1
|
Kohm K, Jalomo-Khayrova E, Krüger A, Basu S, Steinchen W, Bange G, Frunzke J, Hertel R, Commichau FM, Czech L. Structural and functional characterization of MrpR, the master repressor of the Bacillus subtilis prophage SPβ. Nucleic Acids Res 2023; 51:9452-9474. [PMID: 37602373 PMCID: PMC10516654 DOI: 10.1093/nar/gkad675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
Prophages control their lifestyle to either be maintained within the host genome or enter the lytic cycle. Bacillus subtilis contains the SPβ prophage whose lysogenic state depends on the MrpR (YopR) protein, a key component of the lysis-lysogeny decision system. Using a historic B. subtilis strain harboring the heat-sensitive SPβ c2 mutant, we demonstrate that the lytic cycle of SPβ c2 can be induced by heat due to a single nucleotide exchange in the mrpR gene, rendering the encoded MrpRG136E protein temperature-sensitive. Structural characterization revealed that MrpR is a DNA-binding protein resembling the overall fold of tyrosine recombinases. MrpR has lost its recombinase function and the G136E exchange impairs its higher-order structure and DNA binding activity. Genome-wide profiling of MrpR binding revealed its association with the previously identified SPbeta repeated element (SPBRE) in the SPβ genome. MrpR functions as a master repressor of SPβ that binds to this conserved element to maintain lysogeny. The heat-inducible excision of the SPβ c2 mutant remains reliant on the serine recombinase SprA. A suppressor mutant analysis identified a previously unknown component of the lysis-lysogeny management system that is crucial for the induction of the lytic cycle of SPβ.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Ekaterina Jalomo-Khayrova
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
| | - Aileen Krüger
- Institute of Bio- and Geosciences, iBG-1: Biotechnology, FZ Jülich, Germany
| | - Syamantak Basu
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
- Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, iBG-1: Biotechnology, FZ Jülich, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Czech
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Phillips-University Marburg, Marburg, Germany
| |
Collapse
|
2
|
Greeson EM, Madsen CS, Makela AV, Contag CH. Magnetothermal Control of Temperature-Sensitive Repressors in Superparamagnetic Iron Nanoparticle-Coated Bacillus subtilis. ACS NANO 2022; 16:16699-16712. [PMID: 36200984 DOI: 10.1021/acsnano.2c06239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), and resulting images can be used to guide magnetothermal heating. Alternating magnetic fields (AMF) cause local temperature increases in regions with SPIONs, and we investigated the ability of magnetic hyperthermia to regulate temperature-sensitive repressors (TSRs) of bacterial transcription. The TSR, TlpA39, was derived from a Gram-negative bacterium and used here for thermal control of reporter gene expression in Gram-positive, Bacillus subtilis. In vitro heating of B. subtilis with TlpA39 controlling bacterial luciferase expression resulted in a 14.6-fold (12 hours; h) and 1.8-fold (1 h) increase in reporter transcripts with a 10.0-fold (12 h) and 12.1-fold (1 h) increase in bioluminescence. To develop magnetothermal control, B. subtilis cells were coated with three SPION variations. Electron microscopy coupled with energy dispersive X-ray spectroscopy revealed an external association with, and retention of, SPIONs on B. subtilis. Furthermore, using long duration AMF we demonstrated magnetothermal induction of the TSRs in SPION-coated B. subtilis with a maximum of 5.6-fold increases in bioluminescence. After intramuscular injections of SPION-coated B. subtilis, histology revealed that SPIONs remained in the same locations as the bacteria. For in vivo studies, 1 h of AMF is the maximum exposure due to anesthesia constraints. Both in vitro and in vivo, there was no change in bioluminescence after 1 h of AMF treatment. Pairing TSRs with magnetothermal energy using SPIONs for localized heating with AMF can lead to transcriptional control that expands options for targeted bacteriotherapies.
Collapse
Affiliation(s)
- Emily M Greeson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cody S Madsen
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Christopher H Contag
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
4
|
Vennettilli M, Saha S, Roy U, Mugler A. Precision of Protein Thermometry. PHYSICAL REVIEW LETTERS 2021; 127:098102. [PMID: 34506193 DOI: 10.1103/physrevlett.127.098102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/06/2021] [Indexed: 05/23/2023]
Abstract
Temperature sensing is a ubiquitous cell behavior, but the fundamental limits to the precision of temperature sensing are poorly understood. Unlike in chemical concentration sensing, the precision of temperature sensing is not limited by extrinsic fluctuations in the temperature field itself. Instead, we find that precision is limited by the intrinsic copy number, turnover, and binding kinetics of temperature-sensitive proteins. Developing a model based on the canonical TlpA protein, we find that a cell can estimate temperature to within 2%. We compare this prediction with in vivo data on temperature sensing in bacteria.
