1
|
Kuravsky M, Kelly C, Redfield C, Shammas SL. The transition state for coupled folding and binding of a disordered DNA binding domain resembles the unbound state. Nucleic Acids Res 2024; 52:11822-11837. [PMID: 39315703 PMCID: PMC11514473 DOI: 10.1093/nar/gkae794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
The basic zippers (bZIPs) are one of two large eukaryotic families of transcription factors whose DNA binding domains are disordered in isolation but fold into stable α-helices upon target DNA binding. Here, we systematically disrupt pre-existing helical propensity within the DNA binding region of the homodimeric bZIP domain of cAMP-response element binding protein (CREB) using Ala-Gly scanning and examine the impact on target binding kinetics. We find that the secondary structure of the transition state strongly resembles that of the unbound state. The residue closest to the dimerization domain is largely folded within both unbound and transition states; dimerization apparently propagates additional helical propensity into the basic region. The results are consistent with electrostatically-enhanced DNA binding, followed by rapid folding from the folded zipper outwards. Fly-casting theory suggests that protein disorder can accelerate binding. Interestingly however, we did not observe higher association rate constants for mutants with lower levels of residual structure in the unbound state.
Collapse
Affiliation(s)
- Mikhail Kuravsky
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Conor Kelly
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Sarah L Shammas
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
2
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Shayan E, Maheri F, Aflaki F, Mousavi SE, Zarrindast MR, Fakhraei N, Rezayat Sorkhabadi SM, Shushtarian SMM. Synergistic effects of citicoline and silymarin nanomicelles in restraint stress-exposed mice. Behav Brain Res 2024; 464:114929. [PMID: 38428646 DOI: 10.1016/j.bbr.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
This study evaluated the effects of citicoline and silymarin nanomicelles (SMnm) in repeated restraint stress (RRS). METHOD Mice were exposed to RRS for four consecutive days, 2 hrs. daily. On day 5 of the study, SMnm (25 and 50 mg/kg, i.p.) and citicoline (25 and 75 mg/kg), and a combination of them (25 mg/kg, i.p.) were initiated. On day 18, anxiety-like behavior, behavioral despair, and exploratory behavior were evaluated. The prefrontal cortex (PFC) and the hippocampus were dissected measuring brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and tumor necrosis factor-alpha (TNF-α) through Western Blot and ELISA, respectively. RESULTS In RR-exposed mice, anxiety-like behavior in the elevated plus maze (EPM) was enhanced by reductions in open arm time (OAT%) P < 0.001, and open arm entry (OAE%) P < 0.001. In the forced swimming test (FST), the immobility increased P < 0.001 while the swimming and climbing reduced P < 0.001. In the open field test (OFT), general motor activity was raised P < 0.05. Further, body weights reduced P < 0.001, and tissue BDNF and pCREB expressions decreased P < 0.001 while TNF-α increased P < 0.001. Conversely, SMnm, citicoline and their combination could reduce anxiety-like behavior P < 0.001. The combination group reduced the depressive-like behaviors P < 0.001. Moreover, body weights were restored P < 0.001. Besides, BDNF and pCREB expressions increased while TNF-α reduced, P < 0.001. CONCLUSION The combination synergistically improved emotion-like behaviors, alleviating the inflammation and upregulating the hippocampal BDNF-mediated CREB signaling pathway.
Collapse
Affiliation(s)
- Elham Shayan
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Maheri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Aflaki
- Department of Biophysics and Biochemistry, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyyedeh-Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nahid Fakhraei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed-Mohammad-Masoud Shushtarian
- Department of Biophysics and Biochemistry, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Mukherjee S, Sarkar AK, Lahiri A, Sengupta Bandyopadhyay S. Analysis of the interaction of a non-canonical twin half-site of Cyclic AMP-Response Element (CRE) with CRE-binding protein. Biochimie 2023; 211:25-34. [PMID: 36842626 DOI: 10.1016/j.biochi.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Differential regulation of a gene having either canonical or non-canonical cyclic AMP response element (CRE) in its promoter is primarily accomplished by its interactions with CREB (cAMP-response element binding protein). The present study aims to delineate the mechanism of the CREB-CRE interactions at the Oncostatin-M (osm) promoter by in vitro and in silico approaches. The non-canonical CREosm consists of two half-CREs separated by a short intervening sequence of 9 base pairs. In this study, in vitro binding assays revealed that out of the two CRE half-sites, the right half-CRE was indispensable for binding of CREB, while the left sequence showed weaker binding ability and specificity. Genome-wide modeling and high throughput free energy calculations for the energy-minimized models containing CREB-CREosm revealed that there was no difference in the binding of CREB to the right half of CREosm site when compared to the entire CREosm. These results were in accordance with the in vitro studies, confirming the indispensable role of the right half-CREosm site in stable complex formation with the CREB protein. Additionally, conversion of the right half-CREosm site to a canonical CRE palindrome showed stronger CREB binding, irrespective of the presence or absence of the left CRE sequence. Thus, the present study establishes an interesting insight into the interaction of CREB with a CRE variant located at the far end of a TATA-less promoter of a cytokine-encoding gene, which in turn could be involved in the regulation of transcription under specific conditions.
Collapse
Affiliation(s)
- Srimoyee Mukherjee
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Aditya Kumar Sarkar
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sumita Sengupta Bandyopadhyay
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
5
|
Bentley EP, Scholl D, Wright PE, Deniz AA. Coupling of binding and differential subdomain folding of the intrinsically disordered transcription factor CREB. FEBS Lett 2023; 597:917-932. [PMID: 36480418 PMCID: PMC10089947 DOI: 10.1002/1873-3468.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.
Collapse
Affiliation(s)
- Emily P. Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
6
|
Xue K, Chen S, Chai J, Yan W, Zhu X, Ji D, Wu Y, Liu H, Wang W. Nitration of cAMP-Response Element Binding Protein Participates in Myocardial Infarction-Induced Myocardial Fibrosis via Accelerating Transcription of Col1a2 and Cxcl12. Antioxid Redox Signal 2023; 38:709-730. [PMID: 36324232 DOI: 10.1089/ars.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aims: Myocardial fibrosis after myocardial infarction (MI) leads to heart failure. Nitration of protein can alter its function. cAMP-response element binding protein (CREB) is a key transcription factor involved in fibrosis. However, little is known about the role of nitrated CREB in MI-induced myocardial fibrosis. Meanwhile, downstream genes of transcription factor CREB in myocardial fibrosis have not been identified. This study aims to verify the hypothesis that nitrated CREB promotes MI-induced myocardial fibrosis via regulating the transcription of Col1a2 and Cxcl12. Results: Our study showed that (1) the level of nitrative stress was elevated and nitrated CREB was higher in the myocardium after MI. Tyr182, 307, and 336 were the nitration sites of CREB; (2) with the administration of peroxynitrite (ONOO-) scavengers, CREB phosphorylation, nuclear translocation, and binding activity to TORC2 (transducers of regulated CREB-2) were attenuated; (3) the expressions of extracellular matrix (ECM) proteins were upregulated and downregulated in accordance with the expression alteration of CREB both in vitro and in vivo; (4) CREB accelerated transcription of Col1a2 and Cxcl12 after MI directly. With the administration of ONOO- scavengers, ECM protein expressions were attenuated; meanwhile, the messenger RNA (mRNA) levels of Col1a2 and Cxcl12 were alleviated as well. Innovation and Conclusion: Nitration of transcription factor CREB participates in MI-induced myocardial fibrosis through enhancing its phosphorylation, nuclear translocation, and binding activity to TORCs, among which CREB transcripts Col1a2 and Cxcl12 directly. These data indicated that nitrated CREB might be a potential therapeutic target against MI-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China.,Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
7
|
Topcu A, Saral S, Ozturk A, Saral O, Kaya AK. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment. Neurol Res 2023; 45:544-553. [PMID: 36598971 DOI: 10.1080/01616412.2022.2164452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) occurs in approximately 10% to 30% of individuals aged 65 or older worldwide. Novel therapeutic agents therefore need to be discovered in addition to traditional medications. Nimodipine appears to possess the potential to reverse cognitive impairment-induced dysfunction in learning and memory through its regulatory effect on the brain-derived neurotrophic factor (BDNF), acetylcholine (Ach), and acetylcholinesterase (AChE) pathway in the hippocampus and prefrontal cortex. METHODS Twenty-four male Sprague Dawley rats weighing 380 ± 10 g were used for behavioral and biochemical analyses. These were randomly and equally assigned into one of three groups. Group 1 received saline solution alone via the intraperitoneal (i.p) route, and Group 2 received 1 mg/kg/day i.p. scopolamine once a day for three weeks for induction of learning and memory impairments. In Group 3, 10 mg/kg/day nimodipine was prepared in tap water and administered orally every day for three weeks, followed after 30 min by 1 mg/kg/day scopolamine i.p. Behavior was evaluated using the Morris Water Maze test. BDNF, ACh, and AChE levels were determined using the ELISA test in line with the manufacturer's instructions. RESULTS Nimodipine treatment significantly increased the time spent in the target quadrant and the number of entries into the target quadrant compared to the scopolamine group alone. Additionally, BDNF and ACh levels in the hippocampus and prefrontal cortex decreased following 20-day scopolamine administration, while AChE activation increased. CONCLUSION Nimodipine exhibited potentially beneficial effects by ameliorating cognitive decline following scopolamine administration in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Aykut Ozturk
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ozlem Saral
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| |
Collapse
|
8
|
Tsuji A, Yamashita H, Hisatomi O, Abe M. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy. Sci Rep 2022; 12:12903. [PMID: 35941201 PMCID: PMC9359980 DOI: 10.1038/s41598-022-17228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Dimerization is critical for transcription factors (TFs) to bind DNA and regulate a wide variety of cellular functions; however, the molecular mechanisms remain to be completely elucidated. Here, we used high-speed atomic force microscopy (HS-AFM) to observe the dimerization process for a photoresponsive TF Photozipper (PZ), which consists of light–oxygen–voltage-sensing (LOV) and basic-region-leucine-zipper (bZIP) domains. HS-AFM visualized not only the oligomeric states of PZ molecules forming monomers and dimers under controlled dark–light conditions but also the domain structures within each molecule. Successive AFM movies captured the dimerization process for an individual PZ molecule and the monomer–dimer reversible transition during dark–light cycling. Detailed AFM images of domain structures in PZ molecules demonstrated that the bZIP domain entangled under dark conditions was loosened owing to light illumination and fluctuated around the LOV domain. These observations revealed the role of the bZIP domain in the dimerization processes of a TF.
