1
|
Wesener MC, Weiler SME, Bissinger M, Klessinger TF, Rose F, Merker S, Luzarowski M, Ruppert T, Helm B, Klingmüller U, Schirmacher P, Breuhahn K. CRKL Enhances YAP Signaling through Binding and JNK/JUN Pathway Activation in Liver Cancer. Int J Mol Sci 2024; 25:8549. [PMID: 39126118 PMCID: PMC11312940 DOI: 10.3390/ijms25158549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
The Hippo pathway transducers yes-associated protein (YAP) and WW-domain containing transcription regulator 1 (WWTR1/TAZ) are key regulators of liver tumorigenesis, promoting tumor formation and progression. Although the first inhibitors are in clinical trials, targeting the relevant upstream regulators of YAP/TAZ activity could prove equally beneficial. To identify regulators of YAP/TAZ activity in hepatocarcinoma (HCC) cells, we carried out a proximity labelling approach (BioID) coupled with mass spectrometry. We verified CRK-like proto-oncogene adaptor protein (CRKL) as a new YAP-exclusive interaction partner. CRKL is highly expressed in HCC patients, and its expression is associated with YAP activity as well as poor survival prognosis. In vitro experiments demonstrated CRKL-dependent cell survival and the loss of YAP binding induced through actin disruption. Moreover, we delineated the activation of the JNK/JUN pathway by CRKL, which promoted YAP transcription. Our data illustrate that CRKL not only promoted YAP activity through its binding but also through the induction of YAP transcription by JNK/JUN activation. This emphasizes the potential use of targeting the JNK/JUN pathway to suppress YAP expression in HCC patients.
Collapse
Affiliation(s)
- Marie C. Wesener
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sofia M. E. Weiler
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tobias F. Klessinger
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sabine Merker
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Marcin Luzarowski
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, 69120 Heidelberg, Germany (M.L.)
| | - Barbara Helm
- DKFZ, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Ursula Klingmüller
- DKFZ, German Cancer Research Center Heidelberg, 69120 Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Pagano L, Simonetti L, Pennacchietti V, Toto A, Malagrinò F, Ivarsson Y, Gianni S. Exploring the short linear motif-mediated protein-protein interactions of CrkL through ProP-PD. Biochem Biophys Res Commun 2024; 703:149658. [PMID: 38387229 DOI: 10.1016/j.bbrc.2024.149658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Adaptor proteins play a pivotal role in cellular signaling mediating a multitude of protein-protein interaction critical for cellular homeostasis. Dysregulation of these interactions has been linked to the onset of various cancer pathologies and exploited by viral pathogens during host cell takeover. CrkL is an adaptor protein composed of an N-terminal SH2 domain followed by two SH3 domains that mediate interactions with diverse partners through the recognition of specific binding motifs. In this study, we employed proteomic peptide-phage display (ProP-PD) to comprehensively explore the short linear motif (SLiM)-based interactions of CrkL. Furthermore, we scrutinized how the binding affinity for selected peptides was influenced in the context of the full-length CrkL versus the isolated N-SH3 domain. Importantly, our results provided insights into SLiM-binding sites within previously reported interactors, as well as revealing novel human and viral ligands, expanding our understanding of the interactions mediated by CrkL and highlighting the significance of SLiM-based interactions in mediating adaptor protein function, with implications for cancer and viral pathologies.
Collapse
Affiliation(s)
- L Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - L Simonetti
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden
| | - V Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - A Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - F Malagrinò
- Dipartimento di Medicina clinica, sanità pubblica, scienze della vita e dell'ambiente, Università dell'Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Coppito, 67010, Italy
| | - Y Ivarsson
- Department of Chemistry - BMC, Husargatan 3, 751 23, Uppsala, Sweden.
| | - S Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Universita di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185, Rome, Italy.
| |
Collapse
|
3
|
Su J, Fu C, Wang S, Chen X, Wang R, Shi H, Li J, Wang X. Screening and Activity Evaluation of Novel BCR-ABL/T315I Tyrosine Kinase Inhibitors. Curr Med Chem 2024; 31:2872-2894. [PMID: 37211852 DOI: 10.2174/0929867330666230519105900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Chronic myeloid leukemia (CML) is a kind of malignant tumor formed by the clonal proliferation of bone marrow hematopoietic stem cells. BCR-ABL fusion protein, found in more than 90% of patients, is a vital target for discovering anti- CML drugs. Up to date, imatinib is the first BCR-ABL tyrosine kinase inhibitor (TKI) approved by the FDA for treating CML. However, the drug resistance problems appeared for many reasons, especially the T135I mutation, a "gatekeeper" of BCR-ABL. Currently, there is no long-term effective and low side effect drug in clinical. METHODS This study intends to find novel TKIs targeting BCR-ABL with high inhibitory activity against T315I mutant protein by combining artificial intelligence technology and cell growth curve, cytotoxicity, flow cytometry and Western blot experiments. RESULTS The obtained compound was found to kill leukemia cells, which had good inhibitory efficacy in BaF3/T315I cells. Compound no 4 could induce cell cycle arrest, cause autophagy and apoptosis, and inhibit the phosphorylation of BCR-ABL tyrosine kinase, STAT5 and Crkl proteins. CONCLUSION The results indicated that the screened compound could be used as a lead compound for further research to discover ideal chronic myeloid leukemia therapeutic drugs.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Humans
- Apoptosis/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Cell Line, Tumor
- Mice
- Animals
- Autophagy/drug effects
- STAT5 Transcription Factor/metabolism
- STAT5 Transcription Factor/antagonists & inhibitors
- Cell Cycle Checkpoints/drug effects
- Tyrosine Kinase Inhibitors
- Adaptor Proteins, Signal Transducing
Collapse
Affiliation(s)
- Jie Su
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Chenggong Fu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Shuo Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Xuelian Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Runan Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Huaihuai Shi
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| |
Collapse
|
4
|
Liu Y, Tang W, Yao F. USP53 Exerts Tumor-Promoting Effects in Triple-Negative Breast Cancer by Deubiquitinating CRKL. Cancers (Basel) 2023; 15:5033. [PMID: 37894400 PMCID: PMC10605207 DOI: 10.3390/cancers15205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) ranks in the top five malignant tumors in terms of morbidity and mortality rates. Among BC subtypes, TNBC has a high recurrence rate and metastasis rate and the worst prognosis. However, the exact mechanism by which TNBC develops is unclear. Here, we show that the deubiquitinase USP53 contributes to tumor growth and metastasis in TNBC. USP53 is overexpressed in TNBC, and this phenotype is linked to a poor prognosis. Functionally, USP53 promotes TNBC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). More importantly, USP53 decreases the chemosensitivity of BC cells by enhancing v-crk sarcoma virus CT10 oncogene homologue (avian)-like (CRKL) expression. Mechanistically, USP53 directly binds CRKL to stabilize and deubiquitinate it, thereby preventing CRKL degradation. Overall, we discovered that USP53 deubiquitinates CRKL, encourages tumor development and metastasis, and reduces chemosensitivity in TNBC. These findings imply that USP53 might represent a new therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Wei Tang
- Department of Pediartrics, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| |
Collapse
|
5
|
Wang J, Liang Y, Qin Y, Jiang G, Peng Y, Feng W. circCRKL, a circRNA derived from CRKL, regulates BCR-ABL via sponging miR-877-5p to promote chronic myeloid leukemia cell proliferation. J Transl Med 2022; 20:395. [PMID: 36058922 PMCID: PMC9440867 DOI: 10.1186/s12967-022-03586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background The BCR-ABL fusion protein is the key factor that results in the occurrence of chronic myeloid leukemia (CML). Imatinib (IM) is a targeted inhibitor of BCR-ABL to achieve complete remission. However, remission failure occurs due to acquired resistance caused by secondary BCR-ABL mutations, underlining the need for novel BCR-ABL-targeting strategies. Circular RNAs (circRNAs) derived from tumor-related genes have been revealed as possible therapeutic targets for relevant cancers in recent investigations. In CML, the roles of this kind of circRNA are yet obscure. Methods Firstly, RT-qPCR was used for determining circCRKL expression level in cell lines and clinical samples, RNase R and Actinomycin D were employed to verify the stability of circCRKL. Then shRNAs were designed to specifically knockdown circCRKL. The function of circCRKL in vitro was investigated using CCK-8, colony formation assay, and flow cytometry, while a CML mouse model was constructed to explore the function in vivo. Finally, a dual-luciferase reporter assay, RNA pull-down, RNA immunoprecipitation, and rescue experiments were conducted to investigate the mechanism of circCRKL functioning. Results Here, we determined circCRKL, which derives from CML-relevant gene CRKL, is over-expressed in BCR-ABL+ cells. Then we noticed knocking down circCRKL using shRNA lentivirus dampens the proliferation of BCR-ABL+ cells both in vitro and in vivo, and augments susceptibility of resistant cells to IM. Intriguingly, we observed that circCRKL has a considerable impact on the expression level of BCR-ABL. Mechanistically, circCRKL could behave like a decoy for miR-877-5p to enhance the BCR-ABL level, allowing BCR-ABL+ cells to maintain viability. Conclusions Overall, the current study uncovers that circCRKL is specifically expressed and regulates BCR-ABL expression level via decoying miR-877-5p in BCR-ABL+ cells, highlighting that targeting circCRKL along with imatinib treatment could be utilized as a potential therapeutic strategy for CML patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03586-2.
