1
|
Park BS, Yoon J, Lee JM, Cho SH, Choi Y, Cho BK, Oh MK. Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production. Microb Cell Fact 2025; 24:2. [PMID: 39754105 PMCID: PMC11699682 DOI: 10.1186/s12934-024-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production. RESULTS The engineering targets included the deletion of the lacZ gene to prevent lactose metabolism interference, introduction of α-1,2-fucosyltransferase derived from the non-pathogenic strain, and optimization of the GDP-L-fucose biosynthesis pathway through the overexpression of manA and manC. These changes, coupled with improvements in lactose uptake and utilization through random mutagenesis, led to a high 2'-FL yield of 28.6 g/L in fed-batch fermentation, highlighting the potential of our metabolic engineering strategies on P. megaterium. CONCLUSIONS The GRAS strain P. megaterium ATCC 14581 was successfully engineered to overproduce 2'-FL, a valuable human milk oligosaccharide, through a series of genetic modifications and metabolic pathway optimizations. This work underscores the feasibility of using GRAS strains for the production of oligosaccharides, paving the way for safer and more efficient methods in biotechnological applications. Future studies could explore additional genetic modifications and optimization of fermentation conditions of the strain to further enhance 2'-FL yield and scalability.
Collapse
Affiliation(s)
- Bu-Soo Park
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jihee Yoon
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun-Min Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoojeong Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.
| |
Collapse
|
2
|
Xu L, Wang W, Chong J, Shin JH, Xu J, Wang D. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications. Crit Rev Biochem Mol Biol 2015; 50:503-19. [PMID: 26392149 DOI: 10.3109/10409238.2015.1087960] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress toward understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation.
Collapse
Affiliation(s)
- Liang Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Wei Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jenny Chong
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Ji Hyun Shin
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Jun Xu
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| | - Dong Wang
- a Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego , La Jolla , CA , USA
| |
Collapse
|
3
|
Xu L, Da L, Plouffe SW, Chong J, Kool E, Wang D. Molecular basis of transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. DNA Repair (Amst) 2014; 19:71-83. [PMID: 24767259 DOI: 10.1016/j.dnarep.2014.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Maintaining high transcriptional fidelity is essential for life. Some DNA lesions lead to significant changes in transcriptional fidelity. In this review, we will summarize recent progress towards understanding the molecular basis of RNA polymerase II (Pol II) transcriptional fidelity and DNA lesion-induced transcriptional mutagenesis. In particular, we will focus on the three key checkpoint steps of controlling Pol II transcriptional fidelity: insertion (specific nucleotide selection and incorporation), extension (differentiation of RNA transcript extension of a matched over mismatched 3'-RNA terminus), and proofreading (preferential removal of misincorporated nucleotides from the 3'-RNA end). We will also discuss some novel insights into the molecular basis and chemical perspectives of controlling Pol II transcriptional fidelity through structural, computational, and chemical biology approaches.
Collapse
Affiliation(s)
- Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Linati Da
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Steven W Plouffe
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States
| | - Eric Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, United States.
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-0625, United States.
| |
Collapse
|
4
|
Martinez-Rucobo FW, Cramer P. Structural basis of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:9-19. [PMID: 22982352 DOI: 10.1016/j.bbagrm.2012.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/13/2023]
Abstract
For transcription elongation, all cellular RNA polymerases form a stable elongation complex (EC) with the DNA template and the RNA transcript. Since the millennium, a wealth of structural information and complementary functional studies provided a detailed three-dimensional picture of the EC and many of its functional states. Here we summarize these studies that elucidated EC structure and maintenance, nucleotide selection and addition, translocation, elongation inhibition, pausing and proofreading, backtracking, arrest and reactivation, processivity, DNA lesion-induced stalling, lesion bypass, and transcriptional mutagenesis. In the future, additional structural and functional studies of elongation factors that control the EC and their possible allosteric modes of action should result in a more complete understanding of the dynamic molecular mechanisms underlying transcription elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
5
|
Kassavetis GA, Prakash P, Shim E. The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening. J Biol Chem 2009; 285:2695-706. [PMID: 19940126 DOI: 10.1074/jbc.m109.074013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C53 and C37 subunits of RNA polymerase III (pol III) form a subassembly that is required for efficient termination; pol III lacking this subcomplex displays increased processivity of RNA chain elongation. We show that the C53/C37 subcomplex additionally plays a role in formation of the initiation-ready open promoter complex similar to that of the Brf1 N-terminal zinc ribbon domain. In the absence of C53 and C37, the transcription bubble fails to stably propagate to and beyond the transcriptional start site even when the DNA template is supercoiled. The C53/C37 subcomplex also stimulates the formation of an artificially assembled elongation complex from its component DNA and RNA strands. Protein-RNA and protein-DNA photochemical cross-linking analysis places a segment of C53 close to the RNA 3' end and transcribed DNA strand at the catalytic center of the pol III elongation complex. We discuss the implications of these findings for the mechanism of transcriptional termination by pol III and propose a structural as well as functional correspondence between the C53/C37 subcomplex and the RNA polymerase II initiation factor TFIIF.
