring not only in CaM, but also those in the CaM-CaMBP interface. Based on our results we propose that both the interaction interface and the global conformation of the CaM-CaMBP complex are altered by calcium.
Collapse
|
35
|
Tikunova SB, Davis JP. Designing calcium-sensitizing mutations in the regulatory domain of cardiac troponin C. J Biol Chem 2004; 279:35341-52. [PMID: 15205455 DOI: 10.1074/jbc.m405413200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac troponin C belongs to the EF-hand superfamily of calcium-binding proteins and plays an essential role in the regulation of muscle contraction and relaxation. To follow calcium binding and exchange with the regulatory N-terminal domain (N-domain) of human cardiac troponin C, we substituted Phe at position 27 with Trp, making a fluorescent cardiac troponin C(F27W). Trp(27) accurately reported the kinetics of calcium association and dissociation of the N-domain of cardiac troponin C(F27W). To sensitize the N-domain of cardiac troponin C(F27W) to calcium, we individually substituted the hydrophobic residues Phe(20), Val(44), Met(45), Leu(48), and Met(81) with polar Gln. These mutations were designed to increase the calcium affinity of the N-domain of cardiac troponin C by facilitating the movement of helices B and C (BC unit) away from helices N, A, and D (NAD unit). As anticipated, these selected hydrophobic residue substitutions increased the calcium affinity of the regulatory domain of cardiac troponin C(F27W) approximately 2.1-15.2-fold. Surprisingly, the increased calcium affinity caused by the hydrophobic residue substitutions was largely due to faster calcium association rates (2.6-8.7-fold faster) rather than to slower calcium dissociation rates (1.2-2.9-fold slower). The regulatory N-domains of cardiac troponin C(F27W) and its mutants were also able to bind magnesium competitively and with physiologically relevant affinities (1.2-2.7 mm). The design of calcium-sensitizing cardiac troponin C mutants presented in this work enhances the understanding of how to control cation binding properties of EF-hand proteins and ultimately their structure and physiological function.
Collapse
Affiliation(s)
- Svetlana B Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
36
|
Krementsov DN, Krementsova EB, Trybus KM. Myosin V: regulation by calcium, calmodulin, and the tail domain. ACTA ACUST UNITED AC 2004; 164:877-86. [PMID: 15007063 PMCID: PMC2172279 DOI: 10.1083/jcb.200310065] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium activates the ATPase activity of tissue-purified myosin V, but not that of shorter expressed constructs. Here, we resolve this discrepancy by comparing an expressed full-length myosin V (dFull) to three shorter constructs. Only dFull has low ATPase activity in EGTA, and significantly higher activity in calcium. Based on hydrodynamic data and electron microscopic images, the inhibited state is due to a compact conformation that is possible only with the whole molecule. The paradoxical finding that dFull moved actin in EGTA suggests that binding of the molecule to the substratum turns it on, perhaps mimicking cargo activation. Calcium slows, but does not stop the rate of actin movement if excess calmodulin (CaM) is present. Without excess CaM, calcium binding to the high affinity sites dissociates CaM and stops motility. We propose that a folded-to-extended conformational change that is controlled by calcium and CaM, and probably by cargo binding itself, regulates myosin V's ability to transport cargo in the cell.
Collapse
Affiliation(s)
- Dimitry N Krementsov
- Dept. of Molecular Physiology and Biophysics, University of Vermont, 130 Health Science Research Facility, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
37
|
Márquez N, Sancho R, Macho A, Calzado MA, Fiebich BL, Muñoz E. Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T-cells and NF-kappaB transcription factors. J Pharmacol Exp Ther 2004; 308:993-1001. [PMID: 14617683 DOI: 10.1124/jpet.103.060673] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE), which is derived from the propolis of honeybee hives, has been shown to reveal anti-inflammatory properties. Since T-cells play a key role in the onset of several inflammatory diseases, we have evaluated the immunosuppressive activity of CAPE in human T-cells, discovering that this phenolic compound is a potent inhibitor of early and late events in T-cell receptor-mediated T-cell activation. Moreover, we found that CAPE specifically inhibited both interleukin (IL)-2 gene transcription and IL-2 synthesis in stimulated T-cells. To further characterize the inhibitory mechanisms of CAPE at the transcriptional level, we examined the DNA binding and transcriptional activities of nuclear factor (NF)-kappaB, nuclear factor of activated cells (NFAT), and activator protein-1 (AP-1) transcription factors in Jurkat cells. We found that CAPE inhibited NF-kappaB-dependent transcriptional activity without affecting the degradation of the cytoplasmic NF-kappaB inhibitory protein, IkappaBalpha. However, both NF-kappaB binding to DNA and transcriptional activity of a Gal4-p65 hybrid protein were clearly prevented in CAPE-treated Jurkat cells. Moreover, CAPE inhibited both the DNA-binding and transcriptional activity of NFAT, a result that correlated with its ability to inhibit phorbol 12-myristate 13-acetate plus ionomycin-induced NFAT1 dephosphorylation. These findings provide new insights into the molecular mechanisms involved in the immunomodulatory and anti-inflammatory activities of this natural compound.