Collapse
Affiliation(s)
- Jianming Wang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yang Liang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuefeng Qin
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Guoyun Jiang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuhang Peng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
6
|
Lozic M, Minarik L, Racetin A, Filipovic N, Saraga Babic M, Vukojevic K. CRKL, AIFM3, AIF, BCL2, and UBASH3A during Human Kidney Development. Int J Mol Sci 2021; 22:ijms22179183. [PMID: 34502088 PMCID: PMC8431184 DOI: 10.3390/ijms22179183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to investigate the spatio-temporal expression of possible CAKUT candidate genes CRKL, AIFM3, and UBASH3A, as well as AIF and BCL2 during human kidney development. Human fetal kidney tissue was stained with antibodies and analyzed by fluorescence microscopy and RT-PCR. Quantification of positive cells was assessed by calculation of area percentage and counting cells in nephron structures. Results showed statistically significant differences in the temporal expression patterns of the examined markers, depending on the investigated developmental stage. Limited but strong expression of CRKL was seen in developing kidneys, with increasing expression up to the period where the majority of nephrons are formed. Results also lead us to conclude that AIFM3 and AIF are important for promoting cell survival, but only AIFM3 is considered a CAKUT candidate gene due to the lack of AIF in nephron developmental structures. Our findings imply great importance of AIFM3 in energy production in nephrogenesis and tubular maturation. UBASH3A raw scores showed greater immunoreactivity in developing structures than mature ones which would point to a meaningful role in nephrogenesis. The fact that mRNA and proteins of CRKL, UBASH3A, and AIFM3 were detected in all phases of kidney development implies their role as renal development control genes.
Collapse
Affiliation(s)
- Mirela Lozic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Luka Minarik
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipovic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Mirna Saraga Babic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, Šoltanska 2, 21 000 Split, Croatia; (M.L.); (L.M.); (A.R.); (N.F.); (M.S.B.)
- Department of Medical Genetics, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina
- Correspondence: ; Tel.: +385-21-557-807; Fax: +385-21-557-811
| |
Collapse
|
7
|
Park T. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Cells 2021; 10:cells10040739. [PMID: 33801580 PMCID: PMC8065463 DOI: 10.3390/cells10040739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.
Collapse
Affiliation(s)
- Taeju Park
- Children's Mercy Research Institute, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
8
|
Huang TT, Wang X, Qiang SJ, Zhao ZN, Wu ZX, Ashby CR, Li JZ, Chen ZS. The Discovery of Novel BCR-ABL Tyrosine Kinase Inhibitors Using a Pharmacophore Modeling and Virtual Screening Approach. Front Cell Dev Biol 2021; 9:649434. [PMID: 33748144 PMCID: PMC7969810 DOI: 10.3389/fcell.2021.649434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic myelogenous leukemia (CML) typically results from a reciprocal translocation between chromosomes 9 and 22 to produce the bcr-abl oncogene that when translated, yields the p210 BCR-ABL protein in more than 90% of all CML patients. This protein has constitutive tyrosine kinase activity that activates numerous downstream pathways that ultimately produces uncontrolled myeloid proliferation. Although the use of the BCR-ABL tyrosine kinase inhibitors (TKIs), such as imatinib, nilotinib, dasatinib, bosutinib, and ponatinib have increased the overall survival of CML patients, their use is limited by drug resistance and severe adverse effects. Therefore, there is the need to develop novel compounds that can overcome these problems that limit the use of these drugs. Therefore, in this study, we sought to find novel compounds using Hypogen and Hiphip pharmacophore models based on the structures of clinically approved BCR-ABL TKIs. We also used optimal pharmacophore models such as three-dimensional queries to screen the ZINC database to search for potential BCR-ABL inhibitors. The hit compounds were further screened using Lipinski’s rule of five, ADMET and molecular docking, and the efficacy of the hit compounds was evaluated. Our in vitro results indicated that compound ZINC21710815 significantly inhibited the proliferation of K562, BaF3/WT, and BaF3/T315I leukemia cells by inducing cell cycle arrest. The compound ZINC21710815 decreased the expression of p-BCR-ABL, STAT5, and Crkl and produced apoptosis and autophagy. Our results suggest that ZINC21710815 may be a potential BCR-ABL inhibitor that should undergo in vivo evaluation.
Collapse
Affiliation(s)
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Zhen-Nan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhuo-Xun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jia-Zhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
9
|
Braun TP, Eide CA, Druker BJ. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell 2020; 37:530-542. [PMID: 32289275 PMCID: PMC7722523 DOI: 10.1016/j.ccell.2020.03.006] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Chronic myeloid leukemia (CML), caused by constitutively active BCR-ABL1 fusion tyrosine kinase, has served as a paradigm for successful application of molecularly targeted cancer therapy. The development of the tyrosine kinase inhibitor (TKI) imatinib allows patients with CML to experience near-normal life expectancy. Specific point mutations that decrease drug binding affinity can produce TKI resistance, and second- and third-generation TKIs largely mitigate this problem. Some patients develop TKI resistance without known resistance mutations, with significant heterogeneity in the underlying mechanism, but this is relatively uncommon, with the majority of patients with chronic phase CML achieving long-term disease control. In contrast, responses to TKI treatment are short lived in advanced phases of the disease or in BCR-ABL1-positive acute lymphoblastic leukemia, with relapse driven by both BCR-ABL1 kinase-dependent and -independent mechanisms. Additionally, the frontline CML treatment with second-generation TKIs produces deeper molecular responses, driving disease burden below the detection limit for a greater number of patients. For patients with deep molecular responses, up to half have been able to discontinue therapy. Current efforts are focused on identifying therapeutic strategies to drive deeper molecular responses, enabling more patients to attempt TKI discontinuation.