Collapse
Affiliation(s)
- George A Kassavetis
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | | | |
Collapse
|
6
|
Abstract
New structural studies of RNA polymerase II (Pol II) complexes mark the beginning of a detailed mechanistic analysis of the eukaryotic mRNA transcription cycle. Crystallographic models of the complete Pol II, together with new biochemical and electron microscopic data, give insights into transcription initiation. The first X-ray analysis of a Pol II complex with a transcription factor, the elongation factor TFIIS, supports the idea that the polymerase has a 'tunable' active site that switches between mRNA synthesis and cleavage. The new studies also show that domains of transcription factors can enter polymerase openings, to modulate function during transcription.
Collapse
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany.
| |
Collapse
|
7
|
Barak O, Lazzaro MA, Lane WS, Speicher DW, Picketts DJ, Shiekhattar R. Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J 2004; 22:6089-100. [PMID: 14609955 PMCID: PMC275440 DOI: 10.1093/emboj/cdg582] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The modification of chromatin structure is an important regulatory mechanism for developmental gene expression. Differential expression of the mammalian ISWI genes, SNF2H and SNF2L, has suggested that they possess distinct developmental roles. Here we describe the purification and characterization of the first human SNF2L-containing complex. The subunit composition suggests that it represents the human ortholog of the Drosophila nucleosome-remodeling factor (NURF) complex. Human NURF (hNURF) is enriched in brain, and we demonstrate that it regulates human Engrailed, a homeodomain protein that regulates neuronal development in the mid-hindbrain. Furthermore, we show that hNURF potentiates neurite outgrowth in cell culture. Taken together, our data suggess a role for an ISWI complex in neuronal growth.
Collapse
Affiliation(s)
- Orr Barak
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
9
|
Abstract
Synthesis of eukaryotic mRNA by RNA polymerase II is an elaborate biochemical process that requires the concerted action of a large set of transcription factors. RNA polymerase II transcription proceeds through multiple stages designated preinitiation, initiation, and elongation. Historically, studies of the elongation stage of eukaryotic mRNA synthesis have lagged behind studies of the preinitiation and initiation stages; however, in recent years, efforts to elucidate the mechanisms governing elongation have led to the discovery of a diverse collection of transcription factors that directly regulate the activity of elongating RNA polymerase II. Moreover, these studies have revealed unanticipated roles for the RNA polymerase II elongation complex in such processes as DNA repair and recombination and the proper processing and nucleocytoplasmic transport of mRNA. Below we describe these recent advances, which highlight the important role of the RNA polymerase II elongation complex in regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Ali Shilatifard
- Edward A. Doisey Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
10
|
Zhang C, Yan H, Burton ZF. Combinatorial control of human RNA polymerase II (RNAP II) pausing and transcript cleavage by transcription factor IIF, hepatitis delta antigen, and stimulatory factor II. J Biol Chem 2003; 278:50101-11. [PMID: 14506279 DOI: 10.1074/jbc.m307590200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When RNA polymerase II (RNAP II) is forced to stall, elongation complexes (ECs) are observed to leave the active pathway and enter a paused state. Initially, ECs equilibrate between active and paused conformations, but with stalls of a long duration, ECs backtrack and become sensitive to transcript cleavage, which is stimulated by the EC rescue factor stimulatory factor II (TFIIS/SII). In this work, the rates for equilibration between the active and pausing pathways were estimated in the absence of an elongation factor, in the presence of hepatitis delta antigen (HDAg), and in the presence of transcription factor IIF (TFIIF), with or without addition of SII. Rates of equilibration between the active and paused states are not very different in the presence or absence of elongation factors HDAg and TFIIF. SII facilitates escape from stalled ECs by stimulating RNAP II backtracking and transcript cleavage and by increasing rates into and out of the paused EC. TFIIF and SII cooperate to merge the pausing and active pathways, a combinatorial effect not observed with HDAg and SII. In the presence of HDAg and SII, pausing is observed without stimulation of transcript cleavage, indicating that the EC can pause without backtracking beyond the pre-translocated state.
