1
|
Tobacman LS. Troponin Revealed: Uncovering the Structure of the Thin Filament On-Off Switch in Striated Muscle. Biophys J 2021; 120:1-9. [PMID: 33221250 PMCID: PMC7820733 DOI: 10.1016/j.bpj.2020.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Recently, our understanding of the structural basis of troponin-tropomyosin's Ca2+-triggered regulation of striated muscle contraction has advanced greatly, particularly via cryo-electron microscopy data. Compelling atomic models of troponin-tropomyosin-actin were published for both apo- and Ca2+-saturated states of the cardiac thin filament. Subsequent electron microscopy and computational analyses have supported and further elaborated the findings. Per cryo-electron microscopy, each troponin is highly extended and contacts both tropomyosin strands, which lie on opposite sides of the actin filament. In the apo-state characteristic of relaxed muscle, troponin and tropomyosin hinder strong myosin-actin binding in several different ways, apparently barricading the actin more substantially than does tropomyosin alone. The troponin core domain, the C-terminal third of TnI, and tropomyosin under the influence of a 64-residue helix of TnT located at the overlap of adjacent tropomyosins are all in positions that would hinder strong myosin binding to actin. In the Ca2+-saturated state, the TnI C-terminus dissociates from actin and binds in part to TnC; the core domain pivots significantly; the N-lobe of TnC binds specifically to actin and tropomyosin; and tropomyosin rotates partially away from myosin's binding site on actin. At the overlap domain, Ca2+ causes much less tropomyosin movement, so a more inhibitory orientation persists. In the myosin-saturated state of the thin filament, there is a large additional shift in tropomyosin, with molecular interactions now identified between tropomyosin and both actin and myosin. A new era has arrived for investigation of the thin filament and for functional understandings that increasingly accommodate the recent structural results.
Collapse
Affiliation(s)
- Larry S Tobacman
- Departments of Medicine and of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Viswanathan MC, Schmidt W, Franz P, Rynkiewicz MJ, Newhard CS, Madan A, Lehman W, Swank DM, Preller M, Cammarato A. A role for actin flexibility in thin filament-mediated contractile regulation and myopathy. Nat Commun 2020; 11:2417. [PMID: 32415060 PMCID: PMC7229152 DOI: 10.1038/s41467-020-15922-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Striated muscle contraction is regulated by the translocation of troponin-tropomyosin strands over the thin filament surface. Relaxation relies partly on highly-favorable, conformation-dependent electrostatic contacts between actin and tropomyosin, which position tropomyosin such that it impedes actomyosin associations. Impaired relaxation and hypercontractile properties are hallmarks of various muscle disorders. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation lies near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here, we investigate M305L actin in vivo, in vitro, and in silico to resolve emergent pathological properties and disease mechanisms. Our data suggest the mutation reduces actin flexibility and distorts the actin-tropomyosin electrostatic energy landscape that, in muscle, result in aberrant contractile inhibition and excessive force. Thus, actin flexibility may be required to establish and maintain interfacial contacts with tropomyosin as well as facilitate its movement over distinct actin surface features and is, therefore, likely necessary for proper regulation of contraction. The α-cardiac actin M305L hypertrophic cardiomyopathy-causing mutation is located near residues that help confine tropomyosin to an inhibitory position along thin filaments. Here the authors assessed M305L actin in vivo, in vitro, and in silico to characterize emergent pathological properties and define the mechanistic basis of disease.
Collapse
Affiliation(s)
- Meera C Viswanathan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Schmidt
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - Peter Franz
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Christopher S Newhard
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Aditi Madan
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street St, Boston, MA, 02118, USA
| | - Douglas M Swank
- Department of Biological Sciences and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180-3590, USA
| | - Matthias Preller
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 720 Rutland Avenue, Baltimore, MD, 21205, USA. .,Department of Physiology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Ueda K, Kimura-Sakiyama C, Aihara T, Miki M, Arata T. Calcium-dependent interaction sites of tropomyosin on reconstituted muscle thin filaments with bound Myosin heads as studied by site-directed spin-labeling. Biophys J 2014; 105:2366-73. [PMID: 24268148 DOI: 10.1016/j.bpj.2013.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/09/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
To identify the interaction sites of Tm, we measured the rotational motion of a spin-label covalently bound to the side chain of a cysteine that was genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, or 279. Most of the Tm residues were immobilized on actin filaments with myosin-S1 bound to them. The residues in the mid-portion of Tm, namely, 146, 174, 190, 209, and 230, were mobilized when the troponin (Tn) complex bound to the actin-Tm-S1 filaments. The addition of Ca(2+) ions partially reversed the Tn-induced mobilization. In contrast, residues at the joint region of Tm, 13, 36, 271, and 279 were unchanged or oppositely changed. All of these changes were detected using a maleimide spin label and less obviously using a methanesulfonate label. These results indicated that Tm was fixed on thin filaments with myosin bound to them, although a small change in the flexibility of the side chains of Tm residues, presumably interfaced with Tn, actin and myosin, was induced by the binding of Tn and Ca(2+). These findings suggest that even in the myosin-bound (open) state, Ca(2+) may regulate actomyosin contractile properties via Tm.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
4
|
Nevzorov IA, Levitsky DI. Tropomyosin: double helix from the protein world. BIOCHEMISTRY (MOSCOW) 2012; 76:1507-27. [PMID: 22339601 DOI: 10.1134/s0006297911130098] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review concerns the structure and functions of tropomyosin (TM), an actin-binding protein that plays a key role in the regulation of muscle contraction. The TM molecule is a dimer of α-helices, which form a coiled-coil. Recent views on the TM structure are analyzed, and special attention is concentrated on those structural traits of the TM molecule that distinguish it from the other coiled-coil proteins. Modern data are presented on TM functional properties, such as its interaction with actin and ability to move on the surface of actin filaments, which underlies the regulation of the actin-myosin interaction upon contraction of skeletal and cardiac muscles. Also, part of the review is devoted to analysis of the effects of mutations in TM genes associated with muscle diseases (myopathies) on the structure and functions of TM.
Collapse
Affiliation(s)
- I A Nevzorov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
5
|
Rao VS, Clobes AM, Guilford WH. Force spectroscopy reveals multiple "closed states" of the muscle thin filament. J Biol Chem 2011; 286:24135-41. [PMID: 21597115 DOI: 10.1074/jbc.m110.167957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Tropomyosin (Tm) plays a critical role in regulating the contraction of striated muscle. The three-state model of activation posits that Tm exists in three positions on the thin filament: "blocked" in the absence of calcium when myosin cannot bind, "closed" when calcium binds troponin and Tm partially covers the myosin binding site, and "open" after myosin binding forces Tm completely off neighboring sites. However, we recently showed that actin filaments decorated with phosphorylated Tm are driven by myosin with greater force than bare actin filaments. This result cannot be explained by simple steric hindrance and suggests that Tm may have additional effects on actin-myosin interactions. We therefore tested the hypothesis that Tm and its phosphorylation state affect the rate at which single actin-myosin bonds form and rupture. Using a laser trap, we measured the time necessary for the first bond to form between actin and rigor heavy meromyosin and the load-dependent durations of those bonds. Measurements were repeated in the presence of subsaturating myosin-S1 to force Tm from the closed to the open state. Maximum bond lifetimes increased in the open state, but only when Tm was phosphorylated. While the frequency with which bonds formed was extremely low in the closed state, when a bond did form it took significantly less time to do so than with bare actin. These data suggest there are at least two closed states of the thin filament, and that Tm provides additional points of contact for myosin.
Collapse
Affiliation(s)
- Vijay S Rao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
6
|
Ali LF, Cohen JM, Tobacman LS. Push and pull of tropomyosin's opposite effects on myosin attachment to actin. A chimeric tropomyosin host-guest study. Biochemistry 2010; 49:10873-80. [PMID: 21114337 DOI: 10.1021/bi101632f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tropomyosin is a ubiquitous actin-binding protein with an extended coiled-coil structure. Tropomyosin-actin interactions are weak and loosely specific, but they potently influence myosin. One such influence is inhibitory and is due to tropomyosin's statistically preferred positions on actin that sterically interfere with actin's strong attachment site for myosin. Contrastingly, tropomyosin's other influence is activating. It increases myosin's overall actin affinity ∼4-fold. Stoichiometric considerations cause this activating effect to equate to an ∼4(7)-fold effect of myosin on the actin affinity of tropomyosin. These positive, mutual, myosin-tropomyosin effects are absent if Saccharomyces cerevisiae tropomyosin replaces mammalian tropomyosin. To investigate these phenomena, chimeric tropomyosins were generated in which 38-residue muscle tropomyosin segments replaced a natural duplication within S. cerevisiae tropomyosin TPM1. Two such chimeric tropomyosins were sufficiently folded coiled coils to allow functional study. The two chimeras differed from TPM1 but in opposite ways. Consistent with steric interference, myosin greatly decreased the actin affinity of chimera 7, which contained muscle tropomyosin residues 228-265. On the other hand, myosin S1 increased by an order of magnitude the actin affinity of chimera 3, which contained muscle tropomyosin residues 74-111. Similarly, myosin S1-ADP binding to actin was strengthened 2-fold by substitution of chimera 3 tropomyosin for wild-type TPM1. Thus, a yeast tropomyosin was induced to mimic the activating behavior of mammalian tropomyosin by inserting a mammalian tropomyosin sequence. The data were not consistent with direct tropomyosin-myosin binding. Rather, they suggest an allosteric mechanism, in which myosin and tropomyosin share an effect on the actin filament.