Collapse
Affiliation(s)
- Michael Vennettilli
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ushasi Roy
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Andrew Mugler
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
5
|
Kan A, Gelfat I, Emani S, Praveschotinunt P, Joshi NS. Plasmid Vectors for in Vivo Selection-Free Use with the Probiotic E. coli Nissle 1917. ACS Synth Biol 2021; 10:94-106. [PMID: 33301298 PMCID: PMC7813132 DOI: 10.1021/acssynbio.0c00466] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Escherichia
coli Nissle 1917 (EcN) is a probiotic
bacterium, commonly employed to treat certain gastrointestinal disorders.
It is fast emerging as an important target for the development of
therapeutic engineered bacteria, benefiting from the wealth of knowledge
of E. coli biology and ease of manipulation.
Bacterial synthetic biology projects commonly utilize engineered plasmid
vectors, which are simple to engineer and can reliably achieve high
levels of protein expression. However, plasmids typically require
antibiotics for maintenance, and the administration of an antibiotic
is often incompatible with in vivo experimentation
or treatment. EcN natively contains plasmids pMUT1 and pMUT2, which
have no known function but are stable within the bacteria. Here, we
describe the development of the pMUT plasmids into a robust platform
for engineering EcN for in vivo experimentation,
alongside a CRISPR-Cas9 system to remove the native plasmids. We systematically
engineered both pMUT plasmids to contain selection markers, fluorescent
markers, temperature sensitive expression, and curli secretion systems
to export a customizable functional material into the extracellular
space. We then demonstrate that the engineered plasmids were maintained
in bacteria as the engineered bacteria pass through the mouse GI tract
without selection, and that the secretion system remains functional,
exporting functionalized curli proteins into the gut. Our plasmid
system presents a platform for the rapid development of therapeutic
EcN bacteria.
Collapse
Affiliation(s)
- Anton Kan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Ilia Gelfat
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sivaram Emani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Harvard College, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pichet Praveschotinunt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Neel S. Joshi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Top J, Arredondo-Alonso S, Schürch AC, Puranen S, Pesonen M, Pensar J, Willems RJL, Corander J. Genomic rearrangements uncovered by genome-wide co-evolution analysis of a major nosocomial pathogen, Enterococcus faecium. Microb Genom 2020; 6:mgen000488. [PMID: 33253085 PMCID: PMC8116687 DOI: 10.1099/mgen.0.000488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Enterococcus faecium is a gut commensal of the gastro-digestive tract, but also known as nosocomial pathogen among hospitalized patients. Population genetics based on whole-genome sequencing has revealed that E. faecium strains from hospitalized patients form a distinct clade, designated clade A1, and that plasmids are major contributors to the emergence of nosocomial E. faecium. Here we further explored the adaptive evolution of E. faecium using a genome-wide co-evolution study (GWES) to identify co-evolving single-nucleotide polymorphisms (SNPs). We identified three genomic regions harbouring large numbers of SNPs in tight linkage that are not proximal to each other based on the completely assembled chromosome of the clade A1 reference hospital isolate AUS0004. Close examination of these regions revealed that they are located at the borders of four different types of large-scale genomic rearrangements, insertion sites of two different genomic islands and an IS30-like transposon. In non-clade A1 isolates, these regions are adjacent to each other and they lack the insertions of the genomic islands and IS30-like transposon. Additionally, among the clade A1 isolates there is one group of pet isolates lacking the genomic rearrangement and insertion of the genomic islands, suggesting a distinct evolutionary trajectory. In silico analysis of the biological functions of the genes encoded in three regions revealed a common link to a stress response. This suggests that these rearrangements may reflect adaptation to the stringent conditions in the hospital environment, such as antibiotics and detergents, to which bacteria are exposed. In conclusion, to our knowledge, this is the first study using GWES to identify genomic rearrangements, suggesting that there is considerable untapped potential to unravel hidden evolutionary signals from population genomic data.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anita C. Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Santeri Puranen
- Department of Computer Science, Aalto University, FI-00076 Espoo, Finland
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
| | - Maiju Pesonen
- Department of Computer Science, Aalto University, FI-00076 Espoo, Finland
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
- Present address: Oslo Centre for Biostatistics and Epidemiology (OCBE), Oslo University Hospital Research Support Services, Oslo, Norway
| | - Johan Pensar
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
- Present address: Department of Mathematics, University of Oslo, 0316 Oslo, Norway
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology (HIIT), FI-00014 University of Helsinki, Finland
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
- Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
7
|
Mandin P, Johansson J. Feeling the heat at the millennium: Thermosensors playing with fire. Mol Microbiol 2020; 113:588-592. [PMID: 31971637 DOI: 10.1111/mmi.14468] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/01/2022]
Abstract
An outstanding question regards the ability of organisms to sense their environments and respond in a suitable way. Pathogenic bacteria in particular exploit host-temperature sensing as a cue for triggering virulence gene expression. This micro-review does not attempt to fully cover the field of bacterial thermosensors and in detail describe each identified case. Instead, the review focus on the time-period at the end of the 1990's and beginning of the 2000's when several key discoveries were made, identifying protein, DNA and RNA as potential thermosensors controlling gene expression in several different bacterial pathogens in general and on the prfA thermosensor of Listeria monocytogenes in particular.
