1
|
Tulay P, Jaroudi S, Doshi A, SenGupta SB. Functional assessment for elimination of mismatches in nuclear and whole cell extracts obtained from mouse and human blastocysts. Syst Biol Reprod Med 2016; 62:415-422. [PMID: 27686340 DOI: 10.1080/19396368.2016.1232447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Preimplantation embryos may have an increased risk of having mismatches due to the rates of cell proliferation and DNA replication. Elimination of mismatches in human gametes and embryos has not been investigated. In this study we developed a sensitive functional assay to examine the repair or elimination of mismatches in both commercially available cell extracts and extracts obtained from preimplantation embryos. Heteroduplex molecules were constructed using synthetic oligonucleotides. Efficiency of the repair of mismatches was semi-quantitatively analysed by exposure to nuclear/whole cell extracts (as little as 2.5 µg) and extracts obtained from pooled mouse and human blastocysts to investigate the repair capacity in human embryos. A cell free in vitro assay was successfully developed to analyze the repair of mismatches using heteroduplex complexes. The assay was further optimized to analyze repair of mismatches in cell extracts obtained from oocytes and blastocysts using minute amounts of protein. The efficiency of mismatch repair was examined in both mouse and human blastocysts (2.5 µg). The blastocysts were observed to have a lower repair efficiency compared to commercially available nuclear and whole cell extracts. In conclusion, a sensitive, easy, and fast in vitro technique was developed to detect the repair of mismatch efficiency in embryos.
Collapse
Affiliation(s)
- Pinar Tulay
- a Department of Medical Genetics , Faculty of Medicine, Near East University , Nicosia , Cyprus.,b Preimplantation Genetics Group, Institute for Women's Health , University College London , London , UK
| | - Souraya Jaroudi
- b Preimplantation Genetics Group, Institute for Women's Health , University College London , London , UK
| | - Alpesh Doshi
- c The Centre for Reproductive and Genetic Health , University College Hospital , London , UK
| | - Sioban B SenGupta
- b Preimplantation Genetics Group, Institute for Women's Health , University College London , London , UK
| |
Collapse
|
2
|
Chen Y, Huang C, Bai C, Du C, Liao J, Dong Q. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:296-303. [PMID: 26476317 DOI: 10.1016/j.jhazmat.2015.09.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl2), benzo[a]pyrene (BaP), and perfluorooctanesulphonic acid (PFOS) from 6 hpf to 24 hpf. We observed significant reductions of MMR efficiency in embryos exposed to 0.1 μM CdCl2 (52%) and 0.5 μM BaP (34%), but no effect in embryos exposed to PFOS. Our study for the first time provides a model system for in vivo measurement of DNA MMR activity at the organism level, which has important implications in risk assessment of various environmental carcinogens.
Collapse
Affiliation(s)
- Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Chenglian Bai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changchun Du
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Junhua Liao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
3
|
Siehler SY, Schrauder M, Gerischer U, Cantor S, Marra G, Wiesmüller L. Human MutL-complexes monitor homologous recombination independently of mismatch repair. DNA Repair (Amst) 2008; 8:242-52. [PMID: 19022408 DOI: 10.1016/j.dnarep.2008.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/10/2008] [Accepted: 10/21/2008] [Indexed: 12/19/2022]
Abstract
The role of mismatch repair proteins has been well studied in the context of DNA repair following DNA polymerase errors. Particularly in yeast, MSH2 and MSH6 have also been implicated in the regulation of genetic recombination, whereas MutL homologs appeared to be less important. So far, little is known about the role of the human MutL homolog hMLH1 in recombination, but recently described molecular interactions suggest an involvement. To identify activities of hMLH1 in this process, we applied an EGFP-based assay for the analysis of different mechanisms of DNA repair, initiated by a targeted double-stranded DNA break. We analysed 12 human cellular systems, differing in the hMLH1 and concomitantly in the hPMS1 and hPMS2 status via inducible protein expression, genetic reconstitution, or RNA interference. We demonstrate that hMLH1 and its complex partners hPMS1 and hPMS2 downregulate conservative homologous recombination (HR), particularly when involving DNA sequences with only short stretches of uninterrupted homology. Unexpectedly, hMSH2 is dispensable for this effect. Moreover, the damage-signaling kinase ATM and its substrates BLM and BACH1 are not strictly required, but the combined effect of ATM/ATR-signaling components may mediate the anti-recombinogenic effect. Our data indicate a protective role of hMutL-complexes in a process which may lead to detrimental genome rearrangements, in a manner which does not depend on mismatch repair.