Collapse
Affiliation(s)
- Laith F Ali
- Department of Medicine, University of Illinois at Chicago,Chicago, Illinois 60612, United States
| | | | | |
Collapse
|
7
|
Kozaili JM, Leek D, Tobacman LS. Dual regulatory functions of the thin filament revealed by replacement of the troponin I inhibitory peptide with a linker. J Biol Chem 2010; 285:38034-41. [PMID: 20889978 DOI: 10.1074/jbc.m110.165753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscles are relaxed under low Ca(2+) concentration conditions due to actions of the thin filament protein troponin. To investigate this regulatory mechanism, an 11-residue segment of cardiac troponin I previously termed the inhibitory peptide region was studied by mutagenesis. Several mutant troponin complexes were characterized in which specific effects of the inhibitory peptide region were abrogated by replacements of 4-10 residues with Gly-Ala linkers. The mutations greatly impaired two of troponin's actions under low Ca(2+) concentration conditions: inhibition of myosin subfragment 1 (S1)-thin filament MgATPase activity and cooperative suppression of myosin S1-ADP binding to thin filaments with low myosin saturation. Inhibitory peptide replacement diminished but did not abolish the Ca(2+) dependence of the ATPase rate; ATPase rates were at least 2-fold greater when Ca(2+) rather than EGTA was present. This residual regulation was highly cooperative as a function of Ca(2+) concentration, similar to the degree of cooperativity observed with WT troponin present. Other effects of the mutations included 2-fold or less increases in the apparent affinity of the thin filament regulatory Ca(2+) sites, similar decreases in the affinity of troponin for actin-tropomyosin regardless of Ca(2+), and increases in myosin S1-thin filament ATPase rates in the presence of saturating Ca(2+). The overall results indicate that cooperative myosin binding to Ca(2+)-free thin filaments depends upon the inhibitory peptide region but that a cooperatively activating effect of Ca(2+) binding does not. The findings suggest that these two processes are separable and involve different conformational changes in the thin filament.
Collapse
|
8
|
Yang Z, Yamazaki M, Shen QW, Swartz DR. Differences between cardiac and skeletal troponin interaction with the thin filament probed by troponin exchange in skeletal myofibrils. Biophys J 2009; 97:183-94. [PMID: 19580756 DOI: 10.1016/j.bpj.2009.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022] Open
Abstract
Troponin (Tn) is the calcium-sensing protein of the thin filament. Although cardiac troponin (cTn) and skeletal troponin (sTn) accomplish the same function, their subunit interactions within Tn and with actin-tropomyosin are different. To further characterize these differences, myofibril ATPase activity as a function of pCa and labeled Tn exchange in rigor myofibrils was used to estimate Tn dissociation rates from the nonoverlap and overlap region as a function of pCa. Measurement of ATPase activity showed that skeletal myofibrils containing >96% cTn had a higher pCa 9 ATPase activity than, but similar pCa 4 activity to, sTn-containing myofibrils. Analysis of the pCa-ATPase activity relation showed that cTn myofibrils were more calcium sensitive but less cooperative (pCa50 = 6.14, nH = 1.46) than sTn myofibrils (pCa50= 5.90, nH = 3.36). The time course of labeled Tn exchange at pCa 9 and 4 were quite different between cTn and sTn. The apparent cTn dissociation rates were approximately 2-10-fold faster than sTn under all the conditions studied. The apparent dissociation rates for cTn were 5 x 10(-3) min(-1), 150 x 10(-3) min(-1), and 260 x 10(-3) min(-1), whereas for sTn they were 0.6 x 10(-3) min(-1), 88 x 10(-3) min(-1), and 68 x 10(-3) min(-1) for the nonoverlap region at pCa 9, nonoverlap region at pCa 4, and overlap region at pCa 4, respectively. Normalization of the apparent dissociation rates gives 1:30:50 for cTn compared with 1:150:110 for sTn (nonoverlap at pCa 9:nonoverlap at pCa 4:overlap at pCa 4) suggesting that calcium has a smaller influence, whereas strong cross-bridges have a larger influence on cTn dissociation compared with sTn. The higher cTn dissociation rate in the nonoverlap region and ATPase activity at pCa 9 suggest that it gives a less off or inactive thin filament. Analysis of the intensity ratio (after a short time of exchange) as a function of pCa showed that cTn had greater calcium sensitivity but lower cooperativity than sTn. In addition, the magnitude of the change in intensity ratio going from pCa 9 to 4 was less for cTn than sTn. These data suggest that the influence of calcium on cTn exchange is less than sTn even though calcium can activate ATPase activity to a similar extent in cTn compared with sTn myofibrils. This may be explained partially by cTn being less off or inactive at pCa 9. Modeling of the intensity profiles obtained after Tn exchange at pCa 5.8 suggest that the profiles are best explained by a model that includes a long-range cross-bridge effect that grades with distance from the rigor cross-bridge for both cTn and sTn.
Collapse
Affiliation(s)
- Zhenyun Yang
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
9
|
Skórzewski R, Sliwińska M, Borys D, Sobieszek A, Moraczewska J. Effect of actin C-terminal modification on tropomyosin isoforms binding and thin filament regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:237-43. [PMID: 19041430 PMCID: PMC2628472 DOI: 10.1016/j.bbapap.2008.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/14/2008] [Accepted: 10/27/2008] [Indexed: 12/17/2022]
Abstract
Tropomyosins, a family of actin-binding regulatory proteins, are present in muscle and non-muscle cells. Multiple tropomyosin (TM) isoforms differ in actin affinity and regulatory properties, but little is known about the molecular bases of these differences. The C-terminus of actin stabilizes contacts between actin subunits in the filament and interacts with myosin and regulatory proteins. The goal of this work was to reveal how structural changes in actin and differences between TM isoforms affect binding between these proteins and affect thin filament regulation. Actin proteolytically truncated by three C-terminal amino acids exhibited 1.2–1.5 fold reduced affinity for non-muscle and smooth muscle tropomyosin isoforms. The truncation increased the cooperativity of myosin S1-induced tropomyosin binding for short tropomyosins (TM5a and TM1b9a), but it was neutral for long isoforms (smTM and TM2). Actin modification affected regulation of actomyosin ATPase activity in the presence of all tropomyosins by shifting the filament into a more active state. We conclude that the integrity of the actin C-terminus is important for actin–tropomyosin interactions, however the increased affinity of tropomyosin binding in the S1-induced state of the filament appears not to be involved in the tropomyosin isoform-dependent mechanism of the actomyosin ATPase activation.
Collapse
Affiliation(s)
- Radosław Skórzewski
- Kazimierz Wielki University in Bydgoszcz, Department of Experimental Biology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | | | | | | | | |
Collapse
|
10
|
Maytum R, Hatch V, Konrad M, Lehman W, Geeves MA. Ultra Short Yeast Tropomyosins Show Novel Myosin Regulation. J Biol Chem 2008; 283:1902-10. [DOI: 10.1074/jbc.m708593200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Abstract
Controversy abounds in the cardiac muscle literature over the rate-limiting steps of cardiac muscle contraction and relaxation. However, the idea of a single biochemical mechanism being the all-inclusive rate-limiting step for cardiac muscle contraction and relaxation may be oversimplified. There is ample evidence that Ca(2+) concentration and dynamics, intrinsic cross-bridge properties, and even troponin C (TnC) Ca(2+) binding and dissociation can all modulate the mechanical events of cardiac muscle contraction and relaxation. However, TnC has generally been thought to play no role in influencing cardiac muscle dynamics due to the idea that Ca(2+) exchange with TnC is very rapid. This definitely is the case for isolated TnC, but not for the more sophisticated biochemical systems of reconstituted thin filaments and myofibrils. This review will discuss the biochemical influences on Ca(2+) exchange with TnC and their physiological implications.
Collapse
Affiliation(s)
- Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, 400 Hamilton Hall, Columbus, OH 43210, USA.