Collapse
Affiliation(s)
- Nieves Márquez
- Departamento de Biología Celular, Fisiología e Inmunología. Facultad de Medicina, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Faga LA, Sorensen BR, VanScyoc WS, Shea MA. Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix-helix interactions. Proteins 2003; 50:381-91. [PMID: 12557181 DOI: 10.1002/prot.10281] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Calmodulin is an EF-hand calcium-binding protein (148 a.a.) essential in intracellular signal transduction. Its homologous N- and C-terminal domains are separated by a linker that appears disordered in NMR studies. In a study of an N-domain fragment of Paramecium CaM (PCaM1-75), the addition of linker residues 76 to 80 (MKEQD) raised the Tm by 9 degrees C and lowered calcium binding by 0.54 kcal/mol (Sorensen et al., [Biochemistry 2002;41:15-20]), showing that these tether residues affect energetics as well as being a barrier to diffusion. To determine the individual contributions of residues 74 through 80 (RKMKEQD) to stability and calcium affinity, we compared a nested series of 7 fragments (PCaM1-74 to PCaM1-80). For the first 4, PCaM1-74 through PCaM1-77, single amino acid additions at the C-terminus corresponded to stepwise increases in thermostability and decreases in calcium affinity with a net change of 13.5 degrees C in Tm and 0.55 kcal/mol in free energy. The thermodynamic properties of fragments PCaM1-77 through PCaM1-80 were nearly identical. We concluded that the 3 basic residues in the sequence from 74 to 77 (RKMK) are critical to the increased stability and decreased calcium affinity of the longer N-domain fragments. Comparisons of NMR (HSQC) spectra of 15N-PCaM1-74 and 15N-PCaM1-80 and analysis of high-resolution structural models suggest these residues are latched to amino acids in helix A of CaM. The addition of residues E78, Q79, and D80 had a minimal effect on sites I and II, but they may contribute to the mechanism of energetic communication between the domains.
Collapse
Affiliation(s)
- Laurel A Faga
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
39
|
Shen Y, Lee YS, Soelaiman S, Bergson P, Lu D, Chen A, Beckingham K, Grabarek Z, Mrksich M, Tang WJ. Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins. EMBO J 2002; 21:6721-32. [PMID: 12485993 PMCID: PMC139101 DOI: 10.1093/emboj/cdf681] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Edema factor (EF) and CyaA are calmodulin (CaM)-activated adenylyl cyclase exotoxins involved in the pathogenesis of anthrax and whooping cough, respectively. Using spectroscopic, enzyme kinetic and surface plasmon resonance spectroscopy analyses, we show that low Ca(2+) concentrations increase the affinity of CaM for EF and CyaA causing their activation, but higher Ca(2+) concentrations directly inhibit catalysis. Both events occur in a physiologically relevant range of Ca(2+) concentrations. Despite the similarity in Ca(2+) sensitivity, EF and CyaA have substantial differences in CaM binding and activation. CyaA has 100-fold higher affinity for CaM than EF. CaM has N- and C-terminal globular domains, each binding two Ca(2+) ions. CyaA can be fully activated by CaM mutants with one defective C-terminal Ca(2+)-binding site or by either terminal domain of CaM while EF cannot. EF consists of a catalytic core and a helical domain, and both are required for CaM activation of EF. Mutations that decrease the interaction of the helical domain with the catalytic core create an enzyme with higher sensitivity to Ca(2+)-CaM activation. However, CyaA is fully activated by CaM without the domain corresponding to the helical domain of EF.
