1
|
Akopova OV, Smirnov A. MgATPase Activity is Dispensable for the Pharmacological Regulation of the Functional Effects of the KATP Channels Opening in Brain Mitochondria. FRONT BIOSCI-LANDMRK 2025; 30:33450. [PMID: 40302335 DOI: 10.31083/fbl33450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND The mechanisms underlying the effects of pharmacological mitochondrial ATP-sensitive K+ channel (mKATP) channel openers on the functional effects of the mKATP channels opening remain disputable. Earlier we have shown that the mKATP channel activation by diazoxide (DZ) occurred at submicromolar concentrations and did not require a MgATP in liver mitochondria. This work aimed to evaluate a requirement of a MgATP for the mKATP channel opening by DZ and its blocking by glibenclamide (Glb) and 5-hydroxy decanoate (5-HD) in rat brain mitochondria and to find the effects of the mKATP channels opening on mitochondrial Ca2+ uptake, reactive oxygen species (ROS) production, and the mitochondrial permeability transition pore (mPTP). METHODS The mKATP and the mPTP channels activity was assessed by the light scattering; polarography was applied to quantify K+ transport; Ca2+ transport and ROS production were monitored with fluorescent probes, chlortetracycline, and dichlorofluorescein, respectively; one-way ANOVA was used for reliability testing. RESULTS ATP-sensitive K+ transport in native mitochondria was fully activated by DZ at <0.5 μM and blocked by Glb and 5-HD in the absence of a MgATP, however, Mg2+ was indispensable for the blockage of the mKATP channel by ATP. DZ increased Ca2+ uptake, but ROS production was regulated differently: suppressed in mitochondria respiring on glutamate, but activated on succinate. However, in the presence of rotenone, ROS production was suppressed by DZ, which indicated the involvement of reverse electron transport (RET) in the modulation of ROS production. In all cases, the mKATP channel blockers reversed the effects of DZ. The impact of DZ on the mPTP opening strongly correlated with its effects on ROS production. DZ inhibited the mPTP activity on glutamate but elevated on succinate, which was strongly suppressed by rotenone. In the presence of rotenone, the mPTP was strongly inhibited by DZ, which indicated the involvement of ROS and RET in the mechanism of mPTP regulation by DZ. CONCLUSIONS Brain mKATP channel exhibited high sensitivity to DZ on the low sub-micromolar scale; its regulation by DZ and Glb did not require a MgATPase activity; the impact of DZ on the mPTP activity was critically dependent on the regulation of ROS production by ATP-sensitive K+ transport.
Collapse
Affiliation(s)
- Olga V Akopova
- Laboratory of Stem Cell Biology, Bogomoletz Institute of Physiology, 01601 Kiev, Ukraine
| | - Anton Smirnov
- Laboratory of Stem Cell Biology, Bogomoletz Institute of Physiology, 01601 Kiev, Ukraine
| |
Collapse
|
2
|
Bai LY, Zhao M, Ma KY. Nicorandil as a promising therapeutic option for ventricular arrhythmia: A case report and review of literature. World J Cardiol 2024; 16:768-775. [PMID: 39734814 PMCID: PMC11669980 DOI: 10.4330/wjc.v16.i12.768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function. It may present with symptoms such as palpitations, dyspnea, chest discomfort, and reduced exercise tolerance. In severe cases, ventricular arrhythmia can even lead to death. Therefore, prompt treatment is very much essential upon diagnosis. The symptoms did not improve after previous conventional drugs and electrical defibrillation treatment, but the ventricular arrhythmia was prevented after the addition of nicorandil. CASE SUMMARY A 75-year-old female patient was admitted to the hospital because of intermittent chest tightness, shortness of breath for 10 days, and fainting once for 7 days. Combined with laboratory tests and auxiliary examination, the patient was tentatively diagnosed with coronary heart disease or arrhythmia-atrial fibrillation. After admission, the patient had intermittent ventricular arrhythmia, which was uncontrolled with lidocaine, defibrillation, and amiodarone. However, when she was treated with nicorandil, the ventricular arrhythmia stopped. Nicorandil mitigates the action potential duration by facilitating the opening of potassium ion channels, thereby regulating the likelihood of premature and delayed depolarization in two distinct phases and subsequently averting the onset of malignant ventricular arrhythmia. Nicorandil may inhibit ventricular arrhythmia by dilating coronary arteries, improving coronary microcirculation and reducing myocardial fibrosis. CONCLUSION Nicorandil is a drug with dual effects. It could be used as a new therapeutic option for inhibiting ventricular arrhythmias.
Collapse
Affiliation(s)
- Ling-Yu Bai
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming Zhao
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China.
| | - Kui-Ying Ma
- Department of Cardiovascular Medicine, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Tyagi SC. Epigenetics of Homocystinuria, Hydrogen Sulfide, and Circadian Clock Ablation in Cardiovascular-Renal Disease. Curr Issues Mol Biol 2024; 46:13783-13797. [PMID: 39727952 PMCID: PMC11726923 DOI: 10.3390/cimb46120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/28/2024] Open
Abstract
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep. Interestingly, HHcy is generated during the epigenetic gene turning off and turning on (i.e., imprinting) by methylation of the DNA promoter. The mitochondrial sulfur metabolism by 3-mercaptopyruvate sulfur transferase (3MST), ATP citrate lyase (ACYL), and epigenetic rhythmic methylation are regulated by folate 1-carbon metabolism (FOCM), i.e., the methionine (M)-SAM-SAH-Hcy, adenosine, and uric acid cycle. Epigenetic gene writer (DNMT), gene eraser (TET/FTO), and editor de-aminase (ADAR) regulate the rhythmic, i.e., reversible methylation/demethylation of H3K4, H3K9, H4K20, m6A, and m5C. The mitochondrial ATP citrate cycle and creatine kinase (CK) regulate chromatin transcription, maturation, and accessibility as well as muscle function. The transcription is regulated by methylation. The maturation and accessibility are controlled by acetylation. However, it is unclear whether a high fat dysbiotic diet (HFD) causes dysrhythmic expression of the gene writer, eraser, and editor, creating hyperuricemia and cardiac and renal dysfunction. We hypothesized that an HFD increases the gene writer (DNMT1) and editor (ADAR), decreases the eraser (TET/FTO), and increases uric acid to cause chronic diseases. This increases the levels of H3K4, H3K9, H4K20, m6A, and m5C. Interestingly, the DNMT1KO mitigates. Further, the DNMT1KO and ADAR inhibition attenuate HFD-induced NGAL/FGF23/TMPRSS2/MMP2, 9, 13, and uric acid levels and improve cardiac and renal remodeling. Although the novel role of nerve endings by the Piezo channels (i.e., the combination of ENaC, VDAC, TRPV, K+, and Mg2+ channels) in the interoception is suggested, interestingly, we and others have shown mechanisms independent of the nerve, by interoception, such as the cargo of the exosome in denervation models of heart failure. If proper and appropriate levels of these enzymes are available to covert homocysteine to hydrogen sulfide (H2S) during homocystinuria, then the H2S can potentially serve as a newer form of treatment for morning heart attacks and renal sulfur transsulfuration transport diseases.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Krajewska M, Możajew M, Filipek S, Koprowski P. Interaction of ROMK2 channel with lipid kinases DGKE and AGK: Potential channel activation by localized anionic lipid synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159443. [PMID: 38056763 DOI: 10.1016/j.bbalip.2023.159443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin ligase Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoKATP). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, lysophosphatidic acid (LPA) and phosphatidic acid (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Mariusz Możajew
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| |
Collapse
|
5
|
Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Prasad NR, Ma H, Zhang Y, Sufianova GZ, Fu F, Pei JM. K ATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023; 37:1020-1049. [PMID: 37218378 DOI: 10.1111/fcp.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Han M, Wang S, Zhou X, Zhang P, Han Z, Chen Y, Cai H, Wu L, Huang X, Wang L, Chen Y. Baicalin alleviates bleomycin-induced early pulmonary fibrosis in mice via the mitoKATP signaling pathway. Toxicology 2023; 497-498:153638. [PMID: 37783230 DOI: 10.1016/j.tox.2023.153638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Bleomycin (BLM), a frequently employed chemotherapeutic agent, exhibits restricted clinical utility owing to its pulmonary toxicity. Meanwhile, baicalin (BA)-an active ingredient extracted from the roots of Scutellaria baicalensis Georgi -has been shown to alleviate BLM-induced pulmonary fibrosis (PF). Hence, the objective of this study was to examine the protective effects of BA in the context of BLM-induced early PF in mice and elucidate the underlying mechanism(s). We established an in vivo BLM (3.5 mg/kg)-induced PF murine model and in vitro BLM (35 μM)-damaged MLE-12 cell model. On Day 14 of treatment, the levels of fibrosis and apoptosis were evaluated in mouse lungs via hydroxyproline analysis, western blotting (COL1A1, TGF-β, Bax, Bcl-2, cleaved caspase-3), and Masson, immunohistochemical (α-SMA, AIF, Cyto C), and TUNEL staining. Additionally, in vitro, apoptosis was assessed in MLE-12 cells exposed to BLM for 24 h using the Annexin V/PI assay and western blotting (Bax, Bcl-2, cleaved caspase-3, AIF, Cyto C). To elucidate the role of the mitochondrial ATP-sensitive potassium channel (mitoKATP) in the protective effect of BA, we utilised diazoxide (DZX)-a mitoKATP agonist-and 5-hydroxydecanoate sodium (5-HD)-a mitoKATP inhibitor. Results revealed the involvement of mitoKATP in the protective effect of BA in BLM-induced PF. More specifically, mitoKATP activation can attenuate BLM-induced PF progression and mitigate alveolar epithelial type II cell death by reducing mitochondrial ROS, maintaining the mitochondrial membrane potential, and impeding the mitochondrial apoptotic pathway. Collectively, the findings offer pharmacological support to use BA for the treatment or prevention of BLM-induced PF and suggest that mitoKATP might serve as an effective therapeutic target for this condition.