Collapse
Affiliation(s)
- Chunfen Zhang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
11
|
Kettenberger H, Armache KJ, Cramer P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 2003; 114:347-57. [PMID: 12914699 DOI: 10.1016/s0092-8674(03)00598-1] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transcription elongation factor TFIIS induces mRNA cleavage by enhancing the intrinsic nuclease activity of RNA polymerase (Pol) II. We have diffused TFIIS into Pol II crystals and derived a model of the Pol II-TFIIS complex from X-ray diffraction data to 3.8 A resolution. TFIIS extends from the polymerase surface via a pore to the internal active site, spanning a distance of 100 A. Two essential and invariant acidic residues in a TFIIS loop complement the Pol II active site and could position a metal ion and a water molecule for hydrolytic RNA cleavage. TFIIS also induces extensive structural changes in Pol II that would realign nucleic acids in the active center. Our results support the idea that Pol II contains a single tunable active site for RNA polymerization and cleavage, in contrast to DNA polymerases with two separate active sites for DNA polymerization and cleavage.
Collapse
Affiliation(s)
- Hubert Kettenberger
- Institute of Biochemistry, Gene Center, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | |
Collapse
|
12
|
Weilbaecher RG, Awrey DE, Edwards AM, Kane CM. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J Biol Chem 2003; 278:24189-99. [PMID: 12692127 DOI: 10.1074/jbc.m211197200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript elongation can be interrupted by a variety of obstacles, including certain DNA sequences, DNA-binding proteins, chromatin, and DNA lesions. Bypass of many of these impediments is facilitated by elongation factor TFIIS through a mechanism that involves cleavage of the nascent transcript by the RNA polymerase II/TFIIS elongation complex. Highly purified yeast RNA polymerase II is able to perform transcript hydrolysis in the absence of TFIIS. The "intrinsic" cleavage activity is greatly stimulated at mildly basic pH and requires divalent cations. Both arrested and stalled complexes can carry out the intrinsic cleavage reaction, although not all stalled complexes are equally efficient at this reaction. Arrested complexes in which the nascent transcript was cleaved in the absence of TFIIS were reactivated to readthrough blocks to elongation. Thus, cleavage of the nascent transcript is sufficient for reactivating some arrested complexes. Small RNA products released following transcript cleavage in stalled ternary complexes differ depending upon whether the cleavage has been induced by TFIIS or has occurred in mildly alkaline conditions. In contrast, both intrinsic and TFIIS-induced small RNA cleavage products are very similar when produced from an arrested ternary complex. Although alpha-amanitin interferes with the transcript cleavage stimulated by TFIIS, it has little effect on the intrinsic cleavage reaction. A mutant RNA polymerase previously shown to be refractory to TFIIS-induced transcript cleavage is essentially identical to the wild type polymerase in all tested aspects of intrinsic cleavage.