Collapse
MESH Headings
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Theodore P Braun
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA.
| | - Christopher A Eide
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA
| | - Brian J Druker
- Division of Hematology/Medical Oncology, Knight Cancer Insitute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Bidirectional interaction of lncRNA AFAP1-AS1 and CRKL accelerates the proliferative and metastatic abilities of hepatocarcinoma cells. J Adv Res 2020; 24:121-130. [PMID: 32280542 PMCID: PMC7139140 DOI: 10.1016/j.jare.2020.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long non-coding RNA transcribed from the antisense strand of protein coding gene AFAP1, has attracted attention in cancer research. Despite, its biological function and regulatory mechanism in hepatocellular carcinoma still unknown. The present study revealed AFAP1-AS1 mediated hepatocarcinoma progression through targeting CRKL. The bidirectional interaction of AFAP1-AS1 and oncogenic protein CRKL, and the deregulation of AFAP1-AS1 effects on Ras, MEK and c-Jun activities were investigated in depth. AFAP1-AS1 was upregulated in surgical tumorous tissues from hepatocarcinoma patients compared with the paired paracancerous non-tumor liver tissues, and in hepatocarcinoma Huh7, HCCLM3 and HepG2 cell lines compared with LO2, a normal liver cell line. AFAP1-AS1 knockdown noticeably suppressed the proliferative, migratory and invasive properties, and the epithelial-mesenchymal transition (EMT) process of HepG2 and HCCLM3 through upregulating E-cadherin and downregulating N-cadherin and vimentin. CRKL knockdown reduced AFAP1-AS1 expression levels in HepG2 and HCCLM3 cells. AFAP1-AS1 suppression impaired CRKL expression in HepG2 and HCCLM3. AFAP1-AS1 level change was positively correlated with the expression level changes of Ras, MEK and c-Jun in mediating the invasiveness of hepatocarcinoma cells. Current work demonstrated AFAP1-AS1 to be an applicable progression indicator of hepatocarcinoma. AFAP1-AS1 probably promotes the proliferation, EMT progression and metastasis of hepatocarcinoma cells via CRKL mediated Ras/MEK/c-Jun and cadherin/vimentin signaling pathways. AFAP1-AS1-CRKL bidirectional feedback signaling is worthy of further study on the monitoring, diagnosis and treatment of cancers.
Collapse
|
11
|
Spracklen AJ, Thornton-Kolbe EM, Bonner AN, Florea A, Compton PJ, Fernandez-Gonzalez R, Peifer M. The Crk adapter protein is essential for Drosophila embryogenesis, where it regulates multiple actin-dependent morphogenic events. Mol Biol Cell 2019; 30:2399-2421. [PMID: 31318326 PMCID: PMC6741062 DOI: 10.1091/mbc.e19-05-0302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Small Src homology domain 2 (SH2) and 3 (SH3) adapter proteins regulate cell fate and behavior by mediating interactions between cell surface receptors and downstream signaling effectors in many signal transduction pathways. The CT10 regulator of kinase (Crk) family has tissue-specific roles in phagocytosis, cell migration, and neuronal development and mediates oncogenic signaling in pathways like that of Abelson kinase. However, redundancy among the two mammalian family members and the position of the Drosophila gene on the fourth chromosome precluded assessment of Crk's full role in embryogenesis. We circumvented these limitations with short hairpin RNA and CRISPR technology to assess Crk's function in Drosophila morphogenesis. We found that Crk is essential beginning in the first few hours of development, where it ensures accurate mitosis by regulating orchestrated dynamics of the actin cytoskeleton to keep mitotic spindles in syncytial embryos from colliding. In this role, it positively regulates cortical localization of the actin-related protein 2/3 complex (Arp2/3), its regulator suppressor of cAMP receptor (SCAR), and filamentous actin to actin caps and pseudocleavage furrows. Crk loss leads to the loss of nuclei and formation of multinucleate cells. We also found roles for Crk in embryonic wound healing and in axon patterning in the nervous system, where it localizes to the axons and midline glia. Thus, Crk regulates diverse events in embryogenesis that require orchestrated cytoskeletal dynamics.
Collapse
Affiliation(s)
- Andrew J Spracklen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emma M Thornton-Kolbe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alison N Bonner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alexandru Florea
- Institute of Biomaterials and Biomedical Engineering, Ted Rogers Centre for Heart Research, and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Peter J Compton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering, Ted Rogers Centre for Heart Research, and Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Song Q, Yi F, Zhang Y, Jun Li DK, Wei Y, Yu H, Zhang Y. CRKL regulates alternative splicing of cancer-related genes in cervical cancer samples and HeLa cell. BMC Cancer 2019; 19:499. [PMID: 31133010 PMCID: PMC6537309 DOI: 10.1186/s12885-019-5671-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant spliced isoforms are specifically associated with cancer progression and metastasis. The cytoplasmic adaptor CRKL (v-crk avian sarcoma virus CT10 oncogene homolog-like) is a CRK like proto-oncogene, which encodes a SH2 and SH3 (src homology) domain-containing adaptor protein. CRKL is tightly linked to leukemia via its binding partners BCR-ABL and TEL-ABL, upregulated in multiple types of human cancers, and induce cancer cell proliferation and invasion. However, it remains unclear whether signaling adaptors such as CRKL could regulate alternative splicing. METHODS We analyzed the expression level of CRKL in 305 cervical cancer tissue samples available in TCGA database, and then selected two groups of cancer samples with CRKL differentially expressed to analyzed potential CRKL-regulated alternative splicing events (ASEs). CRKL was knocked down by shRNA to further study CRKL-regulated alternative splicing and the activity of SR protein kinases in HeLa cells using RNA-Seq and Western blot techniques. We validated 43 CRKL-regulated ASEs detected by RNA-seq in HeLa cells, using RT-qPCR analysis of HeLa cell samples and using RNA-seq data of the two group of clinical cervical samples. RESULTS The expression of CRKL was mostly up-regulated in stage I cervical cancer samples. Knock-down of CRKL led to a reduced cell proliferation. CRKL-regulated alternative splicing of a large number of genes were enriched in cancer-related functional pathways, among which DNA repair and G2/M mitotic cell cycle, GnRH signaling were shared among the top 10 enriched GO terms and KEGG pathways by results from clinical samples and HeLa cell model. We showed that CRKL-regulated ASEs revealed by computational analysis using ABLas software in HeLa cell were highly validated by RT-qPCR, and also validated by cervical cancer clinical samples. CONCLUSIONS This is the first report of CRKL-regulation of the alternative splicing of a number of genes critical in tumorigenesis and cancer progression, which is consistent with CRKL reported role as a signaling adaptor and a kinase. Our results underline that the signaling adaptor CRKL might integrate the external and intrinsic cellular signals and coordinate the dynamic activation of cellular signaling pathways including alternative splicing regulation.