Collapse
Affiliation(s)
- Pierre Mandin
- Aix Marseille Univ-CNRS, UMR 7243, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Molecular Infection Medicine, Sweden (MIMS), Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Narayan A, Naganathan AN. Switching Protein Conformational Substates by Protonation and Mutation. J Phys Chem B 2018; 122:11039-11047. [PMID: 30048131 DOI: 10.1021/acs.jpcb.8b05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein modules that regulate the availability and conformational status of transcription factors determine the rapidity, duration, and magnitude of cellular response to changing conditions. One such system is the single-gene product Cnu, a four-helix bundle transcription co-repressor, which acts as a molecular thermosensor regulating the expression of virulence genes in enterobacteriaceae through modulation of its native conformational ensemble. Cnu and related genes have also been implicated in pH-dependent expression of virulence genes. We hypothesize that protonation of a conserved buried histidine (H45) in Cnu promotes large electrostatic frustration, thus disturbing the H-NS, a transcription factor, binding face. Spectroscopic and calorimetric methods reveal that H45 exhibits a suppressed p Ka of ∼5.1, the protonation of which switches the conformation to an alternate native ensemble in which the fourth helix is disordered. The population redistribution can also be achieved through a mutation H45V, which does not display any switching behavior at pH values greater than 4. The Wako-Saitô-Muñoz-Eaton (WSME) statistical mechanical model predicts specific differences in the conformations and fluctuations of the fourth and first helices of Cnu determining the observed pH response. We validate these predictions through fluorescence lifetime measurements of a sole tryptophan, highlighting the presence of both native and non-native interactions in the regions adjoining the binding face of Cnu. Our combined experimental-computational study thus shows that Cnu acts both as a thermo- and pH-sensor orchestrated via a subtle but quantifiable balance between the weak packing of a structural element and protonation of a buried histidine that promotes electrostatic frustration.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
9
|
Okabe K, Sakaguchi R, Shi B, Kiyonaka S. Intracellular thermometry with fluorescent sensors for thermal biology. Pflugers Arch 2018; 470:717-731. [PMID: 29397424 PMCID: PMC5942359 DOI: 10.1007/s00424-018-2113-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
Abstract
Temperature influences the activities of living organisms at various levels. Cells not only detect environmental temperature changes through their unique temperature-sensitive molecular machineries but also muster an appropriate response to the temperature change to maintain their inherent functions. Despite the fundamental involvement of temperature in physiological phenomena, the mechanism by which cells produce and use heat is largely unknown. Recently, fluorescent thermosensors that function as thermometers in live cells have attracted much attention in biology. These new tools, made of various temperature-sensitive molecules, have allowed for intracellular thermometry at the single-cell level. Intriguing spatiotemporal temperature variations, including organelle-specific thermogenesis, have been revealed with these fluorescent thermosensors, which suggest an intrinsic connection between temperature and cell functions. Moreover, fluorescent thermosensors have shown that intracellular temperature changes at the microscopic level are largely different from those assumed for a water environment at the macroscopic level. Thus, the employment of fluorescent thermosensors will uncover novel mechanisms of intracellular temperature-assisted physiological functions.
Collapse
Affiliation(s)
- Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- JST, PRESTO, 4-8-1 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Reiko Sakaguchi
- World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Beini Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| |
Collapse
|
10
|
Global versus local mechanisms of temperature sensing in ion channels. Pflugers Arch 2018; 470:733-744. [PMID: 29340775 DOI: 10.1007/s00424-017-2102-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNaV) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.
Collapse
|
11
|
Narayan A, Campos LA, Bhatia S, Fushman D, Naganathan AN. Graded Structural Polymorphism in a Bacterial Thermosensor Protein. J Am Chem Soc 2017; 139:792-802. [DOI: 10.1021/jacs.6b10608] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| | - Luis A. Campos
- National Biotechnology Center, Consejo Superior
de Investigaciones Científicas, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Sandhya Bhatia
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research, Bangalore 560065, India
| | - David Fushman
- Department
of Chemistry and Biochemistry, Center for Biomolecular Structure and
Organization, University of Maryland, College Park, Maryland 20742, United States
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras (IITM), Chennai 600036, India
| |
Collapse
|
12
|
Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat Chem Biol 2016; 13:75-80. [PMID: 27842069 DOI: 10.1038/nchembio.2233] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
Temperature is a unique input signal that could be used by engineered microbial therapeutics to sense and respond to host conditions or spatially targeted external triggers such as focused ultrasound. To enable these possibilities, we present two families of tunable, orthogonal, temperature-dependent transcriptional repressors providing switch-like control of bacterial gene expression at thresholds spanning the biomedically relevant range of 32-46 °C. We integrate these molecular bioswitches into thermal logic circuits and demonstrate their utility in three in vivo microbial therapy scenarios, including spatially precise activation using focused ultrasound, modulation of activity in response to a host fever, and self-destruction after fecal elimination to prevent environmental escape. This technology provides a critical capability for coupling endogenous or applied thermal signals to cellular function in basic research, biomedical and industrial applications.