Collapse
Affiliation(s)
- Akihiro Tsuji
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| | - Osamu Hisatomi
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Structural aspects of the MHC expression control system. Biophys Chem 2022; 284:106781. [PMID: 35228036 PMCID: PMC8941990 DOI: 10.1016/j.bpc.2022.106781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) spans innate and adaptive immunity by presenting antigenic peptides to CD4+ and CD8+ T cells. Multiple transcription factors form an enhanceosome complex on the MHC promoter and recruit transcriptional machinery to activate gene transcription. Immune signals such as interferon-γ (IFN-γ) control MHC level by up-regulating components of the enhanceosome complex. As MHC plays crucial roles in immune regulation, alterations in the MHC enhanceosome structure will alter the pace of rapid immune responses at the transcription level and lead to various diseases related to the immune system. In this review, we discuss the current understanding of the MHC enhanceosome, with a focus on the structures of MHC enhanceosome components and the molecular basis of MHC enhanceosome assembly.
Collapse
|
10
|
Structural and thermodynamical insights into the binding and inhibition of FIH-1 by the N-terminal disordered region of Mint3. J Biol Chem 2021; 297:101304. [PMID: 34655613 PMCID: PMC8571082 DOI: 10.1016/j.jbc.2021.101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mint3 is known to enhance aerobic ATP production, known as the Warburg effect, by binding to FIH-1. Since this effect is considered to be beneficial for cancer cells, the interaction is a promising target for cancer therapy. However, previous research has suggested that the interacting region of Mint3 with FIH-1 is intrinsically disordered, which makes investigation of this interaction challenging. Therefore, we adopted thermodynamic and structural studies in solution to clarify the structural and thermodynamical changes of Mint3 binding to FIH-1. First, using a combination of circular dichroism, nuclear magnetic resonance, and hydrogen/deuterium exchange–mass spectrometry (HDX-MS), we confirmed that the N-terminal half, which is the interacting part of Mint3, is mostly disordered. Next, we revealed a large enthalpy and entropy change in the interaction of Mint3 using isothermal titration calorimetry (ITC). The profile is consistent with the model that the flexibility of disordered Mint3 is drastically reduced upon binding to FIH-1. Moreover, we performed a series of ITC experiments with several types of truncated Mint3s, an effective approach since the interacting part of Mint3 is disordered, and identified amino acids 78 to 88 as a novel core site for binding to FIH-1. The truncation study of Mint3 also revealed the thermodynamic contribution of each part of Mint3 to the interaction with FIH-1, where the core sites contribute to the affinity (ΔG), while other sites only affect enthalpy (ΔH), by forming noncovalent bonds. This insight can serve as a foothold for further investigation of intrinsically disordered regions (IDRs) and drug development for cancer therapy.
Collapse
|
11
|
Wang G, Zhu Z, Xu D, Sun L. Advances in Understanding CREB Signaling-Mediated Regulation of the Pathogenesis and Progression of Epilepsy. Clin Neurol Neurosurg 2020; 196:106018. [PMID: 32574967 DOI: 10.1016/j.clineuro.2020.106018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 11/22/2022]
Abstract
Recent studies have indicated that the transcription factor cyclic adenosine monophosphate response element binding protein (CREB) is involved in the etiology of epilepsy. With regard to its transcriptional regulation, CREB phosphorylation is critical for the transmission of multiple extracellular signals, which implicates the activation of downstream target genes in the pathogenesis and progression of epilepsy. This review mainly focuses on recent discoveries of associations between the molecular and structural characteristics of CREB as well as the related CREB signaling pathway and epilepsy.
Collapse
Affiliation(s)
- Guangming Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhanpeng Zhu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Dahai Xu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lichao Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
12
|
Wang H, Jiang N, Lv J, Huang H, Liu X. Ginsenoside Rd reverses cognitive deficits by modulating BDNF-dependent CREB pathway in chronic restraint stress mice. Life Sci 2020; 258:118107. [PMID: 32682919 DOI: 10.1016/j.lfs.2020.118107] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Cognitive impairment has been widely recognized as a common symptom of chronic stress. Ginsenoside Rd (GRd), the major active compound in Panax ginseng, was previously reported in various neurological researches. However, little research is available regarding on the effect of GRd on cognitive improvement in mice subjected to chronic stress. In the present study, we investigated the neuroprotective effects of GRd in chronic restraint stress (CRS)-induced cognitive deficits and explored the potential mechanism in male C57BL/6J mice. Our results demonstrated that oral administration of GRd for 28 days markedly increased the spontaneous alternation in Y-maze and the relative discrimination index in novel object or location recognition tests following CRS. Additionally, GRd treatment considerably increased the antioxidant enzymes activities in the hippocampus. The expression levels of hippocampus and serum inflammation factors in the CRS groups were also counter-regulated by GRd treatment. Meanwhile, GRd treatment could reverse CRS-induced the decrease in phosphorylated phosphoinositide 3-kinase (PI3K), camp-reflecting element binding protein (CREB), brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expression in the hippocampus. These findings provided evidences that GRd improves cognitive impairment in CRS mice by mitigating oxidative stress and inflammation, while upregulating the hippocampal BDNF-mediated CREB signaling pathway.
Collapse
Affiliation(s)
- Haixia Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ning Jiang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jingwei Lv
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong Huang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
13
|
Crebl2 regulates cell metabolism in muscle and liver cells. Sci Rep 2019; 9:19869. [PMID: 31882710 PMCID: PMC6934747 DOI: 10.1038/s41598-019-56407-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
We previously identified Drosophila REPTOR and REPTOR-BP as transcription factors downstream of mTORC1 that play an important role in regulating organismal metabolism. We study here the mammalian ortholog of REPTOR-BP, Crebl2. We find that Crebl2 mediates part of the transcriptional induction caused by mTORC1 inhibition. In C2C12 myoblasts, Crebl2 knockdown leads to elevated glucose uptake, elevated glycolysis as observed by lactate secretion, and elevated triglyceride biosynthesis. In Hepa1-6 hepatoma cells, Crebl2 knockdown also leads to elevated triglyceride levels. In sum, this works identifies Crebl2 as a regulator of cellular metabolism that can link nutrient sensing via mTORC1 to the metabolic response of cells.
Collapse
|
14
|
Fahim A, Rehman Z, Bhatti MF, Virk N, Ali A, Rashid A, Paracha RZ. The Route to 'Chemobrain' - Computational probing of neuronal LTP pathway. Sci Rep 2019; 9:9630. [PMID: 31270411 PMCID: PMC6610097 DOI: 10.1038/s41598-019-45883-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Chemotherapy causes deleterious side effects during the course of cancer management. The toxic effects may be extended to CNS chronically resulting in altered cognitive function like learning and memory. The present study follows a computational assessment of 64 chemotherapeutic drugs for their off-target interactions against the major proteins involved in neuronal long term potentiation pathway. The cancer chemo-drugs were subjected to induced fit docking followed by scoring alignment and drug-targets interaction analysis. The results were further probed by electrostatic potential computation and ligand binding affinity prediction of the top complexes. The study identified novel off-target interactions by Dactinomycin, Temsirolimus, and Everolimus against NMDA, AMPA, PKA and ERK2, while Irinotecan, Bromocriptine and Dasatinib were top interacting drugs for CaMKII. This study presents with basic foundational knowledge regarding potential chemotherapeutic interference in LTP pathway which may modulate neurotransmission and synaptic plasticity in patient receiving these chemotherapies.