Collapse
Affiliation(s)
- Mingming Han
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, China
| | - Shayan Wang
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuehua Zhou
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Pengfei Zhang
- The Respiratory Division, Ruian People's Hospital, Zhejiang 325200, China
| | - Zhengyuan Han
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Chen
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Haijian Cai
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, China
| | - Lina Wu
- Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoying Huang
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, China.
| | - Liangxing Wang
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, China.
| | - Yanfan Chen
- The Respiratory Division, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
7
|
Palácio PB, de Freitas Soares GC, Lima GMB, Cunha PLO, Varela ALN, Facundo HT. Competitive interaction between ATP and GTP regulates mitochondrial ATP-sensitive potassium channels. Chem Biol Interact 2023:110560. [PMID: 37244398 DOI: 10.1016/j.cbi.2023.110560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Mitochondrial ATP-sensitive K+ channels (mitoKATP) have been recently characterized structurally, and possess a protein through which K+ enters mitochondria (MitoKIR), and a regulatory subunit (mitoSUR). The mitoSUR regulatory subunit is an ATP-binding cassette (ABC) protein isoform 8 (ABCB8). Opening these channels is known to be cardioprotective, but the molecular and physiological mechanisms that activate them are not fully known. Here, to better understand the molecular and physiological mechanisms of activators (GTP) and inhibitors (ATP) on the activity of mitoKATP, we exposed isolated mitochondria to both nucleotides. We also used molecular docking directed to the nucleotide-binding domain of human ABCB8/mitoSUR to test a comparative model of ATP and GTP effects. As expected, we find that ATP dose-dependently inhibits mitoKATP activity (IC50 = 21.24 ± 1.4 mM). However, simultaneous exposure of mitochondria to GTP dose-dependently (EC50 = 13.19 ± 1.33 mM) reversed ATP inhibition. Pharmacological and computational studies suggest that GTP reverses ATP activity competitively. Docking directed to the site of crystallized ADP reveals that both nucleotides bind to mitoSUR with high affinity, with their phosphates directed to the Mg2+ ion and the walker A motif of the protein (SGGGKTT). These effects, when combined, result in GTP binding, ATP displacement, mitochondrial ATP-sensitive K+ transport, and lower formation of reactive oxygen species. Overall, our findings demonstrate the basis for ATP and GTP binding in mitoSUR using a combination of biochemical, pharmacological, and computational experiments. Future studies may reveal the extent to which the balance between ATP and GTP actions contributes toward cardioprotection against ischemic events.
Collapse
|
8
|
Abstract
Mitochondria are involved in multiple cellular tasks, such as ATP synthesis, metabolism, metabolite and ion transport, regulation of apoptosis, inflammation, signaling, and inheritance of mitochondrial DNA. The majority of the correct functioning of mitochondria is based on the large electrochemical proton gradient, whose component, the inner mitochondrial membrane potential, is strictly controlled by ion transport through mitochondrial membranes. Consequently, mitochondrial function is critically dependent on ion homeostasis, the disturbance of which leads to abnormal cell functions. Therefore, the discovery of mitochondrial ion channels influencing ion permeability through the membrane has defined a new dimension of the function of ion channels in different cell types, mainly linked to the important tasks that mitochondrial ion channels perform in cell life and death. This review summarizes studies on animal mitochondrial ion channels with special focus on their biophysical properties, molecular identity, and regulation. Additionally, the potential of mitochondrial ion channels as therapeutic targets for several diseases is briefly discussed.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy;
| | - Adam Szewczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland;
| |
Collapse
|
9
|
Krajewska M, Szewczyk A, Kulawiak B, Koprowski P. Pharmacological Characterization of a Recombinant Mitochondrial ROMK2 Potassium Channel Expressed in Bacteria and Reconstituted in Planar Lipid Bilayers. MEMBRANES 2023; 13:360. [PMID: 36984747 PMCID: PMC10052516 DOI: 10.3390/membranes13030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
In the inner mitochondrial membrane, several potassium channels that play a role in cell life and death have been identified. One of these channels is the ATP-regulated potassium channel (mitoKATP). The ROMK2 potassium channel is a potential molecular component of the mitoKATP channel. The current study aimed to investigate the pharmacological modulation of the activity of the ROMK2 potassium channel expressed in Escherichia coli bacteria. ROMK2 was solubilized in polymer nanodiscs and incorporated in planar lipid bilayers. The impact of known mitoKATP channel modulators on the activity of the ROMK2 was characterized. We found that the ROMK2 channel was activated by the mitoKATP channel opener diazoxide and blocked by mitoKATP inhibitors such as ATP/Mg2+, 5-hydroxydecanoic acid, and antidiabetic sulfonylurea glibenclamide. These results indicate that the ROMK2 potassium protein may be a pore-forming subunit of mitoKATP and that the impact of channel modulators is not related to the presence of accessory proteins.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
- Interdisciplinary Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| |
Collapse
|
10
|
Kobara M, Amano T, Toba H, Nakata T. Nicorandil Suppresses Ischemia-Induced Norepinephrine Release and Ventricular Arrhythmias in Hypertrophic Hearts. Cardiovasc Drugs Ther 2023; 37:53-62. [PMID: 35895166 DOI: 10.1007/s10557-022-07369-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Ventricular arrhythmias (VAs) are a common cause of sudden death in acute myocardial infarction (MI), for which hypertension is a major risk factor. Nicorandil opens ATP-sensitive potassium (KATP) channels, which are expressed by nerve terminals and cardiomyocytes and regulate the release of norepinephrine (NE). However, the effects of nicorandil on ischemic NE release in cardiac tissue remain unclear. Therefore, we herein investigated whether nicorandil suppressed interstitial NE concentrations and VAs during acute MI in pressure overload-induced hypertrophic hearts. METHODS Rats were divided into two groups: an abdominal aortic constriction (AAC) group and sham-operated (Sham) group. Four weeks after constriction, cardiac geometry and functions were examined using echocardiography and hemodynamic analyses. Myocardial ischemia was induced by coronary artery occlusion for 100 min with or without the administration of nicorandil. VAs were assessed by electrocardiography, and NE concentrations in the ischemic region were measured using a micro-dialysis method. RESULTS AAC induced left ventricular hypertrophy with diastolic dysfunction. VAs markedly increased in the early phase (0-20 min) of ischemia in both groups and were more frequent in the AAC group. Cardiac interstitial NE concentrations were higher in the AAC group before ischemia and significantly increased during ischemia in both groups. Nicorandil significantly suppressed ischemia-induced VAs and NE increases in the AAC group. CONCLUSION Ischemia-induced VAs were more frequent in hypertrophic hearts and associated with high interstitial concentrations of NE. The attenuation of ischemia-induced increases in NE through neuronal KATP opening by nicorandil may suppress ischemia-induced VAs in hypertrophic hearts.
Collapse
Affiliation(s)
- Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| | - Toshihiro Amano
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Tetsuo Nakata
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
11
|
Kleinbongard P, Lieder H, Skyschally A, Heusch G. Diazoxide is a powerful cardioprotectant but is not feasible in a realistic infarct scenario. Front Cardiovasc Med 2023; 10:1173462. [PMID: 37153458 PMCID: PMC10154575 DOI: 10.3389/fcvm.2023.1173462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Diazoxide is a powerful cardioprotective agent that activates mitochondrial ATP-dependent K-channels and stimulates mitochondrial respiration. Diazoxide reduced infarct size in isolated rodent heart preparations and upon pretreatment in juvenile pigs with coronary occlusion/reperfusion. We aimed to study the use of diazoxide in a more realistic adult pig model of reperfused acute myocardial infarction when diazoxide was administered just before reperfusion. Methods and results In a first approach, we pretreated anaesthetised adult Göttingen minipigs with 7 mg kg-1 diazoxide (n = 5) or placebo (n = 5) intravenously over 10 min and subjected them to 60 min coronary occlusion and 180 min reperfusion; blood pressure was maintained by use of an aortic snare. The primary endpoint was infarct size (triphenyl tetrazolium chloride staining) as a fraction of area at risk; no-reflow area (thioflavin-S staining) was the secondary endpoint. In a second approach, diazoxide (n = 5) was given from 50 to 60 min coronary occlusion, and blood pressure was not maintained. There was a significant reduction in infarct size (22% ± 11% of area at risk with diazoxide pretreatment vs. 47% ± 11% with placebo) and area of no-reflow (14% ± 14% of infarct size with diazoxide pretreatment vs. 46% ± 20% with placebo). With diazoxide from 50 to 60 min coronary occlusion, however, there was marked hypotension, and infarct size (44% ± 7%) and area of no-reflow were not reduced (35% ± 25%). Conclusions Cardioprotection by diazoxide pretreatment was confirmed in adult pigs with reperfused acute myocardial infarction but is not feasible when diazoxide is administered in a more realistic scenario before reperfusion and causes hypotension.