Collapse
|
13
|
MORC3, a Component of PML Nuclear Bodies, Has a Role in Restricting Herpes Simplex Virus 1 and Human Cytomegalovirus. J Virol 2016; 90:8621-33. [PMID: 27440897 DOI: 10.1128/jvi.00621-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED We previously reported that MORC3, a protein associated with promyelocytic leukemia nuclear bodies (PML NBs), is a target of herpes simplex virus 1 (HSV-1) ICP0-mediated degradation (E. Sloan, et al., PLoS Pathog 11:e1005059, 2015, http://dx.doi.org/10.1371/journal.ppat.1005059). Since it is well known that certain other components of the PML NB complex play an important role during an intrinsic immune response to HSV-1 and are also degraded or inactivated by ICP0, here we further investigate the role of MORC3 during HSV-1 infection. We demonstrate that MORC3 has antiviral activity during HSV-1 infection and that this antiviral role is counteracted by ICP0. In addition, MORC3's antiviral role extends to wild-type (wt) human cytomegalovirus (HCMV) infection, as its plaque-forming efficiency increased in MORC3-depleted cells. We found that MORC3 is recruited to sites associated with HSV-1 genomes after their entry into the nucleus of an infected cell, and in wt infections this is followed by its association with ICP0 foci prior to its degradation. The RING finger domain of ICP0 was required for degradation of MORC3, and we confirmed that no other HSV-1 protein is required for the loss of MORC3. We also found that MORC3 is required for fully efficient recruitment of PML, Sp100, hDaxx, and γH2AX to sites associated with HSV-1 genomes entering the host cell nucleus. This study further unravels the intricate ways in which HSV-1 has evolved to counteract the host immune response and reveals a novel function for MORC3 during the host intrinsic immune response. IMPORTANCE Herpesviruses have devised ways to manipulate the host intrinsic immune response to promote their own survival and persistence within the human population. One way in which this is achieved is through degradation or functional inactivation of PML NB proteins, which are recruited to viral genomes in order to repress viral transcription. Because MORC3 associates with PML NBs in uninfected cells and is a target for HSV-1-mediated degradation, we investigated the role of MORC3 during HSV-1 infection. We found that MORC3 is also recruited to viral HSV-1 genomes, and importantly it contributes to the fully efficient recruitment of PML, hDaxx, Sp100, and γH2AX to these sites. Depletion of MORC3 resulted in an increase in ICP0-null HSV-1 and wt HCMV replication and plaque formation; therefore, this study reveals that MORC3 is an antiviral factor which plays an important role during HSV-1 and HCMV infection.
Collapse
|
14
|
Sakaguchi R, Kiyonaka S, Mori Y. Fluorescent sensors reveal subcellular thermal changes. Curr Opin Biotechnol 2015; 31:57-64. [DOI: 10.1016/j.copbio.2014.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
|
15
|
Li DQ, Nair SS, Kumar R. The MORC family: new epigenetic regulators of transcription and DNA damage response. Epigenetics 2013; 8:685-93. [PMID: 23804034 DOI: 10.4161/epi.24976] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microrchidia (MORC) is a highly conserved nuclear protein superfamily with widespread domain architectures that intimately link MORCs with signaling-dependent chromatin remodeling and epigenetic regulation. Accumulating structural and biochemical evidence has shed new light on the mechanistic action and emerging role of MORCs as epigenetic regulators in diverse nuclear processes. In this Point of View, we focus on discussing recent advances in our understanding of the unique domain architectures of MORC family of chromatin remodelers and their potential contribution to epigenetic control of DNA template-dependent processes such as transcription and DNA damage response. Given that the deregulation of MORCs has been linked with human cancer and other diseases, further efforts to uncover the structure and function of MORCs may ultimately lead to the development of new approaches to intersect with the functionality of MORC family of chromatin remodeling proteins to correct associated pathogenesis.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Medicine; School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
16
|
Abstract
Four different mechanisms have evolved in eubacteria to comply with changes in the environmental temperature. The underlying genetic mechanisms regulate gene expression at transcriptional, translational and posttranslational level. The high temperature response (HTR) is a reaction on increases in temperature and is mainly used by pathogenic bacteria when they enter their mammalian host. The temperature of 37°C causes induction of the virulent genes the products of which are only needed in this environment. The heat shock response (HSR) is induced by any sudden increase in temperature, allows the bacterial cell to adapt to this environmental stress factor and is shut off after adaptation. In a similar way the low temperature response (LTR) is a reaction to a new environment and leads to the constant expression of appropriate genes. In contrast, the cold shock response (CSR) includes turn off of the cold shock genes after adaptation to the low temperature. Sensors of temperature changes are specific DNA regions, RNA molecules or proteins and conformational changes have been identified as a common motif.