Collapse
Affiliation(s)
- Ammad Fahim
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Zaira Rehman
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Nasar Virk
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
- EBS Universität für Wirtschaft und Recht, EBS Business School, Rheingaustrasse 1, Oestrich-Winkel, 65375, Germany
| | - Amjad Ali
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amir Rashid
- Department of Biochemistry, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modeling and Simulation, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
15
|
Vincent M, Uversky VN, Schnell S. On the Need to Develop Guidelines for Characterizing and Reporting Intrinsic Disorder in Proteins. Proteomics 2019; 19:e1800415. [PMID: 30793871 PMCID: PMC6571172 DOI: 10.1002/pmic.201800415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Since the early 2000s, numerous computational tools have been created and used to predict intrinsic disorder in proteins. At present, the output from these algorithms is difficult to interpret in the absence of standards or references for comparison. There are many reasons to establish a set of standard-based guidelines to evaluate computational protein disorder predictions. This viewpoint explores a handful of these reasons, including standardizing nomenclature to improve communication, rigor and reproducibility, and making it easier for newcomers to enter the field. An approach for reporting predicted disorder in single proteins with respect to whole proteomes is discussed. The suggestions are not intended to be formulaic; they should be viewed as a starting point to establish guidelines for interpreting and reporting computational protein disorder predictions.
Collapse
Affiliation(s)
- Michael Vincent
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, Illinois 60208, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290, Moscow region, Russia
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Michigan 48109, USA
| |
Collapse
|
16
|
Sabaratnam K, Renner M, Paesen G, Harlos K, Nair V, Owens RJ, Grimes JM. Insights from the crystal structure of the chicken CREB3 bZIP suggest that members of the CREB3 subfamily transcription factors may be activated in response to oxidative stress. Protein Sci 2019; 28:779-787. [PMID: 30653278 PMCID: PMC6423718 DOI: 10.1002/pro.3573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
cAMP response element binding Protein 3 (CREB3) is an endoplasmic reticulum (ER) membrane‐bound transcription factor, which belongs to the basic leucine zipper (bZIP) superfamily of eukaryotic transcription factors. CREB3 plays a role in the ER‐stress induced unfolded protein response (UPR) and is a multifunctional cellular factor implicated in a number of biological processes including cell proliferation and migration, tumor suppression, and immune‐related gene expression. To gain structural insights into the transcription factor, we determined the crystal structure of the conserved bZIP domain of chicken CREB3 (chCREB3) to a resolution of 3.95 Å. The X‐ray structure provides evidence that chCREB3 can form a stable homodimer. The chCREB3 bZIP has a structured, pre‐formed DNA binding region, even in the absence of DNA, a feature that could potentially enhance both the DNA binding specificity and affinity of chCREB3. Significantly, the homodimeric bZIP possesses an intermolecular disulfide bond that connects equivalent cysteine residues of the parallel helices in the leucine zipper region. This disulfide bond in the hydrophobic core of the bZIP may increase the stability of the homodimer under oxidizing conditions. Moreover, sequence alignment of bZIP sequences from chicken, human, and mouse reveals that only members of the CREB3 subfamily contain this cysteine residue, indicating that it could act as a redox‐sensor. Taken together, these results suggest that the activity of these transcription factors may be redox‐regulated and they may be activated in response to oxidative stress. PDB Code(s): 6IAK
Collapse
Affiliation(s)
- Keshalini Sabaratnam
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,The Pirbright Institute, Woking, Guildford, Surrey, GU24 0NF, United Kingdom
| | - Max Renner
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Guido Paesen
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Woking, Guildford, Surrey, GU24 0NF, United Kingdom
| | - Raymond J Owens
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,The Research Complex at Harwell, Oxfordshire, OX11 0FA, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,Diamond Light Source Limited, Oxfordshire, OX11 0DE, United Kingdom
| |
Collapse
|
17
|
Shnitkind S, Martinez-Yamout MA, Dyson HJ, Wright PE. Structural Basis for Graded Inhibition of CREB:DNA Interactions by Multisite Phosphorylation. Biochemistry 2018; 57:6964-6972. [PMID: 30507144 PMCID: PMC6474821 DOI: 10.1021/acs.biochem.8b01092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorylation of the kinase inducible domain (KID) of the cyclic AMP response element binding transcription factor (CREB) regulates its function through several mechanisms. Transcriptional activation occurs following phosphorylation at serine 133, but multisite phosphorylation in a neighboring region termed the CK cassette, residues 108-117, results in inhibition of CREB-mediated transcription. A molecular-level understanding of the mechanism of these opposing reactions has been lacking, in part because of the difficulty of preparing multiply phosphorylated CREB in vitro. By substituting a single residue, we have generated an engineered mammalian CREB in which the CK cassette can be phosphorylated in vitro by casein kinases and have characterized its interactions with cyclic AMP response element DNA. Phosphorylation of the CK cassette promotes an intramolecular interaction between the KID domain and the site of DNA binding, the basic region of the C-terminal basic leucine zipper (bZip) domain. Competition between the phosphorylated KID domain and DNA for bZip binding results in a decreased affinity of CREB for DNA. The binding free energy calculated from the dissociation constant is directly proportional to the number of phosphate groups in the CK cassette, indicating that the DNA binding is regulated by a rheostat-like mechanism. The rheostat is modulated by variation of the concentration of cations such as Mg2+ and by alternative isoforms such as the natural CREB isoform that lacks residues 162-272. Multisite phosphorylation of CREB represents a versatile mechanism by which transcription can be tuned to meet the variable needs of the cell.
Collapse
Affiliation(s)
- Sergey Shnitkind
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla California 92037
| | - Maria A. Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla California 92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla California 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla California 92037
| |
Collapse
|
18
|
Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP Response Element-Binding Protein (CREB): A Possible Signaling Molecule Link in the Pathophysiology of Schizophrenia. Front Mol Neurosci 2018; 11:255. [PMID: 30214393 PMCID: PMC6125665 DOI: 10.3389/fnmol.2018.00255] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Dopamine is a brain neurotransmitter involved in the pathology of schizophrenia. The dopamine hypothesis states that, in schizophrenia, dopaminergic signal transduction is hyperactive. The cAMP-response element binding protein (CREB) is an intracellular protein that regulates the expression of genes that are important in dopaminergic neurons. Dopamine affects the phosphorylation of CREB via G protein-coupled receptors. Neurotrophins, such as brain derived growth factor (BDNF), are critical regulators during neurodevelopment and synaptic plasticity. The CREB is one of the major regulators of neurotrophin responses since phosphorylated CREB binds to a specific sequence in the promoter of BDNF and regulates its transcription. Moreover, susceptibility genes associated with schizophrenia also target and stimulate the activity of CREB. Abnormalities of CREB expression is observed in the brain of individuals suffering from schizophrenia, and two variants (-933T to C and -413G to A) were found only in schizophrenic patients. The CREB was also involved in the therapy of animal models of schizophrenia. Collectively, these findings suggest a link between CREB and the pathophysiology of schizophrenia. This review provides an overview of CREB structure, expression, and biological functions in the brain and its interaction with dopamine signaling, neurotrophins, and susceptibility genes for schizophrenia. Animal models in which CREB function is modulated, by either overexpression of the protein or knocked down through gene deletion/mutation, implicating CREB in schizophrenia and antipsychotic drugs efficacy are also discussed. Targeting research and drug development on CREB could potentially accelerate the development of novel medications against schizophrenia.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Remi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, China
| |
Collapse
|
19
|
Mechanism of prostaglandin E 2-induced transcriptional up-regulation of Oncostatin-M by CREB and Sp1. Biochem J 2018; 475:477-494. [PMID: 29269396 DOI: 10.1042/bcj20170545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/15/2023]
Abstract
Oncostatin-M (OSM) is a pleotropic cytokine belonging to the interleukin-6 family. Differential expression of OSM in response to varying stimuli and exhibiting repertoire of functions in different cells renders it challenging to study the mechanism of its expression. Prostaglandin E2 (PGE2) transcriptionally increased osm levels. In silico studies of ∼1 kb upstream of osm promoter region yielded the presence of CRE (cyclic AMP response element)-like sites at the distal end (CREosm). Deletion and point mutation of CREosm clearly indicated that this region imparted an important role in PGE2-mediated transcription. Nuclear protein(s) from PGE2-treated U937 cells, bound to this region, was identified as CRE-binding protein (CREB). CREB was phosphorylated on treatment and was found to be directly associated with CREosm The presence of cofactors p300 and CREB-binding protein in the complex was confirmed. A marked decrease in CREB phosphorylation, binding and transcriptional inhibition on treatment with PKA (protein kinase A) inhibitor, H89 (N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-soquinolinesulfonamide), revealed the role of phosphorylated CREB in osm transcription. Additionally, other nuclear protein(s) were specifically associated with the proximal GC region (GCosm) post PGE2 treatment, later confirmed to be specificity protein 1 (Sp1). Interestingly, Sp1 bound to the proximal osm promoter was found to be associated with phospho-CREB-p300 complex bound to the distal osm promoter. Knockdown of Sp1 abrogated the expression and functionality of OSM. Thus, the present study conclusively proves that these transcription factors, bound at the distal and proximal promoter elements are found to associate with each other in a DNA-dependent manner and both are responsible for the PGE2-mediated transcriptional up-regulation of Oncostatin-M.