| | | |
Collapse
|
12
|
Coulton AT, Koka K, Lehrer SS, Geeves MA. Role of the Head-to-Tail Overlap Region in Smooth and Skeletal Muscle β-Tropomyosin. Biochemistry 2007; 47:388-97. [DOI: 10.1021/bi701144g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arthur T. Coulton
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| | - Kezia Koka
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| | - Sherwin S. Lehrer
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| | - Michael A. Geeves
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, U.K., and Cardiovascular Program, Boston Biomedical Research Institute, Watertown, Massachusetts 02472-2829
| |
Collapse
|
13
|
Singh A, Hitchcock-DeGregori SE. Tropomyosin's Periods Are Quasi-Equivalent for Actin Binding but Have Specific Regulatory Functions. Biochemistry 2007; 46:14917-27. [DOI: 10.1021/bi701570b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abhishek Singh
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, MD/PhD Program, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and Joint Graduate Program in Biochemistry and Molecular Biology, UMDNJ-Graduate School of Biomedical Sciences and Rutgers University, Piscatway, New Jersey 08854
| | - Sarah E. Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, MD/PhD Program, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, and Joint Graduate Program in Biochemistry and Molecular Biology, UMDNJ-Graduate School of Biomedical Sciences and Rutgers University, Piscatway, New Jersey 08854
| |
Collapse
|
14
|
Davis JP, Norman C, Kobayashi T, Solaro RJ, Swartz DR, Tikunova SB. Effects of thin and thick filament proteins on calcium binding and exchange with cardiac troponin C. Biophys J 2007; 92:3195-206. [PMID: 17293397 PMCID: PMC1852344 DOI: 10.1529/biophysj.106.095406] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the effects of thin and thick filament proteins on the kinetics of Ca(2+) exchange with cardiac troponin C is essential to elucidating the Ca(2+)-dependent mechanisms controlling cardiac muscle contraction and relaxation. Unlike labeling of the endogenous Cys-84, labeling of cardiac troponin C at a novel engineered Cys-53 with 2-(4'-iodoacetamidoanilo)napthalene-6-sulfonic acid allowed us to accurately measure the rate of calcium dissociation from the regulatory domain of troponin C upon incorporation into the troponin complex. Neither tropomyosin nor actin alone affected the Ca(2+) binding properties of the troponin complex. However, addition of actin-tropomyosin to the troponin complex decreased the Ca(2+) sensitivity ( approximately 7.4-fold) and accelerated the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 2.5-fold). Subsequent addition of myosin S1 to the reconstituted thin filaments (actin-tropomyosin-troponin) increased the Ca(2+) sensitivity ( approximately 6.2-fold) and decreased the rate of Ca(2+) dissociation from the regulatory domain of troponin C ( approximately 8.1-fold), which was completely reversed by ATP. Consistent with physiological data, replacement of cardiac troponin I with slow skeletal troponin I led to higher Ca(2+) sensitivities and slower Ca(2+) dissociation rates from troponin C in all the systems studied. Thus, both thin and thick filament proteins influence the ability of cardiac troponin C to sense and respond to Ca(2+). These results imply that both cross-bridge kinetics and Ca(2+) dissociation from troponin C work together to modulate the rate of cardiac muscle relaxation.
Collapse
Affiliation(s)
- Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Hitchcock-DeGregori SE, Greenfield NJ, Singh A. Tropomyosin: regulator of actin filaments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 592:87-97. [PMID: 17278358 DOI: 10.1007/978-4-431-38453-3_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Sarah E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
16
|
Lu X, Tobacman LS, Kawai M. Temperature-dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant. Biophys J 2006; 91:4230-40. [PMID: 16980359 PMCID: PMC1635655 DOI: 10.1529/biophysj.106.084608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 08/30/2006] [Indexed: 11/18/2022] Open
Abstract
The effect of temperature on isometric tension and cross-bridge kinetics was studied with a tropomyosin (Tm) internal deletion mutant AS-Delta23Tm (Ala-Ser-Tm Delta(47-123)) in bovine cardiac muscle fibers by using the thin filament extraction and reconstitution technique. The results are compared with those from actin reconstituted alone, cardiac muscle-derived control acetyl-Tm, and recombinant control AS-Tm. In all four reconstituted muscle groups, isometric tension and stiffness increased linearly with temperature in the range 5-40 degrees C for fibers activated in the presence of saturating ATP and Ca(2+). The slopes of the temperature-tension plots of the two controls were very similar, whereas the slope derived from fibers with actin alone had approximately 40% the control value, and the slope from mutant Tm had approximately 36% the control value. Sinusoidal analysis was performed to study the temperature dependence of cross-bridge kinetics. All three exponential processes A, B, and C were identified in the high temperature range (30-40 degrees C); only processes B and C were identified in the mid-temperature range (15-25 degrees C), and only process C was identified in the low temperature range (5-10 degrees C). At a given temperature, similar apparent rate constants (2pia, 2pib, 2pic) were observed in all four muscle groups, whereas their magnitudes were markedly less in the order of AS-Delta23Tm < Actin < AS-Tm approximately Acetyl-Tm groups. Our observations are consistent with the hypothesis that Tm enhances hydrophobic and stereospecific interactions (positive allosteric effect) between actin and myosin, but Delta23Tm decreases these interactions (negative allosteric effect). Our observations further indicate that tension/cross-bridge is increased by Tm, but is diminished by Delta23Tm. We conclude that Tm affects the conformation of actin so as to increase the area of hydrophobic interaction between actin and myosin molecules.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
17
|
Chandra M, Tschirgi ML, Rajapakse I, Campbell KB. Troponin T modulates sarcomere length-dependent recruitment of cross-bridges in cardiac muscle. Biophys J 2006; 90:2867-76. [PMID: 16443664 PMCID: PMC1414571 DOI: 10.1529/biophysj.105.076950] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heterogenic nature of troponin T (TnT) isoforms in fast skeletal and cardiac muscle suggests important functional differences. Dynamic features of rat cardiac TnT (cTnT) and rat fast skeletal TnT (fsTnT) reconstituted cardiac muscle preparations were captured by fitting the force response of small amplitude (0.5%) muscle length changes to the recruitment-distortion model. The recruitment of force-bearing cross-bridges (XBs) by increases in muscle length was favored by cTnT. The recruitment magnitude was approximately 1.5 times greater for cTnT- than for fsTnT-reconstituted muscle fibers. The speed of length-mediated XB recruitment (b) in cTnT-reconstituted muscle fiber was 0.50-0.57 times as fast as fsTnT-reconstituted muscle fibers (3.05 vs. 5.32 s(-1) at sarcomere length, SL, of 1.9 microm and 4.16 vs. 8.36 s(-1) at SL of 2.2 microm). Due to slowing of b in cTnT-reconstituted muscle fibers, the frequency of minimum stiffness (f(min)) was shifted to lower frequencies of muscle length changes (at SL of 1.9 microm, 0.64 Hz, and 1.16 Hz for cTnT- and fsTnT-reconstituted muscle fibers, respectively; at SL of 2.2 microm, 0.79 Hz, and 1.11 Hz for cTnT- and fsTnT-reconstituted muscle fibers, respectively). Our model simulation of the data implicates TnT as a participant in the process by which SL- and XB-regulatory unit cooperative interactions activate thin filaments. Our data suggest that the amino-acid sequence differences in cTnT may confer a heart-specific regulatory role. cTnT may participate in tuning the heart muscle by decreasing the speed of XB recruitment so that the heart beats at a rate commensurate with f(min).
Collapse
Affiliation(s)
- Murali Chandra
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, 99164-6520, USA.
| | | | | | | |
Collapse
|
18
|
Chen W, Wen KK, Sens AE, Rubenstein PA. Differential interaction of cardiac, skeletal muscle, and yeast tropomyosins with fluorescent (pyrene235) yeast actin. Biophys J 2005; 90:1308-18. [PMID: 16326906 PMCID: PMC1367282 DOI: 10.1529/biophysj.105.064634] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To monitor binding of tropomyosin to yeast actin, we mutated S235 to C and labeled the actin with pyrene maleimide at both C235 and the normally reactive C374. Saturating cardiac tropomyosin (cTM) caused about a 20% increase in pyrene fluorescence of the doubly labeled F-actin but no change in WT actin C374 probe fluorescence. Skeletal muscle tropomyosin caused only a 7% fluorescence increase, suggesting differential binding modes for the two tropomyosins. The increased cTM-induced fluorescence was proportional to the extent of tropomyosin binding. Yeast tropomyosin (TPM1) produced less increase in fluorescence than did cTM, whereas that caused by yeast TPM2 was greater than either TPM1 or cTM. Cardiac troponin largely reversed the cTM-induced fluorescence increase, and subsequent addition of calcium resulted in a small fluorescence recovery. An A230Y mutation, which causes a Ca(+2)-dependent hypercontractile response of regulated thin filaments, did not change probe235 fluorescence of actin alone or with tropomyosin +/- troponin. However, addition of calcium resulted in twice the fluorescence recovery observed with WT actin. Our results demonstrate isoform-specific binding of different tropomyosins to actin and suggest allosteric regulation of the tropomyosin/actin interaction across the actin interdomain cleft.
Collapse
Affiliation(s)
- Weizu Chen
- Department of Biochemistry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
19
|
Clemmens EW, Entezari M, Martyn DA, Regnier M. Different effects of cardiac versus skeletal muscle regulatory proteins on in vitro measures of actin filament speed and force. J Physiol 2005; 566:737-46. [PMID: 15905219 PMCID: PMC1464789 DOI: 10.1113/jphysiol.2005.084194] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mammalian cardiac and skeletal muscle express unique isoforms of the thin filament regulatory proteins, troponin (Tn) and tropomyosin (Tm), and the significance of these different isoforms in thin filament regulation has not been clearly identified. Both in vitro and skinned cellular studies investigating the mechanism of thin filament regulation in striated muscle have often used heterogeneous mixtures of Tn, Tm and myosin isoforms, and variability in reported results might be explained by different combinations of these proteins. Here we used in vitro motility and force (microneedle) assays to investigate the influence of cardiac versus skeletal Tn and Tm isoforms on actin-heavy meromyosin (HMM) mechanics. When interacting with skeletal HMM, thin filaments reconstituted with cardiac Tn/Tm or skeletal Tn/Tm exhibited similar speed-calcium relationships and significantly increased maximum speed and force per filament length (F/l) at pCa 5 (versus unregulated actin filaments). However, augmentation of F/l was greater with skeletal regulatory proteins. Reconstitution of thin filaments with the heterogeneous combination of skeletal Tn and cardiac Tm decreased sliding speeds at all [Ca2+] relative to thin filaments with skeletal Tn/Tm. Finally, for filaments reconstituted with any heterogeneous mix of Tn and Tm isoforms, force was not potentiated over that of unregulated actin filaments. Combined the results suggest (1) that cardiac regulatory proteins limit the allosteric enhancement of force, and (2) that Tn and Tm isoform homogeneity is important when studying Ca2+ regulation of crossbridge binding and kinetics as well as mechanistic differences between cardiac and skeletal muscle.
