1
|
Küchler M, Ehmke M, Jaquet K, Wohlmuth P, Feldhege JM, Reese T, Hartmann T, Drexler R, Huber T, Burmester T, Oldhafer KJ. Transcription enhanced associate domain factor 1 (TEAD1) predicts liver regeneration outcome of ALPPS-treated patients. HPB (Oxford) 2025; 27:470-479. [PMID: 39870556 DOI: 10.1016/j.hpb.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND The two-stage surgical technique of associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) enables extensive liver resection and promotes future liver remnant regeneration (FLR), in part by inhibiting the Hippo signalling pathway. Its main effector, Yes-associated protein (YAP), has low intrinsic transcriptional activity and requires the transcription enhanced associated domain factor (TEAD) family members as cofactors for target gene transcription. We evaluated the intracellular localization and expression of TEAD1-4, hypothesized to regulate the activity of YAP and, consequently, liver regeneration. METHODS The intracellular localization of TEAD1-4 was characterized in tumor-free liver (TFL) tissue samples from 44 ALPPS patients obtained during the two stages of ALPPS surgery. Expression levels were correlated with clinical and pathological data as well as liver regeneration metrics. RESULTS TEAD family members are simultaneously expressed in individual hepatocytes and show relations with liver regeneration, clinical outcome and outcome parameters when comparing TFL tissue obtained at different stages of ALPPS surgery. Furthermore, differences in TEAD expression and localization within hepatocytes appeared to be independent of global factors. CONCLUSION TEAD1-4 expression correlates with liver regeneration outcomes. Specifically, cytoplasmic and nuclear expression scores of TEAD1 serve as predictive markers for clinical outcomes following ALPPS.
Collapse
Affiliation(s)
- Mirco Küchler
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany.
| | - Mareike Ehmke
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Kai Jaquet
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Peter Wohlmuth
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Johannes M Feldhege
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Tim Reese
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Thilo Hartmann
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of Cell Biology, Core Lab Facility, Asklepios Hospital St Georg, Hamburg, Germany
| | - Richard Drexler
- Division of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa Huber
- Department of Gynecology and Obstetrics, University Hospital Zurich, Switzerland
| | - Thorsten Burmester
- Division of Molecular Animal Physiology, Department of Biology, University Hamburg, Germany
| | - Karl J Oldhafer
- Institute for Clinical Research (IKF), Semmelweis University, Campus Hamburg, Germany; Division of HPB Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
| |
Collapse
|
2
|
Lin KC, Park HW, Guan KL. Regulation of the Hippo Pathway Transcription Factor TEAD. Trends Biochem Sci 2017; 42:862-872. [PMID: 28964625 DOI: 10.1016/j.tibs.2017.09.003] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/07/2023]
Abstract
The TEAD transcription factor family is best known for transcriptional output of the Hippo signaling pathway and has been implicated in processes such as development, cell growth and proliferation, tissue homeostasis, and regeneration. Our understanding of the functional importance of TEADs has increased dramatically since its initial discovery three decades ago. The majority of our knowledge of TEADs is in the context of Hippo signaling as nuclear DNA-binding proteins passively activated by Yes-associated protein (YAP) and transcriptional activator with PDZ-binding domain (TAZ), transcription coactivators downstream of the Hippo pathway. However, recent studies suggest that TEAD itself is actively regulated. Here, we highlight evidence demonstrating Hippo-independent regulation of TEADs and the potential impacts these studies may have on new cancer therapeutics.
Collapse
Affiliation(s)
- Kimberly C Lin
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Landin-Malt A, Benhaddou A, Zider A, Flagiello D. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors. Gene 2016; 591:292-303. [PMID: 27421669 DOI: 10.1016/j.gene.2016.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023]
Abstract
TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression.
Collapse
Affiliation(s)
- André Landin-Malt
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Ataaillah Benhaddou
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| | - Alain Zider
- Univ Paris Diderot, Sorbonne Paris Cité, Team Molecular Oncology and Ovarian Pathologies, IJM, UMR 7592 CNRS, Paris, France.
| | - Domenico Flagiello
- Univ Paris Diderot, Sorbonne Paris Cité, Team Regulation of Cell-Fate Specification in the Mouse, IJM, UMR 7592 CNRS, Paris, France.
| |
Collapse
|
4
|
TEAD1 controls C2C12 cell proliferation and differentiation and regulates three novel target genes. Cell Signal 2012; 25:674-81. [PMID: 23220227 DOI: 10.1016/j.cellsig.2012.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 11/21/2022]
Abstract
TEAD1 is a transcription factor involved in activation of muscle specific genes, such as the cardiac muscle troponin T gene, skeletal muscle actin, myosin heavy chains genes. Here, we reported that TEAD1 was expressed ubiquitously in different mouse tissues and was up-regulated in differentiation process of the mouse myoblast cell line C2C12. Functional assay revealed that overexpression of TEAD1 gene can arrest the C2C12 cell cycle and promote C2C12 cell differentiation. To understand the physiological role of TEAD1 in muscle development, three new regulated genes of TEAD1, Mrpl21, Ndufa6 and Ccne1, were identified by expression analysis, promoter activity measurement assay. The expression patterns of target genes were detected in the cell differentiation process. The Mrpl21 and Ndufa6 genes were up-regulated in cell differentiation while Ccne1 gene was significantly down-regulated. Overexpression of Mrpl21 and Ndufa6 in C2C12 can up-regulate Myh4 gene expression thus promote C2C12 differentiation, but did not affect cell cycle. Co-overexpression of Ccne1 with Ndufa6 resulted in Myh4 expression decrease and the number of S-phase cells slight increase. Together, our results suggested that TEAD1 may mediate muscle development through its target genes, Mrpl21, Ndufa6 and Ccne1.
Collapse
|
5
|
Jin Y, Messmer-Blust AF, Li J. The role of transcription enhancer factors in cardiovascular biology. Trends Cardiovasc Med 2012; 21:1-5. [PMID: 22498013 DOI: 10.1016/j.tcm.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transcriptional enhancer factor (TEF) multigene family is primarily functional in muscle-specific genes through binding to MCAT elements that activate or repress transcription of many genes in response to physiological and pathological stimuli. Among the TEF family, TEF-1, RTEF-1, and DTEF-1 are critical regulators of cardiac and smooth muscle-specific genes during cardiovascular development and cardiac disorders including cardiac hypertrophy. Emerging evidence suggests that in addition to functioning as muscle-specific transcription factors, members of the TEF family may be key mediators of gene expression induced by hypoxia in endothelial cells by virtue of its multidomain organization, potential for post-translational modifications, and interactions with numerous transcription factors, which represent a cell-selective control mediator of nuclear signaling. We review the recent literature demonstrating the involvement of the TEF family of transcription factors in the regulation of differential gene expression in cardiovascular physiology and pathology.
Collapse
Affiliation(s)
- Yi Jin
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
6
|
Messmer-Blust AF, Philbrick MJ, Guo S, Wu J, He P, Guo S, Li J. RTEF-1 attenuates blood glucose levels by regulating insulin-like growth factor binding protein-1 in the endothelium. Circ Res 2012; 111:991-1001. [PMID: 22843786 DOI: 10.1161/circresaha.112.268110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Related transcriptional enhancer factor-1 (RTEF-1) plays an important role in endothelial cell function by regulating angiogenesis; however, the mechanism underlying the role of RTEF-1 in the endothelium in vivo is not well defined. OBJECTIVE We investigated the biological functions of RTEF-1 by disrupting the gene that encodes it in mice endothelium -specific RTEF-1-deficient transgenic mice (RTEF-1(-/-)). METHODS AND RESULTS RTEF-1(-/-) mice showed significantly increased blood glucose levels and insulin resistance, accompanied by decreased levels of insulin-like growth factor binding protein-1 (IGFBP-1) mRNA in the endothelium and decreased serum IGFBP-1 levels. Additionally, the RTEF-1(-/-) phenotype was exacerbated when the mice were fed a high-fat diet, which correlated with decreased IGFBP-1 levels. In contrast, vascular endothelial cadherin/RTEF-1-overexpressing(1) transgenic mice (VE-Cad/RTEF1) demonstrated improved glucose clearance and insulin sensitivity in response to a high-fat diet. Furthermore, we demonstrated that RTEF-1 upregulates IGFBP-1 through selective binding and promotion of transcription from the insulin response element site. Insulin prevented RTEF-1 expression and significantly inhibited IGFBP-1 transcription in endothelial cells in a dose-dependent fashion. CONCLUSIONS To the best of our knowledge, this is the first report demonstrating that RTEF-1 stimulates promoter activity through an insulin response element and also mediates the effects of insulin on gene expression. These results show that RTEF-1-stimulated IGFBP-1 expression may be central to the mechanism by which RTEF-1 attenuates blood glucose levels. These findings provide the basis for novel insights into the transcriptional regulation of IGFBP-1 and contribute to our understanding of the role of vascular endothelial cells in metabolism.