Collapse
|
20
|
Park SI, Park SJ, Lee J, Kim HE, Park SJ, Sohn JW, Park YG. Inhibition of cyclic AMP response element-directed transcription by decoy oligonucleotides enhances tumor-specific radiosensitivity. Biochem Biophys Res Commun 2015; 469:363-9. [PMID: 26655813 DOI: 10.1016/j.bbrc.2015.11.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
Abstract
The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while there was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach.
Collapse
Affiliation(s)
- Serk In Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea; The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea; Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sung-Jun Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea; Laboratory of Obesity and Aging Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Junghan Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Eun Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Su Jin Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Won Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yun Gyu Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Chan P, Lutfy K. Molecular Changes in Opioid Addiction: The Role of Adenylyl Cyclase and cAMP/PKA System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:203-27. [PMID: 26810003 DOI: 10.1016/bs.pmbts.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For centuries, opiate analgesics have had a considerable presence in the treatment of moderate to severe pain. While effective in providing analgesia, opiates are notorious in exerting many undesirable adverse reactions. The receptor targets and the intracellular effectors of opioids have largely been identified. Furthermore, much of the mechanisms underlying the development of tolerance, dependence, and withdrawal have been delineated. Thus, there is a focus on developing novel compounds or strategies in mitigating or avoiding the development of tolerance, dependence, and withdrawal. This review focuses on the adenylyl cyclase and cyclic adenosine 3,5-monophosphate (cAMP)/protein kinase A (AC/cAMP/PKA) system as the central player in mediating the acute and chronic effects of opioids. This chapter also reviews the neuronal adaptive changes in the locus coeruleus, amygdala, periaqueductal gray, and ventral tegmental area induced by acute and chronic actions of opioid because these neuronal adaptive changes in these regions may underlie the behavioral changes observed in opiate users and abusers.
Collapse
Affiliation(s)
- Patrick Chan
- Department of Pharmacy and Pharmacy Administration, Western University of Health Sciences, College of Pharmacy, Pomona, California, USA.
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
22
|
Sornaraj P, Luang S, Lopato S, Hrmova M. Basic leucine zipper (bZIP) transcription factors involved in abiotic stresses: A molecular model of a wheat bZIP factor and implications of its structure in function. Biochim Biophys Acta Gen Subj 2015; 1860:46-56. [PMID: 26493723 DOI: 10.1016/j.bbagen.2015.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/19/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Basic leucine zipper (bZIP) genes encode transcription factors (TFs) that control important biochemical and physiological processes in plants and all other eukaryotic organisms. SCOPE OF REVIEW Here we present (i) the homo-dimeric structural model of bZIP consisting of basic leucine zipper and DNA binding regions, in complex with the synthetic Abscisic Acid-Responsive Element (ABREsyn); (ii) discuss homo- and hetero-dimerisation patterns of bZIP TFs; (iii) summarise the current progress in understanding the molecular mechanisms of function of bZIP TFs, including features determining the specificity of their binding to DNA cis-elements, and (iv) review information on interaction partners of bZIPs during plant development and stress response, as well as on types and roles of post-translational modifications, and regulatory aspects of protein-degradation mediated turn-over. Finally, we (v) recapitulate on the recent advances regarding functional roles of bZIP factors in major agricultural crops, and discuss the potential significance of bZIP-based genetic engineering in improving crop yield and tolerance to abiotic stresses. MAJOR CONCLUSIONS An accurate analysis and understanding of roles of plant bZIP TFs in different biological processes requires the knowledge of interacting partners, time and location of expression in plant organs, and the information on mechanisms of homo- and hetero-dimerisation of bZIP TFs. GENERAL SIGNIFICANCE Studies on molecular mechanisms of plant bZIP TFs at the atomic levels will provide novel insights into the regulatory processes during plant development, and responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Pradeep Sornaraj
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sukanya Luang
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Sergiy Lopato
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia.
| |
Collapse
|
23
|
Xu Y, Deng Y, Qing H. The phosphorylation of α-synuclein: development and implication for the mechanism and therapy of the Parkinson's disease. J Neurochem 2015; 135:4-18. [PMID: 26134497 DOI: 10.1111/jnc.13234] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is cited to be the second most common neuronal degenerative disorders; however, the exact mechanism of PD is still unclear. α-synuclein is one of the key proteins in PD pathogenesis as it's the main component of the PD hallmark Lewy bodies (LBs). Nowadays, the study of α-synuclein phosphorylation mechanism related to the PD pathology has become a research hotspot, given that 90% of α-synuclein deposition in LBs is phosphorylated at Ser129, whereas in normal brains, only 4% or less of α-synuclein is phosphorylated at the residue. Here, we review the related study of PD pathological mechanism involving the phosphorylation of α-synuclein mainly at Ser129, Ser87, and Tyr125 residues in recent years, as well as some explorations relating to potential clinical application, in an attempt to describe the development and implication for the mechanism and therapy of PD. Given that some of the studies have yielded paradoxical results, there is need for more comprehensive research in the field. The phosphorylation of α-synuclein might provide a breakthrough for PD mechanism study and even supply a new therapeutic strategy. The milestone study on the phosphorylation of α-synuclein mainly at Ser129, Ser87, and Tyr125 relating to PD in recent years as well as some clinical application exploration are overviewed. The potential pathways of the phosphorylated α-synuclein related to PD are also summarized. The review may supply more ideas and thinking on this issue for the scientists in related research field.
Collapse
Affiliation(s)
- Yan Xu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
24
|
Mhatre DR, Mahale SD, Khatkhatay MI, Achrekar SK, Desai SS, Jagtap DD, Dhabalia JV, Tongaonkar HB, Dandekar SP, Varadkar AM. The rs10993994 in the proximal MSMB promoter region is a functional polymorphism in Asian Indian subjects. SPRINGERPLUS 2015; 4:380. [PMID: 26240778 PMCID: PMC4516150 DOI: 10.1186/s40064-015-1164-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/17/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND The microseminoprotein gene encoding prostate secretory protein of 94 amino acids (PSP94) harbours a potential risk allele (rs10993994) for prostate cancer (PCa) in its promoter region. However, studies on rs10993994 have been sparse in Asian Indians. METHODS The present study recruited a sample population of 44 benign prostatic hyperplasia patients, 33 PCa patients and 60 healthy participants, of which, participants without other confounding risk factors for PCa were retained. The serum PSP94 (sPSP94) levels were measured by a serum-based ELISA in an earlier study. A novel RFLP technique was developed to screen for rs10993994 which was validated with direct sequencing. RESULTS Sequencing showed additional 4 SNPs (rs41274660, rs141211965, rs12770171, rs10669586) and 2 novel variants (GenBank accession nos. KM265191 and KM265192). In silico DNA topographical studies predicted that KM265192 would have higher cleavage intensity and more accessibility for binding of transcription factors. Even though, similar frequencies were observed for all the variants in all the three study groups, the risk allele 'T' (rs10993994) was seen to be associated with reduced PSP94 expression both at mRNA and protein level. Further, mRNA expression as studied by real-time PCR correlated positively with sPSP94 levels. Interestingly, CC genotype of rs10993994 showed highest sPSP94 levels in all the three study groups and was associated with Gleason score ≤7 in PCa patients. In contrast, TT genotype of rs10993994 was associated with lesser sPSP94 levels and with aggressiveness of PCa. CONCLUSION rs10993994 was found to be a functional SNP in the studied Asian Indian population.