Collapse
|
20
|
Gong H, Hatch V, Ali L, Lehman W, Craig R, Tobacman LS. Mini-thin filaments regulated by troponin-tropomyosin. Proc Natl Acad Sci U S A 2005; 102:656-61. [PMID: 15644437 PMCID: PMC545539 DOI: 10.1073/pnas.0407225102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Striated muscle thin filaments contain hundreds of actin monomers and scores of troponins and tropomyosins. To study the cooperative mechanism of thin filaments, "mini-thin filaments" were generated by isolating particles nearly matching the minimal structural repeat of thin filaments: a double helix of actin subunits with each strand approximately seven actins long and spanned by a troponin-tropomyosin complex. One end of the particles was capped by a gelsolin (segment 1-3)-TnT fusion protein (substituting for normal TnT), and the other end was capped by tropomodulin. EM showed that the particles were 46 +/- 9 nm long, with a knob-like mass attributable to gelsolin at one end. Average actin, tropomyosin, and gelsolin-troponin composition indicated one troponin-tropomyosin attached to each strand of the two-stranded actin filament. The minifilaments thus nearly represent single regulatory units of thin filaments. The myosin S1 MgATPase rate stimulated by the minifilaments was Ca2+-sensitive, indicating that single regulatory length particles are sufficient for regulation. Ca2+ bound cooperatively to cardiac TnC in conventional thin filaments but noncooperatively to cardiac TnC in minifilaments in the absence of myosin. This suggests that thin filament Ca2+-binding cooperativity reflects indirect troponin-troponin interactions along the long axis of conventional filaments, which do not occur in minifilaments. Despite noncooperative Ca2+ binding to minifilaments in the absence of myosin, Ca2+ cooperatively activated the myosin S1-particle ATPase rate. Two-stranded single regulatory units therefore may be sufficient for myosin-mediated Ca2+-binding cooperativity. Functional mini-thin filaments are well suited for biochemical and structural analysis of thin-filament regulation.
Collapse
Affiliation(s)
- Huiyu Gong
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
21
|
Heller MJ, Nili M, Homsher E, Tobacman LS. Cardiomyopathic tropomyosin mutations that increase thin filament Ca2+ sensitivity and tropomyosin N-domain flexibility. J Biol Chem 2003; 278:41742-8. [PMID: 12900417 DOI: 10.1074/jbc.m303408200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relationship between tropomyosin thermal stability and thin filament activation was explored using two N-domain mutants of alpha-striated muscle tropomyosin, A63V and K70T, each previously implicated in familial hypertrophic cardiomyopathy. Both mutations had prominent effects on tropomyosin thermal stability as monitored by circular dichroism. Wild type tropomyosin unfolded in two transitions, separated by 10 degrees C. The A63V and K70T mutations decreased the melting temperature of the more stable of these transitions by 4 and 10 degrees C, respectively, indicating destabilization of the N-domain in both cases. Global analysis of all three proteins indicated that the tropomyosin N-domain and C-domain fold with a cooperative free energy of 1.0-1.5 kcal/mol. The two mutations increased the apparent affinity of the regulatory Ca2+ binding sites of thin filament in two settings: Ca2+-dependent sliding speed of unloaded thin filaments in vitro (at both pH 7.4 and 6.3), and Ca2+ activation of the thin filament-myosin S1 ATPase rate. Neither mutation had more than small effects on the maximal ATPase rate in the presence of saturating Ca2+ or on the maximal sliding speed. Despite the increased tropomyosin flexibility implied by destabilization of the N-domain, neither the cooperativity of thin filament activation by Ca2+ nor the cooperative binding of myosin S1-ADP to the thin filament was altered by the mutations. The combined results suggest that a more dynamic tropomyosin N-domain influences interactions with actin and/or troponin that modulate Ca2+ sensitivity, but has an unexpectedly small effect on cooperative changes in tropomyosin position on actin.
Collapse
Affiliation(s)
- Mark J Heller
- Departments of Internal Medicine and Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
22
|
Liang B, Chen Y, Wang CK, Luo Z, Regnier M, Gordon AM, Chase PB. Ca2+ regulation of rabbit skeletal muscle thin filament sliding: role of cross-bridge number. Biophys J 2003; 85:1775-86. [PMID: 12944292 PMCID: PMC1303351 DOI: 10.1016/s0006-3495(03)74607-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 05/29/2003] [Indexed: 11/17/2022] Open
Abstract
We investigated how strong cross-bridge number affects sliding speed of regulated Ca(2+)-activated, thin filaments. First, using in vitro motility assays, sliding speed decreased nonlinearly with reduced density of heavy meromyosin (HMM) for regulated (and unregulated) F-actin at maximal Ca(2+). Second, we varied the number of Ca(2+)-activatable troponin complexes at maximal Ca(2+) using mixtures of recombinant rabbit skeletal troponin (WT sTn) and sTn containing sTnC(D27A,D63A), a mutant deficient in Ca(2+) binding at both N-terminal, low affinity Ca(2+)-binding sites (xxsTnC-sTn). Sliding speed decreased nonlinearly as the proportion of WT sTn decreased. Speed of regulated thin filaments varied with pCa when filaments contained WT sTn but filaments containing only xxsTnC-sTn did not move. pCa(50) decreased by 0.12-0.18 when either heavy meromyosin density was reduced to approximately 60% or the fraction of Ca(2+)-activatable regulatory units was reduced to approximately 33%. Third, we exchanged mixtures of sTnC and xxsTnC into single, permeabilized fibers from rabbit psoas. As the proportion of xxsTnC increased, unloaded shortening velocity decreased nonlinearly at maximal Ca(2+). These data are consistent with unloaded filament sliding speed being limited by the number of cycling cross-bridges so that maximal speed is attained with a critical, low level of actomyosin interactions.
Collapse
Affiliation(s)
- Bo Liang
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Heeley DH, Belknap B, White HD. Mechanism of regulation of phosphate dissociation from actomyosin-ADP-Pi by thin filament proteins. Proc Natl Acad Sci U S A 2002; 99:16731-6. [PMID: 12486217 PMCID: PMC139212 DOI: 10.1073/pnas.252236399] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation by calcium and myosin-S1 of the acceleration of the rate of phosphate release from myosin-ADP-inorganic phosphate (M-ADP-Pi) by the thin filament actin-tropomyosin (Tm)-troponin (Tn), was measured directly by using double mixing stopped-flow experiments with fluorescent phosphate binding protein. At low calcium and without rigor myosin-S1, saturating concentrations of thin filaments accelerate the rate of phosphate dissociation from M-ADP-Pi 8-fold, from 0.08 to 0.64 s(-1). If either myosin-S1 or calcium is bound to the thin filaments, phosphate release is a biphasic process in which the fast phase is the dissociation of Pi from actoTmTnM-ADP-Pi and the slow phase is limited by the hydrolysis of actoTmTnM-ATP to actoTmTnM-ADP-Pi. The maximum accelerations of the fast components by saturating thin filaments (relative to M-ADP-Pi alone) are: approximately equal 200-fold, 16 s(-1) (calcium only); approximately equal 400-fold, 30 s(-1) (EGTA and rigor S1); and approximately equal1,000-fold, 75 s(-1) (calcium and rigor S1). The maximum rate of phosphate dissociation attained with S1 and calcium bound to the thin filament is the same as for unregulated actin. Regulation of the rate of phosphate dissociation by calcium and myosin-S1 is partially explained by the model of Geeves [McKillop, D. F. and Geeves, M. A. (1993) Biophys. J. 65, 693-701], in which calcium and rigor S1 perturb the equilibria among three states of the thin filament (blocked, closed, and open). However, a quantitative description of the regulatory mechanism requires acceleration by calcium of an additional step of the mechanism, either phosphate dissociation or a preceding conformational change.
Collapse
Affiliation(s)
- David H Heeley
- Department of Biochemistry, Memorial University, St. John's, NL, Canada A1B 3X9
| | | | | |
Collapse
|
24
|
Maytum R, Geeves MA, Lehrer SS. A modulatory role for the troponin T tail domain in thin filament regulation. J Biol Chem 2002; 277:29774-80. [PMID: 12045197 DOI: 10.1074/jbc.m201761200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In striated muscle the force generating acto-myosin interaction is sterically regulated by the thin filament proteins tropomyosin and troponin (Tn), with the position of tropomyosin modulated by calcium binding to troponin. Troponin itself consists of three subunits, TnI, TnC, and TnT, widely characterized as being responsible for separate aspects of the regulatory process. TnI, the inhibitory unit is released from actin upon calcium binding to TnC, while TnT performs a structural role forming a globular head region with the regulatory TnI- TnC complex with a tail anchoring it within the thin filament. We have examined the properties of TnT and the TnT(1) tail fragment (residues 1-158) upon reconstituted actin-tropomyosin filaments. Their regulatory effects have been characterized in both myosin S1 ATPase and S1 kinetic and equilibrium binding experiments. We show that both inhibit the actin-tropomyosin-activated S1 ATPase with TnT(1) producing a greater inhibitory effect. The S1 binding data show that this inhibition is not caused by the formation of the blocked B-state but by significant stabilization of the closed C-state with a 10-fold reduction in the C- to M-state equilibrium, K(T), for TnT(1). This suggests TnT has a modulatory as well as structural role, providing an explanation for its large number of alternative isoforms.