Collapse
Affiliation(s)
- Angela F Messmer-Blust
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Jin Y, Wu J, Song X, Song Q, Cully BL, Messmer-Blust A, Xu M, Foo SY, Rosenzweig A, Li J. RTEF-1, an upstream gene of hypoxia-inducible factor-1α, accelerates recovery from ischemia. J Biol Chem 2011; 286:22699-705. [PMID: 21540178 DOI: 10.1074/jbc.m111.237024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The amount of available hypoxia-inducible factor (HIF)-1α has been considered to be largely a consequence of post-translational modification by multiple ubiquitin-proteasome pathways. However, the role of transcriptional regulation of HIF-1α is less certain, and the mechanisms of transcriptional regulation of HIF-1α require further investigation. Here we report that related transcriptional enhancer factor-1 (RTEF-1), a member of the TEF transcriptional factor family, transcriptionally regulates the HIF-1α gene under normoxic and hypoxic conditions. The expression of HIF-1α mRNA was decreased in endothelial cells in which RTEF-1 was knocked down with siRNA. Sequential deletional analysis of the HIF-1α promoter revealed that the MCAT-like element in the HIF-1α promoter was essential for HIF-1α transcription. Binding of RTEF-1 to the MCAT-like element was confirmed by ChIP. Treatment of endothelial cells with a HIF-1 inhibitor resulted in retardation of RTEF-1-induced proliferation and tube formation. Moreover, increased HIF-1α expression was observed in transgenic mice expressing RTEF-1 under the VE-cadherin promoter (VE-Cad/RTEF-1). VE-Cad/RTEF-1 mice subjected to hindlimb ischemia demonstrated increased levels of HIF-1α, accelerated recovery of blood flow, and increased capillary density compared with littermate controls. These results identify RTEF-1 as a regulator of HIF-1α transcription, which results in up-regulation of HIF-1α and acceleration of recovery from ischemia.
Collapse
Affiliation(s)
- Yi Jin
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mahoney W, Hong JH, Yaffe M, Farrance I. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) family members. Biochem J 2009; 388:217-25. [PMID: 15628970 PMCID: PMC1186710 DOI: 10.1042/bj20041434] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the highly related TEF-1 (transcriptional enhancer factor-1) family (also known as TEAD, for TEF-1, TEC1, ABAA domain) bind to MCAT (muscle C, A and T sites) and A/T-rich sites in promoters active in cardiac, skeletal and smooth muscle, placenta, and neural crest. TEF-1 activity is regulated by interactions with transcriptional co-factors [p160, TONDU (Vgl-1, Vestigial-like protein-1), Vgl-2 and YAP65 (Yes-associated protein 65 kDa)]. The strong transcriptional co-activator YAP65 interacts with all TEF-1 family members, and, since YAP65 is related to TAZ (transcriptional co-activator with PDZ-binding motif), we wanted to determine if TAZ also interacts with members of the TEF-1 family. In the present study, we show by GST (glutathione S-transferase) pull-down assays, by co-immunoprecipitation and by modified mammalian two-hybrid assays that TEF-1 interacts with TAZ in vitro and in vivo. Electrophoretic mobility-shift assays with purified TEF-1 and GST-TAZ fusion protein showed that TAZ interacts with TEF-1 bound to MCAT DNA. TAZ can interact with endogenous TEF-1 proteins, since exogenous TAZ activated MCAT-dependent reporter promoters. Like YAP65, TAZ interacted with all four TEF-1 family members. GST pull-down assays with increasing amounts of [35S]TEF-1 and [35S]RTEF-1 (related TEF-1) showed that TAZ interacts more efficiently with TEF-1 than with RTEF-1. This differential interaction also extended to the interaction of TEF-1 and RTEF-1 with TAZ in vivo, as assayed by a modified mammalian two-hybrid experiment. These data show that differential association of TEF-1 proteins with transcriptional co-activators may regulate the activity of TEF-1 family members.
Collapse
Affiliation(s)
- William M. Mahoney
- *Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
| | - Jeong-Ho Hong
- †Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, U.S.A
| | - Michael B. Yaffe
- †Center for Cancer Research, E18-580, Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, U.S.A
| | - Iain K. G. Farrance
- *Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Cao X, Pfaff SL, Gage FH. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 2008; 22:3320-34. [PMID: 19015275 DOI: 10.1101/gad.1726608] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tight control of cell proliferation is essential for proper growth during development and for tissue homeostasis in mature animals. The evolutionarily conserved Hippo pathway restrains proliferation through a kinase cascade that culminates in the inhibition of the transcriptional coactivator YAP. Unphosphorylated YAP activates genes involved in cell proliferation and survival by interacting with a DNA-binding factor. Here we show that during vertebrate neural tube development, the TEA domain transcription factor (TEAD) is the cognate DNA-binding partner of YAP. YAP and TEAD gain of function causes marked expansion of the neural progenitor population, partly owing to their ability to promote cell cycle progression by inducing cyclin D1 and to inhibit differentiation by suppressing NeuroM. Their loss of function results in increased apoptosis, whereas repressing their target genes leads to premature neuronal differentiation. Inhibiting the upstream kinases of the Hippo pathway also causes neural progenitor overproliferation. Thus, the Hippo pathway plays critical roles in regulating neural progenitor cell number by affecting proliferation, fate choice, and cell survival.
Collapse
Affiliation(s)
- Xinwei Cao
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
10
|
Liu X, Zhao D, Qin L, Li J, Zeng H. Transcription enhancer factor 3 (TEF3) mediates the expression of Down syndrome candidate region 1 isoform 1 (DSCR1-1L) in endothelial cells. J Biol Chem 2008; 283:34159-67. [PMID: 18840614 DOI: 10.1074/jbc.m806338200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Down syndrome candidate region 1 gene (DSCR1) can be expressed as four isoforms, one of which is the well-studied isoform 4 (DSCR1-4) that is induced by VEGF-A(165) to provide a negative feedback loop in the VEGF-A(165)-induced angiogenesis. We reported previously that another DSCR1 isoform, DSCR1-1L, was also up-regulated by VEGF-A(165) in cultured endothelial cells and in several in vivo models of pathological angiogenesis and that different from DSCR1-4, DSCR1-1L overexpression alone induced cultured endothelial cell proliferation and promoted angiogenesis in Matrigel assays. It was reported recently that tumor growth was greatly repressed in DSCR1 knock-out mice. Although DSCR1-4 transcription was primarily regulated by NFAT, the mechanism regulating DSCR1-1L expression was still unknown. We developed human DSCR1-1L promoter-driven luciferase system and found that deletion of a putative conserved M-CAT site located 1426-bp upstream of the translation start site blunted promoter activity. We further showed that knockdown of TEF3, not other members of TEF family inhibited VEGF-A(165)-induced DSCR1-1L expression. We also demonstrated that TEF3 directly interacted with the putative M-CAT site in the DSCR1-1L promoter in vitro and in vivo. Finally, overexpression of TEF3 isoform 1, not isoform 3, in HUVEC was sufficient to induce DSCR1-1L expression even in the absence of VEGF-A(165) stimulation. Taken together, we elucidated a novel function of transcriptional factor TEF3. TEF3 was required for DSCR1-1L expression through binding to the M-CAT site in its promoter and could be an attractive target for anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
11
|
Cloke B, Huhtinen K, Fusi L, Kajihara T, Yliheikkilä M, Ho KK, Teklenburg G, Lavery S, Jones MC, Trew G, Kim JJ, Lam EWF, Cartwright JE, Poutanen M, Brosens JJ. The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology 2008; 149:4462-74. [PMID: 18511503 PMCID: PMC5393297 DOI: 10.1210/en.2008-0356] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. We now show an important role for androgen receptor (AR) signaling in this differentiation process. Decreased posttranslational modification of the AR by small ubiquitin-like modifier (SUMO)-1 in decidualizing cells accounted for increased responsiveness to androgen. By combining small interfering RNA technology with genome-wide expression profiling, we found that AR and progesterone receptor (PR) regulate the expression of distinct decidual gene networks. Ingenuity pathway analysis implicated a preponderance of AR-induced genes in cytoskeletal organization and cell motility, whereas analysis of AR-repressed genes suggested involvement in cell cycle regulation. Functionally, AR depletion prevented differentiation-dependent stress fiber formation and promoted motility and proliferation of decidualizing cells. In comparison, PR depletion perturbed the expression of many more genes, underscoring the importance of this nuclear receptor in diverse cellular functions. However, several PR-dependent genes encode for signaling intermediates, and knockdown of PR, but not AR, compromised activation of WNT/beta-catenin, TGFbeta/SMAD, and signal transducer and activator of transcription (STAT) pathways in decidualizing cells. Thus, the nonredundant function of the AR in decidualizing HESCs, centered on cytoskeletal organization and cell cycle regulation, implies an important role for androgens in modulating fetal-maternal interactions. Moreover, we show that PR regulates HESC differentiation, at least in part, by reprogramming growth factor and cytokine signal transduction.