Collapse
Affiliation(s)
- Deepa R Mhatre
- Department of Biochemistry and Clinical Nutrition, Seth G.S. Medical College and K.E.M Hospital, Parel, Mumbai, 400012 India
| | - Smita D Mahale
- Division of Structural Biology, National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012 India
| | - Mohammed I Khatkhatay
- Department of Molecular Immunodiagnostics, National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, India
| | - Swati K Achrekar
- Division of Structural Biology, National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012 India
| | - Swapna S Desai
- Division of Structural Biology, National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012 India
| | - Dhanashree D Jagtap
- Division of Structural Biology, National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400012 India
| | - Jayesh V Dhabalia
- Department of Urology, Seth G.S. Medical College and K.E.M Hospital, Parel, Mumbai, India
| | - Hemant B Tongaonkar
- Department of Genitourinary Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sucheta P Dandekar
- Department of Biochemistry and Clinical Nutrition, Seth G.S. Medical College and K.E.M Hospital, Parel, Mumbai, 400012 India
| | - Anand M Varadkar
- Department of Biochemistry and Clinical Nutrition, Seth G.S. Medical College and K.E.M Hospital, Parel, Mumbai, 400012 India
| |
Collapse
|
25
|
Wang X, Ren Y, Zhuang H, Meng X, Huang S, Li Y, Hehir M, Wang P. Decrease of phosphorylated proto-oncogene CREB at Ser 133 site inhibits growth and metastatic activity of renal cell cancer. Expert Opin Ther Targets 2015; 19:985-95. [PMID: 26036429 DOI: 10.1517/14728222.2015.1053208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Cyclic-AMP-responsive element-binding protein (CREB) is a proto-oncogenic transcription factor. The authors' previous reports showed that blocking the CREB binding site at Ser 133 inhibited the expression of target genes, which related to the progression of some tumors. In this study, the authors investigated the role of phosphorylated CREB (pCREB) at Ser133 in renal cell carcinoma (RCC) growth and metastases. METHODS Immunohistochemistry, xenograft model in nude mice, cell proliferation assay, cell invasion/migration assay, fluorescent immunocytochemistry and Western analysis were performed in an immortalized proximal tubule epithelial cell line and clear-cell RCC. RESULTS The authors' results showed that knockdown of pCREB inhibited kidney cancer cells growth in vivo. Furthermore, suppression of the pCREB level blunted the capabilities of cell migration and invasion in vitro and was accompanied with significantly decreased expression of MMP-2 and MMP-9, the filopodia formation and epithelial-mesenchymal transition-related proteins. Surprisingly, no changes of expression or location of vimentin were revealed in the experiment. Bioinformatic software explained the possible reason for this is that the promoter of vimentin does not contain the CRE sequence. CONCLUSIONS These data suggest that decreasing the level of pCREB inhibits the growth and metastasis of RCC by targeting the Ser 133 site.
Collapse
Affiliation(s)
- Xue Wang
- Ningbo University, School of Medicine , Ningbo 315211 , China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang S, Ren Y, Wang P, Li Y, Wang X, Zhuang H, Fang R, Wang Y, Liu N, Hehir M, Zhou JX. Transcription Factor CREB is Involved in CaSR-mediated Cytoskeleton Gene Expression. Anat Rec (Hoboken) 2014; 298:501-12. [PMID: 25382680 DOI: 10.1002/ar.23089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 09/13/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Shuaishuai Huang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Yu Ren
- Department of Urologic Surgery; Ningbo Urology and Nephrology Hospital, Ningbo University; Ningbo 315000 China
| | - Ping Wang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Yanyuan Li
- Department of Pathology; First Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou P.R.310003 China
| | - Xue Wang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Haihui Zhuang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Rong Fang
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Yuduo Wang
- Department of Medical School; Ningbo University; Ningbo 315211 China
| | - Ningsheng Liu
- Department of Medical School; Ningbo University; Ningbo 315211 China
| | - Michael Hehir
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| | - Jeff X. Zhou
- Department of Medical School; Ningbo University; Ningbo 315211 China
- Department of the Center for Translational Medicine; The Affiliated Hospital, Ningbo University School of Medicine; Ningbo 315020 China
| |
Collapse
|
27
|
Sigalov AB. Unusual biophysics of immune signaling-related intrinsically disordered proteins. SELF NONSELF 2014; 1:271-281. [PMID: 21487502 DOI: 10.4161/self.1.4.13641] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022]
Abstract
Intrinsically disordered (ID) regions, the regions that lack a well-defined three-dimensional structure under physiological conditions, are preferentially located in the cytoplasmic segments of plasma membrane proteins, many of which are known to be involved in cell signaling. This is in line with our studies that demonstrated that cytoplasmic domains of signaling subunits of immune receptors, including those of ζ, CD3ε, CD3δ and CD3γ chains of T cell receptor, Igα and Igβ chains of B cell receptor as well as the Fc receptor γ chain represent a novel class of ID proteins (IDPs). The domains all have one or more copies of an immunoreceptor tyrosine-based activation motif, tyrosine residues of which are phosphorylated upon receptor engagement in an early and obligatory event in the signaling cascade. Our studies of these IDPs revealed several unusual biophysical phenomena, including (1) the specific dimerization of disordered protein molecules, (2) the fast and slow dimerization equilibrium, depending on the protein, (3) no disorder-to-order transition and the lack of significant chemical shift and peak intensity changes upon dimerization or interaction with a well-folded partner protein and (4) the dual mode of binding to model membranes (with and without folding), depending on the lipid bilayer stability. Here, I highlight several of these studies that not only facilitate a rethinking process of the fundamental paradigms in protein biophysics but also open new perspectives on the molecular mechanisms involved in receptor signaling.
Collapse
|
28
|
Stavropoulos I, Khaldi N, Davey NE, O’Brien K, Martin F, Shields DC. Protein disorder and short conserved motifs in disordered regions are enriched near the cytoplasmic side of single-pass transmembrane proteins. PLoS One 2012; 7:e44389. [PMID: 22962613 PMCID: PMC3433447 DOI: 10.1371/journal.pone.0044389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/06/2012] [Indexed: 01/07/2023] Open
Abstract
Intracellular juxtamembrane regions of transmembrane proteins play pivotal roles in cell signalling, mediated by protein-protein interactions. Disordered protein regions, and short conserved motifs within them, are emerging as key determinants of many such interactions. Here, we investigated whether disorder and conserved motifs are enriched in the juxtamembrane area of human single-pass transmembrane proteins. Conserved motifs were defined as short disordered regions that were much more conserved than the adjacent disordered residues. Human single-pass proteins had higher mean disorder in their cytoplasmic segments than their extracellular parts. Some, but not all, of this effect reflected the shorter length of the cytoplasmic tail. A peak of cytoplasmic disorder was seen at around 30 residues from the membrane. We noted a significant increase in the incidence of conserved motifs within the disordered regions at the same location, even after correcting for the extent of disorder. We conclude that elevated disorder within the cytoplasmic tail of many transmembrane proteins is likely to be associated with enrichment for signalling interactions mediated by conserved short motifs.
Collapse
Affiliation(s)
- Ilias Stavropoulos
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Nora Khaldi
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Norman E. Davey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kevin O’Brien
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Finian Martin
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Complex and Adaptive Systems Laboratory, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Sigalov AB. Interplay Between Protein Order, Disorder and Oligomericity in Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:50-73. [DOI: 10.1007/978-1-4614-0659-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Wolf C, Linden DEJ. Biological pathways to adaptability - interactions between genome, epigenome, nervous system and environment for adaptive behavior. GENES BRAIN AND BEHAVIOR 2011; 11:3-28. [DOI: 10.1111/j.1601-183x.2011.00752.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Sigalov AB. Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:525-36. [DOI: 10.1016/j.pbiomolbio.2011.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
32
|
Endo A, Sumi D, Iwamoto N, Kumagai Y. Inhibition of DNA binding activity of cAMP response element-binding protein by 1,2-naphthoquinone through chemical modification of Cys-286. Chem Biol Interact 2011; 192:272-7. [PMID: 21530497 DOI: 10.1016/j.cbi.2011.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/10/2011] [Accepted: 04/13/2011] [Indexed: 11/27/2022]
Abstract
1,2-Naphthoquinone (1,2-NQ) is an atmospheric electrophile that reacts covalently with protein thiols. Our previous study revealed that exposure of bovine aortic endothelial cells to 1,2-NQ causes covalent modification of cAMP response element-binding protein (CREB), thereby inhibiting its DNA binding activity and substantial gene expression of B-cell lymphoma-2 (Bcl-2) that is regulated by this transcription factor. In this study, we identified the modification sites of CREB that are associated with the decreased transcriptional activity. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis indicated that three amino acids (Cys-286, Lys-290, and Lys-319) were irreversibly modified by 1,2-NQ. Mutational analysis revealed that electrophilic modification of Cys-286, but not the other two amino acids, at the DNA binding domain is essential for the reduced CREB activity. Substitution of Cys-286 with tryptophan (C286W), which mimics CREB modification by 1,2-NQ, supported this notion. These results suggest that the covalent interaction of CREB with 1,2-NQ through Cys-286 blocks the DNA binding activity of CREB, resulting in the repression of CREB-regulated genes.