Collapse
Affiliation(s)
- Qingling Song
- Department of Oncology and Radiotherapy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, Hubei Province, China
| | - Fengtao Yi
- Department of Oncology and Radiotherapy, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, Hubei Province, China.
| | - Yuhong Zhang
- Laboratory of Human Health and Genome Regulation, Wuhan, 430075, Hubei, China.,Center for Genome Analysis, ABLife Inc, Wuhan, 430075, Hubei, China
| | - Daniel K Jun Li
- Center for Genome Analysis, ABLife Inc, Wuhan, 430075, Hubei, China.,Department of Biology and Biotechnology, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc, Wuhan, 430075, Hubei, China
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, Wuhan, 430075, Hubei, China
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, Wuhan, 430075, Hubei, China. .,Center for Genome Analysis, ABLife Inc, Wuhan, 430075, Hubei, China.
| |
Collapse
|
13
|
Transposon-mediated generation of BCR-ABL1-expressing transgenic cell lines for unbiased sensitivity testing of tyrosine kinase inhibitors. Oncotarget 2018; 7:78083-78094. [PMID: 27801667 PMCID: PMC5363645 DOI: 10.18632/oncotarget.12943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance.
Collapse
|
14
|
CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma. Oncotarget 2018; 7:29199-210. [PMID: 27078848 PMCID: PMC5045389 DOI: 10.18632/oncotarget.8638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/16/2016] [Indexed: 01/30/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients.
Collapse
|
15
|
Murine model indicates 22q11.2 signaling adaptor CRKL is a dosage-sensitive regulator of genitourinary development. Proc Natl Acad Sci U S A 2017; 114:4981-4986. [PMID: 28439006 DOI: 10.1073/pnas.1619523114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The spectrum of congenital anomalies affecting either the upper tract (kidneys and ureters) or lower tract (reproductive organs) of the genitourinary (GU) system are fundamentally linked by the developmental origin of multiple GU tissues, including the kidneys, gonads, and reproductive ductal systems: the intermediate mesoderm. Although ∼31% of DiGeorge/del22q11.2 syndrome patients exhibit GU defects, little focus has been placed on the molecular etiology of GU defects in this syndrome. Among del22q11.2 patients exhibiting GU anomalies, we have mapped the smallest relevant region to only five genes, including CRKLCRKL encodes a src-homology adaptor protein implicated in mediating tyrosine kinase signaling, and is expressed in the developing GU-tract in mice and humans. Here we show that Crkl mutant embryos exhibit gene dosage-dependent growth restriction, and homozygous mutants exhibit upper GU defects at a microdissection-detectable rate of 23%. RNA-sequencing revealed that 52 genes are differentially regulated in response to uncoupling Crkl from its signaling pathways in the developing kidney, including a fivefold up-regulation of Foxd1, a known regulator of nephron progenitor differentiation. Additionally, Crkl heterozygous adult males exhibit cryptorchidism, lower testis weight, lower sperm count, and subfertility. Together, these data indicate that CRKL is intimately involved in normal development of both the upper and lower GU tracts, and disruption of CRKL contributes to the high incidence of GU defects associated with deletion at 22q11.2.
Collapse
|
16
|
Zhao Y, Dong Q, Wang E. MicroRNA-320 inhibits invasion and induces apoptosis by targeting CRKL and inhibiting ERK and AKT signaling in gastric cancer cells. Onco Targets Ther 2017; 10:1049-1058. [PMID: 28255248 PMCID: PMC5325096 DOI: 10.2147/ott.s123324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MicroRNA-320 (miR-320) downregulation has been reported in several human cancers. Until now, its expression pattern and biological roles in human cancer remain unknown. This study aims to clarify its clinical expression pattern and biological function in gastric cancers. We found miR-320 level was downregulated in gastric cancer tissues. miR-320 mimic was transfected in SGC-7901 cells with low endogenous expression. miR-320 inhibitor was used in BGC-823 cells with high endogenous expression. We found that miR-320 inhibited SGC-7901 proliferation and invasion, with decreased expression of cyclin D1 and MMP9 at both mRNA and protein levels. We also found that miR-320 mimic downregulated chemoresistance and cell survival of gastric cancer cells when treated with 5-fluorouracil. miR-320 inhibitor displayed the opposite effects in BGC-823 cell line. In addition, we discovered that miR-320 mimic could inhibit AKT and ERK activity. By using luciferase reporter assay, we found that CRKL serves as the target of miR-320. miR-320 mimic downregulated CRKL expression, whereas miR-320 inhibitor upregulated CRKL expression. miR-320 suppressed CRKL-3'-untranslated region reporter intensity in SGC-7901 cells. Furthermore, CRKL depletion abrogated the effects of miR-320. In gastric cancer tissues, we observed a negative correlation between CRKL and miR-320. In conclusion, our study demonstrated that downregulation of miR-320 was closely related with malignant progression of gastric cancer. miR-320 inhibits proliferation, invasion, and chemoresistance through ERK and AKT signaling by targeting CRKL.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Qianze Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
17
|
Cai YR, Dong YJ, Wu HB, Yu DP, Zhou LJ, Su D, Zhang L, Chen XJ. Expression level of CRKL and AXL combined with exon 19 deletion in EGFR and ALK status confer differential prognosis of lung adenocarcinoma subtypes. Oncol Lett 2016; 12:3312-3322. [PMID: 27899998 DOI: 10.3892/ol.2016.5080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/22/2016] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a lethal cancer-related disease in population. Adenocarcinoma (AC) is subclassified into several subtypes based on the new classification by the International Association for the Study of Lung Cancer, American Thoracic Society and European Respiratory Society in 2011. Correlation between original expression of Crk-like (CRKL) and anaplastic lymphoma receptor tyrosine kinase in diverse histological components of AC and epidermal growth factor receptor (EGFR) or ALK status was evaluated by immunohistochemistry and sequencing in present study. A total of 106 cases, including 83 patients (78.3%) with mixed-type ACs, were assessed in the present study using eligible follow-up data. The ACs consisted of 32 acinar, 12 papillary, 5 mucinous, 11 micropapillary and 46 solid-predominant ACs. In total, 69.8% samples were composed of 2 or 3 histological components, with different expression levels of CRKL and AXL. ACs with EGFR mutation had a higher level of AXL expression compared with ACs without mutation (P=0.019). Multivariate survival analysis showed that AC subtypes and EGFR mutation subtypes were significantly associated with the progression-free survival (PFS) time. Acinar AC was the subtype with the most notable PFS time (30.6 months), which was significantly different from the PFS time of papillary, mucinous, micropapillary and solid-predominant ACs (hazard ratio, 0.4; 95% CI, 0.21-0.75; P=0.005). Among the ACs with exon 19 mutation, the median PFS time (28.8 months) of patients with a lower level of AXL protein expression was increased compared with the PFS time of patients with the L858R mutation and wild-type EGFR (9.1 months and 11 months, respectively; P=0.03), whereas no significant difference in ACs with an increased level of AXL expression. However, AC patients with higher level of CRKL expression had better PFS (28.8 months) than patients with the L858R mutation and wild-type EGFR (9.1 months and 11.3 months, respectively). Exon 19 deletion is an important status that is associated with an improved response to conventional chemotherapy. The identification of EGFR mutations combined with CRKL and AXL status may potentially alter the way that lung AC is treated.