Collapse
Affiliation(s)
- Brianna Cloke
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yoshida T. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease. Arterioscler Thromb Vasc Biol 2007; 28:8-17. [PMID: 17962623 DOI: 10.1161/atvbaha.107.155788] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MCAT elements are located in the promoter-enhancer regions of cardiac, smooth, and skeletal muscle-specific genes including cardiac troponin T, beta-myosin heavy chain, smooth muscle alpha-actin, and skeletal alpha-actin, and play a key role in the regulation of these genes during muscle development and disease. The binding factors of MCAT elements are members of the transcriptional enhancer factor-1 (TEF-1) family. However, it has not been fully understood how these transcription factors confer cell-specific expression in muscle, because their expression patterns are relatively broad. Results of recent studies revealed multiple mechanisms whereby TEF-1 family members control MCAT element-dependent muscle-specific gene expression, including posttranslational modifications of TEF-1 family members, the presence of muscle-selective TEF-1 cofactors, and cell-selective control of TEF-1 accessibility to MCAT elements. In addition, of particular interest, recent studies regarding MCAT element-dependent transcription of the myocardin gene and the smooth muscle alpha-actin gene in muscle provide evidence for the transcriptional diversity among distinct cell types and subtypes. This article summarizes the role of MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, and reviews recent progress in our understanding of the transcriptional regulatory mechanisms involved in MCAT element-dependent muscle-specific gene expression.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Molecular Physiology and Biological Physics, University of Virginia, MR5 Room 1226, 415 Lane Road, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
13
|
Mann CJ, Osborn DPS, Hughes SM. Vestigial-like-2b (VITO-1b) and Tead-3a (Tef-5a) expression in zebrafish skeletal muscle, brain and notochord. Gene Expr Patterns 2007; 7:827-36. [PMID: 17916448 DOI: 10.1016/j.modgep.2007.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/03/2007] [Accepted: 08/07/2007] [Indexed: 12/22/2022]
Abstract
The vestigial gene has been shown to control skeletal muscle formation in Drosophila and the related Vestigial-like 2 (Vgl-2) protein plays a similar role in mice. Vgl-family proteins are thought to regulate tissue-specific gene expression by binding to members of the broadly expressed Scalloped/Tef/TEAD transcription factor family. Zebrafish have at least four Vgl genes, including two Vgl-2s, and at least three TEAD genes, including two Tead3s. We describe the cloning and expression of one member from each family in the zebrafish. A novel gene, vgl-2b, with closest homology to mouse and human vgl-2, is expressed transiently in nascent notochord and in muscle fibres as they undergo terminal differentiation during somitogenesis. Muscle cells also express a TEAD-3 homologue, a possible partner of Vgl-2b, during myoblast differentiation and early fibre assembly. Tead-3a is also expressed in rhombomeres, eye and epiphysis regions.
Collapse
Affiliation(s)
- Christopher J Mann
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
14
|
Azakie A, Fineman JR, He Y. Myocardial transcription factors are modulated during pathologic cardiac hypertrophy in vivo. J Thorac Cardiovasc Surg 2006; 132:1262-71. [PMID: 17140938 DOI: 10.1016/j.jtcvs.2006.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/30/2006] [Accepted: 08/10/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVES In the current study we describe and characterize a novel ovine model of biventricular hypertrophy and heart failure and evaluate the role of selected cardiac transcription factors in the regulation of cardiac gene expression during pathologic hypertrophy in vivo. The cardiac troponin T promoter is used as a model gene. METHODS AND RESULTS Transient transfections of ovine cardiomyocytes in culture show that Sp1, transcriptional enhancer factor-1, and myocyte enhancer factor-2 activate cardiac troponin T promoter constructs. Cotransfection of Sp3 inhibits cardiac troponin T promoter activity and represses Sp1-mediated activation of the cardiac troponin T promoter. By chromatin immunoprecipitation, transcriptional enhancer factor-1, myocyte enhancer factor-2, NKX2.5, GATA-4, and Sp factors bind the cardiac troponin T promoter in vivo. To assess the role of cardiac transcription during pathologic hypertrophy, in vivo, we created surgical aorta-pulmonary shunts in utero in fetal lambs. Two weeks after spontaneous delivery, shunted lambs showed failure to thrive, significant biventricular hypertrophy, and heart failure. Shunted hearts had significant increases in myosin and cardiac troponin T protein expression. There was a shift in expression to the high-molecular-weight fetal isoforms. Transcriptional enhancer factor-1, myocyte enhancer factor-2, GATA-4, NKX2.5, and Sp1 transcription factor levels were increased in all heart chambers of shunted animals. Sp3 expression was decreased in shunted ventricles. Immunoprecipitated Sp3 was associated with significant increases in histone acetyl transferase activity and decreases in histone-deacetylase activity. CONCLUSION The shunted neonatal lamb is a valid, novel model of pathologic biventricular hypertrophy. During pathologic hypertrophy myocardial transactivators are upregulated while repressors are downregulated.
Collapse
Affiliation(s)
- Anthony Azakie
- University of California, San Francisco, Department of Surgery, San Francisco, Calif 94143, USA.
| | | | | |
Collapse
|
15
|
Yamasaki Y, Komoike Y, Higashinakagawa T. Adaptive changes in TEF-1 gene expression during cold acclimation in the medaka. Zoolog Sci 2006; 23:903-8. [PMID: 17116993 DOI: 10.2108/zsj.23.903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
How animals adaptively respond to a cold or hot environment has been questioned for a long time. Recently, with the aid of microarray analysis, various temperature-sensitive genes have been identified in several species. However, a definitive hypothesis regarding the mechanism of adaptation has not been proposed. In the present study, we surveyed, in medaka (Oryzias latipes), genes for which the level of expression changes depending on the surrounding temperature. A messenger RNA differential display of medaka muscle total RNA revealed one such gene encoding transcription enhancer factor-1 (TEF-1). In medaka muscle, the TEF-1 gene produces two splicing variants, TEF-1A and TEF-1B mRNAs. During cold acclimation, the mRNA level of TEF-1A decreased, whereas that of TEF-1B increased. We also found that three putative downstream genes of TEF-1, two for myosin heavy chain (MyHC) and one for troponin T (TnT), a specific group of muscle proteins, were transcribed in a temperature-dependent manner. These results suggest that the transcription of MyHC and/or TnT is regulated by TEF-1 and that these molecules participate in muscle reconstruction during temperature adaptation in fish.
Collapse
Affiliation(s)
- Yukihiko Yamasaki
- Department of Biology, School of Education, Waseda University, Shinjuku, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Pasquet S, Naye F, Faucheux C, Bronchain O, Chesneau A, Thiébaud P, Thézé N. Transcription Enhancer Factor-1-dependent Expression of the α-Tropomyosin Gene in the Three Muscle Cell Types. J Biol Chem 2006; 281:34406-20. [PMID: 16959782 DOI: 10.1074/jbc.m602282200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In vertebrates, the actin-binding proteins tropomyosins are encoded by four distinct genes that are expressed in a complex pattern during development and muscle differentiation. In this study, we have characterized the transcriptional machinery of the alpha-tropomyosin (alpha-Tm) gene in muscle cells. Promoter analysis revealed that a 284-bp proximal promoter region of the Xenopus laevis alpha-Tm gene is sufficient for maximal activity in the three muscle cell types. The transcriptional activity of this promoter in the three muscle cell types depends on both distinct and common cis-regulatory sequences. We have identified a 30-bp conserved sequence unique to all vertebrate alpha-Tm genes that contains an MCAT site that is critical for expression of the gene in all muscle cell types. This site can bind transcription enhancer factor-1 (TEF-1) present in muscle cells both in vitro and in vivo. In serum-deprived differentiated smooth muscle cells, TEF-1 was redistributed to the nucleus, and this correlated with increased activity of the alpha-Tm promoter. Overexpression of TEF-1 mRNA in Xenopus embryonic cells led to activation of both the endogenous alpha-Tm gene and the exogenous 284-bp promoter. Finally, we show that, in transgenic embryos and juveniles, an intact MCAT sequence is required for correct temporal and spatial expression of the 284-bp gene promoter. This study represents the first analysis of the transcriptional regulation of the alpha-Tm gene in vivo and highlights a common TEF-1-dependent regulatory mechanism necessary for expression of the gene in the three muscle lineages.