Collapse
Affiliation(s)
- Rodney G Weilbaecher
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
13
|
Gnatt A. Elongation by RNA polymerase II: structure-function relationship. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:175-90. [PMID: 12213651 DOI: 10.1016/s0167-4781(02)00451-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase II is the eukaryotic enzyme that transcribes all the mRNA in the cell. Complex mechanisms of transcription and its regulation underlie basic functions including differentiation and morphogenesis. Recent evidence indicates the process of RNA chain elongation as a key step in transcription control. Elongation was therefore expected and found to be linked to human diseases. For these reasons, major efforts in determining the structures of RNA polymerases from yeast and bacteria, at rest and as active enzymes, were undertaken. These studies have revealed much information regarding the processes involved in transcription. Eukaryotic RNA polymerases and their homologous bacterial counterparts are flexible enzymes with domains that separate DNA and RNA, prevent the escape of nucleic acids during transcription, allow for extended pausing or "arrest" during elongation, allow for translocation of the DNA and more. Structural studies of RNA polymerases are described below within the context of the process of transcription elongation, its regulation and function.
Collapse
Affiliation(s)
- Averell Gnatt
- Department of Pharmacology and Experimental Therapeutics and Department of Pathology, University of Maryland Baltimore, 655 West Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
15
|
Sijbrandi R, Fiedler U, Timmers HTM. RNA polymerase II complexes in the very early phase of transcription are not susceptible to TFIIS-induced exonucleolytic cleavage. Nucleic Acids Res 2002; 30:2290-8. [PMID: 12034815 PMCID: PMC117193 DOI: 10.1093/nar/30.11.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 04/03/2002] [Accepted: 04/03/2002] [Indexed: 11/14/2022] Open
Abstract
TFIIS is a transcription elongation factor for RNA polymerase II (pol II), which can suppress ribonucleotide misincorporation. We reconstituted transcription complexes in a highly purified pol II system on adenovirus Major-Late promoter constructs. We noted that these complexes have a high propensity for read-through upon GTP omission. Read-through occurred during the early stages at all registers analyzed. Addition of TFIIS reversed read-through of productive elongation complexes, which indicated that it was due to misincorporation. However, before register 13 transcription complexes were insensitive to TFIIS. These findings are discussed with respect to the structural models for pol II and we propose that TFIIS action is linked to the RNA:DNA hybrid.
Collapse
Affiliation(s)
- Robert Sijbrandi
- Laboratory for Physiological Chemistry, UMCU, Stratenum, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
16
|
Abstract
Many proteins involved in eukaryotic transcription are similar in function and in sequence between organisms. Despite the sequence similarities, there are many factors that do not function across species. For example, transcript elongation factor TFIIS is highly conserved among eukaryotes, and yet the TFIIS protein from Saccharomyces cerevisiae cannot function with mammalian RNA polymerase II and vice versa. To determine the reason for this species specificity, chimeras were constructed linking three structurally independent regions of the TFIIS proteins from yeast and human cells. Two independently folding domains, II and III, have been examined previously using NMR (). Yeast domain II alone is able to bind yeast RNA polymerase II with the same affinity as the full-length TFIIS protein, and this domain was expected to confer the species selectivity. Domain III has previously been shown to be readily exchanged between mammalian and yeast factors. However, the results presented here indicate that domain II is insufficient to confer species selectivity, and a primary determinant lies in a 30-amino acid highly conserved linker region connecting domain II with domain III. These 30 amino acids may physically orient domains II and III to support functional interactions between TFIIS and RNA polymerase II.
Collapse
Affiliation(s)
- N B Shimasaki
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
17
|
Kulish D, Lee J, Lomakin I, Nowicka B, Das A, Darst S, Normet K, Borukhov S. The functional role of basic patch, a structural element of Escherichia coli transcript cleavage factors GreA and GreB. J Biol Chem 2000; 275:12789-98. [PMID: 10777576 DOI: 10.1074/jbc.275.17.12789] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcript cleavage factors GreA and GreB of Escherichia coli are involved in the regulation of transcription elongation. The surface charge distribution analysis of their three-dimensional structures revealed that the N-terminal domains of GreA and GreB contain a small and large basic "patch," respectively. To elucidate the functional role of basic patch, mutant Gre proteins were engineered in which the size and charge distribution of basic patch were modified and characterized biochemically. We found that Gre mutants lacking basic patch or carrying basic patch of decreased size bind to RNA polymerase and induce transcript cleavage reaction in minimally backtracked ternary elongation complex (TEC) with the same efficiency as the wild type factors. However, they exhibit substantially lower readthrough and cleavage activities toward extensively backtracked and arrested TECs and display decreased efficiency of photocross-linking to the RNA 3'-terminus. Unlike wild type factors, basic patch-less Gre mutants are unable to complement the thermosensitive phenotype of GreA(-):GreB(-) E. coli strain. The large basic patch is required but not sufficient for the induction of GreB-type cleavage reaction and for the cleavage of arrested TECs. Our results demonstrate that the basic patch residues are not directly involved in the induction of transcript cleavage reaction and suggest that the primary role of basic patch is to anchor the nascent RNA in TEC. These interactions are essential for the readthrough and antiarrest activities of Gre factors and, apparently, for their in vivo functions.