Collapse
Affiliation(s)
- Yi-Ran Cai
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Yu-Jie Dong
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Hong-Bo Wu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Da-Ping Yu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Li-Juan Zhou
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Dan Su
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Li Zhang
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| | - Xue-Jing Chen
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
| |
Collapse
|
18
|
Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett 2016; 13:51-56. [PMID: 28123521 PMCID: PMC5245097 DOI: 10.3892/ol.2016.5394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/01/2016] [Indexed: 12/19/2022] Open
Abstract
The v-Crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) protein is important in cancer progression. However, its expression pattern and biological roles in human endometrial carcinoma remain unexplored. The potential mechanism of CRKL-induced cancer progression is still unclear. The present study aimed to explore the expression pattern and biological roles of CRKL in human endometrial carcinoma. Using immunohistochemistry, it was observed that the CRKL protein was overexpressed in 50.5% (44/87) of endometrial carcinoma tissues. Plasmid transfection of CRKL into Ishikawa cells was performed, and CRKL overexpression promoted cell proliferation, colony formation and cell cycle transition in the transfected cells. In addition, CRKL overexpression inhibited cell apoptosis in Ishikawa cells treated with cisplatin, with decreased caspase-3 and caspase-9 cleavage. Further analysis revealed that CRKL upregulated the expression of cyclin D1, cyclin E, B cell lymphoma (Bcl)-2 and survivin, and downregulated Bcl-2 associated X protein expression. In conclusion, the present study demonstrated that CRKL overexpression in endometrial carcinoma contributes to malignant cell growth and resistance to apoptosis, possibly through Bcl-2.
Collapse
Affiliation(s)
- Le Cai
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - He Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
19
|
Park T, Koptyra M, Curran T. Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). J Biol Chem 2016; 291:26273-26290. [PMID: 27807028 DOI: 10.1074/jbc.m116.764613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
CT10 regulator of kinase (Crk) and Crk-like (CrkL) are the cellular counterparts of the viral oncogene v-Crk Elevated levels of Crk and CrkL have been observed in many human cancers; inhibition of Crk and CrkL expression reduced the tumor-forming potential of cancer cell lines. Despite a close relationship between the Crk family proteins and tumorigenesis, how Crk and CrkL contribute to cell growth is unclear. We ablated endogenous Crk and CrkL from cultured fibroblasts carrying floxed alleles of Crk and CrkL by transfection with synthetic Cre mRNA (synCre). Loss of Crk and CrkL induced by synCre transfection blocked cell proliferation and caused shrinkage of the cytoplasm and the nucleus, formation of adherens junctions, and reduced cell motility. Ablation of Crk or CrkL alone conferred a much more modest reduction in cell proliferation. Reintroduction of CrkI, CrkII, or CrkL individually rescued cell proliferation in the absence of the endogenous Crk and CrkL, suggesting that Crk and CrkL play overlapping functions in regulating fibroblast growth. Serum and basic FGF induced phosphorylation of Akt, MAP kinases, and S6 kinase and Fos expression in the absence of Crk and CrkL, suggesting that cells lacking Crk and CrkL are capable of initiating major signal transduction pathways in response to extracellular stimuli. Furthermore, cell cycle and cell death analyses demonstrated that fibroblasts lacking Crk and CrkL become arrested at the G1-S transition and undergo a modest apoptosis. Taken together, our results suggest that Crk and CrkL play essential overlapping roles in fibroblast growth.
Collapse
Affiliation(s)
- Taeju Park
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Mateusz Koptyra
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Tom Curran
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| |
Collapse
|
20
|
Ji H, Li B, Zhang S, He Z, Zhou Y, Ouyang L. Crk-like adapter protein is overexpressed in cervical carcinoma, facilitates proliferation, invasion and chemoresistance, and regulates Src and Akt signaling. Oncol Lett 2016; 12:3811-3817. [PMID: 27895735 PMCID: PMC5104173 DOI: 10.3892/ol.2016.5160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Overexpression of Crk-like (CrkL) adapter protein has been implicated in a number of types of human cancer. However, its involvement in human cervical carcinoma remains unclear. The present study aimed to explore the clinical significance and biological characteristics of CrkL in human cervical carcinoma. CrkL protein expression was examined in tissue samples from 92 cases of cervical carcinoma using immunohistochemistry, and was found to be overexpressed in 48.9% (45/92 cases). CrkL was transfected into HeLa and CaSki cervical carcinoma cell lines and its effects on biological behavior were examined. CrkL overexpression was revealed to promote cell proliferation, invasion and chemoresistance. In addition, CrkL overexpression increased the level of Src and Akt phosphorylation. Treatment with the Src inhibitor dasatinib eliminated the effect of CrkL on cell invasion. In conclusion, the current results demonstrate that CrkL is an oncoprotein overexpressed in cervical carcinoma which contributes to malignant cell growth and chemoresistance. In addition, the findings indicate that CrkL promotes cervical cancer cell invasion through a Src-dependent pathway.
Collapse
Affiliation(s)
- Hong Ji
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China; Department of Gynecology and Obstetrics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Bo Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shitai Zhang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zheng He
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yang Zhou
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ling Ouyang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
21
|
Tsigelny IF, Kouznetsova VL, Lian N, Kesari S. Molecular mechanisms of OLIG2 transcription factor in brain cancer. Oncotarget 2016; 7:53074-53101. [PMID: 27447975 PMCID: PMC5288170 DOI: 10.18632/oncotarget.10628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in glioma development. Here we conducted a comprehensive study of the critical gene regulatory networks involving OLIG2. These include the networks responsible for OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and Rho-pathway interactions. We described positive feedback loops including OLIG2: loops of epigenetic regulation and loops involving receptor tyrosine kinases. These loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed by patient survival (Kaplan-Meier) curves based on the cancer genome atlas (TCGA) datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks-framework of OLIG2 involvement in cancer. We showed that genes interacting with OLIG2 formed eight CGMs having a set of intermodular connections. We showed also that among the genes involved in these modules the most connected hub is EGFR, then, on lower level, HSP90 and CALM1, followed by three lower levels including epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the hierarchy are involved in interconnections of all eight CGMs and organize functionally defined gene-signaling subnetworks having specific functions. For example, CGM1 is involved in epigenetic control. CGM2 is significantly related to cell proliferation and differentiation. CGM3 includes a number of interconnected helix-loop-helix transcription factors (bHLH) including OLIG2. Many of these TFs are partially controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell proliferation and differentiation. These analyses provide testable hypotheses and approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops to be interrogated. This broad approach can be applied to other TFs.
Collapse
Affiliation(s)
- Igor F. Tsigelny
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0752, CA, USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, 92093, CA, USA
| | - Nathan Lian
- REHS, San Diego Supercomputer Center, University of California San Diego, La Jolla, 92093-0505, CA, USA
| | - Santosh Kesari
- John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
- Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, 90404, CA, USA
| |
Collapse
|
22
|
Wang F, Jiang C, Sun Q, Yan F, Wang L, Fu Z, Liu T, Hu F. Downregulation of miR‑429 and inhibition of cell migration and invasion in nasopharyngeal carcinoma. Mol Med Rep 2016; 13:3236-42. [PMID: 26936585 DOI: 10.3892/mmr.2016.4940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 01/28/2016] [Indexed: 11/05/2022] Open
Abstract
Viral, dietary and genetic factors have been implicated in nasopharyngeal carcinoma (NPC), however, the molecular mechanism underlying its pathogenesis remains to be fully elucidated. MicroRNAs (miRNAs) have been reported to be important in NPC tumorigenesis, with a previous miRNA microarray study showing the downregulation of miRNA (miR)‑429 in NPC cells. However, the possible mechanisms of action of miR‑429 have not been examined. In the present study, the expression profiles of miR‑429 were detected using reverse transcription‑quantitative polymerase chain reaction analysis in CNE‑1 and CNE‑2 cells, which are two generally used NPC cells with different degrees of differentiation. Subsequently, cell proliferation, invasion and migration were analyzed in miR‑429‑overexpressing CNE‑2 cells, and the modulatory function of miR‑429 was also investigated using two target genes, zinc finger E‑Box‑binding homeobox 1 (ZEB1) and CRK‑like (CRKL), by transfection with miR‑429 mimic or anti‑miR‑429. Significant changes in the expression of miR‑429 were detected, particularly in low‑differentiated CNE‑2 cells, with higher levels of epidemicity and malignancy. Additional results revealed that miR‑429 inhibited the invasion and migration of the CNE‑2 cells, whereas no significant effect on cell growth was observed. In addition, the mRNA and protein expression levels of the two target genes, ZEB1 and CRKL, were negatively regulated by miR‑429, demonstrated through gain‑of‑function and loss‑of‑function investigations, indicating that these two functional downstream targets may be involved in the inhibitory effects of miR‑429 on NPC migration and invasion. miR‑429 may act as a negative regulatory factor of NPC tumorigenesis, involving the functions of its downstream targets, ZEB1 and CRKL. The results suggested miR‑429 as a potential candidate for miRNA‑based prognosis or therapy against NPC.