Collapse
|
17
|
Azakie A, Fineman JR, He Y. Sp3 inhibits Sp1-mediated activation of the cardiac troponin T promoter and is downregulated during pathological cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol 2006; 291:H600-11. [PMID: 16617124 DOI: 10.1152/ajpheart.01305.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Combinatorial interactions between cis elements and trans-acting factors are required for regulation of cardiac gene expression during normal cardiac development and pathological cardiac hypertrophy. Sp factors bind GC boxes and are implicated in recruitment and assembly of the basal transcriptional complex. In this study, we show that the cardiac troponin T (cTnT) promoter contains a GC box that is necessary for basal and cAMP-mediated activity of cTnT promoter constructs transfected in embryonic cardiomyocytes. Cardiac nuclear proteins bind the cTnT GC box in a sequence-specific fashion and consist of Sp1, Sp2, and Sp3 protein factors. By chromatin immunoprecipitation, Sp1 binds the cTnT promoter "in vivo." Cotransfected Sp1 trans-activates the cTnT promoter in cardiomyocytes in culture. Sp3 represses Sp1-mediated transcriptional activation of the cTnT gene in embryonic cardiomyocytes. Sp3 repression of Sp1-mediated cTnT promoter activation is dose dependent, inferring a mechanism of competitive binding/inhibition. To evaluate the role of Sp factors in cardiac gene expression in vivo, we have established a clinically relevant animal model of pathological cardiac hypertrophy where the fetal cardiac program is activated. In this animal model, cardiac hypertrophy results from increased left-right shunting, volume loading of the left ventricle, and pressure loading of the right ventricle. Sp1 expression is increased in all four hypertrophied cardiac chambers, whereas Sp3 expression is diminished. This observation is consistent with the in vitro activating function of Sp1 and inhibitory effects of Sp3 on activity of cTnT promoter constructs. Sp factor levels are modulated during the hypertrophic cardiac program in vivo.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
18
|
Azakie A, Lamont L, Fineman JR, He Y. Divergent transcriptional enhancer factor-1 regulates the cardiac troponin T promoter. Am J Physiol Cell Physiol 2005; 289:C1522-34. [PMID: 16049055 DOI: 10.1152/ajpcell.00126.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MCAT elements are essential for cardiac gene expression during development. Avian transcriptional enhancer factor-1 (TEF-1) proteins are muscle-enriched and contribute to MCAT binding activities. However, direct activation of MCAT-driven promoters by TEF-1-related proteins has not been uniformly achieved. Divergent TEF (DTEF)-1 is a unique member of the TEF-1 multigene family with abundant transcripts in the heart but not in skeletal muscle. Herein we show that DTEF-1 proteins are highly expressed in the heart. Protein expression is activated at very early stages of chick embryogenesis (Hamburger-Hamilton stage 4, 16–18 h), after which DTEF-1 becomes abundant in the sinus venosus and is expressed in the trabeculated ventricular myocardium and ventricular outflow tracts. By chromatin immunoprecipitation, DTEF-1 interacts with the cardiac troponin T (cTnT) promoter in vivo. DTEF-1 also interacts with MEF- 2 by coimmunoprecipitation and independently or cooperatively (with MEF-2) trans-activates the cTnT promoter. DTEF-1 isoforms do not activate the cTnT promoter in fibroblasts or skeletal muscle. DTEF-1 expression occurs very early in chick embryogenesis (16–18 h), preceding sarcomeric protein expression, and it activates cardiac promoters. As such, DTEF-1 may be an early marker of the myocardial phenotype. DTEF-1 trans-activates the cTnT promoter in a tissue-specific fashion independent of AT-rich, MEF-2, or GATA sites. The observed spatial pattern suggests decreasing levels of expression from the cardiac inlet to the ventricular outflow tracts, which may mark a cardiogenic or differentiation pathway that parallels the direction of flow through the developing chick heart.
Collapse
Affiliation(s)
- Anthony Azakie
- Department of Surgery, Univ. of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
19
|
Takahashi K, Maruyama M, Tokuzawa Y, Murakami M, Oda Y, Yoshikane N, Makabe KW, Ichisaka T, Yamanaka S. Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics 2005; 85:360-71. [PMID: 15718103 DOI: 10.1016/j.ygeno.2004.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 11/22/2004] [Indexed: 11/17/2022]
Abstract
Only a few cases of exclusive translation initiation at non-AUG codons have been reported. We recently demonstrated that mammalian NAT1 mRNA, encoded by EIF4G2, uses GUG as its only translation initiation codon. In this study, we identified NAT1 orthologs from chicken, Xenopus, and zebrafish and found that in all species, the GUG codon also serves as the initiation codon. In all species, the GUG codon fulfilled the reported requirements for non-AUG initiation: an optimal Kozak motif and a downstream hairpin structure. Site-directed mutagenesis showed that nucleotides at positions -3 and +4 are critical for the GUG-mediated translation initiation in vitro. We found that NAT1 orthologs in Drosophila melanogaster and Halocynthia roretzi also use non-AUG start codons, demonstrating evolutionary conservation of the noncanonical translation initiation.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma 8916-5, Nara 630-0101, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Srivastava A, Simmonds AJ, Garg A, Fossheim L, Campbell SD, Bell JB. Molecular and functional analysis of scalloped recessive lethal alleles in Drosophila melanogaster. Genetics 2005; 166:1833-43. [PMID: 15126402 PMCID: PMC1470810 DOI: 10.1534/genetics.166.4.1833] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila melanogaster scalloped (sd) gene is a homolog of the human TEF-1 gene and is a member of the TEA/ATTS domain-containing family of transcription factors. In Drosophila, sd is involved in wing development as well as neural development. Herein, data are presented from a molecular analysis of five recessive lethal sd alleles. Only one of these alleles complements a viable allele associated with an sd mutant wing phenotype, suggesting that functions important for wing development are compromised by the noncomplementing alleles. Two of the wing noncomplementing alleles have mutations that help to define a VG-binding domain for the SD protein in vivo, and another noncomplementing allele has a lesion within the TEA DNA-binding domain. The VG-binding domain overlaps with a domain important for viability of the fly, since two of the sd lethal lesions are located there. The fifth lethal affects a yet undefined motif lying just outside the VG-binding domain in the C-terminal direction that affects both wing phenotype and viability. This is the first example linking mutations affecting specific amino acids in the SD protein with phenotypic consequences for the organism.
Collapse
Affiliation(s)
- Ajay Srivastava
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Huang K, Tidyman WE, Le KUT, Kirsten E, Kun E, Ordahl CP. Analysis of nucleotide sequence-dependent DNA binding of poly(ADP-ribose) polymerase in a purified system. Biochemistry 2004; 43:217-23. [PMID: 14705948 DOI: 10.1021/bi0301800] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzymatic transfer of ADP-ribose from NAD to histone H(1) [defined as trans(oligo-ADP-ribosylation)] or to PARP-1 [defined as auto(poly-ADP-ribosylation)] requires binding of coenzymic DNA. The preceding paper [Kun, E., et al. (2004) Biochemistry 43, 210-216] shows that oligonucleotides of dsDNA can serve as coenzymic DNA for PARP-1 trans- or auto-modification activity. Results of DNA-protein binding (EMSA) experiments reported here demonstrate that short DNA oligonucleotides containing the 5'-TGTTG-3' nucleotide sequence motif preferentially bind to cloned PARP-1 in vitro. The same nucleotide sequence motif is responsible for striated myocyte-selective transcription of a contractile protein gene encoding cardiac troponin T (cTnT). Results of experiments reported here demonstrate that mutation of this motif also abolishes the differentiation-dependent activation of the transfected cTnT promoter in myoblasts cultured in vitro, indicating that nucleotide sequence-dependent binding of PARP-1 to promoter DNA of the cTnT gene is also necessary for differentiation-dependent activation. Thus, PARP-1 has two types of dsDNA binding activity: (1) nucleotide sequence-dependent binding, analyzed here with EMSA experiments, and (2) coenzymic binding, measured catalytically, which does not depend on the nucleotide sequence of the dsDNA. We hypothesize that the well-known association of PARP-1 with chromatin can be attributed to its stable binding to chromosomal dsDNA, some portion of which is likely to be nucleotide sequence-dependent binding. According to this hypothesis, the distribution of this protein-modifying enzyme in chromatin may be targeted to specific genomic loci and vary according to cell type and developmental stage.
Collapse
Affiliation(s)
- Kai Huang
- Department of Anatomy and The Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
22
|
Srivastava A, Simmonds AJ, Garg A, Fossheim L, Campbell SD, Bell JB. Molecular and Functional Analysis of scalloped Recessive Lethal Alleles in Drosophila melanogaster. Genetics 2004. [DOI: 10.1093/genetics/166.4.1833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The Drosophila melanogaster scalloped (sd) gene is a homolog of the human TEF-1 gene and is a member of the TEA/ATTS domain-containing family of transcription factors. In Drosophila, sd is involved in wing development as well as neural development. Herein, data are presented from a molecular analysis of five recessive lethal sd alleles. Only one of these alleles complements a viable allele associated with an sd mutant wing phenotype, suggesting that functions important for wing development are compromised by the noncomplementing alleles. Two of the wing noncomplementing alleles have mutations that help to define a VG-binding domain for the SD protein in vivo, and another noncomplementing allele has a lesion within the TEA DNA-binding domain. The VG-binding domain overlaps with a domain important for viability of the fly, since two of the sd lethal lesions are located there. The fifth lethal affects a yet undefined motif lying just outside the VG-binding domain in the C-terminal direction that affects both wing phenotype and viability. This is the first example linking mutations affecting specific amino acids in the SD protein with phenotypic consequences for the organism.