Collapse
Affiliation(s)
- D Kulish
- Department of Microbiology and Immunology, State University of New York, Health Science Center at Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cramer P, Bushnell DA, Fu J, Gnatt AL, Maier-Davis B, Thompson NE, Burgess RR, Edwards AM, David PR, Kornberg RD. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 2000; 288:640-9. [PMID: 10784442 DOI: 10.1126/science.288.5466.640] [Citation(s) in RCA: 429] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A backbone model of a 10-subunit yeast RNA polymerase II has been derived from x-ray diffraction data extending to 3 angstroms resolution. All 10 subunits exhibit a high degree of identity with the corresponding human proteins, and 9 of the 10 subunits are conserved among the three eukaryotic RNA polymerases I, II, and III. Notable features of the model include a pair of jaws, formed by subunits Rpb1, Rpb5, and Rpb9, that appear to grip DNA downstream of the active center. A clamp on the DNA nearer the active center, formed by Rpb1, Rpb2, and Rpb6, may be locked in the closed position by RNA, accounting for the great stability of transcribing complexes. A pore in the protein complex beneath the active center may allow entry of substrates for polymerization and exit of the transcript during proofreading and passage through pause sites in the DNA.
Collapse
MESH Headings
- Amino Acid Motifs
- Binding Sites
- Catalytic Domain
- Crystallization
- Crystallography, X-Ray
- DNA, Fungal/chemistry
- DNA, Fungal/metabolism
- Enzyme Stability
- Escherichia coli/enzymology
- Humans
- Models, Molecular
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- RNA Polymerase II/chemistry
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- Thermus/enzymology
- Transcription Factors/chemistry
- Transcription Factors/metabolism
- Transcription Factors, General
- Transcription, Genetic
- Transcriptional Elongation Factors
Collapse
Affiliation(s)
- P Cramer
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
RNA chain elongation by RNA polymerase II (pol II) is a complex and regulated process which is coordinated with capping, splicing, and polyadenylation of the primary transcript. Numerous elongation factors that enable pol II to transcribe faster and/or more efficiently have been purified. SII is one such factor. It helps pol II bypass specific blocks to elongation that are encountered during transcript elongation. SII was first identified biochemically on the basis of its ability to enable pol II to synthesize long transcripts. ((1)) Both the high resolution structure of SII and the details of its novel mechanism of action have been refined through mutagenesis and sophisticated in vitro assays. SII engages transcribing pol II and assists it in bypassing blocks to elongation by stimulating a cryptic, nascent RNA cleavage activity intrinsic to RNA polymerase. The nuclease activity can also result in removal of misincorporated bases from RNA. Molecular genetic experiments in yeast suggest that SII is generally involved in mRNA synthesis in vivo and that it is one type of a growing collection of elongation factors that regulate pol II. In vertebrates, a family of related SII genes has been identified; some of its members are expressed in a tissue-specific manner. The principal challenge now is to understand the isoform-specific functional differences and the biology of regulation exerted by the SII family of proteins on target genes, particularly in multicellular organisms.