Collapse
Affiliation(s)
- Fangzheng Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Chuner Jiang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Fenqin Yan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lei Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhenfu Fu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Tongxin Liu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Fujun Hu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
23
|
Luo LY, Hahn WC. Oncogenic Signaling Adaptor Proteins. J Genet Genomics 2015; 42:521-529. [PMID: 26554907 PMCID: PMC4643408 DOI: 10.1016/j.jgg.2015.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 02/08/2023]
Abstract
Signal transduction pathways activated by receptor tyrosine kinases (RTK) play a critical role in many aspects of cell function. Adaptor proteins serve an important scaffolding function that facilitates key signaling transduction events downstream of RTKs. Recent work integrating both structural and functional genomic approaches has identified several adaptor proteins as new oncogenes. In this review, we focus on the discovery, structure and function, and therapeutic implication of three of these adaptor oncogenes, CRKL, GAB2, and FRS2. Each of the three genes is recurrently amplified in lung adenocarcinoma or ovarian cancer, and is essential to cancer cell lines that harbor such amplification. Overexpression of each gene is able to transform immortalized human cell lines in in vitro or in vivo models. These observations identify adaptor protein as a distinct class of oncogenes and potential therapeutic targets.
Collapse
Affiliation(s)
- Leo Y Luo
- Health Sciences and Technology Program, Harvard Medical School, Boston, MA 02115, USA
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA.
| |
Collapse
|
24
|
Koptyra M, Park TJ, Curran T. Crk and CrkL are required for cell transformation by v-fos and v-ras. Mol Carcinog 2015; 55:97-104. [PMID: 25557916 DOI: 10.1002/mc.22262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 01/26/2023]
Abstract
Crk and CrkL are SH2- and SH3-containing cytosolic adaptor proteins that can induce anchorage-independent growth of fibroblasts. Crk and CrkL play key roles in maintaining cytoskeletal integrity, cell motility and migration. We investigated the role of these two proteins in oncogenic transformation induced by v-fos and v-ras oncogenes using cell lines and fibroblasts carrying conditional alleles of Crk or CrkL. Transformation was assessed by cell morphology, saturation density and anchorage-independent growth in soft agar. We found that cell lines expressing v-fos or v-ras in the absence of Crk or CrkL displayed no evident morphological alterations and reduced anchorage-independent growth compared to those retaining Crk and CrkL. Similarly, overexpression of v-fos in mouse embryonic fibroblasts conferred a growth advantage and induced morphological changes, both of which were abrogated in the absence of either Crk or CrkL. In contrast, Crk, but not CrkL, contributed to v-ras-induced transformation of embryonic fibroblasts. These results suggest that both Crk and CrkL are required for the acquisition of cellular transformation by v-fos, whereas Crk plays a more prominent role than CrkL in v-ras-induced transformation.
Collapse
Affiliation(s)
- Mateusz Koptyra
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Tae-Ju Park
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Tom Curran
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Ye ZB, Ma G, Zhao YH, Xiao Y, Zhan Y, Jing C, Gao K, Liu ZH, Yu SJ. miR-429 inhibits migration and invasion of breast cancer cells in vitro. Int J Oncol 2014; 46:531-8. [PMID: 25405387 PMCID: PMC4277243 DOI: 10.3892/ijo.2014.2759] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) are involved in regulating cancer invasion and metastasis, and an increasing number of research demonstrates that miRNAs can promote or inhibit cell motility depending on genetic background of different cancers and the microenvironment. In the present study, we established an in vivo bone metastasis model of breast cancer by injecting MDA-MB-231 cells into the left ventricle of nude mice, and then screened the differentially expressed miRNAs between parental and bone-metastatic MDA-MB-231 cells using miRNA array. The results revealed that decreased expression of miR-429 was probably involved in negatively regulating bone metastasis of breast cancer cells. On the other hand, overexpression of miR-429 in MDA-MB-231 cells remarkably suppressed invasion in vitro. We identified ZEB1 and CRKL as potential targets of miR-429 by analyzing combined results from in silico search and global expression array of the same RNA samples. Immunoblot assay confirmed that miR-429 reduced their expression at protein level. Taken together, our results offer an opportunity for further understanding of the recondite mechanisms underlying the bone metastasis of breast cancer.
Collapse
Affiliation(s)
- Zhi-Bin Ye
- Department of Orthopedics, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Gang Ma
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ya-Hui Zhao
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yun Zhan
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chao Jing
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kai Gao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhi-Hua Liu
- The State Key Laboratory of Molecular Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sheng-Ji Yu
- Department of Orthopedics, Cancer Hospital (Institute), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
26
|
Lin Q, Sun MZ, Guo C, Shi J, Chen X, Liu S. CRKL overexpression suppresses in vitro proliferation, invasion and migration of murine hepatocarcinoma Hca-P cells. Biomed Pharmacother 2014; 69:11-7. [PMID: 25661331 DOI: 10.1016/j.biopha.2014.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/18/2014] [Indexed: 12/17/2022] Open
Abstract
The signal adaptor CRK family protein play important roles in cancer cell progression, proliferation, migration and invasion. Previously, we showed that CRK was involved in lymphatic metastatic potential of murine hepatocarcinoma cells. In current work, as a member of CRK family, chicken tumour virus number 10 regulator of kinase-like protein (CRKL) was revealed to be associated with malignant behaviors of Hca-P, a murine HCC cell with lymph node metastatic (LNM) rate of ∼25%. CRKL overexpression in Hca-P by a constructed eukaryotic expression vector of pcDNA3.1/V5-HisB-CRKL significantly ameliorated its malignant biological properties. CCK-8 and soft agar colony formation assays indicated CRKL overexpression significantly inhibits the cell proliferation and colony formation abilities of Hca-P. Additionally, transwell assays indicated that the Hca-P cell migration and invasion capacities were apparently reduced following CRKL overexpression. As Hca-P is an ideal hepatocarcinoma cell model with low (initial) LNM potential, CRKL is shown to act as a potential suppressor and to provide new insight for both the malignant behaviors of hepatocarcinoma cells and lymphatic metastasis mechanism of hepatocarcinoma.