Collapse
Affiliation(s)
- Robin Maytum
- Department of Biosciences, University of Kent, Canterbury CT2 7NY, United Kingdom.
| | | | | |
Collapse
|
25
|
Tobacman LS, Nihli M, Butters C, Heller M, Hatch V, Craig R, Lehman W, Homsher E. The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. J Biol Chem 2002; 277:27636-42. [PMID: 12011043 DOI: 10.1074/jbc.m201768200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In cardiac and skeletal muscles tropomyosin binds to the actin outer domain in the absence of Ca(2+), and in this position tropomyosin inhibits muscle contraction by interfering sterically with myosin-actin binding. The globular domain of troponin is believed to produce this B-state of the thin filament (Lehman, W., Hatch, V., Korman, V. L., Rosol, M., Thomas, L. T., Maytum, R., Geeves, M. A., Van Eyk, J. E., Tobacman, L. S., and Craig, R. (2000) J. Mol. Biol. 302, 593-606) via troponin I-actin interactions that constrain the tropomyosin. The present study shows that the B-state can be promoted independently by the elongated tail region of troponin (the NH(2) terminus (TnT-(1-153)) of cardiac troponin T). In the absence of the troponin globular domain, TnT-(1-153) markedly inhibited both myosin S1-actin-tropomyosin MgATPase activity and (at low S1 concentrations) myosin S1-ADP binding to the thin filament. Similarly, TnT-(1-153) increased the concentration of heavy meromyosin required to support in vitro sliding of thin filaments. Electron microscopy and three-dimensional reconstruction of thin filaments containing TnT-(1-153) and either cardiac or skeletal muscle tropomyosin showed that tropomyosin was in the B-state in the complete absence of troponin I. All of these results indicate that portions of the troponin tail domain, and not only troponin I, contribute to the positioning of tropomyosin on the actin outer domain, thereby inhibiting muscle contraction in the absence of Ca(2+).
Collapse
Affiliation(s)
- Larry S Tobacman
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Fujita H, Kawai M. Temperature effect on isometric tension is mediated by regulatory proteins tropomyosin and troponin in bovine myocardium. J Physiol 2002; 539:267-76. [PMID: 11850518 PMCID: PMC2290113 DOI: 10.1113/jphysiol.2001.013220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of temperature on isometric tension with and without the regulatory proteins tropomyosin and troponin was studied in bovine myocardium using a thin filament removal and reconstitution protocol. In control bovine myocardium, isometric tension increased linearly with temperature in the range 5-40 degrees C: isometric tension at 10 and 30 degrees C was 0.65 and 1.28 times that at 20 degrees C, respectively, with a Q10 of about 1.4. In actin filament-reconstituted myocardium without regulatory proteins, the temperature effect on isometric tension was less: isometric tension at 10 and 30 degrees C was 0.96 and 1.17 times that at 20 degrees C, respectively, with a Q10 of about 1.1. The temperature dependence of the apparent rate constants was studied using sinusoidal analysis. The temperature dependence of 2pi(b) (rate constant of delayed tension phase) did not vary significantly with the regulatory proteins under the standard activating condition (5 mM MgATP, 8 mM P(i), 200 mM ionic strength, pCa 4.66, pH 7.00). Q10 for 2pi(b) in control and actin filament-reconstituted myocardium was 3.8 and 4.0, respectively. There were two phases to the temperature dependence of 2pi(c) (rate constant of quick recovery). In control and thin filament-reconstituted myocardium, Q10 for 2pi(c) was approximately 5.5 in the low temperature range (< or = 25 degrees C) and 2.7 in the high temperature range (> or = 30 degrees C). In actin filament-reconstituted myocardium, Q10 for 2pi(c) was 8.5 in the low temperature range and 3.6 in the high temperature range. The above results demonstrate that regulatory proteins augment the temperature dependence of isometric tension, indicating that the regulatory proteins may modify the actomyosin interaction.
Collapse
Affiliation(s)
- Hideaki Fujita
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
27
|
She M, Trimble D, Yu LC, Chalovich JM. Factors contributing to troponin exchange in myofibrils and in solution. J Muscle Res Cell Motil 2001; 21:737-45. [PMID: 11392555 DOI: 10.1023/a:1010300802980] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The troponin complex in a muscle fiber can be replaced with exogenous troponin by using a gentle exchange procedure in which the actin-tropomyosin complex is never devoid of a full complement of troponin (Brenner et al. (1999) Biophys J 77: 2677-2691). The mechanism of this exchange process and the factors that influence this exchange are poorly understood. In this study, the exchange process has now been examined in myofibrils and in solution. In myofibrils under rigor conditions, troponin exchange occurred preferentially in the region of overlap between actin and myosin when the free Ca2+ concentration was low. At higher concentrations of Ca2+, the exchange occurred uniformly along the actin. Ca2+ also accelerated troponin exchange in solution but the effect of S1 could not be confirmed in solution experiments. The rate of exchange in solution was insensitive to moderate changes in pH or ionic strength. Increasing the temperature resulted in a two-fold increase in rate with each 10 degrees C increase in temperature. A sequential two step model of troponin binding to actin-tropomyosin could simulate the observed association and dissociation transients. In the absence of Ca2+ or rigor S1, the following rate constants could describe the binding process: k1 = 7.12 microM(-1) s(-1), k(-1) = 0.65 s(-1), k2 = 0.07 s(-1), k(-2) = 0.0014 s(-1). The slow rate of detachment of troponin from actin (k(-2)) limits the rate of exchange in solution and most likely contributes to the slow rate of exchange in fibers.
Collapse
Affiliation(s)
- M She
- Laboratory of Physical Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
28
|
Strand J, Nili M, Homsher E, Tobacman LS. Modulation of myosin function by isoform-specific properties of Saccharomyces cerevisiae and muscle tropomyosins. J Biol Chem 2001; 276:34832-9. [PMID: 11457840 DOI: 10.1074/jbc.m104750200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomyosin is an extended coiled-coil protein that influences actin function by binding longitudinally along thin filaments. The present work compares cardiac tropomyosin and the two tropomyosins from Saccharomyces cerevisiae, TPM1 and TPM2, that are much shorter than vertebrate tropomyosins. Unlike cardiac tropomyosin, the phase of the coiled-coil-forming heptad repeat of TPM2 is discontinuous; it is interrupted by a 4-residue deletion. TPM1 has two such deletions, which flank the 38-residue partial gene duplication that causes TPM1 to span five actins instead of the four of TPM2. Each of the three tropomyosin isoforms modulates actin-myosin interactions, with isoform-specific effects on cooperativity and strength of myosin binding. These different properties can be explained by a model that combines opposite effects, steric hindrance between myosin and tropomyosin when the latter is bound to a subset of its sites on actin, and also indirect, favorable interactions between tropomyosin and myosin, mediated by mutually promoted changes in actin. Both of these effects are influenced by which tropomyosin isoform is present. Finally, the tropomyosins have isoform-specific effects on in vitro sliding speed and on the myosin concentration dependence of this movement, suggesting that non-muscle tropomyosin isoforms exist, at least in part, to modulate myosin function.
Collapse
Affiliation(s)
- J Strand
- Departments of Internal Medicine and Biochemistry, the University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
29
|
Maytum R, Konrad M, Lehrer SS, Geeves MA. Regulatory properties of tropomyosin effects of length, isoform, and N-terminal sequence. Biochemistry 2001; 40:7334-41. [PMID: 11401582 DOI: 10.1021/bi010072i] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulatory properties of naturally occurring tropomyosins (Tms) of differing lengths have been examined. These Tms span from 4 to 7 actin subunits. Native proteins have been used to study the common 7 actin-spanning skeletal and smooth muscle variants and expressed recombinant proteins to study the shorter fibroblast 5a, 5b, yeast Tm1 and yeast Tm2 Tms (6, 6, 5, and 4 actin-spanning variants, respectively). The yTm2 has been overexpressed in Escherichia coli with N-terminal constructs equivalent to those previously used for yTm1 [Maytum, R., et al. (2000) Biochemistry 39, 11913]. The regulation of myosin subfragment 1 (S1) binding to actin by Tm has been assessed using a sensitive S1 binding titration. The equilibrium between closed and open (C to M states, KT = 0.1-0.14) was similar for all vertebrate Tms. Apart from skTm where the apparent cooperative unit size (n) is the same as the structural size (n = 7 actin sites), the other vertebrate Tms that were studied exhibited large n values (n = 12-14). The yeast Tms also exhibited large values of n (6-9) in comparison to their structural sizes (4-5). The determined value of KT depended on the N-terminal sequence (KT = 0.15-1). These results are compared with the effect of S1 upon Tm's affinity for actin. The yeast Tms have regulatory parameters similar to those of skTm, but unlike skTm, S1 has little effect upon their actin affinity. This shows that an actin state with a high affinity for S1 and Tm is not necessary for regulation, and the higher affinity of S1 for actin in the presence of vertebrate Tms is probably the result of a direct interaction of S1 with Tm.