Collapse
Affiliation(s)
- Megan Wind
- Department of Biochemistry and Graduate Program in Genetics & Molecular Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Reines
- Department of Biochemistry and Graduate Program in Genetics & Molecular Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
20
|
Awrey DE, Shimasaki N, Koth C, Weilbaecher R, Olmsted V, Kazanis S, Shan X, Arellano J, Arrowsmith CH, Kane CM, Edwards AM. Yeast transcript elongation factor (TFIIS), structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J Biol Chem 1998; 273:22595-605. [PMID: 9712888 DOI: 10.1074/jbc.273.35.22595] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptionally active fragment of the yeast RNA polymerase II transcription elongation factor, TFIIS, comprises a three-helix bundle and a zinc ribbon motif joined by a linker region. We have probed the function of this fragment of TFIIS using structure-guided mutagenesis. The helix bundle domain binds RNA polymerase II with the same affinity as does the full-length TFIIS, and this interaction is mediated by a basic patch on the outer face of the third helix. TFIIS mutants that were unable to bind RNA polymerase II were inactive for transcription activity, confirming the central role of polymerase binding in the TFIIS mechanism of action. The linker and zinc ribbon regions play roles in promoting cleavage of the nascent transcript and read-through past the block to elongation. Mutation of three aromatic residues in the zinc ribbon domain (Phe269, Phe296, and Phe308) impaired both transcript cleavage and read-through. Mutations introduced in the linker region between residues 240 and 245 and between 250 and 255 also severely impaired both transcript cleavage and read-through activities. Our analysis suggests that the linker region of TFIIS probably adopts a critical structure in the context of the elongation complex.
Collapse
Affiliation(s)
- D E Awrey
- C.H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I. Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J 1998; 17:2855-64. [PMID: 9582279 PMCID: PMC1170626 DOI: 10.1093/emboj/17.10.2855] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Termination of transcription by RNA polymerase I (Pol I) is a two-step process which involves pausing of elongating transcription complexes and release of both pre-rRNA and Pol I from the template. In mouse, pausing of elongation complexes is mediated by the transcription termination factor TTF-I bound to the 'Sal box' terminator downstream of the rDNA transcription unit. Dissociation of paused ternary complexes requires a cellular factor, termed PTRF for Pol I and transcript release factor. Here we describe the molecular cloning of a cDNA corresponding to murine PTRF. Recombinant PTRF is capable of dissociating ternary Pol I transcription complexes in vitro as revealed by release of both Pol I and nascent transcripts from the template. Consistent with its function in transcription termination, PTRF interacts with both TTF-I and Pol I. Moreover, we demonstrate specific binding of PTRF to transcripts containing the 3' end of pre-rRNA. Substitution of 3'-terminal uridylates by guanine residues abolishes PTRF binding and impairs release activity. The results reveal a network of protein-protein and protein-nucleic acid interactions that governs termination of Pol I transcription.
Collapse
Affiliation(s)
- P Jansa
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
Koulich D, Nikiforov V, Borukhov S. Distinct functions of N and C-terminal domains of GreA, an Escherichia coli transcript cleavage factor. J Mol Biol 1998; 276:379-89. [PMID: 9512710 DOI: 10.1006/jmbi.1997.1545] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prokaryotic transcription factors GreA and GreB are involved in the regulation of transcript elongation by RNA polymerase (RNAP). Their known activities include suppression of transcription arrest, enhancement of transcription fidelity, and facilitation of the transition from abortive initiation to productive elongation. Presumably, Gre proteins exert their functions by altering the conformation of the enzyme in ternary elongation complexes (TEC) and inducing the cleavage of nascent RNA. GreA and GreB have a similar structural organization and consist of two domains: a C-terminal globular and an extended N-terminal coiled-coil domain. To investigate the functional roles of Gre domains, we expressed separately the N and C-terminal domains of GreA (NTD and CTD, respectively) and characterized their activities with in vitro assays. We demonstrate that the NTD possesses the residual transcript cleavage activity of the wild-type GreA. The CTD does not display any nucleolytic activity; however, it substantially increases the cleavage activity of the NTD. In contrast to NTD, the CTD competes with GreA and GreB for binding to RNAP and inhibits their transcript cleavage and antiarrest activities. Both domains individually and together inhibit transcription elongation. From these results we conclude that the NTD is responsible for the GreA induction of nucleolytic activity while the CTD determines the binding of GreA to RNAP. Both domains are required for full functional activity of GreA.