Collapse
Affiliation(s)
- Qiuyue Lin
- Department of Biochemistry, Dalian Medical University, 116044 Dalian, PR China; Department of Biotechnology, Dalian Medical University, 116044 Dalian, PR China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, 116044 Dalian, PR China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, 116044 Dalian, PR China
| | - Ji Shi
- Department of Biochemistry, Dalian Medical University, 116044 Dalian, PR China
| | - Xin Chen
- Department of General Surgery of The Second Hospital, Dalian Medical University, 116021 Dalian, PR China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, 116044 Dalian, PR China; Provincial Key Laboratory of Cell and Molecular Biology, Dalian Medical University, 116044 Dalian, PR China.
| |
Collapse
|
27
|
CRKL protein overexpression enhances cell proliferation and invasion in pancreatic cancer. Tumour Biol 2014; 36:1015-22. [PMID: 25318601 DOI: 10.1007/s13277-014-2706-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022] Open
Abstract
CRKL is an adapter protein which is overexpressed in many malignant tumors and plays crucial roles in tumor progression. However, expression pattern and biological roles of CRKL in pancreatic cancer have not been examined. In the present study, we found that CRKL expression in pancreatic cancer specimens was higher than that in normal pancreatic tissues. Colony formation assay and Matrigel invasion assay showed that the overexpression of CRKL in Bxpc3 and Capan2 cell lines with low endogenous expression increased cell proliferation and invasion. Flow cytometry showed that CRKL promoted cell proliferation by facilitating cell cycle. Further analysis of cell cycle- and invasion-related molecules showed that CRKL upregulated cyclin D1, cyclin A, matrix metalloproteinase 2 (MMP2) expression, and phosphorylated extracellular signal (ERK)-regulated kinase. In conclusion, our study demonstrated that CRKL was overexpressed in human pancreatic cancers and contributed to pancreatic cancer cell proliferation and invasion through ERK signaling.
Collapse
|
28
|
Lin F, Chengyao X, Qingchang L, Qianze D, Enhua W, Yan W. CRKL promotes lung cancer cell invasion through ERK-MMP9 pathway. Mol Carcinog 2014; 54 Suppl 1:E35-44. [PMID: 24664993 DOI: 10.1002/mc.22148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
CRKL is recently defined as a new oncogene, which plays a role in the lung cancer progression. However, the potential mechanism of CRKL in human non-small cell lung cancer cell invasion is obscure. We investigated the potential mechanism of CRKL in lung cancer cell invasion using immunohistochemistry, plasmid transfection, Western blotting, real-time PCR, matrigel invasion assay, chromatin immunoprecipitation assay, and luciferase reporter assay. CRKL expression is higher in lymph node metastatic tumor compared with primary tumor. CRKL overexpression enhanced cell invasion and MMP9 expression in both HBE and H1299 cell lines. There was a significant correlation between CRKL overexpression and high MMP9 expression in primary tumors. MMP-9 antibody treatment significantly blocked cell invasion. CRKL overexpression also activated AP-1 luciferase reporter activity, ERK phosphorylation and association of c-fos to MMP9 promoter. Treatment with ERK inhibitor PD98059 in cells with CRKL transfection inhibited ERK activity, cell invasion, and MMP9 expression. These results suggested that overexpression of CRKL promoted cell invasion through upregulation of MMP9 expression and activation of ERK pathway.
Collapse
Affiliation(s)
- Fu Lin
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xie Chengyao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Li Qingchang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Dong Qianze
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wang Enhua
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Wang Yan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Yu DAP, Dong YJ, Zhang HQ, Wang JH, Qu Y, Zhou LJ, Su D, Zhang LL, Zhao D, Cai YR. Differential expression of CRKL and AXL genes in lung adenocarcinoma subtypes according to the epidermal growth factor receptor and anaplastic lymphoma kinase gene status. Biomed Rep 2014; 2:481-489. [PMID: 24944792 DOI: 10.3892/br.2014.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/24/2014] [Indexed: 12/18/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cause of cancer-related mortality. Adenocarcinoma (AC) is the predominant histological type of NSCLC; however, AC consists of several subtypes. It has not yet been determined whether there is a correlation of CRKL and AXL expression with epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) gene status in lung AC. We assayed exons 18 through 21 of the EGFR gene by direct sequencing; ALK rearrangement and the expression of CRKL and AXL were detected by immunostaining. A total of 212 cases of AC were included in this study, diagnosed using the novel classification system established by the International Association for the Study of Lung Cancer, the American Thoracic Society and the European Respiratory Society in 2011, including 69 acinar ACs, 17 lepidic predominant ACs (LPAs), 63 papillary, 14 mucinous, 17 micropapillary and 32 solid ACs. Of the 212 cases, 101 harbored EGFR mutations. The most common subtypes carrying delK745-S753 were papillary and acinar ACs. ALK rearrangement was found in 23 cases (11%) of lung ACs. Acinar and solid ACs were the most frequent subtypes with ALK aberrance, particularly in acinar ACs with cribriform structure (4/5 cases, 80%). The expression of CRKL was significantly different among the AC subtypes (P=0.01), with the highest and lowest expression levels of CRKL protein in papillary ACs and LPAs, respectively (P<0.05). AXL expression was also significantly different among the AC subtypes (P=0.002) and was correlated with lymph node infiltration in acinar ACs. ACs with EGFR mutations exhibited high levels of AXL protein expression compared to those without mutations (P<0.001). Acinar AC with cribriform structure is a distinct subtype that frequently harbors ALK rearrangement. The activation of AXL may be one of the factors contributing to the invasion of acinar and micropapillary ACs.
Collapse
Affiliation(s)
- DA-Ping Yu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yu-Jie Dong
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Hai-Qing Zhang
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Jing-Hui Wang
- Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yang Qu
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Juan Zhou
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Dan Su
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Li-Li Zhang
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Dan Zhao
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| | - Yi-Ran Cai
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing 101149, P.R. China
| |
Collapse
|
30
|
Liu X, Yang Y, Zhao M, Bode L, Zhang L, Pan J, Lv L, Zhan Y, Liu S, Zhang L, Wang X, Huang R, Zhou J, Xie P. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells. Neuroscience 2014; 268:284-96. [PMID: 24637096 PMCID: PMC7116963 DOI: 10.1016/j.neuroscience.2014.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/01/2014] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
Abstract
A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). Energy metabolism was the most significantly altered pathway in BDV Hu-H1-infected OL cells. The Raf/MEK/ERK signaling cascade was significantly perturbed in BDV Hu-H1-infected OL cells. BDV Hu-H1caused constitutive activation of the ERK1/2 pathway, but cell proliferation was down-regulated at the same time. BDV Hu-H1 manages to down-regulate cell proliferation, in the presence of activated but not translocated ERK–RSK complex.
Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK–RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK–RSK complex of the Raf/MEK/ERK signaling cascade, and disturbs host cell proliferation possibly through impaired nuclear translocation of pERK, a finding which warrants further research.
Collapse
Affiliation(s)
- X Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Y Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - M Zhao
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Bode
- Bornavirus Research Group affiliated to the Free University of Berlin, Berlin, Germany
| | - L Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - J Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Lv
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Y Zhan
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - S Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - L Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - X Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - R Huang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China; Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - J Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - P Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Miyazaki M, Nishihara H, Hasegawa H, Tashiro M, Wang L, Kimura T, Tanino M, Tsuda M, Tanaka S. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL. Biochem Biophys Res Commun 2013; 441:953-7. [PMID: 24220336 DOI: 10.1016/j.bbrc.2013.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.