Collapse
|
17
|
Robson Marsden H, Kros A. Self-assembly of coiled coils in synthetic biology: inspiration and progress. Angew Chem Int Ed Engl 2010; 49:2988-3005. [PMID: 20474034 DOI: 10.1002/anie.200904943] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biological self-assembly is very complex and results in highly functional materials. In effect, it takes a bottom-up approach using biomolecular building blocks of precisely defined shape, size, hydrophobicity, and spatial distribution of functionality. Inspired by, and drawing lessons from self-assembly processes in nature, scientists are learning how to control the balance of many small forces to increase the complexity and functionality of self-assembled nanomaterials. The coiled-coil motif, a multipurpose building block commonly found in nature, has great potential in synthetic biology. In this review we examine the roles that the coiled-coil peptide motif plays in self-assembly in nature, and then summarize the advances that this has inspired in the creation of functional units, assemblies, and systems.
Collapse
Affiliation(s)
- Hana Robson Marsden
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
18
|
Robson Marsden H, Kros A. Selbstorganisation von Coiled-Coils in der synthetischen Biologie: Inspiration und Fortschritt. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200904943] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
How do bacteria sense and respond to low temperature? Arch Microbiol 2010; 192:85-95. [DOI: 10.1007/s00203-009-0539-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/19/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
|
20
|
Magagnoli C, Bardotti A, De Conciliis G, Galasso R, Tomei M, Campa C, Pennatini C, Cerchioni M, Fabbri B, Giannini S, Mattioli GL, Biolchi A, D'Ascenzi S, Helling F. Structural organization of NadADelta(351-405), a recombinant MenB vaccine component, by its physico-chemical characterization at drug substance level. Vaccine 2009; 27:2156-70. [PMID: 19356620 DOI: 10.1016/j.vaccine.2009.01.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 12/27/2022]
Abstract
The physico-chemical characterization of NadADelta(351-405), a recombinant protein discovered by reverse vaccinology, component of a candidate vaccine against Neisseria meningitidis serotype B is presented. Analytical methods like mass spectrometry, electrophoresis, optical spectroscopy and SEC-MALLS have been applied to unveil the structure of NadADelta(351-405), and to evaluate Product-Related Substances. Moreover, analysis of the protein after intentional denaturation has been applied in order to challenge the chosen methods and to determine their appropriateness and specificity. All the obtained results were inserted in a model allowing in-depth understanding of the antigen NadADelta(351-405): it is present in solution as a homo-trimer, retaining a high percentage of alpha-helix secondary structure, and able to reassemble from monomeric subunits after thermal denaturation; this structural organization is consistent with that foreseen for MenB NadA (Neisseria Adhesin A). The analytical data sets produced during process development for clinical phases I-III material confirm product quality and manufacturing consistency.
Collapse
|
21
|
Schumann W. Chapter 7 Temperature Sensors of Eubacteria. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:213-56. [DOI: 10.1016/s0065-2164(08)01007-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Abstract
Temperature is an important physical stress factor sensed by bacteria and used to regulate gene expression. Three different macromolecules have been identified being able to sense temperature: DNA, mRNA and proteins. Depending on the induction mechanism, two different pathways have to be distinguished, namely the heat shock response and the high temperature response. While the heat shock response is induced by temperature increments and is transient, the high temperature response needs a specific temperature to become induced and proceeds as long as cells are exposed to that temperature. The heat shock response is induced by denatured proteins and aimed to prevent formation of protein aggregates by refolding or degradation, and the high temperature response is mainly used by pathogenic bacteria to detect entry into a mammalian host followed by induction of their virulence genes. All known high temperature sensors are present in two alternative conformations depending on the temperature. Heat shock sensors are either molecular chaperones or proteases which keep either a positive transcriptional regulator inactive or a negative regulator active or do not attack the regulator, respectively, under physiological conditions. Denatured proteins either titrate the molecular chaperones or activate the protease. The evolution of the different temperature sensors is discussed.