Collapse
|
12
|
Bercea C, Limbu R, Behnam K, Ng KE, Aziz Q, Tinker A, Tamagnini F, Cottrell GS, McNeish AJ. Omega-3 polyunsaturated fatty acid-induced vasodilation in mouse aorta and mesenteric arteries is not mediated by ATP-sensitive potassium channels. Front Physiol 2022; 13:1033216. [PMID: 36589427 PMCID: PMC9797959 DOI: 10.3389/fphys.2022.1033216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.
Collapse
Affiliation(s)
- Cristiana Bercea
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Roshan Limbu
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Kamila Behnam
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Keat-Eng Ng
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Qadeer Aziz
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Andrew Tinker
- Tinker Laboratory, William Harvey Research Institute, Clinical Pharmacology and Precision Medicine, Queen Mary University, London, United Kingdom
| | - Francesco Tamagnini
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Graeme S Cottrell
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| | - Alister J McNeish
- McNeish Laboratory, School of Chemistry, Food and Pharmacy, Department of Pharmacology, University of Reading, London, United Kingdom
| |
Collapse
|
13
|
Anti-aging effects of chlorpropamide depend on mitochondrial complex-II and the production of mitochondrial reactive oxygen species. Acta Pharm Sin B 2022; 12:665-677. [PMID: 35256938 PMCID: PMC8897034 DOI: 10.1016/j.apsb.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Sulfonylureas are widely used oral anti-diabetic drugs. However, its long-term usage effects on patients’ lifespan remain controversial, with no reports of influence on animal longevity. Hence, the anti-aging effects of chlorpropamide along with glimepiride, glibenclamide, and tolbutamide were studied with special emphasis on the interaction of chlorpropamide with mitochondrial ATP-sensitive K+ (mitoK-ATP) channels and mitochondrial complex II. Chlorpropamide delayed aging in Caenorhabditis elegans, human lung fibroblast MRC-5 cells and reduced doxorubicin-induced senescence in both MRC-5 cells and mice. In addition, the mitochondrial membrane potential and ATP levels were significantly increased in chlorpropamide-treated worms, which is consistent with the function of its reported targets, mitoK-ATP channels. Increased levels of mitochondrial reactive oxygen species (mtROS) were observed in chlorpropamide-treated worms. Moreover, the lifespan extension by chlorpropamide required complex II and increased mtROS levels, indicating that chlorpropamide acts on complex II directly or indirectly via mitoK-ATP to increase the production of mtROS as a pro-longevity signal. This study provides mechanistic insight into the anti-aging effects of sulfonylureas in C. elegans.
Collapse
|
14
|
Juhaszova M, Kobrinsky E, Zorov DB, Nuss HB, Yaniv Y, Fishbein KW, de Cabo R, Montoliu L, Gabelli SB, Aon MA, Cortassa S, Sollott SJ. ATP Synthase K +- and H +-fluxes Drive ATP Synthesis and Enable Mitochondrial K +-"Uniporter" Function: II. Ion and ATP Synthase Flux Regulation. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac001. [PMID: 35187492 PMCID: PMC8850977 DOI: 10.1093/function/zqac001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
We demonstrated that ATP synthase serves the functions of a primary mitochondrial K+ "uniporter," i.e., the primary way for K+ to enter mitochondria. This K+ entry is proportional to ATP synthesis, regulating matrix volume and energy supply-vs-demand matching. We show that ATP synthase can be upregulated by endogenous survival-related proteins via IF1. We identified a conserved BH3-like domain of IF1 which overlaps its "minimal inhibitory domain" that binds to the β-subunit of F1. Bcl-xL and Mcl-1 possess a BH3-binding-groove that can engage IF1 and exert effects, requiring this interaction, comparable to diazoxide to augment ATP synthase's H+ and K+ flux and ATP synthesis. Bcl-xL and Mcl-1, but not Bcl-2, serve as endogenous regulatory ligands of ATP synthase via interaction with IF1 at this BH3-like domain, to increase its chemo-mechanical efficiency, enabling its function as the recruitable mitochondrial KATP-channel that can limit ischemia-reperfusion injury. Using Bayesian phylogenetic analysis to examine potential bacterial IF1-progenitors, we found that IF1 is likely an ancient (∼2 Gya) Bcl-family member that evolved from primordial bacteria resident in eukaryotes, corresponding to their putative emergence as symbiotic mitochondria, and functioning to prevent their parasitic ATP consumption inside the host cell.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth W Fishbein
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), 28049 Madrid, Spain
| | - Sandra B Gabelli
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Miguel A Aon
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | |
Collapse
|
15
|
Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. Int J Mol Sci 2022; 23:ijms23031210. [PMID: 35163132 PMCID: PMC8835872 DOI: 10.3390/ijms23031210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
In this paper, the techniques used to study the function of mitochondrial potassium channels are critically reviewed. The majority of these techniques have been known for many years as a result of research on plasma membrane ion channels. Hence, in this review, we focus on the critical evaluation of techniques used in the studies of mitochondrial potassium channels, describing their advantages and limitations. Functional analysis of mitochondrial potassium channels in comparison to that of plasmalemmal channels presents additional experimental challenges. The reliability of functional studies of mitochondrial potassium channels is often affected by the need to isolate mitochondria and by functional properties of mitochondria such as respiration, metabolic activity, swelling capacity, or high electrical potential. Three types of techniques are critically evaluated: electrophysiological techniques, potassium flux measurements, and biochemical techniques related to potassium flux measurements. Finally, new possible approaches to the study of the function of mitochondrial potassium channels are presented. We hope that this review will assist researchers in selecting reliable methods for studying, e.g., the effects of drugs on mitochondrial potassium channel function. Additionally, this review should aid in the critical evaluation of the results reported in various articles on mitochondrial potassium channels.
Collapse
|
16
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
17
|
Bezerra Palácio P, Brito Lucas AM, Varlla de Lacerda Alexandre J, Oliveira Cunha PL, Ponte Viana YI, Albuquerque AC, Nunes Varela AL, Facundo HT. Pharmacological and molecular docking studies reveal that glibenclamide competitively inhibits diazoxide-induced mitochondrial ATP-sensitive potassium channel activation and pharmacological preconditioning. Eur J Pharmacol 2021; 908:174379. [PMID: 34324857 DOI: 10.1016/j.ejphar.2021.174379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022]
Abstract
Mitochondrial ATP-sensitive potassium channels (mitoKATP) locate in the inner mitochondrial membrane and possess protective cellular properties. mitoKATP opening-induced cardioprotection (using the pharmacological agent diazoxide) is preventable by antagonists, such as glibenclamide. However, the mechanisms of action of these drugs and how mitoKATP respond to them are poorly understood. Here, we show data that reinforce the existence of a mitochondrial sulfonylurea receptor (mitoSUR) as part of the mitoKATP. We also show how diazoxide and glibenclamide compete for the same binding site in mitoSUR. A glibenclamide analog that lacks its cyclohexylurea portion (IMP-A) loses its ability to inhibit diazoxide-induced swelling. These results suggest that the cyclohexylureia portion of glibenclamide is indispensable for mitoKATP inhibition. Moreover, IMP-A did not suppress diazoxide-induced preconditioning (EC50 10.66 μM) in a rat model of a cardiac ischemia/reperfusion. Importantly, glibenclamide inhibited both diazoxide-induced cardioprotection (IC50 86 nM). We suggest that IMP-A must be used with caution since we found this drug possesses significant inhibitory effects on mitochondrial respiration. We characterized the binding of glibenclamide and diazoxide using a molecular simulation (docking) approach. Using the molecular structure of the ATP binding protein ABCB8 (pointed by others as the mitoSUR) we demonstrate that glibenclamide competitively inhibits diazoxide actions. This was reinforced (pharmacologically) in a competitive antagonism test. Taken together, these results bring valuable and novel insights into the pharmacological/biochemical aspects of mitokATP activation and cardioprotection. This study may lead to the discovery of novel therapeutic strategies that may impact ischemia-reperfusion injury.