Collapse
Affiliation(s)
- Yuequan Shen
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Young-Sam Lee
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Sandriyana Soelaiman
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Pamela Bergson
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Dan Lu
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Alice Chen
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Kathy Beckingham
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Zenon Grabarek
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Milan Mrksich
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| | - Wei-Jen Tang
- Ben-May Institute for Cancer Research, Department of Chemistry, and Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251 and Boston Biomedical Research Institute, Watertown, MA 02472, USA Corresponding author e-mail:
| |
Collapse
|
40
|
Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun 2002; 290:615-23. [PMID: 11785943 DOI: 10.1006/bbrc.2001.6228] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In all eukaryotic cells, and particularly in neurons, Ca(2+) ions are important second messengers in a variety of cellular signaling pathways. In the retina, Ca(2+) modulation plays a crucial function in the development of the visual system's neuronal connectivity and a regulatory role in the conversion of the light signal received by photoreceptors into an electrical signal transmitted to the brain. Therefore, the study of retinal Ca(2+)-binding proteins, which frequently mediate Ca(2+) signaling, has given rise to the important discovery of two subfamilies of these proteins, neuronal Ca(2+)-binding proteins (NCBPs) and calcium-binding proteins (CaBPs), that display similarities to calmodulin (CaM). These and other Ca(2+)-binding proteins are integral components of cellular events controlled by Ca(2+). Some members of these subfamilies also play a vital role in signal transduction outside of the retina. The expansion of the CaM-like protein family reveals diversification among Ca(2+)-binding proteins that evolved on the basis of the classic molecule, CaM. A large number of NCBP and CaBP subfamily members would benefit from their potentially specialized role in Ca(2+)-dependent cellular processes. Pinpointing the role of these proteins will be a challenging task for further research.
Collapse
Affiliation(s)
- Françoise Haeseleer
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
41
|
VanScyoc WS, Shea MA. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder. Protein Sci 2001; 10:1758-68. [PMID: 11514666 PMCID: PMC2253193 DOI: 10.1110/ps.11601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2001] [Revised: 05/22/2001] [Accepted: 05/30/2001] [Indexed: 10/16/2022]
Abstract
Calmodulin (CaM) is a ubiquitous, essential calcium-binding protein that regulates diverse protein targets in response to physiological calcium fluctuations. Most high-resolution structures of CaM-target complexes indicate that the two homologous domains of CaM are equivalent partners in target recognition. However, mutations between calcium-binding sites I and II in the N-domain of Paramecium calmodulin (PCaM) selectively affect calcium-dependent sodium currents. To understand these domain-specific effects, N-domain fragments (PCaM(1-75)) of six of these mutants were examined to determine whether energetics of calcium binding to sites I and II or conformational properties had been perturbed. These PCaM((1-75)) sequences naturally contain 5 Phe residues but no Tyr or Trp; calcium binding was monitored by observing the reduction in intrinsic phenylalanine fluorescence at 280 nm. To assess mutation-induced conformational changes, thermal denaturation of the apo PCaM((1-75)) sequences, and calcium-dependent changes in Stokes radii were determined. The free energy of calcium binding to each mutant was within 1 kcal/mole of the value for wild type and calcium reduced the R(s) of all of them. A striking trend was observed whereby mutants showing an increase in calcium affinity and R(s) had a concomitant decrease in thermal stability (by as much as 18 degrees C). Thus, mutations between the binding sites that increased disorder and reduced tertiary constraints in the apo state promoted calcium coordination. This finding underscores the complexity of the linkage between calcium binding and conformational change and the difficulty in predicting mutational effects.