Collapse
Affiliation(s)
- Ajay Srivastava
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ankush Garg
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Leif Fossheim
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Shelagh D Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - John B Bell
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
23
|
Günther S, Mielcarek M, Krüger M, Braun T. VITO-1 is an essential cofactor of TEF1-dependent muscle-specific gene regulation. Nucleic Acids Res 2004; 32:791-802. [PMID: 14762206 PMCID: PMC373362 DOI: 10.1093/nar/gkh248] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The expression of several muscle-specific genes is partially or completely regulated by MCAT elements, which bind members of the TEF family of transcription factors. TEF1 itself is unable to activate reporter plasmids bearing TEF1-binding sites, suggesting that additional bridging or co-activating factors are necessary to allow interaction of TEF1 with the transcriptional machinery. In addition, none of the known TEF genes are exclusively expressed in the cardiac or skeletal muscle lineage to account for the muscle-specific expression of MCAT-dependent genes. Here we describe that VITO-1, a new SID (scalloped interaction domain)-containing protein, binds to TEF1 in vitro and strongly stimulates transcription of a MCAT reporter plasmid together with TEF-1. Since VITO-1 is predominantly expressed in the skeletal muscle lineage, it might serve as an essential transcriptional intermediary factor to promote muscle-specific expression via MCAT cis-regulatory elements. Although VITO-1 alone is not sufficient to initiate myogenic conversion of 10T1/2 fibroblastic cells, it enhanced MyoD-mediated myogenic conversion. In addition, interference with VITO-1 expression by siRNA attenuated differentiation of C2C12 muscle cells and MyoD-dependent myogenesis in 10T1/2 cells. We conclude that VITO-1 is a crucial new cofactor of the muscle regulatory programme.
Collapse
Affiliation(s)
- Stefan Günther
- Institute of Physiological Chemistry, University of Halle-Wittenberg, Hollystrasse 1, 06097 Halle, Germany
| | | | | | | |
Collapse
|
24
|
Tidyman WE, Sehnert AJ, Huq A, Agard J, Deegan F, Stainier DYR, Ordahl CP. In vivo regulation of the chicken cardiac troponin T gene promoter in zebrafish embryos. Dev Dyn 2003; 227:484-96. [PMID: 12889057 DOI: 10.1002/dvdy.10328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The chicken cardiac troponin T (cTnT) gene is representative of numerous cardiac and skeletal muscle-specific genes that contain muscle-CAT (MCAT) elements within their promoters. We examined the regulation of the chicken cTnT gene in vivo in zebrafish embryos, and in vitro in cardiomyocyte, myoblast, and fibroblast cultures. Defined regions of the cTnT promoter were linked to the green fluorescent protein (GFP) gene for in vivo analysis, and the luciferase gene for in vitro analysis. Injection of the cTnT promoter constructs into fertilized zebrafish eggs resulted in GFP expression in both heart and skeletal muscle cells reproducing the pattern of expression of the endogenous cTnT gene in the chicken embryo. Promoter deletion analysis revealed that the cis-regulatory regions responsible for cardiac and skeletal muscle-specific expression functioned in an equivalent manner in both in vitro and in vivo environments. In addition, we show that mutation of the poly-ADP ribose polymerase-I (PARP-I) binding site adjacent to the distal MCAT element in the chicken cTnT promoter produced a non-cell-specific promoter in vitro and in the zebrafish. Thus, the PARP-I transcriptional regulatory mechanism that governs muscle specificity of the chicken cTnT promoter is conserved across several chordate classes spanning at least 350 million years of evolution.
Collapse
Affiliation(s)
- William E Tidyman
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, 94143, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Firulli AB, Thattaliyath BD. Transcription factors in cardiogenesis: the combinations that unlock the mysteries of the heart. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 214:1-62. [PMID: 11893163 DOI: 10.1016/s0074-7696(02)14002-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Heart formation is one of the first signs of organogenesis within the developing embryo and this process is conserved from flies to man. Completing the genetic roadmap of the molecular mechanisms that control the cell specification and differentiation of cells that form the developing heart has been an exciting and fast-moving area of research in the fields of molecular and developmental biology. At the core of these studies is an interest in the transcription factors that are responsible for initiation of a pluripotent cell to become programmed to the cardiac lineage and the subsequent transcription factors that implement the instructions set up by the cells commitment decision. To gain a better understanding of these pathways, cardiac-expressed transcription factors have been identified, cloned, overexpressed, and mutated to try to determine function. Although results vary depending on the gene in question, it is clear that there is a striking evolutionary conservation of the cardiogenic program among species. As we move up the evolutionary ladder toward man, we encounter cases of functional redundancy and combinatorial interactions that reflect the complex networks of gene expression that orchestrate heart development. This review focuses on what is known about the transcription factors implicated in heart formation and the role they play in this intricate genetic program.
Collapse
Affiliation(s)
- Anthony B Firulli
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio 78229, USA
| | | |
Collapse
|
26
|
Kun E, Kirsten E, Ordahl CP. Coenzymatic activity of randomly broken or intact double-stranded DNAs in auto and histone H1 trans-poly(ADP-ribosylation), catalyzed by poly(ADP-ribose) polymerase (PARP I). J Biol Chem 2002; 277:39066-9. [PMID: 12205080 DOI: 10.1074/jbc.c200410200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The enzymatic transfer of ADP-ribose from NAD to histone H1 (defined as trans-poly(ADP-ribosylation)) or to PARP I (defined as auto-poly(ADP-ribosylation)) was studied with respect to the nature of the DNA required as a coenzyme. Linear double-stranded DNA (dsDNA) containing the MCAT core motif was compared with DNA containing random nicks (discontinuous or dcDNA). The dsDNAs activated trans-poly(ADP-ribosylation) about 5 times more effectively than dcDNA as measured by V(max). Activation of auto-poly(ADP-ribosylation) by dcDNA was 10 times greater than by dsDNA. The affinity of PARP I toward dcDNA or dsDNA in the auto-poly(ADP-ribosylation) was at least 100-fold lower than in trans-poly(ADP-ribosylation) (K(a) = 1400 versus 3-15, respectively). Mg2+ inhibited trans-poly(ADP-ribosylation) and so did dcDNA at concentrations required to maximally activate auto-poly(ADP-ribosylation). Mg2+ activated auto-poly(ADP-ribosylation) of PARP I. These results for the first time demonstrate that physiologically occurring dsDNAs can serve as coenzymes for PARP I and catalyze preferentially trans-poly(ADP- ribosylation), thereby opening the possibility to study the physiologic function of PARP I.
Collapse
Affiliation(s)
- Ernest Kun
- Department of Anatomy, San Francisco School of Medicine, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
27
|
Maeda T, Maeda M, Stewart AFR. TEF-1 transcription factors regulate activity of the mouse mammary tumor virus LTR. Biochem Biophys Res Commun 2002; 296:1279-85. [PMID: 12207913 DOI: 10.1016/s0006-291x(02)02085-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mouse mammary tumor virus long terminal repeat (LTR) is a potent transcriptional enhancer. We identified several putative binding sites for the TEF-1 family of transcription factors (TEF-1, RTEF-1, DTEF-1, and ETF) in the proximal negative regulatory element of the LTR. Gel mobility shift assays revealed strong TEF-1 factor binding to one site using nuclear extracts from CV-1 cells and from the human breast cancer cell line MCF-7. Mutation of this site increased basal activity of the LTR. In transient transfection assays, TEF-1 squelched the basal LTR activity and completely abrogated the response to the glucocorticoid dexamethasone. RTEF-1 and DTEF-1 had little effect on the basal activity, whereas ETF activated the LTR. These TEF-1 factors also interfered with the response to dexamethasone. Taken together, our results reveal an important new role for TEF-1 factors in regulating MMTV LTR activity and suggest that TEF-1 factors might participate in mammary tumorigenesis.
Collapse
Affiliation(s)
- Tomoji Maeda
- Cardiovascular Institute, School of Medicine, University of Pittsburgh, BST 1704.3, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | | | | |
Collapse
|
28
|
Maeda T, Mazzulli JR, Farrance IKG, Stewart AFR. Mouse DTEF-1 (ETFR-1, TEF-5) is a transcriptional activator in alpha 1-adrenergic agonist-stimulated cardiac myocytes. J Biol Chem 2002; 277:24346-52. [PMID: 11986313 DOI: 10.1074/jbc.m201171200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha(1)-Adrenergic signaling in cardiac myocytes activates the skeletal muscle alpha-actin gene through an MCAT cis-element, the binding site of the transcriptional enhancer factor-1 (TEF-1) family of transcription factors. TEF-1 accounts for more than 85% of the MCAT binding activity in neonatal rat cardiac myocytes. Other TEF-1 family members account for the rest. Although TEF-1 itself has little effect on the alpha(1)-adrenergic activation of skeletal muscle alpha-actin, the related factor RTEF-1 augments the response and is a target of alpha(1)-adrenergic signaling. Here, we examined another TEF-1 family member expressed in cardiac muscle, DTEF-1, and observed that it also augmented the alpha(1)-adrenergic response of skeletal muscle alpha-actin. A DTEF-1 peptide-specific antibody revealed that endogenous DTEF-1 accounts for up to 5% of the MCAT binding activity in neonatal rat cardiac myocytes. A TEF-1/DTEF-1 chimera suggests that alpha(1)-adrenergic signaling modulates DTEF-1 function. Orthophosphate labeling and immunoprecipitation of an epitope-tagged DTEF-1 showed that DTEF-1 is phosphorylated in vivo. alpha(1)-Adrenergic stimulation increased while phosphatase treatment lowered the MCAT binding by DTEF-1 and the endogenous non-TEF-1 MCAT-binding factor. In contrast, alpha(1)-adrenergic stimulation did not alter, and phosphatase treatment increased, MCAT binding of TEF-1 and RTEF-1. Taken together, these results suggest that DTEF-1 is a target for alpha(1)-adrenergic activation of the skeletal muscle alpha-actin gene in neonatal rat cardiac myocytes.