Collapse
Affiliation(s)
- Akiko Endo
- Doctoral Programs in Medical Sciences, Graduate School of Comprehensive Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
33
|
Safa M, Zand H, Mousavizadeh K, Kazemi A, Bakhshayesh M, Hayat P. Elevation of cyclic AMP causes an imbalance between NF-kappaB and p53 in NALM-6 cells treated by doxorubicin. FEBS Lett 2010; 584:3492-8. [PMID: 20624391 DOI: 10.1016/j.febslet.2010.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/30/2010] [Accepted: 07/04/2010] [Indexed: 01/26/2023]
Abstract
We previously showed that cAMP can inhibit DNA damage-induced wild type p53 accumulation in human pre-B NALM-6 cells, leading to a profound reduction of their apoptotic response. Here, we provide evidence for the potentiation of DNA damage-induced NF-kappaB activation by cAMP. We found that inhibition of NF-kappaB activation prevents the inhibitory effect of cAMP on doxorubicin-induced apoptosis. Moreover, cAMP exerts its inhibitory effect on doxorubicin-induced apoptosis in a PKA-independent manner. The present study also shows that elevation of cAMP prolongs the phosphorylation of IkappaB and subsequent activation of NF-kappaB in doxorubicin treated NALM-6 cells in a proteasome-dependent manner. Taken together, our results demonstrate that cAMP abrogates the balance between apoptotic and antiapoptotic transcription factors that are hallmarks of DNA damage signaling.
Collapse
Affiliation(s)
- Majid Safa
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
34
|
Sigalov AB. The SCHOOL of nature: II. Protein order, disorder and oligomericity in transmembrane signaling. SELF/NONSELF 2010; 1:89-102. [PMID: 21487511 PMCID: PMC3065667 DOI: 10.4161/self.1.2.11590] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
Abstract
Recent reports have revealed that many proteins that do not adopt globular structures under native conditions, thus termed intrinsically disordered proteins (IDPs), are involved in cell signaling. Intriguingly, physiologically relevant oligomerization of IDPs has been recently observed and shown to exhibit unique biophysical characteristics, including the lack of significant changes in chemical shift and peak intensity upon binding. In this work, I summarize several distinct features of protein disorder that are especially important as related to receptor-mediated transmembrane signal transduction. I also hypothesize that interactions of IDPs with their protein or lipid partners represent a general biphasic process with the "no disorder-to-order" fast interaction which, depending on the interacting partner, may or may not be accompanied by the slow formation of a secondary structure. Further, I suggest signaling-related functional connections between protein order, disorder, and oligomericity and hypothesize that receptor oligomerization induced or tuned upon ligand binding outside the cell is translated across the membrane into protein oligomerization inside the cell, thus providing a general platform, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, for receptor-mediated signaling. This structures our current multidisciplinary knowledge and views of the mechanisms governing the coupling of recognition to signal transduction and cell response. Importantly, this approach not only reveals previously unrecognized striking similarities in the basic mechanistic principles of function of numerous functionally diverse and unrelated surface membrane receptors, but also suggests the similarity between therapeutic targets, thus opening new horizons for both fundamental and clinically relevant studies.
Collapse
|
35
|
Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:996-1010. [PMID: 20100603 PMCID: PMC2882806 DOI: 10.1016/j.bbapap.2010.01.011] [Citation(s) in RCA: 927] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 11/16/2022]
Abstract
Protein intrinsic disorder is becoming increasingly recognized in proteomics research. While lacking structure, many regions of disorder have been associated with biological function. There are many different experimental methods for characterizing intrinsically disordered proteins and regions; nevertheless, the prediction of intrinsic disorder from amino acid sequence remains a useful strategy especially for many large-scale proteomic investigations. Here we introduced a consensus artificial neural network (ANN) prediction method, which was developed by combining the outputs of several individual disorder predictors. By eight-fold cross-validation, this meta-predictor, called PONDR-FIT, was found to improve the prediction accuracy over a range of 3 to 20% with an average of 11% compared to the single predictors, depending on the datasets being used. Analysis of the errors shows that the worst accuracy still occurs for short disordered regions with less than ten residues, as well as for the residues close to order/disorder boundaries. Increased understanding of the underlying mechanism by which such meta-predictors give improved predictions will likely promote the further development of protein disorder predictors. Access to PONDR-FIT is available at www.disprot.org.
Collapse
Affiliation(s)
- Bin Xue
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Roland L. Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Institute, Philadelphia, PA 19111, USA
| | - Robert W. Williams
- Department of Biomedical Informatics, Uniformed Services University, Bethesda, MD 20814
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Vladimir N. Uversky
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Intrinsically Disordered Protein Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
36
|
Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J. Nuclear redox signaling. Antioxid Redox Signal 2010; 12:713-42. [PMID: 19737086 DOI: 10.1089/ars.2009.2609] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species have been described to modulate proteins within the cell, a process called redox regulation. However, the importance of compartment-specific redox regulation has been neglected for a long time. In the early 1980s and 1990s, many in vitro studies introduced the possibility that nuclear redox signaling exists. However, the functional relevance for that has been greatly disregarded. Recently, it has become evident that nuclear redox signaling is indeed one important signaling mechanism regulating a variety of cellular functions. Transcription factors, and even kinases and phosphatases, have been described to be redox regulated in the nucleus. This review describes several of these proteins in closer detail and explains their functions resulting from nuclear localization and redox regulation. Moreover, the redox state of the nucleus and several important nuclear redox regulators [Thioredoxin-1 (Trx-1), Glutaredoxins (Grxs), Peroxiredoxins (Prxs), and APEX nuclease (multifunctional DNA-repair enzyme) 1 (APEX1)] are introduced more precisely, and their necessity for regulation of transcription factors is emphasized.
Collapse
Affiliation(s)
- Margarete Lukosz
- Molecular Cell & Aging Research, IUF (Institute for Molecular Preventive Medicine), At the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Miller M. The importance of being flexible: the case of basic region leucine zipper transcriptional regulators. Curr Protein Pept Sci 2009; 10:244-69. [PMID: 19519454 DOI: 10.2174/138920309788452164] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Large volumes of protein sequence and structure data acquired by proteomic studies led to the development of computational bioinformatic techniques that made possible the functional annotation and structural characterization of proteins based on their primary structure. It has become evident from genome-wide analyses that many proteins in eukaryotic cells are either completely disordered or contain long unstructured regions that are crucial for their biological functions. The content of disorder increases with evolution indicating a possibly important role of disorder in the regulation of cellular systems. Transcription factors are no exception and several proteins of this class have recently been characterized as premolten/molten globules. Yet, mammalian cells rely on these proteins to control expression of their 30,000 or so genes. Basic region:leucine zipper (bZIP) DNA-binding proteins constitute a major class of eukaryotic transcriptional regulators. This review discusses how conformational flexibility "built" into the amino acid sequence allows bZIP proteins to interact with a large number of diverse molecular partners and to accomplish their manifold cellular tasks in a strictly regulated and coordinated manner.
Collapse
Affiliation(s)
- Maria Miller
- Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| |
Collapse
|
38
|
Makkonen KM, Pasonen-Seppänen S, Törrönen K, Tammi MI, Carlberg C. Regulation of the hyaluronan synthase 2 gene by convergence in cyclic AMP response element-binding protein and retinoid acid receptor signaling. J Biol Chem 2009; 284:18270-81. [PMID: 19416972 PMCID: PMC2709342 DOI: 10.1074/jbc.m109.012492] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/23/2009] [Indexed: 01/22/2023] Open
Abstract
The human hyaluronan synthase 2 (HAS2) gene encodes for an enzyme making hyaluronan, altered concentrations of which are associated with many pathological situations including wounding, several inflammatory conditions, and malignant tumors. In this study we showed that HAS2 is a primary target of the cAMP activator forskolin and the nuclear hormone all-trans-retinoic acid (RA). The first 2250 bp of the promoter contain three response elements (REs) for the transcription factor CREB1 as well as two REs for the nuclear receptor RAR. Chromatin immunoprecipitation and re-chromatin immunoprecipitation assays using selected fragments of the promoter containing the putative REs showed that forskolin and all-trans-RA modulate the formation of complexes between CREB1 and RAR with various co-regulators at the predicted sites. Interestingly, CREB1 complexes are regulated by all-trans-RA as are RAR complexes by forskolin. Reporter gene assays using nested promoter fragments supported these findings. Forskolin and all-trans-RA co-stimulation reduced the binding of CREB1, RAR, and the co-repressor nuclear receptor co-repressor 1 (NCoR1), but enhanced the association of co-activators MED1 and CREB-binding protein (CBP). RNA interference experiments suggested that MED1 and NCoR1 are central for the all-trans-RA induction of the HAS2 gene and CBP dominates its forskolin response. In general, our findings suggest a convergence of CREB1 and RAR signaling, and demonstrate the individual character of each RE in terms of co-regulator use.