Collapse
Affiliation(s)
- W S VanScyoc
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | |
Collapse
|
42
|
Drum CL, Yan SZ, Sarac R, Mabuchi Y, Beckingham K, Bohm A, Grabarek Z, Tang WJ. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis. J Biol Chem 2000; 275:36334-40. [PMID: 10926933 DOI: 10.1074/jbc.m004778200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The edema factor exotoxin produced by Bacillus anthracis is an adenylyl cyclase that is activated by calmodulin (CaM) at resting state calcium concentrations in infected cells. A C-terminal 60-kDa fragment corresponding to the catalytic domain of edema factor (EF3) was cloned, overexpressed in Escherichia coli, and purified. The N-terminal 43-kDa domain (EF3-N) of EF3, the sole domain of edema factor homologous to adenylyl cyclases from Bordetella pertussis and Pseudomonas aeruginosa, is highly resistant to protease digestion. The C-terminal 160-amino acid domain (EF3-C) of EF3 is sensitive to proteolysis in the absence of CaM. The addition of CaM protects EF3-C from being digested by proteases. EF3-N and EF3-C were expressed separately, and both fragments were required to reconstitute full CaM-sensitive enzyme activity. Fluorescence resonance energy transfer experiments using a double-labeled CaM molecule were performed and indicated that CaM adopts an extended conformation upon binding to EF3. This contrasts sharply with the compact conformation adopted by CaM upon binding myosin light chain kinase and CaM-dependent protein kinase type II. Mutations in each of the four calcium binding sites of CaM were examined for their effect on EF3 activation. Sites 3 and 4 were found critical for the activation, and neither the N- nor the C-terminal domain of CaM alone was capable of activating EF3. A genetic screen probing loss-of-function mutations of EF3 and site-directed mutations based on the homology of the edema factor family revealed a conserved pair of aspartate residues and an arginine that are important for catalysis. Similar residues are essential for di-metal-mediated catalysis in mammalian adenylyl cyclases and a family of DNA polymerases and nucleotidyltransferases. This suggests that edema factor may utilize a similar catalytic mechanism.
Collapse
Affiliation(s)
- C L Drum
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Perreault-Micale C, Shushan AD, Coluccio LM. Truncation of a mammalian myosin I results in loss of Ca2+-sensitive motility. J Biol Chem 2000; 275:21618-23. [PMID: 10777479 DOI: 10.1074/jbc.m000363200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MYR-1, a mammalian class I myosin, consisting of a heavy chain and 4-6 associated calmodulins, is represented by the 130-kDa myosin I (or MI(130)) from rat liver. MI(130) translocates actin filaments in vitro in a Ca(2+)-regulated manner. A decrease in motility observed at higher Ca(2+) concentrations has been attributed to calmodulin dissociation. To investigate mammalian myosin I regulation, we have coexpressed in baculovirus calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic "motor" domain and the first calmodulin-binding IQ domain of rat myr-1; we refer to this truncated molecule here as MI(1IQ). Association of calmodulin to MI(1IQ) is Ca(2+)-insensitive. MI(1IQ) translocates actin filaments in vitro at a rate resembling MI(130), but unlike MI(130), does not exhibit sensitivity to 0.1-100 micrometer Ca(2+). In addition to demonstrating successful expression of a functional truncated mammalian myosin I in vitro, these results indicate that: 1) Ca(2+)-induced calmodulin dissociation from MI(130) in the presence of actin is not from the first IQ domain, 2) velocity is not affected by the length of the IQ region, and 3) the Ca(2+) sensitivity of actin translocation exhibited by MI(130) involves 1 or more of the other 5 IQ domains and/or the carboxyl tail.
Collapse
Affiliation(s)
- C Perreault-Micale
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA
| | | | | |
Collapse
|
44
|
Mathisen PM, Johnson JM, Kawczak JA, Tuohy VK. Visinin-like protein (VILIP) is a neuron-specific calcium-dependent double-stranded RNA-binding protein. J Biol Chem 1999; 274:31571-6. [PMID: 10531361 DOI: 10.1074/jbc.274.44.31571] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Double-stranded RNA-binding proteins function in regulating the stability, translation, and localization of specific mRNAs. In this study, we have demonstrated that the neuron-specific, calcium-binding protein, visinin-like protein (VILIP) contains one double-stranded RNA-binding domain, a protein motif conserved among many double-stranded RNA-binding proteins. We showed that VILIP can specifically bind double-stranded RNA, and this interaction specifically requires the presence of calcium. Mobility shift studies indicated that VILIP binds double-stranded RNA as a single protein-RNA complex with an apparent equilibrium dissociation constant of 9.0 x 10(-6) M. To our knowledge, VILIP is the first double-stranded RNA-binding protein shown to be calcium-dependent. Furthermore, VILIP specifically binds the 3'-untranslated region of the neurotrophin receptor, trkB, an mRNA localized to hippocampal dendrites in an activity-dependent manner. Given that VILIP is also expressed in the hippocampus, these data suggest that VILIP may employ a novel, calcium-dependent mechanism to regulate its binding to important localized mRNAs in the central nervous system.