Collapse
Affiliation(s)
- Tomoji Maeda
- Cardiovascular Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
29
|
Activation of zygotic gene expression in mammals. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12024-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 2001; 15:1229-41. [PMID: 11358867 PMCID: PMC313800 DOI: 10.1101/gad.888601] [Citation(s) in RCA: 574] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mammals express four highly conserved TEAD/TEF transcription factors that bind the same DNA sequence, but serve different functions during development. TEAD-2/TEF-4 protein purified from mouse cells was associated predominantly with a novel TEAD-binding domain at the amino terminus of YAP65, a powerful transcriptional coactivator. YAP65 interacted specifically with the carboxyl terminus of all four TEAD proteins. Both this interaction and sequence-specific DNA binding by TEAD were required for transcriptional activation in mouse cells. Expression of YAP in lymphocytic cells that normally do not support TEAD-dependent transcription (e.g., MPC11) resulted in up to 300-fold induction of TEAD activity. Conversely, TEAD overexpression squelched YAP activity. Therefore, the carboxy-terminal acidic activation domain in YAP is the transcriptional activation domain for TEAD transcription factors. However, whereas TEAD was concentrated in the nucleus, excess YAP65 accumulated in the cytoplasm as a complex with the cytoplasmic localization protein, 14-3-3. Because TEAD-dependent transcription was limited by YAP65, and YAP65 also binds Src/Yes protein tyrosine kinases, we propose that YAP65 regulates TEAD-dependent transcription in response to mitogenic signals.
Collapse
Affiliation(s)
- A Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
31
|
Zuzarte PC, Farrance IK, Simpson PC, Wildeman AG. Tumor cell splice variants of the transcription factor TEF-1 induced by SV40 T-antigen transformation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1517:82-90. [PMID: 11118619 DOI: 10.1016/s0167-4781(00)00261-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The large tumor antigen (TAg) of simian virus 40 is able to transform cells through interactions with cellular proteins, notably p53 and Rb. Among the other proteins that form complexes with TAg is TEF-1, a transcription factor utilized by the viral enhancer to activate expression of the early gene which encodes TAg. We show that fibroblasts contain several alternately spliced TEF-1 mRNAs, the most abundant of which encodes a protein with an additional four amino acid exon compared to the database entry for Hela cell TEF-1. Transformation by TAg induces alternate splicing, producing a more abundant form lacking this exon and matching the published sequence. Splicing variants lacking this exon were detected in mouse pancreatic tumors and in cell lines derived from human pancreatic cancers, in contrast to a single isoform with the exon in normal mouse pancreas. A total of eight splice variants were identified, with the loss of the four amino acid exon typical of transformed cells. These and other data presented suggest that TAg 're-models' host cell transcription factors that are used early in viral infection, and thereby mimics an event that naturally occurs during transformation. The data indicate that TEF-1 alterations may be a hallmark feature of tumorigenesis.
Collapse
Affiliation(s)
- P C Zuzarte
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Jiang SW, Trujillo MA, Sakagashira M, Wilke RA, Eberhardt NL. Novel human TEF-1 isoforms exhibit altered DNA binding and functional properties. Biochemistry 2000; 39:3505-13. [PMID: 10727247 DOI: 10.1021/bi991048w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcriptional enhancer factor-1 (TEF-1) is a member of the TEA/ATTS domain family. TEF-1 binds to GT-IIC (GGAATG), SphI (AGTATG), SphII (AGCATG), and M-CAT (GGTATG) response elements and is involved in the transactivation of a variety of genes, including the SV40 large T antigen, mammalian muscle-specific genes, and human chorionic somatomammotropin genes. Also, TEF-1 acts as a transcriptional repressor in placental cells, possibly through interaction with the TATA binding protein (TBP), preventing TBP binding to the TATA box. Here we describe the cloning, tissue-specific expression pattern, and functional characterization of two novel TEF-1 isoforms, TEF-1beta and TEF-1gamma. These isoforms most likely arise from alternative splicing of mRNA transcribed from a single gene and involve substitutions and/or insertions in a region immediately following the DNA binding domain. TEF-1beta appears to be widely distributed like the prototypic TEF-1, designated TEF-1alpha, whereas TEF-1gamma exhibits a narrower tissue-specific expression pattern that includes pancreas, kidney, and skeletal and heart muscle. The relatively limited sequence alterations among these isoforms cause significant changes in their DNA binding and transcriptional activities. TEF-1beta and TEF-1gamma bind to GT-IIC sequences with higher affinity and repress hCS promoter more efficiently than TEF-1alpha. These results suggest that each TEF-1 isoform may play unique regulatory roles in various tissues.
Collapse
Affiliation(s)
- S W Jiang
- Endocrine Research Unit, Departments of Medicine and Biochemistry/Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
33
|
Jiang SW, Wu K, Eberhardt NL. Human placental TEF-5 transactivates the human chorionic somatomammotropin gene enhancer. Mol Endocrinol 1999; 13:879-89. [PMID: 10379887 DOI: 10.1210/mend.13.6.0288] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human chorionic somatomammotropin (hCS) gene expression in the placenta is controlled by an enhancer (CSEn) containing SV40-related GT-IIC and SphI/SphII enhansons. These enhancers are controlled by members of the transcription enhancer factor-1 (TEF-1) family. Recently TEF-5, whose mRNA is abundant in placenta, was shown to bind cooperatively to a unique, tandemly repeated element in CSEn2, suggesting that TEF-5 regulates CSEn activity. However, expression of TEF-5 using a cDNA lacking the 5'-untranslated region and containing a modified translation initiation site was not accompanied by CSEn activation. Using nested, degenerate PCR primers corresponding to conserved TEF domains, several novel TEF-1-related cDNAs have been cloned from a human placental cDNA library. The open reading frame of one 3033-bp clone was identical to TEF-5 and contained 300- and 1423-bp 5'- and 3'-untranslated regions, respectively. The in vitro generated approximately 53-kDa TEF-5 polypeptide binds specifically to GT-IIC and SphI/SphII oligonucleotides. Overexpression of TEF-5 in BeWo cells using the intact 3033-bp cDNA transactivates the hCS and SV40 enhancers and artificial enhancers comprised of tandemly repeated GT-IIC enhansons, but not OCT enhansons. The data demonstrate that TEF-5 is a transactivator that is likely involved in the transactivation of CSEn enhancer function. Further, the data suggest that elements within the untranslated regions, initiation site, or both control TEF-5 expression in ways that influence its transactivation function.
Collapse
Affiliation(s)
- S W Jiang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
34
|
Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Biol 1999; 19:296-306. [PMID: 9858553 PMCID: PMC83887 DOI: 10.1128/mcb.19.1.296] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 10/02/1998] [Indexed: 11/20/2022] Open
Abstract
Striated muscle-specific expression of the cardiac troponin T (cTNT) gene is mediated through two MCAT elements that act via binding of transcription enhancer factor 1 (TEF-1) to the MCAT core motifs and binding of an auxiliary protein to nucleotides flanking the 5' side of the core motif. Using DNA-protein and protein-protein binding experiments, we identified a 140-kDa polypeptide that bound both the muscle-specific flanking sequences of the most distal MCAT1 element and TEF-1. Screening of an expression library with the MCAT1 element yielded a cDNA encoding a truncated form of poly(ADP-ribose) polymerase (PARP). Endogenous PARP from embryonic tissue nuclear extracts migrated as a 140-kDa protein. Recombinant full-length PARP preferentially bound the wild-type MCAT1 element and was shown to physically interact with TEF-1. In addition, endogenous TEF-1 could be coimmunoprecipitated with PARP from extracts of primary skeletal muscle cells. Recombinant PARP was able to ADP-ribosylate TEF-1 in vitro. Inhibition of the enzymatic activity of PARP repressed expression of an MCAT1-dependent reporter in transiently transfected primary muscle cells. Together, these data implicate PARP as the auxiliary protein that binds with TEF-1 to the MCAT1 element to provide muscle-specific gene transcription.