Collapse
Affiliation(s)
- R Maytum
- Department of Biosciences, University of Kent at Canterbury, Canterbury, UK.
| | | | | | | |
Collapse
|
30
|
Burhop J, Rosol M, Craig R, Tobacman LS, Lehman W. Effects of a cardiomyopathy-causing troponin t mutation on thin filament function and structure. J Biol Chem 2001; 276:20788-94. [PMID: 11262409 DOI: 10.1074/jbc.m101110200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is caused by missense or premature truncation mutations in proteins of the cardiac contractile apparatus. Mutant proteins are incorporated into the thin filament or thick filament and eventually produce cardiomyopathy. However, it has been unclear how the several, genetically identified defects in protein structure translate into impaired protein and muscle function. We have studied the basis of FHC caused by premature truncation of the most frequently implicated thin filament target, troponin T. Electron microscope observations showed that the thin filament undergoes normal structural changes in response to Ca(2+) binding. On the other hand, solution studies showed that the mutation alters and destabilizes troponin binding to the thin filament to different extents in different regulatory states, thereby affecting the transitions among states that regulate myosin binding and muscle contraction. Development of hypertrophic cardiomyopathy can thus be traced to a defect in the primary mechanism controlling cardiac contraction, switching between different conformations of the thin filament.
Collapse
Affiliation(s)
- J Burhop
- Departments of Internal Medicine and Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
31
|
Lehman W, Rosol M, Tobacman LS, Craig R. Troponin organization on relaxed and activated thin filaments revealed by electron microscopy and three-dimensional reconstruction. J Mol Biol 2001; 307:739-44. [PMID: 11273697 DOI: 10.1006/jmbi.2001.4514] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The steric model of muscle regulation holds that at low Ca(2+) concentration, tropomyosin strands, running along thin filaments, are constrained by troponin in an inhibitory position that blocks myosin-binding sites on actin. Ca(2+) activation, releasing this constraint, allows tropomyosin movement, initiating actin-myosin interaction and contraction. Although the different positions of tropomyosin on the thin filament are well documented, corresponding information on troponin has been lacking and it has therefore not been possible to test the model structurally. Here, we show that troponin can be detected on thin filaments and demonstrate how its changing association with actin can control tropomyosin position in response to Ca(2+). To accomplish this, thin filaments were reconstituted with an engineered short tropomyosin, creating a favorable troponin stoichiometry and symmetry for three-dimensional analysis. We demonstrate that in the absence of Ca(2+), troponin bound to both tropomyosin and actin can act as a latch to constrain tropomyosin in a position on actin that inhibits actomyosin ATPase. In addition, we find that on Ca(2+) activation the actin-troponin connection is broken, allowing tropomyosin to assume a second position, initiating actomyosin ATPase and thus permitting contraction to proceed.
Collapse
Affiliation(s)
- W Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
32
|
Hitchcock-DeGregori SE, Song Y, Moraczewska J. Importance of internal regions and the overall length of tropomyosin for actin binding and regulatory function. Biochemistry 2001; 40:2104-12. [PMID: 11329279 DOI: 10.1021/bi002421z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tropomyosin (Tm) binds along actin filaments, one molecule spanning four to seven actin monomers, depending on the isoform. Periodic repeats in the sequence have been proposed to correspond to actin binding sites. To learn the functional importance of length and the internal periods we made a series of progressively shorter Tms, deleting from two up to six of the internal periods from rat striated alpha-TM (dAc2--3, dAc2--4, dAc3--5, dAc2--5, dAc2--6, dAc1.5--6.5). Recombinant Tms (unacetylated) were expressed in Escherichia coli. Tropomyosins that are four or more periods long (dAc2--3, dAc2--4, and dAc3--5) bound well to F-actin with troponin (Tn). dAc2--5 bound weakly (with EGTA) and binding of shorter mutants was undetectable in any condition. Myosin S1-induced binding of Tm to actin in the tight Tm-binding "open" state did not correlate with actin binding. dAc3--5 and dAc2--5 did not bind to actin even when the filament was saturated with S1. In contrast, dAc2--3 and dAc2--4 did, like wild-type-Tm, requiring about 3 mol of S1/mol of Tm for half-maximal binding. The results show the critical importance of period 5 (residues 166--207) for myosin S1-induced binding. The Tms that bound to actin (dAc2--3, dAc2--4, and dAc3--5) all fully inhibited the actomyosin ATPase (+Tn) in EGTA. In the presence of Ca(2+), relief of inhibition by these Tms was incomplete. We conclude (1) four or more actin periods are required for Tm to bind to actin with reasonable affinity and (2) that the structural requirements of Tm for the transition of the regulated filament from the blocked-to-closed/open (relief of inhibition by Ca(2+)) and the closed-to-open states (strong Tm binding to actin-S1) are different.
Collapse
Affiliation(s)
- S E Hitchcock-DeGregori
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | | | |
Collapse
|
33
|
Moraczewska J, Greenfield NJ, Liu Y, Hitchcock-DeGregori SE. Alteration of tropomyosin function and folding by a nemaline myopathy-causing mutation. Biophys J 2000; 79:3217-25. [PMID: 11106625 PMCID: PMC1301196 DOI: 10.1016/s0006-3495(00)76554-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in the human TPM3 gene encoding gamma-tropomyosin (alpha-tropomyosin-slow) expressed in slow skeletal muscle fibers cause nemaline myopathy. Nemaline myopathy is a rare, clinically heterogeneous congenital skeletal muscle disease with associated muscle weakness, characterized by the presence of nemaline rods in muscle fibers. In one missense mutation the codon corresponding to Met-8, a highly conserved residue, is changed to Arg. Here, a rat fast alpha-tropomyosin cDNA with the Met8Arg mutation was expressed in Escherichia coli to investigate the effect of the mutation on in vitro function. The Met8Arg mutation reduces tropomyosin affinity for regulated actin 30- to 100-fold. Ca(2+)-sensitive regulatory function is retained, although activation of the actomyosin S1 ATPase in the presence of Ca(2+) is reduced. The poor activation may reflect weakened actin affinity or reduced effectiveness in switching the thin filament to the open, force-producing state. The presence of the Met8Arg mutation severely, but locally, destabilizes the tropomyosin coiled coil in a model peptide, and would be expected to impair end-to-end association between TMs on the thin filament. In muscle, the mutation may alter thin filament assembly consequent to lower actin affinity and altered binding of the N-terminus to tropomodulin at the pointed end of the filament. The mutation may also reduce force generation during activation.
Collapse
Affiliation(s)
- J Moraczewska
- Department of Neuroscience and Cell Biology, UMDMJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Cooperative myosin binding to the thin filament is critical to regulation of cardiac and skeletal muscle contraction. This report delineates and fits to experimental data a new model of this process, in which specific tropomyosin-actin interactions are important, the tropomyosin-tropomyosin polymer is continuous rather than disjointed, and tropomyosin affects myosin-actin binding by shifting among three positions as in recent structural studies. A myosin- and tropomyosin-induced conformational change in actin is proposed, rationalizing the approximately 10,000-fold strengthening effect of myosin on tropomyosin-actin binding. Also, myosin S1 binding to regulated filaments containing mutant tropomyosins with internal deletions exhibited exaggerated cooperativity, implying an allosteric effect of tropomyosin on actin and allowing the effect's measurement. Comparisons among the mutants suggest the change in actin is promoted much more strongly by the middle of tropomyosin than by its ends. Regardless of calcium binding to troponin, this change in actin facilitates the shift in tropomyosin position to the actin inner domain, which is required for tight myosin-actin association. It also increases myosin-actin affinity 7-fold compared with the absence of troponin-tropomyosin. Finally, initiation of a shift in tropomyosin position is 100-fold more difficult than is its extension from one actin to the next, producing the myosin binding cooperativity that underlies cooperative activation of muscle contraction.
Collapse
Affiliation(s)
- L S Tobacman
- Departments of Internal Medicine and Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
35
|
Korman VL, Hatch V, Dixon KY, Craig R, Lehman W, Tobacman LS. An actin subdomain 2 mutation that impairs thin filament regulation by troponin and tropomyosin. J Biol Chem 2000; 275:22470-8. [PMID: 10801864 DOI: 10.1074/jbc.m002939200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscle thin filaments adopt different quaternary structures, depending upon calcium binding to troponin and myosin binding to actin. Modification of actin subdomain 2 alters troponin-tropomyosin-mediated regulation, suggesting that this region of actin may contain important protein-protein interaction sites. We used yeast actin mutant D56A/E57A to examine this issue. The mutation increased the affinity of tropomyosin for actin 3-fold. The addition of Ca(2+) to mutant actin filaments containing troponin-tropomyosin produced little increase in the thin filament-myosin S1 MgATPase rate. Despite this, three-dimensional reconstruction of electron microscope images of filaments in the presence of troponin and Ca(2+) showed tropomyosin to be in a position similar to that found for muscle actin filaments, where most of the myosin binding site is exposed. Troponin-tropomyosin bound with comparable affinity to mutant and wild type actin in the absence and presence of calcium, and in the presence of myosin S1, tropomyosin bound very tightly to both types of actin. The mutation decreased actin-myosin S1 affinity 13-fold in the presence of troponin-tropomyosin and 2.6-fold in the absence of the regulatory proteins. The results suggest the importance of negatively charged actin subdomain 2 residues 56 and 57 for myosin binding to actin, for tropomyosin-actin interactions, and for regulatory conformational changes in the actin-troponin-tropomyosin complex.