Collapse
Affiliation(s)
- P M Mathisen
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
45
|
Valenta R, Hayek B, Seiberler S, Bugajska-Schretter A, Niederberger V, Twardosz A, Natter S, Vangelista L, Pastore A, Spitzauer S, Kraft D. Calcium-binding allergens: from plants to man. Int Arch Allergy Immunol 1998; 117:160-6. [PMID: 9935306 DOI: 10.1159/000024005] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Calcium-binding proteins contain a variable number of motifs, termed EF-hands, which consist of two perpendicularly placed alpha-helics and an inter-helical loop forming a single calcium-binding site. Due to their ability to bind and transport calcium as well as to interact with a variety of ligands in a calcium-dependent manner, they fulfill important biological functions in eukaryotic cells. After parvalbumin, a three EF-hand fish allergen, calcium-binding allergens were discovered in pollens of trees. grasses and weeds and, recently, as autoallergens in man. Although only a small percentage of atopic individuals displays IgE reactivity to calcium-binding allergens, these allergens may be important because of their ability to cross-sensitize allergic individuals. Confrontation and stability++ as well as IgE recognition of calcium-binding allergens greatly depend on the presence of protein-bound calcium ions. It is thus likely that hypoallergenic derivatives of calcium-binding allergens can be engineered by recombinant DNA technology for immunotherapy++ of sensitized patients.
Collapse
Affiliation(s)
- R Valenta
- Department of General and Experimental Pathology, University of Vienna,Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Onions J, Hermann S, Grundström T. Basic helix-loop-helix protein sequences determining differential inhibition by calmodulin and S-100 proteins. J Biol Chem 1997; 272:23930-7. [PMID: 9295343 DOI: 10.1074/jbc.272.38.23930] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins are a group of transcription factors that are involved in differentiation and numerous other cellular processes. The proteins include the widely expressed class A bHLH proteins (E proteins) and the tissue-specific class B proteins. Previous studies have shown that calmodulin can inhibit the DNA binding activity of certain E proteins but not their heterodimers with class B proteins. Here we show that calmodulin binds to the DNA-interacting basic sequence within the bHLH domain of E proteins. The strength of the binding of bHLH proteins to calmodulin correlates directly with the calmodulin sensitivity of their DNA binding. The basic sequence of MyoD, a class B protein, can also interact with calmodulin. This interaction, however, is blocked by MyoD sequences directly N-terminal of the basic sequence. We further demonstrate that S-100 proteins can interact with and differentially inhibit the DNA binding of bHLH proteins through interaction with the basic sequence. Both the binding to the basic sequence and the effect of the directly N-terminal sequence vary for different S-100 proteins and bHLH proteins. The results suggest the involvement of both calmodulin and S-100 proteins in the differential regulation of bHLH proteins.
Collapse
Affiliation(s)
- J Onions
- Division of Tumour Biology, Department of Applied Cell and Molecular Biology, Umeâ University, S-901 87 Umeâ, Sweden
| | | | | |
Collapse
|
47
|
Huber PA, El-Mezgueldi M, Grabarek Z, Slatter DA, Levine BA, Marston SB. Multiple-sited interaction of caldesmon with Ca(2+)-calmodulin. Biochem J 1996; 316 ( Pt 2):413-20. [PMID: 8687382 PMCID: PMC1217366 DOI: 10.1042/bj3160413] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The binding of Ca(2+)- and Ba(2+)-calmodulin to caldesmon and its functional consequence was investigated with three different calmodulin mutants. Two calmodulin mutants have pairs of cysteine residues substituted and oxidized to a disulphide bond in either the N- or C-terminal lobe (C41/75 and C85/112). The third mutant has phenylalanine-92 replaced by alanine (F92A). Binding measurements in the presence of Ca2+ by separation on native gels and by carbodiimide-induced cross-linking showed a lower affinity for caldesmon in all the mutants. When Ca2+ was replaced by Ba2+ the affinity of calmodulin for caldesmon was further reduced. The ability of Ca(2+)-calmodulin to release caldesmon's inhibition of the actin-tropomyosin-activated myosin ATPase was virtually abolished by mutation of phenylalanine-92 to alanine or by replacing Ba2+ for Ca2+ in native calmodulin. Both cysteine mutants retained their functional ability, but the increased concentration needed for 50% release of caldesmon inhibition reflected their decreased affinity. Ca2+ -calmodulin produced a broadening in the signals of the NMR spectrum of the 10 kDa Ca(2+)-calmodulin-binding C-terminal fragment of caldesmon arising from tryptophans -749 and -779 and caused an enhancement of maximum tryptophan fluorescence of 49% and a 16 nm blue shift of the maximum. Ca(2+)-calmodulin F92A produced a change in wavelength of 4 nm but no change in maximum, whereas Ca(2+)-calmodulin C41/75 binding produced a decrease in fluorescence with no shift of the maximum. We conclude that functional binding of Ca(2+)-calmodulin to caldesmon requires multiple interaction sites on both molecules. However, some structural modification in calmodulin does not abolish the caldesmon-related functionality. This suggests that various EF hand proteins can substitute for the calmodulin molecule.