Collapse
|
18
|
Country MW, Jonz MG. Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol 2021; 224:271844. [PMID: 34402511 DOI: 10.1242/jeb.242634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/11/2021] [Indexed: 01/20/2023]
Abstract
Neurons of the retina require oxygen to survive. In hypoxia, neuronal ATP production is impaired, ATP-dependent ion pumping is reduced, transmembrane ion gradients are dysregulated, and intracellular Ca2+ concentration ([Ca2+]i) increases enough to trigger excitotoxic cell death. Central neurons of the common goldfish (Carassius auratus) are hypoxia tolerant, but little is known about how goldfish retinas withstand hypoxia. To study the cellular mechanisms of hypoxia tolerance, we isolated retinal interneurons (horizontal cells; HCs), and measured [Ca2+]i with Fura-2. Goldfish HCs maintained [Ca2+]i throughout 1 h of hypoxia, whereas [Ca2+]i increased irreversibly in HCs of the hypoxia-sensitive rainbow trout (Oncorhynchus mykiss) with just 20 min of hypoxia. Our results suggest mitochondrial ATP-dependent K+ channels (mKATP) are necessary to stabilize [Ca2+]i throughout hypoxia. In goldfish HCs, [Ca2+]i increased when mKATP channels were blocked with glibenclamide or 5-hydroxydecanoic acid, whereas the mKATP channel agonist diazoxide prevented [Ca2+]i from increasing in hypoxia in trout HCs. We found that hypoxia protects against increases in [Ca2+]i in goldfish HCs via mKATP channels. Glycolytic inhibition with 2-deoxyglucose increased [Ca2+]i, which was rescued by hypoxia in a mKATP channel-dependent manner. We found no evidence of plasmalemmal KATP channels in patch-clamp experiments. Instead, we confirmed the involvement of KATP in mitochondria with TMRE imaging, as hypoxia rapidly (<5 min) depolarized mitochondria in a mKATP channel-sensitive manner. We conclude that mKATP channels initiate a neuroprotective pathway in goldfish HCs to maintain [Ca2+]i and avoid excitotoxicity in hypoxia. This model provides novel insight into the cellular mechanisms of hypoxia tolerance in the retina.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, ON, CanadaK1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON, CanadaK1N 6N5.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, CanadaK1H 8M5
| |
Collapse
|
19
|
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021; 10:1554. [PMID: 34205420 PMCID: PMC8235349 DOI: 10.3390/cells10061554] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| |
Collapse
|
20
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
21
|
Mitochondrial K + Transport: Modulation and Functional Consequences. Molecules 2021; 26:molecules26102935. [PMID: 34069217 PMCID: PMC8156104 DOI: 10.3390/molecules26102935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/28/2023] Open
Abstract
The existence of a K+ cycle in mitochondria has been predicted since the development of the chemiosmotic theory and has been shown to be crucial for several cellular phenomena, including regulation of mitochondrial volume and redox state. One of the pathways known to participate in K+ cycling is the ATP-sensitive K+ channel, MitoKATP. This channel was vastly studied for promoting protection against ischemia reperfusion when pharmacologically activated, although its molecular identity remained unknown for decades. The recent molecular characterization of MitoKATP has opened new possibilities for modulation of this channel as a mechanism to control cellular processes. Here, we discuss different strategies to control MitoKATP activity and consider how these could be used as tools to regulate metabolism and cellular events.
Collapse
|
22
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
23
|
Garcia SM, Hirschberg PR, Sarkar P, Siegel DM, Teegala SB, Vail GM, Routh VH. Insulin actions on hypothalamic glucose-sensing neurones. J Neuroendocrinol 2021; 33:e12937. [PMID: 33507001 PMCID: PMC10561189 DOI: 10.1111/jne.12937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Subsequent to the discovery of insulin 100 years ago, great strides have been made in understanding its function, especially in the brain. It is now clear that insulin is a critical regulator of the neuronal circuitry controlling energy balance and glucose homeostasis. This review focuses on the effects of insulin and diabetes on the activity and glucose sensitivity of hypothalamic glucose-sensing neurones. We highlight the role of electrophysiological data in understanding how insulin regulates glucose-sensing neurones. A brief introduction describing the benefits and limitations of the major electrophysiological techniques used to investigate glucose-sensing neurones is provided. The mechanisms by which hypothalamic neurones sense glucose are discussed with an emphasis on those glucose-sensing neurones already shown to be modulated by insulin. Next, the literature pertaining to how insulin alters the activity and glucose sensitivity of these hypothalamic glucose-sensing neurones is described. In addition, the effects of impaired insulin signalling during diabetes and the ramifications of insulin-induced hypoglycaemia on hypothalamic glucose-sensing neurones are covered. To the extent that it is known, we present hypotheses concerning the mechanisms underlying the effects of these insulin-related pathologies. To conclude, electrophysiological data from the hippocampus are evaluated aiming to provide clues regarding how insulin might influence neuronal plasticity in glucose-sensing neurones. Although much has been accomplished subsequent to the discovery of insulin, the work described in our review suggests that the regulation of central glucose sensing by this hormone is both important and understudied.
Collapse
Affiliation(s)
- Stephanie M Garcia
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Dashiel M Siegel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Gwyndolin M Vail
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
24
|
Mitochondrial osmoregulation in evolution, cation transport and metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148368. [PMID: 33422486 DOI: 10.1016/j.bbabio.2021.148368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
This review provides a retrospective on the role of osmotic regulation in the process of eukaryogenesis. Specifically, it focuses on the adjustments which must have been made by the original colonizing α-proteobacteria that led to the evolution of modern mitochondria. We focus on the cations that are fundamentally involved in volume determination and cellular metabolism and define the transporter landscape in relation to these ions in mitochondria as we know today. We provide analysis on how the cations interplay and together maintain osmotic balance that allows for effective ATP synthesis in the organelle.
Collapse
|
25
|
Mitochondrial proteomics alterations in rat hearts following ischemia/reperfusion and diazoxide post‑conditioning. Mol Med Rep 2020; 23:161. [PMID: 33355377 PMCID: PMC7789131 DOI: 10.3892/mmr.2020.11800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Diazoxide post-conditioning (D-Post) has been shown to be effective in alleviating myocardial ischemia/reperfusion (I/R) injury; however, the specific mechanisms are not fully understood. In the present study, isolated rat hearts were subjected to I/R injury and D-Post. The mitochondria were extracted, and mitochondrial protein expression was detected in normal, I/R and D-Post hearts using two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Differentially expressed proteins were then identified using comparative proteomics. In total, five differentially expressed proteins were identified between the I/R and D-Post hearts. Compared with the I/R hearts, the expression of NADH dehydrogenase (ubiquinone) flavoprotein 1 (NDUFV1), NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1), 2-oxoglutarate dehydrogenase (OGDH) and ATP synthase α subunit (isoform CRA_b, gi|149029482) was increased in D-Post hearts. In addition, the expression of another isoform of ATP synthase α subunit (isoform CRA_c, gi|149029480) was decreased in the D-Post group compared with the I/R group. The expression profiles of NDUFV1, NDUFS1 and OGDH in the two groups were further validated via western blotting. The five differentially expressed proteins may be protective effectors in D-Post, as well as potential targets for the treatment of cardiac I/R injury.
Collapse
|
26
|
ATP-sensitive potassium transport in rat brain mitochondria is highly sensitive to mK(ATP) channels openers: a light scattering study. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Hausenloy DJ, Schulz R, Girao H, Kwak BR, De Stefani D, Rizzuto R, Bernardi P, Di Lisa F. Mitochondrial ion channels as targets for cardioprotection. J Cell Mol Med 2020; 24:7102-7114. [PMID: 32490600 PMCID: PMC7339171 DOI: 10.1111/jcmm.15341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.
Collapse
Affiliation(s)
- Derek J. Hausenloy
- Cardiovascular & Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Yong Loo Lin School of MedicineNational University SingaporeSingaporeSingapore
- The Hatter Cardiovascular InstituteUniversity College LondonLondonUK
- Cardiovascular Research CenterCollege of Medical and Health SciencesAsia UniversityTaichung CityTaiwan
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Centre of CoimbraCACCCoimbraPortugal
| | - Brenda R. Kwak
- Department of Pathology and ImmunologyUniversity of GenevaGenevaSwitzerland
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Rosario Rizzuto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| | - Fabio Di Lisa
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- CNR Neuroscience InstitutePadovaItaly
| |
Collapse
|
28
|
Fahanik-Babaei J, Rezaee B, Nazari M, Torabi N, Saghiri R, Sauve R, Eliassi A. A new brain mitochondrial sodium-sensitive potassium channel: effect of sodium ions on respiratory chain activity. J Cell Sci 2020; 133:jcs242446. [PMID: 32327555 DOI: 10.1242/jcs.242446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
We have determined the electropharmacological properties of a new potassium channel from brain mitochondrial membrane using a planar lipid bilayer method. Our results show the presence of a channel with a conductance of 150 pS at potentials between 0 and -60 mV in 200 mM cis/50 mM trans KCl solutions. The channel was voltage independent, with an open probability value of approximately 0.6 at different voltages. ATP did not affect current amplitude or open probability at positive and negative voltages. Notably, adding iberiotoxin, charybdotoxin, lidocaine or margatoxin had no effect on the channel behavior. Similarly, no changes were observed by decreasing the cis pH to 6. Interestingly, the channel was inhibited by adding sodium in a dose-dependent manner. Our results also indicated a significant increase in mitochondrial complex IV activity and membrane potential and a decrease in complex I activity and mitochondrial ROS production in the presence of sodium ions. We propose that inhibition of mitochondrial potassium transport by sodium ions on potassium channel opening could be important for cell protection and ATP synthesis.
Collapse
Affiliation(s)
- Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1419733141, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Bahareh Rezaee
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Maryam Nazari
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Nihad Torabi
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran 1985717443, Iran
| | - Remy Sauve
- Department of Pharmacology and Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
- Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| |
Collapse
|
29
|
Diazoxide Preconditioning of Nonhuman Primate Pancreas Improves Islet Isolation Outcomes by Mitochondrial Protection. Pancreas 2020; 49:706-713. [PMID: 32433410 DOI: 10.1097/mpa.0000000000001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Previously, we showed that diazoxide (DZ), an effective ischemic preconditioning agent, protected rodent pancreas against ischemia-reperfusion injury. Here, we further investigate whether DZ supplementation to University of Wisconsin (UW) solution during pancreas procurement and islet isolation has similar cytoprotection in a preclinical nonhuman primate model. METHODS Cynomolgus monkey pancreata were flushed with UW or UW + 150 μM DZ during procurement and preserved for 8 hours before islet isolation. RESULTS First, a significantly higher islet yield was observed in UW + DZ than in UW (57,887 vs 23,574 IEq/pancreas and 5396 vs 1646 IEq/g). Second, the DZ treated islets had significantly lower apoptotic cells per islet (1.64% vs 9.85%). Third, DZ significantly inhibited ROS surge during reperfusion with a dose-response manner. Fourth, DZ improved in vitro function of isolated islets determined by mitochondrial potentials and calcium influx in responses to glucose and KCI. Fifth, the DZ treated islets had much higher cure rate and better glycemia control in diabetic mice transplant model. CONCLUSIONS This study showed a strong mitochondrial protection of DZ on nonhuman primate islets against ischemia-reperfusion injury that provides strong evidence for its clinical application in islet and pancreas transplantation.