Collapse
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
23
|
Adamczyk M, Dolowy P, Jonczyk M, Thomas CM, Jagura-Burdzy G. The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. MICROBIOLOGY-SGM 2006; 152:1621-1637. [PMID: 16735726 DOI: 10.1099/mic.0.28495-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The kfrA gene of the IncP-1 broad-host-range plasmids is the best-studied member of a growing gene family that shows strong linkage to the minimal replicon of many low-copy-number plasmids. KfrA is a DNA binding protein with a long, alpha-helical, coiled-coil tail. Studying IncP-1beta plasmid R751, evidence is presented that kfrA and its downstream genes upf54.8 and upf54.4 were organized in a tricistronic operon (renamed here kfrA kfrB kfrC), expressed from autoregulated kfrAp, that was also repressed by KorA and KorB. KfrA, KfrB and KfrC interacted and may have formed a multi-protein complex. Inactivation of either kfrA or kfrB in R751 resulted in long-term accumulation of plasmid-negative bacteria, whereas wild-type R751 itself persisted without selection. Immunofluorescence studies showed that KfrA(R751) formed plasmid-associated foci, and deletion of the C terminus of KfrA caused plasmid R751DeltaC2kfrA foci to disperse and mislocalize. Thus, the KfrABC complex may be an important component in the organization and control of the plasmid clusters that seem to form the segregating unit in bacterial cells. The studied operon is therefore part of the set of functions needed for R751 to function as an efficient vehicle for maintenance and spread of genes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Malgorzata Adamczyk
- Central Institute of Labour Protection, National Research Institute, 00-701 Warsaw, Czerniakowska 16, Poland
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Patrycja Dolowy
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Michal Jonczyk
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Grazyna Jagura-Burdzy
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| |
Collapse
|
24
|
Gal-Mor O, Valdez Y, Finlay BB. The temperature-sensing protein TlpA is repressed by PhoP and dispensable for virulence of Salmonella enterica serovar Typhimurium in mice. Microbes Infect 2006; 8:2154-62. [PMID: 16782389 DOI: 10.1016/j.micinf.2006.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 11/17/2022]
Abstract
TlpA is a temperature-sensing, coiled-coil protein, encoded on the pSLT virulence plasmid of Salmonella enterica serovar Typhimurium. TlpA was previously presumed to play a role in the pathogenicity of Salmonella. Herein we show that TlpA is tightly regulated, differentially expressed in response to environmental and physiological signals, and can be secreted in vitro. Expression of tlpA was found to be repressed in modified minimal medium containing limiting concentrations of Mg2+ and in the stationary phase of growth, but induced in rich LB broth and in response to elevated temperatures. The response regulator PhoP was found to play a key role in the repression of tlpA in conjunction with two other regulators, RpoS and TlpA itself. In addition, we demonstrate that TlpA is dispensable for intracellular proliferation of S. Typhimurium within host cells and for virulence in mice. Based on presented homology of TlpA to the IncP plasmid encoded protein, KfrA, and to SMC family members, a potential function for TlpA is discussed. Cumulatively, our data do not support the previous hypothesis that TlpA plays a role in the pathogenicity of Salmonella per se, but may suggest an alternative function for TlpA unrelated to host infection.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Michael Smith Laboratories, University of British Columbia, Room 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | | | | |
Collapse
|
25
|
Rowbury RJ. Intracellular and extracellular components as bacterial thermometers, and early warning against thermal stress. Sci Prog 2005; 88:71-99. [PMID: 16749430 PMCID: PMC10367487 DOI: 10.3184/003685005783238426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Responses induced by cold or heat are triggered following detection of temperature changes by specific sensing molecules, complexes or structures. Low temperature responses are often induced following sensing of cold-induced falls in membrane fluidity, such changes turning-on or -off enzymic activities in membrane proteins, although ribosomes and DNA may also function in cold perception. Many thermal sensors are components of structures damaged by the heat, with sensing involving changes to ribosomes, DNA, intracellular proteins and, less commonly, membrane fluidity. Additionally, secreted proteins (extracellular sensing components, ESCs) detect temperature increases i.e. act as thermometers, with ESC activation in the medium, by the stimulus, converting such sensors to extracellular signalling molecules, the extracellular induction components (EICs), which induce thermal responses. Several ESC/EIC pairs trigger thermal responses, and have the unique property of giving early warning of the stress by diffusing to regions (and organisms) not yet exposed to elevated temperatures.
Collapse
|
26
|
Abstract
Bacteria are ubiquitous colonizers of various environments and host organisms, and they are therefore often subjected to drastic temperature alterations. Temperature alterations set demands on these colonizers, in that the bacteria need to readjust their biochemical constitution and physiology in order to survive and resume growth at the new temperature. Furthermore, temperature alteration is also a main factor determining the expression or repression of bacterial virulence functions. To cope with temperature variation, bacteria have devices for sensing temperature alterations and a means of translating this sensory event into a pragmatic gene response. While such regulatory cascades may ultimately be complicated, it appears that they contain primary sensor machinery at the top of the cascade. The functional core of such machinery is usually that of a temperature-induced conformational or physico-chemical change in the central constituents of the cell. In a sense, a bacterium can use structural alterations in its biomolecules as the primary thermometers or thermostats.