Collapse
Affiliation(s)
- D Koulich
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn 11203, USA
| | | | | |
Collapse
|
23
|
Favre A, Saintomé C, Fourrey JL, Clivio P, Laugâa P. Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1998; 42:109-24. [PMID: 9540218 DOI: 10.1016/s1011-1344(97)00116-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past few years thionucleobases have been extensively used as intrinsic photolabels to probe the structure in solution of folded RNA molecules and to identify contacts within nucleic acids and/or between nucleic acids and proteins, in complex nucleoprotein assemblies. These thio residues such as 4-thiouracil found in E. coli tRNA and its non-natural congeners 4-thiothymine, 6-thioguanine and 6-mercaptopurine absorb light at wavelengths longer than 320 nm and, thus, can be selectively photoactivated. Synthetic or enzymatic procedures have been established, allowing the random or site-specific incorporation of thionucleotide(s) within a RNA (DNA) chain which, in most cases, retains unaltered structural and biological properties. Owing to the high photoreactivity of their triplet state (intersystem yield close to unity), 4-thiouracil and 4-thiothymine derivatives exhibit a high photocrosslinking ability towards pyrimidines (particularly thymine) but also purines. From the nature of the photoproducts obtained in base or nucleotide mixtures and in dinucleotides, the main photochemical pathway was identified as a (2 + 2) photoaddition of the excited C-S bond onto the 5, 6 double bond of pyrimidines yielding thietane intermediates whose structure could be characterized. Depending on the mutual orientation of these bonds in the thietanes, their subsequent dark rearrangement yielded, respectively, either the 5-4 or 6-4 bipyrimidine photoadduct. A similar mechanism appears to be involved in the formation of the unique photoadduct formed between 4-thiothymidine and adenosine. The higher reactivity of thymine derived acceptors can be explained by an additional pathway which involves hydrogen abstraction from the thymine methyl group, followed by radical recombination, leading to methylene linked bipyrimidines. The high photocrosslinking potential of thionucleosides inserted in nucleic acid chains has been used to probe RNA-RNA contacts within the ribosome permitting, in particular, the elucidation of the path of mRNA throughout the small ribosomal subunit. Functional interactions between the mRNA spliced sites and U RNAs could be detected within the spliceosome. Analysis of the photocrosslinks obtained within small endonucleolytic ribozymes in solution led to a tertiary folded pseudo-knot structure for the HDV ribozyme and allowed the construction of a Y form of a hammerhead ribozyme, which revealed to be in close agreement with the structure observed in crystals. Thionucleosides incorporated in nucleic acids crosslink efficiently amino-acid residues of proteins in contact with them. Despite the fact that little is known about the nature of the photoadducts formed, this approach has been extensively used to identify protein components interacting at a defined nucleic acid site and applied to various systems (replisome, spliceosome, transcription complexes and ribosomes).
Collapse
Affiliation(s)
- A Favre
- Institut Jacques Monod, CNRS-Université Paris VII, France
| | | | | | | | | |
Collapse
|
24
|
Abstract
A summary of previously defined phenotypes in the yeast Saccharomyces cerevisiae is presented. The purpose of this review is to provide a compendium of phenotypes that can be readily screened to identify pleiotropic phenotypes associated with primary or suppressor mutations. Many of these phenotypes provide a convenient alternative to the primary phenotype for following a gene, or as a marker for cloning a gene by genetic complementation. In many cases a particular phenotype or set of phenotypes can suggest a function for the product of the mutated gene.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| |
Collapse
|
25
|
Reines D, Dvir A, Conaway JW, Conaway RC. Assays for investigating transcription by RNA polymerase II in vitro. Methods 1997; 12:192-202. [PMID: 9237163 DOI: 10.1006/meth.1997.0471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the availability of the general initiation factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH), it is now possible to investigate aspects of the mechanism of eukaryotic messenger RNA synthesis in purified, reconstituted RNA polymerase II transcription systems. Rapid progress in these investigations has been spurred by use of a growing number of assays that are proving valuable not only for dissecting the molecular mechanisms of transcription initiation and elongation by RNA polymerase II, but also for identifying and purifying novel transcription factors that regulate polymerase activity. Here we describe a variety of these assays and discuss their utility in the analysis of transcription by RNA polymerase II.
Collapse
Affiliation(s)
- D Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|