Collapse
|
30
|
Akopova O, Kolchinskaya L, Nosar V, Mankovska I, Sagach V. Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale. BMC Mol Cell Biol 2020; 21:31. [PMID: 32306897 PMCID: PMC7168813 DOI: 10.1186/s12860-020-00275-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cytoprotection afforded by mitochondrial ATP-sensitive K+-channel (mKATP-channel) opener diazoxide (DZ) largely depends on the activation of potassium cycle with eventual modulation of mitochondrial functions and ROS production. However, generally these effects were studied in the presence of Mg∙ATP known to block K+ transport. Thus, the purpose of our work was the estimation of DZ effects on K+ transport, K+ cycle and ROS production in rat liver mitochondria in the absence of Mg∙ATP. Results Without Mg·ATP, full activation of native mKATP-channel, accompanied by the increase in ATP-insensitive K+ uptake, activation of K+-cycle and respiratory uncoupling, was reached at ≤0.5 μM of DZ,. Higher diazoxide concentrations augmented ATP-insensitive K+ uptake, but not mKATP-channel activity. mKATP-channel was blocked by Mg·ATP, reactivated by DZ, and repeatedly blocked by mKATP-channel blockers glibenclamide and 5-hydroxydecanoate, whereas ATP-insensitive potassium transport was blocked by Mg2+ and was not restored by DZ. High sensitivity of potassium transport to DZ in native mitochondria resulted in suppression of mitochondrial ROS production caused by the activation of K+-cycle on sub-micromolar scale. Based on the oxygen consumption study, the share of mKATP-channel in respiratory uncoupling by DZ was found. Conclusions The study of mKATP-channel activation by diazoxide in the absence of MgATP discloses novel, not described earlier, aspects of mKATP-channel interaction with this drug. High sensitivity of mKATP-channel to DZ results in the modulation of mitochondrial functions and ROS production by DZ on sub-micromolar concentration scale. Our experiments led us to the hypothesis that under the conditions marked by ATP deficiency affinity of mKATP-channel to DZ can increase, which might contribute to the high effectiveness of this drug in cardio- and neuroprotection.
Collapse
Affiliation(s)
- Olga Akopova
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz str. 4, Kiev, 01601, Ukraine.
| | - Liudmila Kolchinskaya
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz str. 4, Kiev, 01601, Ukraine
| | - Valentina Nosar
- Hypoxic States Research Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine
| | - Iryna Mankovska
- Hypoxic States Research Department, Bogomoletz Institute of Physiology, NAS of Ukraine, Kiev, Ukraine
| | - Vadim Sagach
- Circulation department, Bogomoletz Institute of Physiology, NAS of Ukraine, Bogomoletz str. 4, Kiev, 01601, Ukraine
| |
Collapse
|
31
|
Papanicolaou KN, Ashok D, Liu T, Bauer TM, Sun J, Li Z, da Costa E, D'Orleans CC, Nathan S, Lefer DJ, Murphy E, Paolocci N, Foster DB, O'Rourke B. Global knockout of ROMK potassium channel worsens cardiac ischemia-reperfusion injury but cardiomyocyte-specific knockout does not: Implications for the identity of mitoKATP. J Mol Cell Cardiol 2020; 139:176-189. [PMID: 32004507 PMCID: PMC7849919 DOI: 10.1016/j.yjmcc.2020.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/29/2023]
Abstract
The renal-outer-medullary‑potassium (ROMK) channel, mutated in Bartter's syndrome, regulates ion exchange in kidney, but its extra-renal functions remain unknown. Additionally, ROMK was postulated to be the pore-forming subunit of the mitochondrial ATP-sensitive K+ channel (mitoKATP), a mediator of cardioprotection. Using global and cardiomyocyte-specific knockout mice (ROMK-GKO and ROMK-CKO respectively), we characterize the effects of ROMK knockout on mitochondrial ion handling, the response to pharmacological KATP channel modulators, and ischemia/reperfusion (I/R) injury. Mitochondria from ROMK-GKO hearts exhibited a lower threshold for Ca2+-triggered permeability transition pore (mPTP) opening but normal matrix volume changes during oxidative phosphorylation. Isolated perfused ROMK-GKO hearts exhibited impaired functional recovery and increased infarct size when I/R was preceded by an ischemic preconditioning (IPC) protocol. Because ROMK-GKO mice exhibited severe renal defects and cardiac remodeling, we further characterized ROMK-CKO hearts to avoid confounding systemic effects. Mitochondria from ROMK-CKO hearts had unchanged matrix volume responses during oxidative phosphorylation and still swelled upon addition of a mitoKATP opener, but exhibited a lower threshold for mPTP opening, similar to GKO mitochondria. Nevertheless, I/R induced damage was not exacerbated in ROMK-CKO hearts, either ex vivo or in vivo. Lastly, we examined the response of ROMK-CKO hearts to ex vivo I/R injury with or without IPC and found that IPC still protected these hearts, suggesting that cardiomyocyte ROMK does not participate significantly in the cardioprotective pathway elicited by IPC. Collectively, our findings from these novel strains of mice suggest that cardiomyocyte ROMK is not a central mediator of mitoKATP function, although it can affect mPTP activation threshold.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Liu
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tyler M Bauer
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Junhui Sun
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Eduardo da Costa
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles Crepy D'Orleans
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Nathan
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD, USA
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Sampieri R, Fuentes E, Carrillo ED, Hernández A, García MC, Sánchez JA. Pharmacological Preconditioning Using Diazoxide Regulates Store-Operated Ca 2 + Channels in Adult Rat Cardiomyocytes. Front Physiol 2020; 10:1589. [PMID: 32009985 PMCID: PMC6972595 DOI: 10.3389/fphys.2019.01589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 01/31/2023] Open
Abstract
Voltage-dependent Ca2+ channels and store-operated Ca2+ channels (SOCs) are the major routes of Ca2+ entry into mammalian cells. Previously, we reported that pharmacological preconditioning (PPC) leads to a decrease in the amplitude of L-type calcium channel current in the heart. In this study, we examined PPC-associated changes in SOC function. We measured adult cardiomyocyte membrane currents using the whole-cell patch-clamp technique, and we evaluated reactive oxygen species (ROS) production and intracellular Ca2+ levels in cardiomyocytes using fluorescent probes. Diazoxide (Dzx) and thapsigargin (Tg) were used to induce PPC and to deplete internal stores of Ca2+, respectively. Ca2+ store depletion generated inward currents with strong rectification, which were suppressed by the SOC blocker GSK-7975-A. These currents were completely abolished by PPC, an effect that could be countered with 5-hydroxydecanoate (5-HD; a selective mitochondrial ATP-sensitive K+ channel blocker), an intracellular mitochondrial energizing solution, or Ni2+ [a blocker of sodium-calcium exchanger (NCX)]. Buffering of ROS and intracellular Ca2+ also prevented PPC effects on SOC currents. Refilling of intracellular stores was largely suppressed by PPC, as determined by measuring intracellular Ca2+ with a fluorescent Ca2+ indicator. These results indicate that influx of Ca2+ through SOCs is inhibited by their ROS and Ca2+-dependent inactivation during PPC and that NCX is a likely source of PPC-inactivating Ca2+. We further showed that NCX associates with Orai1. Down-regulation of SOCs by PPC may play a role in cardioprotection following ischemia-reperfusion.
Collapse
Affiliation(s)
- Raúl Sampieri
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Eridani Fuentes
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Elba D Carrillo
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Ascención Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - María C García
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Jorge A Sánchez
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
33
|
Single-Channel Properties of the ROMK-Pore-Forming Subunit of the Mitochondrial ATP-Sensitive Potassium Channel. Int J Mol Sci 2019; 20:ijms20215323. [PMID: 31731540 PMCID: PMC6862428 DOI: 10.3390/ijms20215323] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
An increased flux of potassium ions into the mitochondrial matrix through the ATP-sensitive potassium channel (mitoKATP) has been shown to provide protection against ischemia-reperfusion injury. Recently, it was proposed that the mitochondrial-targeted isoform of the renal outer medullary potassium channel (ROMK) protein creates a pore-forming subunit of mitoKATP in heart mitochondria. Our research focuses on the properties of mitoKATP from heart-derived H9c2 cells. For the first time, we detected single-channel activity and describe the pharmacology of mitoKATP in the H9c2 heart-derived cells. The patch-clamping of mitoplasts from wild type (WT) and cells overexpressing ROMK2 revealed the existence of a potassium channel that exhibits the same basic properties previously attributed to mitoKATP. ROMK2 overexpression resulted in a significant increase of mitoKATP activity. The conductance of both channels in symmetric 150/150 mM KCl was around 97 ± 2 pS in WT cells and 94 ± 3 pS in cells overexpressing ROMK2. The channels were inhibited by 5-hydroxydecanoic acid (a mitoKATP inhibitor) and by Tertiapin Q (an inhibitor of both the ROMK-type channels and mitoKATP). Additionally, mitoKATP from cells overexpressing ROMK2 were inhibited by ATP/Mg2+ and activated by diazoxide. We used an assay based on proteinase K to examine the topology of the channel in the inner mitochondrial membrane and found that both termini of the protein localized to the mitochondrial matrix. We conclude that the observed activity of the channel formed by the ROMK protein corresponds to the electrophysiological and pharmacological properties of mitoKATP.