Collapse
|
4
|
Lei X, Zhu Y, Tomkinson A, Sun L. Measurement of DNA mismatch repair activity in live cells. Nucleic Acids Res 2004; 32:e100. [PMID: 15249596 PMCID: PMC484197 DOI: 10.1093/nar/gnh098] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Currently, assays for DNA MMR activity involve the use of cell extracts and are technically challenging and costly. Here, we report a rapid, less labor-intensive method that can quantitatively measure MMR activity in live cells. A G-G or T-G mismatch was introduced into the ATG start codon of the enhanced green fluorescent protein (EGFP) gene. Repair of the G-G or T-G mismatch to G-C or T-A, respectively, in the heteroduplex plasmid generates a functional EGFP gene expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were transfected in parallel into the same cell line and the number of green cells counted by flow cytometry. Relative EGFP expression was calculated as the total fluorescence intensity of cells transfected with the heteroduplex construct divided by that of cells transfected with the homoduplex construct. We have tested several cell lines from both MMR-deficient and MMR-proficient groups using this method, including a colon carcinoma cell line HCT116 with defective hMLH1 gene and a derivative complemented by transient transfection with hMLH1 cDNA. Results show that MMR-proficient cells have significantly higher EGFP expression than MMR-deficient cells, and that transient expression of hMLH1 alone can elevate MMR activity in HCT116 cells. This method is potentially useful in comparing and monitoring MMR activity in live cells under various growth conditions.
Collapse
Affiliation(s)
- Xiufen Lei
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
5
|
Massey A, Xu YZ, Karran P. Ambiguous coding is required for the lethal interaction between methylated DNA bases and DNA mismatch repair. DNA Repair (Amst) 2002; 1:275-86. [PMID: 12509246 DOI: 10.1016/s1568-7864(02)00004-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The thiopurine 6-thioguanine (S6G) is used to treat acute leukaemia. Its cytotoxic effect requires an active DNA mismatch repair (MMR) system. S6G is incorporated into DNA where a small fraction undergoes in situ conversion to S6-thiomethylguanine (S6meG). After replication, S6meG-containing base pairs interact with MMR. This interaction is ultimately lethal and MMR-defective cells are resistant to S6G. Here, we report that growing human cells extensively incorporate the thiopyrimidine nucleoside 4-thiothymidine (S4TdR) into their DNA. The incorporated thiopyrimidine (S4T) can also undergo facile S-methylation to 4-thiomethylthymine (S4meT). The rate of methylation of S4TdR in model substrates is similar to that for the conversion of S6G to S6meG indicating that the DNA of cells grown in S4TdR will contain significant levels of S4meT. Despite this, S4TdR is not associated with MMR-related cell death. We demonstrate that, in contrast to S6meG, neither DNA S4T nor S4meT codes ambiguously. S4T retains the coding properties of unmodified T, whereas S4meT behaves like a normal cytosine and exclusively directs the incorporation of guanine. The preferred S4meT:G base pair is also a poor substrate for binding by the hMutSalpha mismatch recognition factor. We suggest that the ability of S4meT to produce a structurally acceptable base pair during replication underlies the absence of MMR-related death in cells treated with S4TdR.