Collapse
Affiliation(s)
- A J Butler
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143-0452, USA
| | | |
Collapse
|
35
|
Gupta M, Gupta MP, Arcilla RA. Molecular regulation of cardiac myogenesis and morphology during development. PROGRESS IN PEDIATRIC CARDIOLOGY 1998. [DOI: 10.1016/s1058-9813(99)00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Stewart AF, Suzow J, Kubota T, Ueyama T, Chen HH. Transcription factor RTEF-1 mediates alpha1-adrenergic reactivation of the fetal gene program in cardiac myocytes. Circ Res 1998; 83:43-9. [PMID: 9670917 DOI: 10.1161/01.res.83.1.43] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alpha1-adrenergic receptor stimulation induces cardiac myocytes to hypertrophy and reactivates many fetal genes, including beta-myosin heavy chain (betaMyHC) and skeletal alpha-actin (SKA), by signaling through myocyte-specific CAT (M-CAT) cis elements, binding sites of the transcriptional enhancer factor-1 (TEF-1) family of transcription factors. To examine functional differences between TEF-1 and related to TEF-1 (RTEF-1) in alpha1-adrenergic reactivation of the fetal program, expression constructs were cotransfected with betaMyHC and SKA promoter/reporter constructs in neonatal rat cardiac myocytes. TEF-I overexpression tended to transactivate a minimal betaMyHC promoter but significantly interfered with a minimal SKA promoter. In contrast, RTEF-1 transactivated both the minimal betaMyHC and SKA promoters. TEF-1 and RTEF-I also affected the alpha1-adrenergic response of the betaMyHC and SKA promoters differently. TEF-1 had no effect. In contrast, RTEF-1 potentiated the alpha1-adrenergic responses of the SKA promoter and of a -3.3-kb betaMyHC promoter. To determine why the promoters responded differently to TEF-1 and RTEF-1, promoters with mutated M-CAT elements were tested in the same way. The betaMyHC promoter required an intact M-CAT element to respond to TEF-1 and RTEF-1, whereas the SKA promoter M-CAT was required for the TEF-1 response but not for the RTEF-1 response, suggesting that SKA promoter-specific cofactors may be involved. By competition gel shift assay, the M-CAT of the minimal betaMyHC promoter had a lower affinity than that of the SKA promoter, which partly explains the different responses of these promoters to TEF-1. These results highlight functional differences between TEF-1 and RTEF-1 and suggest a novel function of RTEF-1 in mediating the alpha1-adrenergic response in hypertrophic cardiac myocytes.
Collapse
Affiliation(s)
- A F Stewart
- Department of Medicine, University of Pittsburgh, PA 15213, USA. als6+@pitt.edu
| | | | | | | | | |
Collapse
|
37
|
Jacquemin P, Sapin V, Alsat E, Evain-Brion D, Dollé P, Davidson I. Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. Dev Dyn 1998; 212:423-36. [PMID: 9671946 DOI: 10.1002/(sici)1097-0177(199807)212:3<423::aid-aja10>3.0.co;2-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We describe the molecular cloning of murine (m) Transcriptional Enhancer Factor (TEF)-5 belonging to the TEF family of transcription factors. We show that mTEF-5 is specifically expressed in trophoblast giant cells and other extra-embryonic structures at early stages of development. At later stages, mTEF-5 is specifically expressed in the labyrinthine region of the placenta and in several embryonic tissues. We further show that the other mTEFs are differentially expressed in extraembryonic structures and in the mature placenta. Interestingly, human (h)TEF-5 is specifically expressed in the differentiated syncytiotrophoblast of the human term placenta and its expression is upregulated during the differentiation of cytotrophoblasts to syncytiotrophoblast in vitro, whereas that of hTEF-1 is down-regulated. Together with previous results describing hTEF-binding sites in the human placental lactogen-B gene enhancer, these novel observations support a role for hTEF-5 in the regulation of this gene. We further propose that the hTEF factors may play a more general role in placental gene regulation and development.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch, France
| | | | | | | | | | | |
Collapse
|
38
|
Yockey CE, Shimizu N. cDNA cloning and characterization of mouse DTEF-1 and ETF, members of the TEA/ATTS family of transcription factors. DNA Cell Biol 1998; 17:187-96. [PMID: 9502435 DOI: 10.1089/dna.1998.17.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Members of the TEA/ATTS family of transcription factors have been found in most representative eukaryotic organisms. In vertebrates, the TEA family contains at least four members, which share overlapping DNA-binding specificity and have similar transcriptional activation properties. In this article, we describe the cDNA cloning and characterization of the murine TEA proteins DTEF-1 (mDTEF-1) and ETF. Using in situ hybridization analysis of mouse embryos, we found that mDTEF-1 and ETF transcript distributions substantially overlap. ETF is expressed throughout the embryo except in the myocardium early in development, whereas late in development, it is enriched in lung and neuroectoderm. Mouse DTEF-1 is expressed at a much lower level throughout development and is substantially enriched in ectoderm and skin, as well as in the developing pituitary at midgestation. Northern blot analysis of adult mouse tissue total RNA showed that both ETF and mDTEF-1 are abundant in uterus and lung relative to other tissues. Using gel mobility shift assays and GAL4-fusion protein analysis, we demonstrated that the full coding sequences of ETF and mDTEF-1 encode M-CAT/GT-IIC-binding proteins containing activation domains.
Collapse
Affiliation(s)
- C E Yockey
- Department of Pediatrics, University of South Carolina School of Medicine, Columbia 29208, USA
| | | |
Collapse
|
39
|
Jiang SW, Trujillo MA, Eberhardt NL. Human chorionic somatomammotropin enhancer function is mediated by cooperative binding of TEF-1 and CSEF-1 to multiple, low-affinity binding sites. Mol Endocrinol 1997; 11:1223-32. [PMID: 9259314 DOI: 10.1210/mend.11.9.9984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human chorionic somatomammotropin gene enhancer (CSEn) is composed of multiple enhansons (Enh) that share sequence similarities with those of the simian virus, SV40 enhancer (SVEn). The sequence homology includes two GT-IIC-like (Enh1 and Enh4) and three SphI/II-like enhansons (Enh2, Enh3, and Enh5). We previously showed that transcription enhancer factor 1 (TEF-1) and a 30-kDa placental-specific factor, chorionic somatomammotropin enhancer factor 1 (CSEF-1), bind to Enh4, which plays an essential role in enhancer function. In this study, we demonstrate that TEF-1 and CSEF-1 bind specifically to all the other GT-IIC- and SphI/II-like elements within CSEn with a broad range of binding affinities that vary between 0.005 and 0.15 that of Enh4. Each individual concatenated enhanson was able to stimulate hCS promoter activity in an orientation-independent manner in choriocarcinoma cells (BeWo) with an observed stimulation that was directly proportional to its relative binding affinity for TEF-1 and CSEF-1. These results indicate that CSEn function results from the cooperative interaction of TEF-1 and/or CSEF-1 binding to multiple, low-affinity GT-IIC- and SphI/II-like enhansons within the enhancer.
Collapse
Affiliation(s)
- S W Jiang
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
40
|
|
41
|
Gupta MP, Amin CS, Gupta M, Hay N, Zak R. Transcription enhancer factor 1 interacts with a basic helix-loop-helix zipper protein, Max, for positive regulation of cardiac alpha-myosin heavy-chain gene expression. Mol Cell Biol 1997; 17:3924-36. [PMID: 9199327 PMCID: PMC232245 DOI: 10.1128/mcb.17.7.3924] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The M-CAT binding factor transcription enhancer factor 1 (TEF-1) has been implicated in the regulation of several cardiac and skeletal muscle genes. Previously, we identified an E-box-M-CAT hybrid (EM) motif that is responsible for the basal and cyclic AMP-inducible expression of the rat cardiac alpha-myosin heavy chain (alpha-MHC) gene in cardiac myocytes. In this study, we report that two factors, TEF-1 and a basic helix-loop-helix leucine zipper protein, Max, bind to the alpha-MHC EM motif. We also found that Max was a part of the cardiac troponin T M-CAT-TEF-1 complex even when the DNA template did not contain an apparent E-box binding site. In the protein-protein interaction assay, a stable association of Max with TEF-1 was observed when glutathione S-transferase (GST)-TEF-1 or GST-Max was used to pull down in vitro-translated Max or TEF-1, respectively. In addition, Max was coimmunoprecipitated with TEF-1, thus documenting an in vivo TEF-1-Max interaction. In the transient transcription assay, overexpression of either Max or TEF-1 resulted a mild activation of the alpha-MHC-chloramphenicol acetyltransferase (CAT) reporter gene at lower concentrations and repression of this gene at higher concentrations. However, when Max and TEF-1 expression plasmids were transfected together, the repression mediated by a single expression plasmid was alleviated and a three- to fourfold transactivation of the alpha-MHC-CAT reporter gene was observed. This effect was abolished once the EM motif in the promoter-reporter construct was mutated, thus suggesting that the synergistic transactivation function of the TEF-1-Max heterotypic complex is mediated through binding of the complex to the EM motif. These results demonstrate a novel association between Max and TEF-1 and indicate a positive cooperation between these two factors in alpha-MHC gene regulation.