Collapse
Affiliation(s)
- P A Huber
- Imperial College, National Heart and Lung Institute, London, U.K
| | | | | | | | | | | |
Collapse
|
48
|
Meyer DF, Mabuchi Y, Grabarek Z. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin. J Biol Chem 1996; 271:11284-90. [PMID: 8626680 DOI: 10.1074/jbc.271.19.11284] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent studies have shown that substitution of Ala for one or more Phe residues in calmodulin (CaM) imparts a temperature-sensitive phenotype to yeast (Ohya, Y., and Botstein, D. (1994) Science 263, 963-966). The Phe residue immediately preceding the first Ca(2+) ligand in site III of CaM (Phe-92) was found to be of particular importance because the mutation at this position alone was sufficient to induce this phenotype. In the present work we have studied the functional and structural consequences of the Phe-92 --> Ala mutation in human liver calmodulin. We found that the mutant (CaMF92A) is incapable of activating phosphodiesterase, and the maximal activation of calcineurin is reduced by 40% as compared with the wild type CaM. Impaired regulatory properties of CaMF92A are accompanied by an increase in affinity for Ca(2+) at the C-terminal domain. To investigate the structural consequences of the F92A mutation, we constructed four recombinant C-terminal domain fragments (C-CaM) of calmodulin (residues 78-148): 1) wild type (C-CaMW); 2) Ala substituted for Phe-92 (C-CaMF92A); 3) cysteine residues introduced at position 85 and 112 to lock the domain with a disulfide bond in the Ca(2+)-free (closed) conformation (C-CaM85/112); and 4) mutations 2 and 3 combined (C-CaM85/112F92A). The Cys-containing mutants readily form intramolecular disulfide bonds regardless whether Phe or Ala is present at position 92. The F92A mutation causes a decrease in stability of the domain in the absence of Ca(2+) as indicated by an 11.8 degree C shift in the far UV circular dichroism thermal unfolding curve. This effect is reversed by the disulfide bond in the C-CaM85/112F92A mutant. The C-CaMW peptide shows a characteristic Ca(2+)-dependent increase in solvent-exposed hydrophobic surface which was monitored by an increase in the fluorescence of the hydrophobic probe 1,1'-bis(4-anilino)-naphthalene-5,5'-disulfonic acid. The fluorescence increase induced by C-CaMF92A is approximately 45% lower than that induced by C-CaMW suggesting that the F92A mutation causes a decrease in the accessibility of several hydrophobic side chains in the C-terminal domain of CaM in the presence of Ca(2+). The Cys-85-Cys-112 disulfide bond causes a 10- or 5.9-fold decrease in Ca(2+) affinity depending on whether Phe or Ala is present at position 92, respectively, suggesting that coupling between Ca(2+) binding and the conformational transition is weaker in the absence of the phenyl ring at position 92. Our results indicate that Phe-92 makes an important contribution to the Ca(2+)-induced transition in the C-terminal domain of CaM. This is most likely the reason for the severely impaired regulatory properties of the CaM mutants having Ala substituted for Phe-92.
Collapse
Affiliation(s)
- D F Meyer
- Muscle Research Group, Boston Biomedical Research Institute, Massachusetts 02114, USA
| | | | | |
Collapse
|