Collapse
|
34
|
Ischemia Reperfusion Injury Produces, and Ischemic Preconditioning Prevents, Rat Cardiac Fibroblast Differentiation: Role of K ATP Channels. J Cardiovasc Dev Dis 2019; 6:jcdd6020022. [PMID: 31167469 PMCID: PMC6617075 DOI: 10.3390/jcdd6020022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
Ischemic preconditioning (IPC) and activation of ATP-sensitive potassium channels (KATP) protect cardiac myocytes from ischemia reperfusion (IR) injury. We investigated the influence of IR injury, IPC and KATP in isolated rat cardiac fibroblasts. Hearts were removed under isoflurane anesthesia. IR was simulated in vitro by application and removal of paraffin oil over pelleted cells. Ischemia (30, 60 and 120 min) followed by 60 min reperfusion resulted in significant differentiation of fibroblasts into myofibroblasts in culture (mean % fibroblasts ± SEM in IR vs. time control: 12 ± 1% vs. 63 ± 2%, 30 min ischemia; 15 ± 3% vs. 71 ± 4%, 60 min ischemia; 8 ± 1% vs. 55 ± 2%, 120 min ischemia). IPC (15 min ischemia, 30 min reperfusion) significantly attenuated IR-induced fibroblast differentiation (52 ± 3%) compared to 60 min IR. IPC was mimicked by opening KATP with pinacidil (50 μM; 43 ± 6%) and by selectively opening mitochondrial KATP (mKATP) with diazoxide (100 μM; 53 ± 3%). Furthermore, IPC was attenuated by inhibiting KATP with glibenclamide (10 μM; 23 ± 5%) and by selectively blocking mKATP with 5-hydroxydecanoate (100 μM; 22 ± 9%). These results suggest that (a) IR injury evoked cardiac fibroblast to myofibroblast differentiation, (b) IPC attenuated IR-induced fibroblast differentiation, (c) KATP were involved in IPC and (d) this protection involved selective activation of mKATP.
Collapse
|
35
|
Huang Y, Hu D, Huang C, Nichols CG. Genetic Discovery of ATP-Sensitive K + Channels in Cardiovascular Diseases. Circ Arrhythm Electrophysiol 2019; 12:e007322. [PMID: 31030551 PMCID: PMC6494091 DOI: 10.1161/circep.119.007322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ATP-sensitive K+ (KATP) channels are hetero-octameric protein complexes comprising 4 pore-forming (Kir6.x) subunits and 4 regulatory sulfonylurea receptor (SURx) subunits. They are prominent in myocytes, pancreatic β cells, and neurons and link cellular metabolism with membrane excitability. Using genetically modified animals and genomic analysis in patients, recent studies have implicated certain ATP-sensitive K+ channel subtypes in physiological and pathological processes in a variety of cardiovascular diseases. In this review, we focus on the causal relationship between ATP-sensitive K+ channel activity and pathophysiology in the cardiovascular system, particularly from the perspective of genetic changes in human and animal models.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
36
|
Goswami SK, Ponnalagu D, Hussain AT, Shah K, Karekar P, Gururaja Rao S, Meredith AL, Khan M, Singh H. Expression and Activation of BK Ca Channels in Mice Protects Against Ischemia-Reperfusion Injury of Isolated Hearts by Modulating Mitochondrial Function. Front Cardiovasc Med 2019; 5:194. [PMID: 30746365 PMCID: PMC6360169 DOI: 10.3389/fcvm.2018.00194] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Activation and expression of large conductance calcium and voltage-activated potassium channel (BKCa) by pharmacological agents have been implicated in cardioprotection from ischemia-reperfusion (IR) injury possibly by regulating mitochondrial function. Given the non-specific effects of pharmacological agents, it is not clear whether activation of BKCa is critical to cardioprotection. In this study, we aimed to decipher the mechanistic role of BKCa in cardioprotection from IR injury by genetically activating BKCa channels. Methods and Results: Hearts from adult (3 months old) wild-type mice (C57/BL6) and mice expressing genetically activated BKCa (Tg-BKCa R207Q, referred as Tg-BKCa) along with wild-type BKCa were subjected to 20 min of ischemia and 30 min of reperfusion with or without ischemic preconditioning (IPC, 2 times for 2.5 min interval each). Left ventricular developed pressure (LVDP) was recorded using Millar's Mikrotip® catheter connected to ADInstrument data acquisition system. Myocardial infarction was quantified by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. Our results demonstrated that Tg-BKCa mice are protected from IR injury, and BKCa also contributes to IPC-mediated cardioprotection. Cardiac function parameters were also measured by echocardiography and no differences were observed in left ventricular ejection fraction, fractional shortening and aortic velocities. Amplex Red® was used to assess reactive oxygen species (ROS) production in isolated mitochondria by spectrofluorometry. We found that genetic activation of BKCa reduces ROS after IR stress. Adult cardiomyocytes and mitochondria from Tg-BKCa mice were isolated and labeled with Anti-BKCa antibodies. Images acquired via confocal microscopy revealed localization of cardiac BKCa in the mitochondria. Conclusions: Activation of BKCa is essential for recovery of cardiac function after IR injury and is likely a factor in IPC mediated cardioprotection. Genetic activation of BKCa reduces ROS produced by complex I and complex II/III in Tg-BKCa mice after IR, and IPC further decreases it. These results implicate BKCa-mediated cardioprotection, in part, by reducing mitochondrial ROS production. Localization of Tg-BKCa in adult cardiomyocytes of transgenic mice was similar to BKCa in wild-type mice.
Collapse
Affiliation(s)
- Sumanta Kumar Goswami
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Ahmed T Hussain
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kajol Shah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Priyanka Karekar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Andrea L Meredith
- Department of Physiology, University of Maryland, Baltimore, MD, United States
| | - Mahmood Khan
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.,Department of Emergency Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
37
|
Chowdhury MA, Sholl HK, Sharrett MS, Haller ST, Cooper CC, Gupta R, Liu LC. Exercise and Cardioprotection: A Natural Defense Against Lethal Myocardial Ischemia-Reperfusion Injury and Potential Guide to Cardiovascular Prophylaxis. J Cardiovasc Pharmacol Ther 2019; 24:18-30. [PMID: 30041547 PMCID: PMC7236859 DOI: 10.1177/1074248418788575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Similar to ischemic preconditioning, high-intensity exercise has been shown to decrease infarct size following myocardial infarction. In this article, we review the literature on beneficial effects of exercise, exercise requirements for cardioprotection, common methods utilized in laboratories to study this phenomenon, and discuss possible mechanisms for exercise-mediated cardioprotection.
Collapse
Affiliation(s)
- Mohammed Andaleeb Chowdhury
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Haden K Sholl
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Megan S Sharrett
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Steven T Haller
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Christopher C Cooper
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Rajesh Gupta
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lijun C Liu
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
38
|
Joshi S, Jarajapu YPR. Mitochondrial depolarization stimulates vascular repair-relevant functions of CD34 + cells via reactive oxygen species-induced nitric oxide generation. Br J Pharmacol 2018; 176:4373-4387. [PMID: 30367728 DOI: 10.1111/bph.14529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE CD34+ haematopoietic stem/progenitor cells have revascularization potential and are now being tested for the treatment of ischaemic vascular diseases in clinical trials. We tested the hypothesis that mitochondrial depolarization stimulates the reparative functions of CD34+ cells. EXPERIMENTAL APPROACH Peripheral blood was obtained from healthy individuals (n = 63), and mononuclear cells (MNCs) were separated. MNCs were enriched for lineage negative cells, followed by isolation of CD34+ cells. Vascular repair-relevant functions of CD34+ cells, proliferation and migration, were evaluated in the presence and absence of diazoxide. Mitochondrial membrane potential, ROS and NO levels were evaluated by flow cytometry by using JC-1, mitoSOX and DAF-FM respectively. KEY RESULTS Diazoxide stimulated the proliferation and migration of CD34+ cells that were comparable to the responses induced by stromal-derived factor-1α (SDF) or VEGF. Effects of diazoxide were blocked by either 5-hydroxydecanoate (5HD), a selective mitochondrial ATP-sensitive potassium channel (mitoKATP ) inhibitor, or by L-NAME. Diazoxide induced mitochondrial depolarization, and NO and cGMP generation that were 5HD-sensitive. The generation of NO and cGMP by diazoxide was blocked by an endothelial NOS (eNOS)-selective inhibitor, NIO, but not by a neuronal (n)NOS-selective inhibitor, Nω -propyl-L-arginine (NPA). A Ca2+ chelator, BAPTA, Akt inhibitor, triciribine, or PI3K inhibitor, LY294002, inhibited the NO release induced by diazoxide. Phosphorylation of eNOS at Ser1177 and dephosphorylation at Thr495 were increased. Diazoxide-induced ROS generation and phosphorylation of eNOS at Ser1177 were reduced by NPA. CONCLUSION AND IMPLICATIONS Diazoxide stimulates vascular repair-relevant functions of CD34+ cells via the mitoKATP -dependent release of NO and ROS. LINKED ARTICLES This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Shrinidh Joshi
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | - Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
39
|
Tanno S, Yamamoto K, Kurata Y, Adachi M, Inoue Y, Otani N, Mishima M, Yamamoto Y, Kuwabara M, Ogino K, Miake J, Ninomiya H, Shirayoshi Y, Okada F, Yamamoto K, Hisatome I. Protective Effects of Topiroxostat on an Ischemia-Reperfusion Model of Rat Hearts. Circ J 2018; 82:1101-1111. [PMID: 29491325 DOI: 10.1253/circj.cj-17-1049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury triggers cardiac dysfunctions via creating reactive oxygen species (ROS). Because xanthine oxidase (XO) is one of the major enzymes that generate ROS, inhibition of XO is expected to suppress ROS-induced I/R injury. However, it remains unclear whether XO inhibition really yields cardioprotection during I/R. The protective effects of the XO inhibitors, topiroxostat and allopurinol, on cardiac I/R injury were evaluated. METHODS AND RESULTS Using isolated rat hearts, ventricular functions, occurrence of arrhythmias, XO activities and thiobarbituric acid reactive substances (TBARS) productions and myocardial levels of adenine nucleotides before and after I/R, and cardiomyocyte death markers during reperfusion, were evaluated. Topiroxostat prevented left ventricular dysfunctions and facilitated recovery from arrhythmias during I/R. Allopurinol and the antioxidant, N-acetylcysteine (NAC), exhibited similar effects at higher concentrations. Topiroxostat inhibited myocardial XO activities and TBARS productions after I/R. I/R decreased myocardial levels of ATP, ADP and AMP, but increased that of xanthine. While topiroxostat, allopurinol or NAC did not change myocardial levels of ATP, ADP or AMP after I/R, all of the agents decreased the level of xanthine. They also decreased releases of CPK and LDH during reperfusion. CONCLUSIONS Topiroxostat showed protective effects against I/R injury with higher potency than allopurinol or NAC. It dramatically inhibited XO activity and TBARS production, suggesting suppression of ROS generation.