Collapse
Affiliation(s)
- Andrew Massey
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, EN6 3LD, UK
| | | | | |
Collapse
|
6
|
Nakajima E, Ikejima M, Watanabe A, Shimada T. Identification of the protein components of mismatch binding complexes in human cells using a gel-shift assay. FEBS Lett 1999; 453:85-9. [PMID: 10403381 DOI: 10.1016/s0014-5793(99)00626-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In eukaryotes, mismatch recognition is thought to be mediated by two heterodimers, hMutSalpha (hMSH2+hMSH6), which preferentially binds to base-base mismatches and hMutSbeta (hMSH2+hMSH3), which binds to insertion/deletion loops. We studied these mismatch binding activities in several human cell lines with a gel-shift assay using various mismatch oligonucleotides as substrates. Both hMutSalpha and hMutSbeta activities could be detected in various human cell lines. In cells with amplified copies of the hMSH3 gene, a large increase in hMutSbeta and a reduction in hMutSalpha were observed. To identify the composition of each mismatch binding complex, the protein-DNA complexes were transferred from gel-shift polyacrylamide gel to a polyvinylidene difluoride membrane and were subjected to immunoblot analysis with an enhanced chemiluminescence protein detection system. The results clearly demonstrated that hMutSalpha detected by the gel-shift assay was composed of hMSH2 and hMSH6, while hMutSbeta was composed of hMSH2 and hMSH3. Our data, therefore, support a model whereby formation of hMutSalpha and hMutSbeta is mutually regulated. Combination of a gel-shift assay with immunoblotting (shift-Western assay) proved to be a highly sensitive technique and should be useful for studying the interactions between DNA and binding proteins, including DNA mismatch recognition.
Collapse
Affiliation(s)
- E Nakajima
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Fleck O, Kunz C, Rudolph C, Kohli J. The high mobility group domain protein Cmb1 of Schizosaccharomyces pombe binds to cytosines in base mismatches and opposite chemically altered guanines. J Biol Chem 1998; 273:30398-405. [PMID: 9804804 DOI: 10.1074/jbc.273.46.30398] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mismatch-binding activity Cmb1 of Schizosaccharomyces pombe was enriched from wild type cells, and N-terminal sequencing enabled cloning of the respective gene. The deduced amino acid sequence of cmb1(+) contains a high mobility group domain, a motif that is common to a heterogeneous family of DNA-binding proteins. In crude protein extracts of a cmb1 gene-disruption strain, specific binding to C/T, C/A, and C/Delta was abolished. Weak binding to C/C revealed the presence of a second mismatch-binding activity, Cmb2. Cmb1, enriched from S. pombe and purified from Escherichia coli, bound specifically to C/C, C/T, C/A, T/T, and C/Delta but showed little or no affinity to other mismatches and small loops. Cmb1 recognizes 1,2 GpG intrastrand cross-links, produced by the chemotherapeutic drug cisplatin, when two cytosines are opposite the cross-linked guanines but not when other bases are present. Consistently, O6-methylguanine:C but not O6-methylguanine/T lesions were bound. Thus, cytosines in mismatches and opposite chemically modified guanines are the preferred target of Cmb1 recognition. cmb1 mutant cells are more sensitive to cisplatin than wild type cells, indicating a role of Cmb1 in repair of cisplatin-induced DNA damage.
Collapse
Affiliation(s)
- O Fleck
- Institute of General Microbiology, University of Bern, Baltzer-Strasse 4, CH-3012 Bern, Switzerland.
| | | | | | | |
Collapse
|
8
|
Dudenhöffer C, Rohaly G, Will K, Deppert W, Wiesmüller L. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol Cell Biol 1998; 18:5332-42. [PMID: 9710617 PMCID: PMC109118 DOI: 10.1128/mcb.18.9.5332] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We demonstrate that wild-type p53 inhibits homologous recombination. To analyze DNA substrate specificities in this process, we designed recombination experiments such that coinfection of simian virus 40 mutant pairs generated heteroduplexes with distinctly unpaired regions. DNA exchanges producing single C-T and A-G mismatches were inhibited four- to sixfold more effectively than DNA exchanges producing G-T and A-C single-base mispairings or unpaired regions of three base pairs comprising G-T/A-C mismatches. p53 bound specifically to three-stranded DNA substrates, mimicking early recombination intermediates. The KD values for the interactions of p53 with three-stranded substrates displaying differently paired and unpaired regions reflected the mismatch base specificities observed in recombination assays in a qualitative and quantitative manner. On the basis of these results, we would like to advance the hypothesis that p53, like classical mismatch repair factors, checks the fidelity of homologous recombination processes by specific mismatch recognition.