Collapse
Affiliation(s)
- V L Korman
- Departments of Biochemistry and Internal Medicine, University of Iowa, College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
36
|
Moraczewska J, Hitchcock-DeGregori SE. Independent functions for the N- and C-termini in the overlap region of tropomyosin. Biochemistry 2000; 39:6891-7. [PMID: 10841770 DOI: 10.1021/bi000242b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tropomyosin (TM) is a coiled-coil that binds head-to-tail along the helical actin filament. The ends of 284-residue tropomyosins are believed to overlap by about nine amino acids. The present study investigates the function of the N- and C-terminal overlap regions. Recombinant tropomyosins were produced in Escherichia coli in which nine amino acids were truncated from the N-terminal, C-terminal, or both ends of striated muscle alpha-tropomyosin (TM9a) and TM2 (TM9d), a nonmuscle alpha-tropomyosin expressed in many cells. The two isoforms are identical except for the C-terminal 27 amino acids encoded by exon 9a (striated) or exon 9d (TM2). Removal of either end greatly reduces the actin affinity of both tropomyosins in all conditions and the cooperativity with which myosin promotes tropomyosin binding to actin in the open state. N-Terminal truncations generally are more deleterious than C-terminal truncations. With TM9d, truncation of the N-terminus is as deleterious as both for myosin S1-induced binding. None of the TM9d variants binds well to actin with troponin (+/-Ca(2+)). TM9a with the truncated N-terminus binds more weakly to actin with troponin (-Ca(2+)) than when the C-terminus is removed but more strongly than when both ends are removed; the actin binding of all three forms is cooperative. The results show that the ends of TM9a, though important, are not required for cooperative function and suggest they have independent functions beyond formation of an overlap complex. The nonadditivity of the TM9d truncations suggests that the ends may primarily function as a complex in this isoform. A surprising result is that all variants bound with the same affinity, and noncooperatively, to actin saturated with myosin S1. Evidently, end-to-end interactions are not required for high-affinity binding to acto-myosin S1.
Collapse
Affiliation(s)
- J Moraczewska
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
37
|
Abstract
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- A M Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA.
| | | | | |
Collapse
|
38
|
Rosol M, Lehman W, Craig R, Landis C, Butters C, Tobacman LS. Three-dimensional reconstruction of thin filaments containing mutant tropomyosin. Biophys J 2000; 78:908-17. [PMID: 10653803 PMCID: PMC1300693 DOI: 10.1016/s0006-3495(00)76648-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interactions of the components of reconstituted thin filaments were investigated using a tropomyosin internal deletion mutant, D234, in which actin-binding pseudo-repeats 2, 3, and 4 are missing. D234 retains regions of tropomyosin that bind troponin and form end-to-end tropomyosin bonds, but has a length to span only four instead of seven actin monomers. It inhibits acto-myosin subfragment 1 ATPase (acto-S-1 ATPase) and filament sliding in vitro in both the presence and absence of Ca(2+) (, J. Biol. Chem. 272:14051-14056) and lowers the affinity of S-1.ADP for actin while increasing its cooperative binding. Electron microscopy and three-dimensional reconstruction of reconstituted thin filaments containing actin, troponin, and wild-type or D234 tropomyosin were carried out to determine if Ca(2+)-induced movement of D234 occurred in the filaments. In the presence and absence of Ca(2+), the D234 position was indistinguishable from that of the wild-type tropomyosin, demonstrating that the mutation did not affect normal tropomyosin movement induced by Ca(2+) and troponin. These results suggested that, in the presence of Ca(2+) and troponin, D234 tropomyosin was trapped on filaments in the Ca(2+)-induced position and was unable to undergo a transition to a completely activated position. By adding small amounts of rigor-bonded N-ethyl-maleimide-treated S-1 to mutant thin filaments, thus mimicking the myosin-induced "open" state, inhibition could be overcome and full activation restored. This myosin requirement for full activation provides support for the existence of three functionally distinct thin filament states (off, Ca(2+)-induced, myosin-induced; cf.;, J. Mol. Biol. 266:8-14). We propose a further refinement of the three-state model in which the binding of myosin to actin causes allosteric changes in actin that promote the binding of tropomyosin in an otherwise energetically unfavorable "open" state.
Collapse
Affiliation(s)
- M Rosol
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
39
|
Moraczewska J, Nicholson-Flynn K, Hitchcock-DeGregori SE. The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state. Biochemistry 1999; 38:15885-92. [PMID: 10625454 DOI: 10.1021/bi991816j] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tropomyosin (TM) is thought to exist in equilibrium between two states on F-actin, closed and open [Geeves, M. A., and Lehrer, S. S. (1994) Biophys. J. 67, 273-282]. Myosin shifts the equilibrium to the open state in which myosin binds strongly and develops force. Tropomyosin isoforms, that primarily differ in their N- and C-terminal sequences, have different equilibria between the closed and open states. The aim of the research is to understand how the alternate ends of TM affect cooperative actin binding and the relationship between actin affinity and the cooperativity with which myosin S1 promotes binding of TM to actin in the open state. A series of rat alpha-tropomyosin variants was expressed in Escherichia coli that are identical except for the ends, which are encoded by exons 1a or 1b and exons 9a, 9c or 9d. Both the N- and C-terminal sequences, and the particular combination within a TM molecule, determine actin affinity. Compared to tropomyosins with an exon 1a-encoded N-terminus, found in long isoforms, the exon 1b-encoded sequence, expressed in 247-residue nonmuscle tropomyosins, increases actin affinity in tropomyosins expressing 9a or 9d but has little effect with 9c, a brain-specific exon. The relative actin affinities, in decreasing order, are 1b9d > 1b9a > acetylated 1a9a > 1a9d >> 1a9a > or = 1a9c congruent with 1b9c. Myosin S1 greatly increases the affinity of all tropomyosin variants for actin. In this, the actin affinity is the primary factor in the cooperativity with which myosin S1 induces TM binding to actin in the open state; generally, the higher the actin affinity, the lower the occupancy by myosin required to saturate the actin with tropomyosin: 1b9d >1a9d> 1b9a > or = acetylated 1a9a > 1a9a > 1a9c congruent with 1b9c.
Collapse
Affiliation(s)
- J Moraczewska
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
40
|
Tobacman LS, Lin D, Butters C, Landis C, Back N, Pavlov D, Homsher E. Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy. J Biol Chem 1999; 274:28363-70. [PMID: 10497196 DOI: 10.1074/jbc.274.40.28363] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Missense mutations in the cardiac thin filament protein troponin T (TnT) are a cause of familial hypertrophic cardiomyopathy (FHC). To understand how these mutations produce dysfunction, five TnTs were produced and purified containing FHC mutations found in several regions of TnT. Functional defects were diverse. Mutations F110I, E244D, and COOH-terminal truncation weakened the affinity of troponin for the thin filament. Mutation DeltaE160 resulted in thin filaments with increased calcium affinity at the regulatory site of troponin C. Mutations R92Q and F110I resulted in impaired troponin solubility, suggesting abnormal protein folding. Depending upon the mutation, the in vitro unloaded actin-myosin sliding speed showed small increases, showed small decreases, or was unchanged. COOH-terminal truncation mutation resulted in a decreased thin filament-myosin subfragment 1 MgATPase rate. The results indicate that the mutations cause diverse immediate effects, despite similarities in disease manifestations. Separable but repeatedly observed abnormalities resulting from FHC TnT mutations include increased unloaded sliding speed, increased or decreased Ca(2+) affinity, impairment of folding or sarcomeric integrity, and decreased force. Enhancement as well as impairment of contractile protein function is observed, suggesting that TnT, including the troponin tail region, modulates the regulation of cardiac contraction.
Collapse
Affiliation(s)
- L S Tobacman
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Landis C, Back N, Homsher E, Tobacman LS. Effects of tropomyosin internal deletions on thin filament function. J Biol Chem 1999; 274:31279-85. [PMID: 10531325 DOI: 10.1074/jbc.274.44.31279] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscle tropomyosin spans seven actin monomers and contains seven quasi-repeating regions with loose sequence similarity. Each region contains a hypothesized actin binding motif. To examine the functions of these regions, full-length tropomyosin was compared with tropomyosin internal deletion mutants spanning either five or four actins. Actin-troponin-tropomyosin filaments lacking tropomyosin regions 2-3 exhibited calcium-sensitive regulation in in vitro motility and myosin S1 ATP hydrolysis experiments, similar to filaments with full-length tropomyosin. In contrast, filaments lacking tropomyosin regions 3-4 were inhibitory to these myosin functions. Deletion of regions 2-4, 3-5, or 4-6 had little effect on tropomyosin binding to actin in the presence of troponin or troponin-Ca(2+), or in the absence of troponin. However, all of these mutants inhibited myosin cycling. Deletion of the quasi-repeating regions diminished the prominent effect of myosin S1 on tropomyosin-actin binding. Interruption of this cooperative, myosin-tropomyosin interaction was least severe for the mutant lacking regions 2-3 and therefore correlated with inhibition of myosin cycling. Regions 3, 4, and 5 each contributed about 1.5 kcal/mol to this process, whereas regions 2 and 6 contributed much less. We suggest that a myosin-induced conformational change in actin facilitates the azimuthal repositioning of tropomyosin which is an essential part of regulation.