Collapse
Affiliation(s)
- Shogo Tanno
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Kenshiro Yamamoto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | | | - Maya Adachi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yumiko Inoue
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Naoyuki Otani
- Department of Clinical Pharmacology and Therapeutics, Oita University Faculty of Medicine
| | - Mutsuo Mishima
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Yasutaka Yamamoto
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Masanari Kuwabara
- University of Colorado, Denver, School of Medicine, Division of Renal Diseases and Hypertension
| | - Kazuhide Ogino
- Department of Clinical Laboratory, Tottori University Hospital
| | - Junichiro Miake
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University
| | | | - Yasuaki Shirayoshi
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| | - Futoshi Okada
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Department of Molecular Medicine and Therapeutics, Faculty of Medicine, Tottori University
| | - Ichiro Hisatome
- Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science
| |
Collapse
|
40
|
Abstract
The World Health Organization suggests that the cardiovascular diseases (CVDs) are the major cause of mortality and account for two-thirds of the deaths all over the world. These diseases kill about 17 million people every year and 3 in every 10 deaths are due to these diseases. The past decade has seen considerable improvements in diagnosis as well as treatment of various heart diseases. Various new therapeutic targets are being identified through in-depth knowledge of the disease mechanisms which has favored the testing of new strategies leading to newer treatment options. Opioid peptides and G-protein-coupled opioid receptors (ORs) have been previously studied widely in terms of central nervous system actions in mitigating the pain and drug abuse. The OR agonism or antagonism induces cytoprotective states in the myocardium, rendering these receptors as an attractive target for protection of heart from the fatal heart diseases. The opioids can provide an extended window of protection of the heart from various diseases. Although the mechanisms may not be fully understood, they seem to play a crucial role in various CVDs such as hypertension, hyperlipidemia, ischemic heart disease myocardial ischemia, and congestive heart failure. Since these compounds are already being used in acute and chronic pain, soon these compounds might be approved for use as cardioprotective agents. The following review focuses on the new information acquired on the role of the ORs in various CVDs.
Collapse
Affiliation(s)
- Hemangi Rawal
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
41
|
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018; 117:76-89. [PMID: 29373843 DOI: 10.1016/j.freeradbiomed.2018.01.024] [Citation(s) in RCA: 565] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (IR) injury is central to the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. IR injury is mediated by several factors including the elevated production of reactive oxygen species (ROS), which occurs particularly at reperfusion. The mitochondrial respiratory chain and NADPH oxidases of the NOX family are major sources of ROS in cardiomyocytes. The first part of this review discusses recent findings and controversies on the mechanisms of superoxide production by the mitochondrial electron transport chain during IR injury, as well as the contribution of the NOX isoforms expressed in cardiomyocytes, NOX1, NOX2 and NOX4, to this damage. It then focuses on the effects of ROS on the opening of the mitochondrial permeability transition pore (mPTP), an inner membrane non-selective pore that causes irreversible damage to the heart. The second part analyzes the redox mechanisms of cardiomyocyte mitochondrial protection; specifically, the activation of the hypoxia-inducible factor (HIF) pathway and the antioxidant transcription factor Nrf2, which are both regulated by the cellular redox state. Redox mechanisms involved in ischemic preconditioning, one of the most effective ways of protecting the heart against IR injury, are also reviewed. Interestingly, several of these protective pathways converge on the inhibition of mPTP opening during reperfusion. Finally, the clinical and translational implications of these cardioprotective mechanisms are discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain.
| |
Collapse
|
42
|
Bednarczyk P, Kicinska A, Laskowski M, Kulawiak B, Kampa R, Walewska A, Krajewska M, Jarmuszkiewicz W, Szewczyk A. Evidence for a mitochondrial ATP-regulated potassium channel in human dermal fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:309-318. [PMID: 29458000 DOI: 10.1016/j.bbabio.2018.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
Abstract
Mitochondrial ATP-regulated potassium channels are present in the inner membrane of the mitochondria of various cells. In the present study, we show for the first time mitochondrial ATP-regulated potassium channels in human dermal fibroblast cells. Using the patch-clamp technique on the inner mitochondrial membrane of fibroblasts, we detected a potassium channel with a mean conductance equal to 100 pS in symmetric 150 mM KCl. The activity of this channel was inhibited by a complex of ATP/Mg2+ and activated by potassium channel openers such as diazoxide or BMS 191095. Channel activity was inhibited by antidiabetic sulfonylurea glibenclamide and 5-hydroxydecanoic acid. The influence of substances modulating ATP-regulated potassium channel activity on oxygen consumption and membrane potential of isolated fibroblast mitochondria was also studied. Additionally, the potassium channel opener diazoxide lowered the amount of superoxide formed in isolated fibroblast mitochondria. Using reverse transcriptase-PCR, we found an mRNA transcript for the KCNJ1(ROMK) channel. The presence of ROMK protein was observed in the inner mitochondrial membrane fraction. Moreover, colocalization of the ROMK protein and a mitochondrial marker in the mitochondria of fibroblast cells was shown by immunofluorescence. In summary, the ATP-regulated mitochondrial potassium channel in a dermal fibroblast cell line have been identified.
Collapse
Affiliation(s)
- Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Anna Kicinska
- Department of Bioenergetics, Adam Mickiewicz University, Poznan, Poland
| | - Michal Laskowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Rafal Kampa
- Department of Biophysics, Warsaw University of Life Sciences (SGGW), Warsaw, Poland; Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agnieszka Walewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
43
|
Abstract
BACKGROUND ATP-sensitive K+ (KATP) channels couple metabolic state to cellular excitability. Activation of neuronal and astrocytic mitochondrial KATP (mitoKATP) channels regulates a variety of neuronal functions. However, less is known about the impact of mitoKATP on tonic γ-aminobutyric acid (GABA) inhibition. Tonic GABA inhibition is mediated by the binding of ambient GABA on extrasynaptic GABA A-type receptors (GABAARs) and is involved in regulating neuronal excitability. METHODS We determined the impact of activation of KATP channels with diazoxide (DIZ) on tonic inhibition and recorded tonic current from rat cortical layer 5 pyramidal cells by patch-clamp recordings. RESULTS We found that neonatal tonic current increased with an increase in GABA concentration, which was partially mediated by the GABA A-type receptor (GABAAR) α5, and likely the δ subunits. Activation of KATP channels resulted in decreased tonic current in newborns, but there was increased tonic current during the second postnatal week. CONCLUSIONS These findings suggest that activation of KATP channels with DIZ regulates GABAergic transmission in neocortical pyramidal cells during development.