Collapse
Affiliation(s)
- C Dudenhöffer
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, D-20251 Hamburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Bill CA, Duran WA, Miselis NR, Nickoloff JA. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches. Genetics 1998; 149:1935-43. [PMID: 9691048 PMCID: PMC1460289 DOI: 10.1093/genetics/149.4.1935] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repair of all 12 single-base mismatches in recombination intermediates was investigated in Chinese hamster ovary cells. Extrachromosomal recombination was stimulated by double-strand breaks in regions of shared homology. Recombination was predicted to occur via single-strand annealing, yielding heteroduplex DNA (hDNA) with a single mismatch. Nicks were expected on opposite strands flanking hDNA, equidistant from the mismatch. Unlike studies of covalently closed artificial hDNA substrates, all mismatches were efficiently repaired, consistent with a nick-driven repair process. The average repair efficiency for all mispairs was 92%, with no significant differences among mispairs. There was significant strand-independent repair of G-T --> G-C, with a slightly greater bias in a CpG context. Repair of C-A was also biased (toward C-G), but no A-C --> G-C bias was found, a possible sequence context effect. No other mismatches showed evidence of biased repair, but among hetero-mismatches, the trend was toward retention of C or G vs. A or T. Repair of both T-T and G-T mismatches was much less efficient in mismatch repair-deficient cells (approximately 25%), and the residual G-T repair was completely biased toward G-C. Our data indicate that single-base mismatches in recombination intermediates are substrates for at least two competing repair systems.
Collapse
Affiliation(s)
- C A Bill
- Department of Cancer Biology, Harvard University School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
10
|
Ciotta C, Ceccotti S, Aquilina G, Humbert O, Palombo F, Jiricny J, Bignami M. Increased somatic recombination in methylation tolerant human cells with defective DNA mismatch repair. J Mol Biol 1998; 276:705-19. [PMID: 9500919 DOI: 10.1006/jmbi.1997.1559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have studied whether spontaneous intrachromosomal recombination is altered in methylation tolerant human cells with a defect in mismatch repair. Somatic recombination was analysed in HeLaMR cells containing the vector pTPSN, which carries two copies of the gene for hygromycin resistance. The hygromycin genes are both inactivated by an inserted HindIII linker but hygromycin-resistant clones can arise by recombination. The spontaneous rate of recombination in a clone of HeLaMR cells containing a single integrated copy of pTPSN (HeLaG1) was 3.1x10(-6)/cell per generation. Two methylation tolerant variants from HeLaG1 cells (clone 12 and clone 15) were isolated by exposure to MNNG. Clone 12 cells exhibited a 16-fold increase in spontaneous mutation rate at the HPRT gene and extensive microsatellite instability at both mono- and dinucleotide repeats. Microsatellite instability limited to mononucleotide repeats was found in clone 15, whereas the mutation rate at HPRT was not significantly affected. A mismatch binding defect in extracts of clone 15 could be complemented by exogenous GTBP but not by purified hMSH2 protein. These data suggest that clone 15 is defective in GTBP. Extracts of clone 12 were unable to correct a single C:T mispair and complementation by extracts of human colorectal carcinoma cells with known deficiencies in mismatch repair indicated a defect in hMutLalpha. Western blotting with antibodies against different human mismatch repair proteins showed that clone 12 cells did not express hPMS2 protein, but expression of hMLH1, hMSH2 and GTBP appeared normal. The spontaneous recombination rate of clone 12 was 19-fold higher than the parental HeLaG1 cells, whereas no increase was observed in clone 15. Analysis of individual recombinants showed that hygromycin resistance arose exclusively by gene conversion. Our data indicate that mismatch correction regulates somatic recombination in human cells.
Collapse
Affiliation(s)
- C Ciotta
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma, 00161, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Hampson R, Humbert O, Macpherson P, Aquilina G, Karran P. Mismatch repair defects and O6-methylguanine-DNA methyltransferase expression in acquired resistance to methylating agents in human cells. J Biol Chem 1997; 272:28596-606. [PMID: 9353325 DOI: 10.1074/jbc.272.45.28596] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fifteen variants with >/=30-fold resistance to N-methyl-N-nitrosourea were isolated from the Burkitt's lymphoma Raji cell line. Eight had received a single treatment with a highly cytotoxic dose. The remainder, including the previously described RajiF12 cell line, arose following multiple exposures to initially moderate but escalating doses. Surprisingly, methylation resistance arose in three clones by reactivation of a previously silent O6-methylguanine-DNA methyltransferase gene. Five clones, including RajiF12, displayed the microsatellite instability and increased spontaneous mutation rates at the hypoxanthine-guanine phosphoribosyltransferase locus, consistent with deficiencies in mismatch repair. Defects in either the hMutSalpha or hMutLalpha mismatch repair complexes were identified in extracts of these resistant clones by in vitro complementation using extracts from colorectal carcinoma cell lines. Defects in hMutLalpha were confirmed by Western blot analysis. Remarkably, five methylation-resistant clones in which mismatch repair defects were demonstrated by biochemical assays did not exhibit significant microsatellite instability.