Collapse
Affiliation(s)
| | | | - Kari Törrönen
- Biomedicine, University of Kuopio, FIN-70211 Kuopio, Finland and
| | - Markku I. Tammi
- Biomedicine, University of Kuopio, FIN-70211 Kuopio, Finland and
| | - Carsten Carlberg
- From the Departments of Bioscience and
- the Life Sciences Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
39
|
Libich DS, Schwalbe M, Kate S, Venugopal H, Claridge JK, Edwards PJB, Dutta K, Pascal SM. Intrinsic disorder and coiled-coil formation in prostate apoptosis response factor 4. FEBS J 2009; 276:3710-28. [PMID: 19490121 DOI: 10.1111/j.1742-4658.2009.07087.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate apoptosis response factor-4 (Par-4) is an ubiquitously expressed pro-apoptotic and tumour suppressive protein that can both activate cell-death mechanisms and inhibit pro-survival factors. Par-4 contains a highly conserved coiled-coil region that serves as the primary recognition domain for a large number of binding partners. Par-4 is also tightly regulated by the aforementioned binding partners and by post-translational modifications. Biophysical data obtained in the present study indicate that Par-4 primarily comprises an intrinsically disordered protein. Bioinformatic analysis of the highly conserved Par-4 reveals low sequence complexity and enrichment in polar and charged amino acids. The high proteolytic susceptibility and an increased hydrodynamic radius are consistent with a largely extended structure in solution. Spectroscopic measurements using CD and NMR also reveal characteristic features of intrinsic disorder. Under physiological conditions, the data obtained show that Par-4 self-associates via the C-terminal domain, forming a coiled-coil. Interruption of self-association by urea also resulted in loss of secondary structure. These results are consistent with the stabilization of the coiled-coil motif through an intramolecular association.
Collapse
Affiliation(s)
- David S Libich
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Meyuhas R, Pikarsky E, Tavor E, Klar A, Abramovitch R, Hochman J, Lago TG, Honigman A. A Key role for cyclic AMP-responsive element binding protein in hypoxia-mediated activation of the angiogenesis factor CCN1 (CYR61) in Tumor cells. Mol Cancer Res 2008; 6:1397-409. [PMID: 18819928 DOI: 10.1158/1541-7786.mcr-07-2086] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia is a prominent feature of solid tumors known to contribute to malignant progression and therapeutic resistance. Cancer cells adapt to hypoxia using various pathways, allowing tumors to thrive in a low oxygen state. Induction of new blood vessel formation via the secretion of proangiogenic factors is one of the main adaptive responses engaged by tumor cells under hypoxic conditions. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that plays a pivotal role in mediating such responses. In addition, several other transcription factors have also been implicated in hypoxic gene regulation, either independently or in cooperation with HIF-1. In this work, we show that the expression of the angiogenesis-related, immediate early gene CCN1 (formerly known as CYR61), considered to be involved in tumor growth and invasiveness, is enhanced upon hypoxia stress primarily in a protein kinase A and cyclic AMP-responsive element binding protein (CREB) and CRE-dependent manner in various cell lines. The hypoxia-mediated activation of the CCN1 promoter is independent of HIF-1 and HIF-2, as shown by small interfering RNA knockdown. We identify the cis element in the mouse CCN1 promoter responsible for CREB binding to be one of two partial CRE sites present in the promoter. Moreover, we report for the first time that CREB-mediated CCN1 transcription is enhanced in hypoxic regions of tumors in vivo. Identifying and characterizing the molecular mechanisms that govern the response of tumors to hypoxia may be instrumental to identify the tumors that will respond favorably to inhibition of angiogenesis and thus lead to the development of treatments that could complement hypoxia-inducing treatment modalities.
Collapse
Affiliation(s)
- Ronit Meyuhas
- Department of Virology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ingratta M, Duhamel J. Effect of Side-chain Length on the Side-chain Dynamics of α-Helical Poly(l-glutamic acid) as Probed by a Fluorescence Blob Model. J Phys Chem B 2008; 112:9209-18. [DOI: 10.1021/jp8021248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark Ingratta
- Institute for Polymer Research, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
42
|
Zhu B, Wu X. Characterization and function of CREB homologue from Crassostrea ariakensis stimulated by rickettsia-like organism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1572-1581. [PMID: 18606451 DOI: 10.1016/j.dci.2008.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/17/2008] [Accepted: 05/19/2008] [Indexed: 05/26/2023]
Abstract
The cAMP response element-binding protein (CREB) is a transcription factor that plays important roles in cellular growth, proliferation and survival. Here, we report that a homologue of CREB transcription factor, Ca-CREB, was identified and functionally characterized in oyster, Crassostrea ariakensis. The full-length cDNA consists of 1397bp with an ORF encoding a 39.3kDa protein. Amino acid sequence analysis revealed that Ca-CREB shares conserved signature motifs with other CREB proteins. Ca-CREB was ubiquitously and constitutively expressed in oyster, and the expression level in hemocytes was higher than that in other tissues. The expression level of Ca-CREB was not modified after RLO stimulation, while tumor necrosis factor-alpha (TNF-alpha) expression was increased obviously, which was revealed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR). Electrophoretic mobility shift assay (EMSA) and Western blotting showed that recombinant CREB proteins specifically bind the consensus CREB binding site, and DNA-binding activity and phosphorylation of Ca-CREB were induced by RLO. These results suggest that Ca-CREB is a CREB homologue and may be involved in immune responses against RLO.
Collapse
Affiliation(s)
- Baojian Zhu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| | | |
Collapse
|
43
|
Regulating gene transcription in response to cyclic AMP elevation. Cell Signal 2007; 20:460-6. [PMID: 17993258 DOI: 10.1016/j.cellsig.2007.10.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 10/07/2007] [Indexed: 01/19/2023]
Abstract
Many of the effects of prototypical second messenger cyclic adenosine 3',5'-monophosphate (cAMP) on complex processes such as the regulation of fuel metabolism, spermatogenesis and steroidogenesis are mediated via changes in target gene transcription. A large body of research has defined members of the cAMP-response element binding (CREB) protein family as the principal mediators of positive changes in gene expression in response to cAMP following phosphorylation by cAMP-dependent protein kinase (PKA). However, persistent observations of cAMP-mediated induction of specific genes occurring via PKA-independent mechanisms have challenged the generality of the PKA-CREB pathway. In this review, we will discuss in detail both PKA-dependent and -independent mechanisms that have been proposed to explain how cAMP influences the activation status of multiple transcription factors, and how these influence critical biological processes whose defective regulation may lead to disease.
Collapse
|
44
|
Yao M, Denver RJ. Regulation of vertebrate corticotropin-releasing factor genes. Gen Comp Endocrinol 2007; 153:200-16. [PMID: 17382944 DOI: 10.1016/j.ygcen.2007.01.046] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/21/2007] [Indexed: 11/17/2022]
Abstract
Developmental, physiological, and behavioral adjustments in response to environmental change are crucial for animal survival. In vertebrates, the neuroendocrine stress system, comprised of the hypothalamus, pituitary, and adrenal/interrenal glands (HPA/HPI axis) plays a central role in adaptive stress responses. Corticotropin-releasing factor (CRF) is the primary hypothalamic neurohormone regulating the HPA/HPI axis. CRF also functions as a neurotransmitter/neuromodulator in the limbic system and brain stem to coordinate endocrine, behavioral, and autonomic responses to stressors. Glucocorticoids, the end products of the HPA/HPI axis, cause feedback regulation at multiple levels of the stress axis, exerting direct and indirect actions on CRF neurons. The spatial expression patterns of CRF, and stressor-dependent CRF gene activation in the central nervous system (CNS) are evolutionarily conserved. This suggests conservation of the gene regulatory mechanisms that underlie tissue-specific and stressor-dependent CRF expression. Comparative genomic analysis showed that the proximal promoter regions of vertebrate CRF genes are highly conserved. Several cis regulatory elements and trans acting factors have been implicated in stressor-dependent CRF gene activation, including cyclic AMP response element binding protein (CREB), activator protein 1 (AP-1/Fos/Jun), and nerve growth factor induced gene B (NGFI-B). Glucocorticoids, acting through the glucocorticoid and mineralocorticoid receptors, either repress or promote CRF expression depending on physiological state and CNS region. In this review, we take a comparative/evolutionary approach to understand the physiological regulation of CRF gene expression. We also discuss evolutionarily conserved molecular mechanisms that operate at the level of CRF gene transcription.
Collapse
Affiliation(s)
- Meng Yao
- Department of Molecular, Cellular and Developmental Biology, 3065C Kraus Natural Science Building, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
45
|
Lopez DI, Mick JE, Nyborg JK. Purification of CREB to apparent homogeneity: removal of truncation products and contaminating nucleic acid. Protein Expr Purif 2007; 55:406-18. [PMID: 17703949 PMCID: PMC2066201 DOI: 10.1016/j.pep.2007.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 01/19/2023]
Abstract
The cAMP response element binding protein (CREB) is a mammalian transcription factor which regulates the expression of many cellular genes. CREB is commonly expressed in Escherichia coli and purified by heat-extraction followed by affinity chromatography. We have discovered that although this purification yields a reasonably pure product which is active in DNA-binding and functional assays, it contains a large amount of nucleic acid as well as CREB truncation products and other polypeptides. Consequently, this CREB is inadequate for use in biophysical studies including crystallography, and spectroscopic analysis such as analytical ultracentrifugation, FRET, and circular dichroism. We revised the purification protocol to incorporate expression in the Rosetta host strain, nuclease treatment, and denaturing/high salt size-exclusion chromatography. We typically obtain 10mg of CREB per liter of culture media that is 99% homogenous, free of nucleic acid, and amenable to biophysical studies. Comparison of CREB from the original and revised protocols shows similar affinities for the cAMP response element (CRE) but small differences in their secondary structures when assayed by limited proteolysis and circular dichroism.