Collapse
Affiliation(s)
- Sofia Eriksson
- Microbiology and Tumor Biology Center, Karolinska Institute, Nobels väg 16, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Aricò B, Capecchi B, Giuliani MM, Masignani V, Santini L, Savino S, Granoff DM, Caugant DA, Pizza M, Rappuoli R, Mora M. NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 2002; 195:1445-54. [PMID: 12045242 PMCID: PMC2193550 DOI: 10.1084/jem.20020407] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Antibody Affinity
- Antibody Specificity
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Base Composition
- Base Sequence
- Blotting, Western
- Conserved Sequence/genetics
- Evolution, Molecular
- Flow Cytometry
- Gene Transfer, Horizontal/genetics
- Humans
- Immune Sera/immunology
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/microbiology
- Meningitis, Meningococcal/prevention & control
- Meningococcal Vaccines/immunology
- Mice
- Molecular Sequence Data
- Neisseria meningitidis/genetics
- Neisseria meningitidis/growth & development
- Neisseria meningitidis/immunology
- Neisseria meningitidis/pathogenicity
- Rats
Collapse
Affiliation(s)
- Maurizio Comanducci
- Immunological Research Institute Siena, Chiron S.p.A., via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Anthony LC, Dombkowski AA, Burgess RR. Using disulfide bond engineering to study conformational changes in the beta'260-309 coiled-coil region of Escherichia coli RNA polymerase during sigma(70) binding. J Bacteriol 2002; 184:2634-41. [PMID: 11976292 PMCID: PMC135008 DOI: 10.1128/jb.184.10.2634-2641.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase of Escherichia coli is the sole enzyme responsible for mRNA synthesis in the cell. Upon binding of a sigma factor, the holoenzyme can direct transcription from specific promoter sequences. We have previously defined a region of the beta' subunit (beta'260-309, amino acids 260 to 309) which adopts a coiled-coil conformation shown to interact with sigma(70) both in vitro and in vivo. However, it was not known if the coiled-coil conformation was maintained upon binding to sigma(70). In this work, we engineered a disulfide bond within beta'240-309 that locks the beta' coiled-coil region in the coiled-coil conformation, and we show that this "locked" peptide is able to bind to sigma(70). We also show that the locked coiled-coil is capable of inducing a conformational change within sigma(70) that allows recognition of the -10 nontemplate strand of DNA. This suggests that the coiled-coil does not adopt a new conformation upon binding sigma(70) or upon recognition of the -10 nontemplate strand of DNA.
Collapse
Affiliation(s)
- Larry C Anthony
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI 53706-1599, USA
| | | | | |
Collapse
|
29
|
Naik RR, Kirkpatrick SM, Stone MO. The thermostability of an alpha-helical coiled-coil protein and its potential use in sensor applications. Biosens Bioelectron 2001; 16:1051-7. [PMID: 11679288 DOI: 10.1016/s0956-5663(01)00226-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coiled-coil proteins are assemblies of two to four alpha-helices that pack together in a parallel or anti-parallel fashion. Coiled-coil structures can confer a variety of functional capabilities, which include enabling proteins, such as myosin, to function in the contractile apparatus of muscle and non-muscle cells. The TlpA protein encoded by the virulence plasmid of Salmonella is an alpha-helical protein that forms an elongated coiled-coil homodimer. A number of studies have clearly established the role of TlpA as a temperature-sensing gene regulator, however the potential use of a TlpA in a thermo-sensor application outside of the organism has not been exploited. In this paper, we demonstrate that TlpA has several characteristics that are common with alpha-helical coiled-coils and its thermal folding and unfolding is reversible and rapid. TlpA is extremely sensitive to changes in temperature. We have also compared the heat-stability of TlpA with other structurally similar proteins. Using a folding reporter, in which TlpA is expressed as a C-terminal fusion with green fluorescent protein (GFP), we were able to use fluorescence as an indicator of folding and unfolding of the fusion protein. Our results on the rapid conformational changes inherent in TlpA support the previous findings and we present here preliminary data on the use of a GFP-TlpA fusion protein as temperature sensor.
Collapse
Affiliation(s)
- R R Naik
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH 45433-7702, USA
| | | | | |
Collapse
|
30
|
Sherburne CK, Lawley TD, Gilmour MW, Blattner FR, Burland V, Grotbeck E, Rose DJ, Taylor DE. The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res 2000; 28:2177-86. [PMID: 10773089 PMCID: PMC105367 DOI: 10.1093/nar/28.10.2177] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Revised: 03/20/2000] [Accepted: 03/20/2000] [Indexed: 11/14/2022] Open
Abstract
Salmonella typhi, the causative agent of typhoid fever, annually infects 16 million people and kills 600 000 world wide. Plasmid-encoded multiple drug resistance in S. typhi is always encoded by plasmids of incompatibility group H (IncH). The complete DNA sequence of the large temperature-sensitive conjugative plasmid R27, the prototype for the IncHI1 family of plasmids, has been compiled and analyzed. This 180 kb plasmid contains 210 open reading frames (ORFs), of which 14 have been previously identified and 56 exhibit similarity to other plasmid and prokaryotic ORFs. A number of insertion elements were found, including the full Tn 10 transposon, which carries tetracycline resistance genes. Two transfer regions, Tra1 and Tra2, are present, which are separated by a minimum of 64 kb. Homologs of the DNA-binding proteins TlpA and H-NS that act as temperature-regulated repressors in other systems have been located in R27. Sequence analysis of transfer and replication regions supports a mosaic-like structure for R27. The genes responsible for conjugation and plasmid maintenance have been identified and mechanisms responsible for thermosensitive transfer are discussed.