Collapse
Affiliation(s)
- R Hampson
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Aquilina G, Fiumicino S, Zijno A, Martinelli S, Overkamp WJ, Zdzienicka MZ, Oshimura M, Wild CP, Bignami M. Reversal of methylation tolerance by transfer of human chromosome 2. Mutat Res 1997; 385:115-26. [PMID: 9447233 DOI: 10.1016/s0921-8777(97)00037-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human cell lines resistant to N-methyl-N-nitrosourea (MNU) were previously assigned to two complementation groups. Members of group I are defective in mismatch correction [S. Ceccotti, G Aquilina, P. Macpherson, M. Yamada, P. Karran, M. Bignami, Processing of O6-methylguanine by mismatch correction in human cell extracts. Current Biol. 6 (1996) 1528-1531]. To identify the mechanism responsible for the less pronounced phenotype of the second complementation group, we characterized the persistence of MNU-induced O6-methylguanine (O6-meGua) and mutation induction at the hypoxanthine guanine phosphoribosyl-transferase (HPRT) locus. Group II clones are unable to repair the premutagenic base O6-meGua and are as mutable by MNU as group I clones and the parental HeLaMR cells. MNU-induced SCE were undetectable in group I clones and drastically reduced in group II in comparison with the parental cells. These observations are consistent with a defective processing of DNA methylation damage by members of both groups. Group II clones exhibit a moderate spontaneous mutator phenotype at the HPRT gene but significant instability at mononucleotide repeat microsatellites. Introduction of a single human chromosome 2 (but not of chromosome 3 or 7) into group II cells partially reverts both MNU resistance and the increased spontaneous mutation rate. The properties of group II variants are consistent with methylation tolerance and a partially defective mismatch repair. We propose that members of group II are defective in the chromosome 2-based mismatch correction gene GTBP/hMSH6.
Collapse
Affiliation(s)
- G Aquilina
- Istituto Superiore di Sanita', Section of Chemical Carcinogenesis, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shinagawa T, Ishiguro N, Horiuchi M, Shinagawa M. Instability of the 12-nucleotide repeat in c-myb gene of bovine T-lymphoma cells. J Vet Med Sci 1997; 59:1071-4. [PMID: 9409529 DOI: 10.1292/jvms.59.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Insertion of a 12-nucleotide repeat in c-myb gene exon 9 was observed in about 15% of sporadic bovine T-lymphomas. The 12-nucleotide repeat in the T-lymphoma cells showed deletion and insertion of the repeat units during cultivation of the cells. To know whether deficiency in DNA loop repair is involved in the instability of the repeat, abilities to bind and correct the loop structure in nuclear extracts were examined. The nuclear extracts of all examined cells had ability to bind and correct the loop structure. These data suggest that instability of the 12-nucleotide repeat in bovine T-lymphoma cells might be independent of deficiency of DNA loop repair function.
Collapse
Affiliation(s)
- T Shinagawa
- Department of Veterinary Public Health, Obihiro University of Agriculture and Veterinary Medicine, Japan
| | | | | | | |
Collapse
|
14
|
Abstract
Triplet repeat expansion diseases (TREDs) are characterized by the coincidence of disease manifestation with amplification of d(CAG. CTG), d(CGG.CCG) or d(GAA.TTC) repeats contained within specific genes. Amplification of triplet repeats continues in offspring of affected individuals, which generally results in progressive severity of the disease and/or an earlier age of onset, phenomena clinically referred to as 'anticipation'. Recent biophysical and biochemical studies reveal that five of the six [d(CGG)n, d(CCG)n, (CAG)n, d(CTG)n and d(GAA)n] complementary sequences that are associated with human disease form stable hairpin structures. Although the triplet repeat sequences d(GAC)n and d(GTC)n also form hairpins, repeats of the double-stranded forms of these sequences are conspicuously absent from DNA sequence databases and are not anticipated to be associated with human disease. With the exception of d(GAG)n and d(GTG)n, the remaining triplet repeat sequences are unlikely to form hairpin structures at physiological salt and temperature. The details of hairpin structures containing trinucleotide repeats are summarized and discussed with respect to potential mechanisms of triplet repeat expansion and d(CGG.CCG) n methylation/demethylation.