Collapse
Affiliation(s)
| | | | - Jennifer K. Nyborg
- Address correspondence to Jennifer K. Nyborg, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870. , (970) 491-0420; (970) 491-0494 (fax)
| |
Collapse
|
46
|
Sharma N, Lopez DI, Nyborg JK. DNA Binding and Phosphorylation Induce Conformational Alterations in the Kinase-inducible Domain of CREB. J Biol Chem 2007; 282:19872-83. [PMID: 17491014 DOI: 10.1074/jbc.m701435200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
CREB-mediated activation of target gene transcription is stimulated by protein kinase A (PKA) phosphorylation at serine 133. This is followed by recruitment of the coactivators CREB-binding protein (CBP) or p300. Conversely, the decline in expression during the attenuation phase is linked to CREB dephosphorylation by nuclear phosphatases. The CREB bZIP domain, which promotes dimerization and promoter binding, as well as the kinase-inducible domain (KID), which interacts with the KIX domain of CBP/p300, are both largely unstructured in solution and become more structured once bound to their respective ligands. In this study, we biochemically characterize DNA- and phosphorylation-induced conformational alterations in CREB that may play a role in its transcriptionally poised, activated state. We find that sequence-specific DNA binding of pCREB renders the protein resistant to serine 133 dephosphorylation by protein phosphatase 1. Paradoxically, CREB bound to DNA and chromatin is efficiently phosphorylated by PKA, indicating that the KID region exists in a different conformation depending on its phosphorylation state. Consistent with this observation, we find that phosphorylation of DNA-bound CREB promotes an alternate conformation characterized by an apparent increase in the size or asymmetry of the complex and a qualitative change in proteolytic sensitivity. Together, our data indicate that DNA binding promotes a global conformational change in CREB that alters the structure of KID. PKA phosphorylation of KID in the DNA-bound state induces a phosphatase-resistant conformation that may prolong transcriptional activity.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | |
Collapse
|
47
|
Takemori H, Kajimura J, Okamoto M. TORC-SIK cascade regulates CREB activity through the basic leucine zipper domain. FEBS J 2007; 274:3202-9. [PMID: 17565599 DOI: 10.1111/j.1742-4658.2007.05889.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transcription factor cAMP response element-binding protein (CREB) plays important roles in gene expression induced by cAMP signaling and is believed to be activated when its Ser133 is phosphorylated. However, the discovery of Ser133-independent activation by the activation of transducer of regulated CREB activity coactivators (TORC) and repression by salt inducible kinase cascades suggests that Ser133-independent regulation of CREB is also important. The activation and repression are mediated by the basic leucine zipper domain of CREB. In this review, we focus on the basic leucine zipper domain in the regulation of transcriptional activity of CREB and describe the functions of TORC and salt inducible kinase.
Collapse
Affiliation(s)
- Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolism, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan.
| | | | | |
Collapse
|
48
|
Hay CW, Ferguson LA, Docherty K. ATF-2 stimulates the human insulin promoter through the conserved CRE2 sequence. ACTA ACUST UNITED AC 2007; 1769:79-91. [PMID: 17337306 DOI: 10.1016/j.bbaexp.2007.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 01/04/2023]
Abstract
The insulin promoter contains a number of dissimilar cis-acting regulatory elements that bind a range of tissue specific and ubiquitous transcription factors. Of the regulatory elements within the insulin promoter, the cyclic AMP responsive element (CRE) binds by far the most diverse array of transcription factors. Rodent insulin promoters have a single CRE site, whereas there are four CREs within the human insulin gene, of which CRE2 is the only one conserved between species. The aim of this study was to characterise the human CRE2 site and to investigate the effects of the two principal CRE-associated transcription factors; CREB-1 and ATF-2. Co-transfection of INS-1 pancreatic beta-cells with promoter constructs containing the human insulin gene promoter placed upstream of the firefly luciferase reporter gene and expression plasmids for ATF-2 or CREB-1 showed that ATF-2 stimulated transcriptional activity while CREB-1 elicited an inhibitory effect. Mutagenesis of CRE2 diminished the effect of ATF-2 but not that of CREB-1. ATF-2 was shown to bind to the CRE2 site by electrophoretic mobility shift assay and by chromatin immunoprecipitation, while siRNA mediated knockdown of ATF-2 diminished the stimulatory effects of cAMP related signalling on promoter activity. These results suggest that ATF-2 may be a key regulator of the human insulin promoter possibly stimulating activity in response to extracellular signals.
Collapse
Affiliation(s)
- Colin W Hay
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | |
Collapse
|
49
|
Mitchell JL, Trible RP, Emert-Sedlak LA, Weis DD, Lerner EC, Applen JJ, Sefton BM, Smithgall TE, Engen JR. Functional characterization and conformational analysis of the Herpesvirus saimiri Tip-C484 protein. J Mol Biol 2006; 366:1282-93. [PMID: 17207813 PMCID: PMC2262936 DOI: 10.1016/j.jmb.2006.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 11/15/2022]
Abstract
Tyrosine kinase interacting protein (Tip) of Herpesvirus saimiri (HVS) activates the lymphoid-specific member of the Src family kinase Lck. The Tip:Lck interaction is essential for transformation and oncogenesis in HVS-infected cells. As there are no structural data for Tip, hydrogen-exchange mass spectrometry was used to investigate the conformation of a nearly full-length form (residues 1-187) of Tip from HVS strain C484. Disorder predictions suggested that Tip would be mostly unstructured, so great care was taken to ascertain whether recombinant Tip was functional. Circular dichroism and gel-filtration analysis indicated an extended, unstructured protein. In vitro and in vivo binding and kinase assays confirmed that purified, recombinant Tip interacted with Lck, was capable of activating Lck kinase activity strongly and was multiply phosphorylated by Lck. Hydrogen-exchange mass spectrometry of Tip then showed that the majority of backbone amide hydrogen atoms became deuterated after only 10 s of labeling. Such a result suggested that Tip was almost totally unstructured in solution. Digestion of deuterium-labeled Tip revealed some regions with minor protection from exchange. Overall, it was found that, although recombinant Tip is still functional and capable of binding and activating its target Lck, it is largely unstructured.
Collapse
Affiliation(s)
| | - Ronald P. Trible
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Lori A. Emert-Sedlak
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - David D. Weis
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
| | - Edwina C. Lerner
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jeremy J. Applen
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
| | | | - Thomas E. Smithgall
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - John R. Engen
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
- Chemistry & Chemical Biology and The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115
- *Address correspondence: John R. Engen, 341 Mugar Life Sciences, The Barnett Institute, Northeastern University, 360 Huntington Ave., Boston, MA 02115-5000,
| |
Collapse
|
50
|
Sangerman J, Lee MS, Yao X, Oteng E, Hsiao CH, Li W, Zein S, Ofori-Acquah SF, Pace BS. Mechanism for fetal hemoglobin induction by histone deacetylase inhibitors involves gamma-globin activation by CREB1 and ATF-2. Blood 2006; 108:3590-9. [PMID: 16896160 PMCID: PMC1895433 DOI: 10.1182/blood-2006-01-023713] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 07/04/2006] [Indexed: 01/12/2023] Open
Abstract
The histone deacetylase inhibitors (HDA-CIs) butyrate and trichostatin A activate gamma-globin expression via a p38 mitogen-activating protein kinase (MAPK)-dependent mechanism. We hypothesized that down-stream effectors of p38 MAPK, namely activating transcription factor-2 (ATF-2) and cyclic AMP response element (CRE) binding protein (CREB), are intimately involved in fetal hemoglobin induction by these agents. In this study, we observed increased ATF-2 and CREB1 phosphorylation mediated by the HDACIs in K562 cells, in conjunction with histone H4 hyperacetylation. Moreover, enhanced DNA-protein interactions occurred in the CRE in the (G)gamma-globin promoter (G-CRE) in vitro after drug treatments; subsequent chromatin immunoprecipitation assay confirmed ATF-2 and CREB1 binding to the G-CRE in vivo. Enforced expression of ATF-2 and CREB produced (G)gamma-promoter trans-activation which was abolished by a 2-base pair mutation in the putative G-CRE. The data presented herein demonstrate that gamma-gene induction by butyrate and trichostatin A involves ATF-2 and CREB1 activation via p38 MAPK signaling.
Collapse
Affiliation(s)
- Jose Sangerman
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|