Collapse
Affiliation(s)
- C K Sherburne
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Many bacterial gene regulatory circuits are controlled by temperature. Temperature-mediated regulation occurs at the level of transcription and translation. Supercoiling, changes in mRNA conformation and protein conformation are all implicated in thermosensing. Bacterial virulence functions are often temperature regulated and thus many an example of thermoregulation comes from pathogenic organisms. H-NS is at the crossroads of regulation in many such systems. mRNA melting has also been shown to act as a thermosensing mechanism in various contexts. Proteins can also act as temperature sensors as exemplified by the gene regulator TlpA in Salmonella typhimurium.
Collapse
Affiliation(s)
- R Hurme
- Unité des Interactions Bactéries Cellules, Institut Pasteur, Paris, France.
| | | |
Collapse
|
32
|
Marvaud JC, Gibert M, Inoue K, Fujinaga Y, Oguma K, Popoff MR. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol Microbiol 1998; 29:1009-18. [PMID: 9767569 DOI: 10.1046/j.1365-2958.1998.00985.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genes of the botulinum neurotoxin A (BoNT) complex are clustered in a locus consisting of two divergent polycistronic operons, one containing the non-toxic, non-haemagglutinin (NTNH) component and bontA genes, the other containing the haemagglutinin (HA) component genes. The two operons are separated by a gene (botR/A, previously called orf21) encoding a 21 kDa protein. A recombinant Clostridium botulinum A strain that overexpresses botR/A was constructed by electroporating strain 62 with the vector pAT19 containing botR/A under the control of its own promoter. The transformed strain produced more BoNT/A and associated non-toxic proteins (ANTPs) and the corresponding mRNAs than the non-transformed strain. Partial inhibition of botR/A by antisense mRNA resulted in lower levels of BoNT/A, NTNH and HA70 and the levels of the corresponding mRNAs. Gel mobility shift assays and immunoprecipitations showed that BotR/A bound to the DNA promoter region upstream from the two BoNT/A complex operons. These results show that botR/A activated transcription of the genes encoding BoNT/A and ANTPs in C. botulinum A by interacting directly with the region promoter, and that the homologous genes in C. botulinum B, C and D presumably have the same function.
Collapse
Affiliation(s)
- J C Marvaud
- Unité des Toxines Microbiennes, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
Zheng G, Blumenthal KM, Ji Y, Shardy DL, Cohen SB, Stavnezer E. High affinity dimerization by Ski involves parallel pairing of a novel bipartite alpha-helical domain. J Biol Chem 1997; 272:31855-64. [PMID: 9395532 DOI: 10.1074/jbc.272.50.31855] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
c-Ski protein possesses a C-terminal dimerization domain that was deleted during the generation of v-ski, and has been implicated in the increased potency of c-ski in cellular transformation compared with the viral gene. The domain is predicted to consist of an extended alpha-helical segment made up of two motifs: a tandem repeat (TR) consisting of five imperfect repeats of 25 residues each and a leucine zipper (LZ) consisting of six heptad repeats. We have examined the structure and dimerization of TR or LZ individually or the entire TR-LZ domain. Using a quenched chemical cross-linking method, we show that the TR dimerizes with moderate efficiency (Kd = 4 x 10(-6) M), whereas LZ dimerizes poorly (Kd > 2 x 10(-5) M). However, the entire TR-LZ domain dimerizes efficiently (Kd = 2 x 10(-8) M), showing a cooperative effect of the two motifs. CD analyses indicate that all three proteins contain predominantly alpha-helices. Limited proteolysis of the TR-LZ dimer indicates that the two helical motifs are linked by a small loop. Interchain disulfide bond formation indicates that both the LZ and TR helices are oriented in parallel. We propose a model for the dimer interface in the TR region consisting of discontinuous clusters of hydrophobic residues forming "leucine buttons."
Collapse
Affiliation(s)
- G Zheng
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Novel utilization of the coiled-coil motif is presented that enables TlpA, an autoregulatory repressor protein in Salmonella, to sense temperature shifts directly and thereby to modulate the extent of transcription repression. Salmonella cells shifted to higher temperatures, such as those encountered at host entry, showed derepressed tlpA activity. tlpA::lacZ fusions indicated that the promoter itself is insensitive to thermal shifts and that transcription control was exerted by the autorepressor TlpA only. In vitro studies with highly purified TlpA showed concentration and temperature dependence for both fully folded conformation and function, indicating that the thermosensing in TlpA is based on monomer-to-coiled-coil equilibrium.
Collapse
Affiliation(s)
- R Hurme
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|