Collapse
Affiliation(s)
- M Mitas
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA.
| |
Collapse
|
15
|
Abstract
The major DNA excision repair pathways of base excision repair for endogenous DNA lesions and nucleotide excision repair for DNA damage inflicted by ultraviolet light have been reconstructed with purified mammalian proteins and details of these repair mechanisms are emerging. Similar data are becoming available with regard to mismatch repair for correction of replication errors. Deletion of individual DNA repair proteins in knockout mice provides information on the roles of such factors in vivo and recent three-dimensional structures of several repair enzymes explain their detailed modes of action.
Collapse
Affiliation(s)
- T Lindahl
- Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire, EN6 3LD, UK
| | | | | |
Collapse
|
16
|
Yamada M, O'Regan E, Brown R, Karran P. Selective recognition of a cisplatin-DNA adduct by human mismatch repair proteins. Nucleic Acids Res 1997; 25:491-6. [PMID: 9016586 PMCID: PMC146450 DOI: 10.1093/nar/25.3.491] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The antitumor agent cis-diamminedichloroplatinum(II) (cisplatin) introduces cytotoxic DNA damage predominantly in the form of intrastrand crosslinks between adjacent purines. Binding assays using a series of duplex oligonucleotides containing a single 1,2 diguanyl intrastrand crosslink indicate that human cell extracts contain factors that preferentially recognise this type of damage when the complementary strand contains T opposite the 3', and C opposite the 5'guanine in the crosslink. Under the conditions of the band-shift assay used, little binding is observed if the positions of the T and C are reversed in the complementary strand. Similarly, duplexes containing CC or TT opposite the crosslink are recognised relatively poorly. The binding activity is absent from extracts of the colorectal carcinoma cell lines LoVo and DLD-1 in which the hMutSalpha mismatch recognition complex is inactivated by mutation. Extensively purified human hMutSalpha exhibits the same substrate preference and binds to the mismatched platinated DNA at least as well as to an identical unplatinated duplex containing a single G.T mismatch. It is likely, therefore, that human mismatch repair may be triggered by 1,2 diguanyl intrastrand crosslinks that have undergone replicative bypass.
Collapse
Affiliation(s)
- M Yamada
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | | | |
Collapse
|
17
|
Ceccotti S, Aquilina G, Macpherson P, Yamada M, Karran P, Bignami M. Processing of O6-methylguanine by mismatch correction in human cell extracts. Curr Biol 1996; 6:1528-31. [PMID: 8939600 DOI: 10.1016/s0960-9822(96)00758-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human cell extracts perform an aberrant form of DNA synthesis on methylated plasmids [1], which represents processing of O6-methylguanine (O6-meG). Here, we show that extracts of colorectal carcinoma cells with defects in the mismatch repair proteins that normally correct replication errors do not carry out this synthesis. hMSH2-defective LoVo cell extracts (hMSH for human MutS homologue) performed O6-meG-dependent DNA synthesis only after the addition of the purified hMutS alpha mismatch recognition complex. Processing of O6-meG by mismatch correction requires PCNA and therefore probably DNA polymerase delta and/or epsilon. Mismatch repair-defective cells withstand O6-meG in their DNA [2], making them tolerant to methylating agents. Methylation-tolerant HeLaMR clones, with a mutator phenotype and a defect in either mismatch recognition or correction in vitro, also performed little O6-meG-dependent DNA synthesis. Assays of pairwise combinations of tolerant and colorectal carcinoma cell extracts identified hMLH1 as the missing mismatch repair function in a group of tolerant clones. The absence of processing by extracts of methylation-tolerant cells provides the first biochemical evidence that lethality of DNA O6-meG derives from its interaction with mismatch repair.
Collapse
Affiliation(s)
- S Ceccotti
- Istituto Superiore di Sanita, Rome, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- R Kolodner
- Charles A. Dana Division of Human Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|