Collapse
Affiliation(s)
- M P Gupta
- Department of Medicine, The University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
42
|
Jacquemin P, Martial JA, Davidson I. Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J Biol Chem 1997; 272:12928-37. [PMID: 9148898 DOI: 10.1074/jbc.272.20.12928] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the cloning of a cDNA encoding the human transcription factor hTEF-5, containing the TEA/ATTS DNA binding domain and related to the TEF family of transcription factors. hTEF-5 is expressed in skeletal and cardiac muscle, but the strongest expression is observed in the placenta and in placenta-derived JEG-3 choriocarcinoma cells. In correlation with its placental expression, we show that hTEF-5 binds to several functional enhansons of the human chorionic somatomammotropin (hCS)-B gene enhancer. We define a novel functional element in this enhancer comprising tandemly repeated sites to which hTEF-5 binds cooperatively. In the corresponding region of the hCS-A enhancer, which is known to be inactive, this element is inactivated by a naturally occurring single base mutation that disrupts hTEF-5 binding. We further show that the binding of the previously described placental protein f/chorionic somatomammotropin enhancer factor-1 to TEF-binding sites is disrupted by monoclonal antibodies directed against the TEA domain and that this factor is a proteolytic degradation product of the TEF factors. These results strongly suggest that hTEF-5 regulates the activity of the hCS-B gene enhancer.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B.P. 163-67404 Illkirch Cédex, France
| | | | | |
Collapse
|
43
|
Thuerauf DJ, Glembotski CC. Differential effects of protein kinase C, Ras, and Raf-1 kinase on the induction of the cardiac B-type natriuretic peptide gene through a critical promoter-proximal M-CAT element. J Biol Chem 1997; 272:7464-72. [PMID: 9054448 DOI: 10.1074/jbc.272.11.7464] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cardiac genes for the A- and B-type natriuretic peptides (ANP and BNP) are coordinately induced by growth promoters, such as alpha1-adrenergic receptor agonists (e.g. phenylephrine (PE)). Although inducible elements in the ANP gene have been identified, responsible elements in the BNP gene are unknown. In this study, reporter constructs transfected into neonatal rat ventricular myocytes showed that in the context of 2.5 kilobase pairs of native BNP 5'-flanking sequences, a 2-base pair mutation in a promoter-proximal M-CAT site (CATTCT) disrupted basal and PE-inducible transcription by more than 98%. Expression of constitutively active forms of Ras, Raf-1 kinase, and protein kinase C, all of which are activated by PE in cardiac myocytes, strongly stimulated BNP reporter expression. Isolated M-CAT elements conferred PE, protein kinase C, and Ras inducibility to a minimal BNP promoter, however, they did not confer Raf-1 inducibility. These results show that M-CAT elements can serve as targets for Ras-dependent, Raf-1-independent pathways, implying the involvement of c-Jun N-terminal kinase and/or p38 mitogen-activated protein kinases, but not extracellular signal-regulated protein kinase/mitogen-activated protein kinase. Moreover, the essential M-CAT element distinguishes the BNP gene from the ANP gene, which utilizes serum response elements and an Sp1-like sequence.
Collapse
Affiliation(s)
- D J Thuerauf
- Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182, USA
| | | |
Collapse
|
44
|
Jacquemin P, Hwang JJ, Martial JA, Dollé P, Davidson I. A novel family of developmentally regulated mammalian transcription factors containing the TEA/ATTS DNA binding domain. J Biol Chem 1996; 271:21775-85. [PMID: 8702974 DOI: 10.1074/jbc.271.36.21775] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe the molecular cloning of two novel human and murine transcription factors containing the TEA/ATTS DNA binding domain and related to transcriptional enhancer factor-1 (TEF-1). These factors bind to the consensus TEA/ATTS cognate binding site exemplified by the GT-IIC and Sph enhansons of the SV40 enhancer but differ in their ability to bind cooperatively to tandemly repeated sites. The human TEFs are differentially expressed in cultured cell lines and the mouse (m)TEFs are differentially expressed in embryonic and extra-embryonic tissues in early post-implantation embryos. Strikingly, at later stages of embryogenesis, mTEF-3 is specifically expressed in skeletal muscle precursors, whereas mTEF-1 is expressed not only in developing skeletal muscle but also in the myocardium. Together with previous data, these results point to important, partially redundant, roles for these TEF proteins in myogenesis and cardiogenesis. In addition, mTEF-1 is strongly coexpressed with mTEF-4 in mitotic neuroblasts, while accentuated mTEF-4 expression is also observed in the gut and the nephrogenic region of the kidney. These observations suggest additional roles for the TEF proteins in central nervous system development and organogenesis.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B.P. 163-67404 Illkirch Cédex, France
| | | | | | | | | |
Collapse
|
45
|
Larkin SB, Farrance IK, Ordahl CP. Flanking sequences modulate the cell specificity of M-CAT elements. Mol Cell Biol 1996; 16:3742-55. [PMID: 8668191 PMCID: PMC231370 DOI: 10.1128/mcb.16.7.3742] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
M-CAT elements mediate both muscle-specific and non-muscle-specific transcription. We used artificial promoters to dissect M-CAT elements derived from the cardiac troponin T promoter, whose regulation is highly striated muscle specific. We show that muscle-specific M-CAT-dependent expression requires two distinct components: the core heptameric M-CAT motif (5'-CATTCCT-3'), which constitutes the canonical binding site for TEF-1-related proteins, and specific sequences immediately flanking the core motif that bind an additional factor(s). These factors are found in higher-order M-CAT DNA-protein complexes with TEF-1 proteins. Non-muscle-specific promoters are produced when the sequences flanking the M-CAT motif are removed or modified to match those of non-muscle-specific promoters such as the simian virus 40 promoter. Moreover, a mutation of the 5'-flanking region of the cardiac troponin T M-CAT-1 element upregulated expression in nonmuscle cells. That mutation also disrupts a potential E box that apparently does not bind myogenic basic helix-loop-helix proteins. We propose a model in which M-CAT motifs are potentially active in many cell types but are modulated through protein binding to specific flanking sequences. In nonmuscle cells, these flanking sequences bind a factor(s) that represses M-CAT-dependent activity. In muscle cells, on the other hand, the factor(s) binding to these flanking sequences contributes to both the cell specificity and the overall transcriptional strength of M-CAT-dependent promoters.
Collapse
Affiliation(s)
- S B Larkin
- Department of Anatomy, University of California San Francisco, California 94143, USA
| | | | | |
Collapse
|
46
|
Farrance IK, Ordahl CP. The role of transcription enhancer factor-1 (TEF-1) related proteins in the formation of M-CAT binding complexes in muscle and non-muscle tissues. J Biol Chem 1996; 271:8266-74. [PMID: 8626521 DOI: 10.1074/jbc.271.14.8266] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
M-CAT sites are required for the activity of many promoters in cardiac and skeletal muscle. M-CAT binding activity is muscle-enriched, but is found in many tissues and is immunologically related to the HeLa transcription enhancer factor-1 (TEF-1). TEF-1-related cDNAs (RTEF-1) have been cloned from chick heart. RTEF-1 mRNA is muscle-enriched, consistent with a role for RTEF-1 in the regulation of muscle-specific gene expression. Here, we have examined the tissue distribution of TEF-1-related proteins and of M-CAT binding activity by Western analysis and mobility shift polyacrylamide gel electrophoresis. TEF-1-related proteins of 57, 54 and 52 kDa were found in most tissues with the highest levels in muscle tissues. All of these TEF-1-related proteins bound M-CAT DNA and the 57- and 54-kDa TEF-1-related polypeptides were phosphorylated. Proteolytic digestion mapping showed that the 54-kDa TEF-1-related polypeptide is encoded by a different gene than the 52- and 57-kDa TEF-1-related polypeptides. A comparison of the migration and proteolytic digestion of the 54-kDa TEF-1-related polypeptide with proteins encoded by the cloned RTEF-1 cDNAs showed that the 54-kDa TEF-1-related polypeptide is encoded by RTEF-1A. High resolution mobility shift polyacrylamide gel electrophoresis showed multiple M-CAT binding activities in tissues. All of these activities contained TEF-1-related proteins. One protein-M-CAT DNA complex was muscle-enriched and was up-regulated upon differentiation of a skeletal muscle cell line. This complex contained the 54-kDa TEF-1-related polypeptide. Therefore, RTEF1-A protein is a component of a muscle-enriched transcription complex that forms on M-CAT sites and may play a key role in the regulation of transcription in muscle.
Collapse
Affiliation(s)
- I K Farrance
- Department of Anatomy and Cardiovascular Research Institute, University of California, San Francisco, 94143, USA
| | | |
Collapse
|