Collapse
Affiliation(s)
- C Landis
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
42
|
Korman VL, Tobacman LS. Mutations in actin subdomain 3 that impair thin filament regulation by troponin and tropomyosin. J Biol Chem 1999; 274:22191-6. [PMID: 10428784 DOI: 10.1074/jbc.274.32.22191] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thin filament-mediated regulation of striated muscle contraction involves conformational switching among a few quaternary structures, with transitions induced by binding of Ca(2+) and myosin. We establish and exploit Saccharomyces cerevisiae actin as a model system to investigate this process. Ca(2+)-sensitive troponin-tropomyosin binding affinities for wild type yeast actin are seen to closely resemble those for muscle actin, and these hybrid thin filaments produce Ca(2+)-sensitive regulation of the myosin S-1 MgATPase rate. Yeast actin filament inner domain mutant K315A/E316A depresses Ca(2+) activation of the MgATPase rate, producing a 4-fold weakening of the apparent Ca(2+) affinity and a 50% decrease in the MgATPase rate at saturating Ca(2+) concentration. Observed destabilization of troponin-tropomyosin binding to actin in the presence of Ca(2+), a 1.4-fold effect, provides a partial explanation. Despite the decrease in apparent MgATPase Ca(2+) affinity, there was no detectable change in the true Ca(2+) affinity of the thin filament, measured using fluorophore-labeled troponin. Another inner domain mutant, E311A/R312A, decreased the MgATPase rate but did not change the apparent Ca(2+) affinity. These results suggest that charged residues on the surface of the actin inner domain are important in Ca(2+)- and myosin-induced thin filament activation.
Collapse
Affiliation(s)
- V L Korman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
43
|
Chandra M, Montgomery DE, Kim JJ, Solaro RJ. The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. J Mol Cell Cardiol 1999; 31:867-80. [PMID: 10329214 DOI: 10.1006/jmcc.1999.0928] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Troponin T (TnT) is an essential protein in the transduction of the Ca2+-binding signal that triggers striated muscle contraction. Functional diversity among various TnT isoforms found in cardiac and skeletal muscles has been correlated with the sequence heterogeneity at the amino (N-) and the carboxyl (C-) terminal regions. The most striking difference between cardiac TnT (cTnT) and skeletal TnT (sTnT) is that cTnT has an extended N-terminus, which is rich in negatively charged amino acids. To investigate the role of this region in cTnT, we deleted the first 76 amino acids in rat cTnT (cTnT77-289) by site-directed mutagenesis. We exchanged the native troponin complex in rat cardiac myofibrillar preparations and detergent skinned cardiac fiber bundles by treatment with excess cTnT or cTnT77-289. After reconstituting the cTnT77-289 containing myofibrils with cardiac troponin I-cardiac troponin C (cTnI-cTnC), the MgATPase activity was 70% of the cTnT treated myofibrils in the relaxed state and 83% of the cTnT treated myofibrils in the maximal Ca2+-activated state. These observations were supported by force measurements in which cTnT and cTnT77-289 were exchanged into skinned fiber bundles. Prior to reconstitution with cTnI-cTnC, the Ca2+-independent maximal force developed by the cTnT77-289 containing fiber was 45% of the force developed by the cTnT containing fiber. After reconstituting with cTnI-cTnC, the Ca2+-activated maximal force of the cTnT77-289 containing fiber was 62% of the force developed by the cTnT containing +cTnI-cTnC reconstituted fiber. In both assays, no significant changes in the normalized Ca2+-activity relation or in co-operativity were observed. Fluorescence experiments using pyrene-labeled Tm demonstrated that the binding of cTnT77-289 to Tm was 3-4 fold stronger than that of cTnT. Our results suggest that strong interactions between cTnT77-289 and Tm stabilize cardiac myofilaments in a sub-maximally activated state. Our findings also indicate that the N-terminus of cTnT is essential for maximal activation of cardiac myofilaments.
Collapse
Affiliation(s)
- M Chandra
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | | | | | | |
Collapse
|
44
|
Hinkle A, Goranson A, Butters CA, Tobacman LS. Roles for the troponin tail domain in thin filament assembly and regulation. A deletional study of cardiac troponin T. J Biol Chem 1999; 274:7157-64. [PMID: 10066775 DOI: 10.1074/jbc.274.11.7157] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Striated muscle contraction is regulated by Ca2+ binding to troponin, which has a globular domain and an elongated tail attributable to the NH2-terminal portion of the bovine cardiac troponin T (TnT) subunit. Truncation of the bovine cardiac troponin tail was investigated using recombinant TnT fragments and subunits TnI and TnC. Progressive truncation of the troponin tail caused progressively weaker binding of troponin-tropomyosin to actin and of troponin to actin-tropomyosin. A sharp drop-off in affinity occurred with NH2-terminal deletion of 119 rather than 94 residues. Deletion of 94 residues had no effect on Ca2+-activation of the myosin subfragment 1-thin filament MgATPase rate and did not eliminate cooperative effects of Ca2+ binding. Troponin tail peptide TnT1-153 strongly promoted tropomyosin binding to actin in the absence of TnI or TnC. The results show that the anchoring function of the troponin tail involves interactions with actin as well as with tropomyosin and has comparable importance in the presence or absence of Ca2+. Residues 95-153 are particularly important for anchoring, and residues 95-119 are crucial for function or local folding. Because striated muscle regulation involves switching among the conformational states of the thin filament, regulatory significance for the troponin tail may arise from its prominent contribution to the protein-protein interactions within these conformations.
Collapse
Affiliation(s)
- A Hinkle
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
45
|
Abstract
EPR of spin labeled TnC at Cys98 was used to explore the possible structural coupling between TnC in the thin filament and myosin trapped in the intermediate states of ATPase cycle. Weakly attached myosin heads (trapped by low ionic strength, low temperature and ATP) did not induce structural changes in TnC as compared to relaxed muscle, as spin labeled TnC displayed the same narrow orientational distribution [Li, H.-C., and Fajer, P. G. (1994) Biochemistry 33, 14324]. Ca2+-binding alone resulted in disordering of the labeled domain of TnC. Additional conformational changes of TnC occurred upon the attachment of strongly bound, prepower stroke myosin heads (trapped by AlF4-). These changes were not present in ghost fibers which myosin had been removed, excluding direct effects of AlF4- on the orientation of TnC in muscle fibers. The postpower stroke heads (rigor.ADP/Ca2+ and rigor/Ca2+) induced further changes in the orientational distribution of labeled domain of TnC irrespective of the degree of cooperativity in thin filaments. We thus conclude that troponin C in thin filaments detects structural changes in myosin during force generation, implying that there is a structural coupling between actomyosin and TnC.
Collapse
Affiliation(s)
- H C Li
- Department of Biological Science and National High Magnetic Field Laboratory, Florida State University, Tallahassee 32306, USA
| | | |
Collapse
|
46
|
Landis CA, Bobkova A, Homsher E, Tobacman LS. The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J Biol Chem 1997; 272:14051-6. [PMID: 9162027 DOI: 10.1074/jbc.272.22.14051] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of three of tropomyosin's sequential quasiequivalent regions was studied by deletion from skeletal muscle alpha-tropomyosin of internal residues 49-167. This deletion mutant tropomyosin spans four instead of the normal seven actins, and most of the tropomyosin region believed to interact with troponin is retained and uninterrupted in the mutant. The mutant tropomyosin was compared with a full-length control molecule that was modified to functionally resemble muscle tropomyosin (Monteiro, P. B., Lataro, R. C., Ferro, J. A., and Reinach, F. C. (1994) J. Biol. Chem. 269, 10461-10466). The tropomyosin deletion suppressed the actin-myosin subfragment 1 MgATPase rate and the in vitro sliding of thin filaments over a heavy meromyosin-coated surface. This inhibition was not reversed by troponin plus Ca2+. Comparable tropomyosin affinities for actin, regardless of the deletion, suggest that the deleted region has little interaction with actin in the absence of other proteins. Similarly, the deletion did not weaken binding of the troponin-tropomyosin complex to actin. Furthermore, Ca2+ had a 2-fold effect on troponin-tropomyosin's affinity for actin, regardless of the deletion. Notably, the deletion greatly weakened tropomyosin binding to myosin subfragment 1-decorated actin, with the full-length tropomyosin having a 100-fold greater affinity. The inhibitory properties resulting from the deletion are attributed to defective stabilization of the myosin-induced active state of the thin filament.
Collapse
Affiliation(s)
- C A Landis
- Departments of Internal Medicine and Biochemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
47
|
Butters CA, Tobacman JB, Tobacman LS. Cooperative effect of calcium binding to adjacent troponin molecules on the thin filament-myosin subfragment 1 MgATPase rate. J Biol Chem 1997; 272:13196-202. [PMID: 9148936 DOI: 10.1074/jbc.272.20.13196] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The myosin subfragment 1 (S1) MgATPase rate was measured using thin filaments with known extents of Ca2+ binding controlled by varying the ratio of native cardiac troponin versus an inhibitory troponin with a mutation in the sole regulatory Ca2+ binding site of troponin C. Fractional MgATPase activation was less than the fraction of troponins that bound Ca2+, implying a cooperative effect of bound Ca2+ on cross-bridge cycling. Addition of phalloidin did not alter cooperative effects between bound Ca2+ molecules in the presence or absence of myosin S1. When the myosin S1 concentration was raised sufficiently to introduce cooperative myosin-myosin effects, lower Ca2+ concentrations were needed to activate the MgATPase rate. MgATPase activation remained less than Ca2+ binding, implying a true, not just an apparent, increase in Ca2+ affinity. MgATPase activation by Ca2+ was more cooperative than could be explained by cooperativeness of overall Ca2+ binding, the discrepancy between Ca2+ binding and MgATPase activation, or interactions between myosins. The results suggest the thin filament-myosin S1 MgATPase cycle requires calcium binding to adjacent troponin molecules and that this binding is cooperatively promoted by a single cycling cross-bridge. This mechanism is a potential explanation for Ca2+-mediated regulation of cross-bridge kinetics in muscle fibers.
Collapse
Affiliation(s)
- C A Butters
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|