Collapse
|
44
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
45
|
Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS One 2017; 12:e0172803. [PMID: 28245258 PMCID: PMC5330507 DOI: 10.1371/journal.pone.0172803] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 01/06/2023] Open
Abstract
The primary cardiotoxic action of doxorubicin when used as antitumor drug is attributed to the generation of reactive oxygen species (ROS) therefore effective cardioprotection therapies are needed. In this sense, the antianginal drug nicorandil has been shown to be effective in cardioprotection from ischemic conditions but the underlying molecular mechanism to cope with doxorubicin-induced ROS is unclear. Our in vitro study using the HL-1 cardiomyocyte cell line derived from mouse atria reveals that the endogenous nitric oxide (NO) production was stimulated by nicorandil and arrested by NO synthase inhibition. Moreover, while the NO synthase activity was inhibited by doxorubicin-induced ROS, the NO synthase inhibition did not affect doxorubicin-induced ROS. The inhibition of NO synthase activity by doxorubicin was totally prevented by preincubation with nicorandil. Nicorandil also concentration-dependently (10 to 100 μM) decreased doxorubicin-induced ROS and the effect was antagonized by 5-hydroxydecanoate. The inhibition profile of doxorubicin-induced ROS by nicorandil was unaltered when an L-arginine derivative or a protein kinase G inhibitor was present. Preincubation with pinacidil mimicked the effect of nicorandil and the protection was eliminated by glibenclamide. Quantitative colocalization of fluorescence indicated that the mitochondrion was the target organelle of nicorandil and the observed response was a decrease in the mitochondrial inner membrane potential. Interference with H+ movement across the mitochondrial inner membrane, leading to depolarization, also protected from doxorubicin-induced ROS. The data indicate that activation of the mitochondrial ATP-sensitive K+ channel by nicorandil causing mitochondrial depolarization, without participation of the NO donor activity, was responsible for inhibition of the mitochondrial NADPH oxidase that is the main contributor to ROS production in cardiomyocytes. Impairment of the cytosolic Ca2+ signal induced by caffeine and the increase in lipid peroxidation, both of which are indicators of doxorubicin-induced oxidative stress, were also prevented by nicorandil.
Collapse
|
46
|
Augustynek B, Kunz WS, Szewczyk A. Guide to the Pharmacology of Mitochondrial Potassium Channels. Handb Exp Pharmacol 2017; 240:103-127. [PMID: 27838853 DOI: 10.1007/164_2016_79] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter provides a critical overview of the available literature on the pharmacology of mitochondrial potassium channels. In the first part, the reader is introduced to the topic, and eight known protein contributors to the potassium permeability of the inner mitochondrial membrane are presented. The main part of this chapter describes the basic characteristics of each channel type mentioned in the introduction. However, the most important and valuable information included in this chapter concerns the pharmacology of mitochondrial potassium channels. Several available channel modulators are critically evaluated and rated by suitability for research use. The last figure of this chapter shows the results of this evaluation at a glance. Thus, this chapter can be very useful for beginners in this field. It is intended to be a time- and resource-saving guide for those searching for proper modulators of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Bartłomiej Augustynek
- Laboratory of Intracellular Ion Channels, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
47
|
Zhang L, Cao S, Deng S, Yao G, Yu T. Ischemic postconditioning and pinacidil suppress calcium overload in anoxia-reoxygenation cardiomyocytes via down-regulation of the calcium-sensing receptor. PeerJ 2016; 4:e2612. [PMID: 27833799 PMCID: PMC5101590 DOI: 10.7717/peerj.2612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/26/2016] [Indexed: 01/23/2023] Open
Abstract
Ischemic postconditioning (IPC) and ATP sensitive potassium channel (KATP) agonists (e.g. pinacidil and diazoxide) postconditioning are effective methods to defeat myocardial ischemia-reperfusion (I/R) injury, but their specific mechanisms of reducing I/R injury are not fully understood. We observed an intracellular free calcium ([Ca2+]i) overload in Anoxia/reoxygenation (A/R) cardiomyocytes, which can be reversed by KATP agonists diazoxide or pinacidil. The calcium-sensing receptor (CaSR) regulates intracellular calcium homeostasis. CaSR was reported to be involved in the I/R-induced apoptosis in rat cardiomyocytes. We therefore hypothesize that IPC and pinacidil postconditioning (PPC) reduce calcium overload in I/R cardiomyocytes by the down-regulation of CaSR. A/R model was established with adult rat caridomyocyte. mRNA and protein expression of CaSR were detected, IPC, PPC and KATP’s effects on [Ca2+]i concentration was assayed too. IPC and PPC ameliorated A/R insult induced [Ca2+]i overload in cardiomyocytes. In addition, they down-regulated the mRNA and protein level of CaSR as we expected. CaSR agonist spermine and KATP blocker glibenclamide offset IPC’s effects on CaSR expression and [Ca2+]i modulation. Our data indicate that CaSR down-regulation contributes to the mitigation of calcium overload in A/R cardiomyocytes, which may partially represents IPC and KATP’s myocardial protective mechanism under I/R circumstances.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Song Cao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Shengli Deng
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Gang Yao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
48
|
Yang HQ, Subbotina E, Ramasamy R, Coetzee WA. Cardiovascular K ATP channels and advanced aging. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:32517. [PMID: 27733235 PMCID: PMC5061878 DOI: 10.3402/pba.v6.32517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature. Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging and argue that the channel can be further modulated by biochemical changes. The importance is widespread, given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be considered as a viable target for therapeutic intervention.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA
| | | | - Ravichandran Ramasamy
- Department of Medicine, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA
| | - William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, USA.,Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY, USA;
| |
Collapse
|
49
|
Gonca E, Rapposelli S, Darıcı F, Digiacomo M, Yılmaz Z. Antiarrhythmic activity of a new spiro-cyclic benzopyran activator of the cardiac mitochondrial ATP dependent potassium channels. Arch Pharm Res 2016; 39:1212-22. [PMID: 27357534 DOI: 10.1007/s12272-016-0779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
Abstract
'Compound A' (4(ı)-(N-(4-acetamidobenzyl))-2,2-dimethyl-2,3-dihydro-5(ı)H-spiro[chromene-4,2(ı)-[1,4]oxazinan]-5(ı)-one) is a new spiro-cyclic benzopyran activator of the mitochondrial ATP-dependent potassium channels (mitoKATP). We researched the effect of compound A on ischemia/reperfusion (I/R)-induced ventricular arrhythmias. We also tested the hypothesis that the application of the activation of mitoKATP in combination with the inhibition of sarcolemmal ATP-dependent potassium channels (sarcKATP) may produce a stronger antiarrhythmic effect. In anesthetized rats, myocardial ischemia was performed by ligating the left main coronary artery followed by reperfusion. At a dose of 10 mg/kg, compound A significantly decreased arrhythmia scores and the total length of arrhythmias, whereas this was found to be ineffective at a dose of 3 mg/kg. Pre-treatment with 5-HD, a selective mitoKATP blocker, abolished the antiarrhythmic effect of compound A. Both diazoxide, a selective mitoKATP opener and HMR 1098, a selective sarcKATP blocker, significantly decreased the total length of arrhythmias. However, the combination of neither diazoxide nor compound A with HMR 1098 showed no additional therapeutic benefit. These results reveal that compound A may have a dose-dependent antiarrythmic effect, which is more pronounced than the antiarrhythmic effect of diazoxide. The antiarrhythmic effect of compound A may possibly depend on mitoKATP activation.
Collapse
Affiliation(s)
- Ersöz Gonca
- Department of Biology, Faculty of Art and Sciences, Bülent Ecevit University, Zonguldak, Turkey.
| | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Faruk Darıcı
- Department of Biology, Faculty of Art and Sciences, Bülent Ecevit University, Zonguldak, Turkey
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Zehra Yılmaz
- Department of Pharmacology, Faculty of Medicine, Harran University, Şanliurfa, Turkey
| |
Collapse
|
50
|
Onukwufor JO, Stevens D, Kamunde C. Bioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction. ACTA ACUST UNITED AC 2016; 219:2743-51. [PMID: 27358470 DOI: 10.1242/jeb.140186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/26/2016] [Indexed: 12/19/2022]
Abstract
The mitochondrial ATP-sensitive K(+) (mitoKATP) channel plays a significant role in mitochondrial physiology and protects against ischemic reperfusion injury in mammals. Although fish frequently face oxygen fluctuations in their environment, the role of the mitoKATP channel in regulating the responses to oxygen stress is rarely investigated in this class of animals. To elucidate whether and how the mitoKATP channel protects against hypoxia-reoxygenation (H-R)-induced mitochondrial dysfunction in fish, we first determined the mitochondrial bioenergetic effects of two key modulators of the channel, diazoxide and 5-hydroxydecanoate (5-HD), using a wide range of doses. Subsequently, the effects of low and high doses of the modulators on mitochondrial bioenergetics and volume under normoxia and after H-R using buffers with and without magnesium and ATP (Mg-ATP) were tested. In the absence of Mg-ATP (mitoKATP channel open), both low and high doses of diazoxide improved mitochondrial coupling, but only the high dose of 5-HD reversed the post-H-R coupling-enhancing effect of diazoxide. In the presence of Mg-ATP (mitoKATP channel closed), diazoxide at the low dose improved coupling post-H-R, and this effect was abolished by 5-HD at the low dose. Interestingly, both low and high doses of diazoxide reversed H-R-induced swelling under mitoKATP channel open conditions, but this effect was not sensitive to 5-HD. Under mitoKATP channel closed conditions, diazoxide at the low dose protected the mitochondria from H-R-induced swelling and 5-HD at the low dose reversed this effect. In contrast, diazoxide at the high dose failed to reduce the swelling caused by H-R, and the addition of the high dose of 5-HD enhanced mitochondrial swelling. Overall, our study showed that in the presence of Mg-ATP, both opening of mitoKATP channels and bioenergetic effects of diazoxide were protective against H-R in fish mitochondria, while in the absence of Mg-ATP only the bioenergetic effect of diazoxide was protective.
Collapse
Affiliation(s)
- John O Onukwufor
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| |
Collapse
|