Collapse
Affiliation(s)
- Masaya Miyazaki
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Park TJ, Curran T. Essential roles of Crk and CrkL in fibroblast structure and motility. Oncogene 2013; 33:5121-32. [DOI: 10.1038/onc.2013.453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 08/10/2013] [Accepted: 09/14/2013] [Indexed: 12/24/2022]
|
33
|
Overexpression of CRKL correlates with malignant cell proliferation in breast cancer. Tumour Biol 2013; 34:2891-7. [DOI: 10.1007/s13277-013-0851-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 01/24/2023] Open
|
34
|
Abstract
The Crk family of adaptor proteins (CrkI, CrkII, and CrkL), originally discovered as the oncogene fusion product, v-Crk, of the CT10 chicken retrovirus, lacks catalytic activity but engages with multiple signaling pathways through their SH2 and SH3 domains. Crk proteins link upstream tyrosine kinase and integrin-dependent signals to downstream effectors, acting as adaptors in diverse signaling pathways and cellular processes. Crk proteins are now recognized to play a role in the malignancy of many human cancers, stimulating renewed interest in their mechanism of action in cancer progression. The contribution of Crk signaling to malignancy has been predominantly studied in fibroblasts and in hematopoietic models and more recently in epithelial models. A mechanistic understanding of Crk proteins in cancer progression in vivo is still poorly understood in part due to the highly pleiotropic nature of Crk signaling. Recent advances in the structural organization of Crk domains, new roles in kinase regulation, and increased knowledge of the mechanisms and frequency of Crk overexpression in human cancers have provided an incentive for further study in in vivo models. An understanding of the mechanisms through which Crk proteins act as oncogenic drivers could have important implications in therapeutic targeting.
Collapse
|
35
|
Evren S, Ma XZ, Sakac D, Branch DR. SHP-1 protein tyrosine phosphatase associates with the adaptor protein CrkL. Exp Hematol 2012; 40:1055-9. [PMID: 22960265 DOI: 10.1016/j.exphem.2012.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/26/2012] [Accepted: 08/14/2012] [Indexed: 11/26/2022]
Abstract
SHP-1, encoded by the PTPN6 gene, is a protein tyrosine phosphatase with two src-homology-2 (SH2) domains that is implicated as providing suppression of hematopoietic malignancies. A number of reports have shown protein-protein interactions between SHP-1 SH2 domains and tyrosine-phosphorylated proteins. However, despite its having three proline-rich, potential SH3-binding motifs, no reports of protein-protein interactions through src-homology-3 (SH3)-binding domains with SHP-1 have been described. Herein we show that the SH3 domain-containing CT10 regulator of kinase-like (CrkL) adaptor protein associates with SHP-1. We also provide results that suggest this association is due to CrkL binding to PxxP domains located at amino acid residues 158-161 within the SHP-1 C-terminal SH2 domain, and amino acid residues 363-366 within its phosphatase domain. This study is the first to identify and define an interaction between SHP-1 and an SH3 domain-containing protein. Our findings provide an alternative way that SHP-1 can be linked to potential substrates.
Collapse
Affiliation(s)
- Sevan Evren
- Cell and Molecular Biology, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Wang Y, Dong QZ, Fu L, Stoecker M, Wang E, Wang EH. Overexpression of CRKL correlates with poor prognosis and cell proliferation in non-small cell lung cancer. Mol Carcinog 2012; 52:890-9. [PMID: 22753141 DOI: 10.1002/mc.21935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 12/27/2022]
Abstract
Crk-Like (CRKL) is an adapter protein that has crucial roles in multiple biological processes, including cell proliferation, adhesion, and migration. Amplification of CRKL gene was found in non-small cell lung cancer (NSCLC). However, the expression pattern of CRKL protein and its clinical significance in human NSCLC have not been well characterized to date. In this study, expression of CRKL was evaluated in 131 NSCLC tissues by immumohistochemistry. CRKL protein was up-regulated in the lung carcinomas compared with adjacent normal lung tissue. Overexpression of CRKL was found in 58 of 131 (44.3%) NSCLC samples and correlated with poor tumor differentiation (P = 0.0042), histological type (adenocarcinoma; P = 0.001), advanced p-TNM stage (P = 0.0004), nodal metastasis (P = 0.0273), high proliferation index (P = 0.0062) and poor overall survival (P = 0.0084). Further univariate and multivariate analysis showed a significant association of CRKL overexpression and worse overall survival in lung cancer patients. In addition, overexpression of CRKL in HBE and H1299 cell lines promoted cell proliferation by facilitating cell cycle progression. Further analysis of cell cycle related molecules showed that CRKL induced cyclin D1, cyclin B1 expression, and increased Rb phosphorylation. In conclusion, this study demonstrated overexpression of CRKL correlated with poor prognosis and lung cancer proliferation by cell cycle regulation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, China
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII. Nat Chem Biol 2012; 8:590-6. [PMID: 22581121 PMCID: PMC3423979 DOI: 10.1038/nchembio.954] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 03/20/2012] [Indexed: 12/12/2022]
Abstract
CrkL is a key signaling protein that mediates the leukemogenic activity of Bcr-Abl. CrkL is thought to adopt a structure that is similar to that of its CrkII homolog. The two proteins share high sequence identity and indistinguishable ligand binding preferences; yet they have distinct physiological roles. Here we show that the structures of CrkL and phosphorylated CrkL are drastically different than the corresponding structures of CrkII. As a result, the binding activities of the SH2 and SH3 domains in the two proteins are regulated in a distinct manner and to a different extent. The different structural architecture of CrkL and CrkII may account for their distinct functional roles. The data show that CrkL forms a constitutive complex with Abl thus explaining the strong preference of Bcr-Abl for CrkL. The results also highlight how the structural organization of the modular domains in adaptor proteins can control signaling outcome.
Collapse
|
39
|
Fathers KE, Bell ES, Rajadurai CV, Cory S, Zhao H, Mourskaia A, Zuo D, Madore J, Monast A, Mes-Masson AM, Grosset AA, Gaboury L, Hallet M, Siegel P, Park M. Crk adaptor proteins act as key signaling integrators for breast tumorigenesis. Breast Cancer Res 2012; 14:R74. [PMID: 22569336 PMCID: PMC3446336 DOI: 10.1186/bcr3183] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 03/15/2012] [Accepted: 05/08/2012] [Indexed: 01/27/2023] Open
Abstract
Introduction CT10 regulator of kinase (Crk) adaptor proteins (CrkI, CrkII and CrkL) play a role in integrating signals for migration and invasion of highly malignant breast cancer cell lines. This has important implications, as elevated CrkI/II protein levels were observed in a small cohort of breast cancer patients, which identified a potential role for Crk proteins in breast cancer progression. Numerous in vitro studies identified a role for Crk proteins in cell motility, but little is known about how Crk proteins contribute to breast cancer progression in vivo. Methods The clinical significance of Crk proteins in human breast cancer was assessed by analyzing published breast cancer datasets using a gene expression signature that was generated following CrkII over-expression and by examining Crk protein expression in tissue microarrays of breast tumors (n = 254). Stable knockdown of Crk (CrkI/CrkII/CrkL) proteins was accomplished using a short hairpin RNA (shRNA)-mediated approach in two basal breast cancer cell lines, MDA-231 1833TR and SUM1315, where the former have a high affinity to form bone metastases. Both in vitro assays (cell migration, invasion, soft agar growth) and in vivo experiments (intra-cardiac, tibial and mammary fat pad injections) were performed to assess the functional significance of Crk proteins in breast cancer. Results A gene signature derived following CrkII over-expression correlated significantly with basal breast cancers and with high grade and poor outcome in general. Moreover, elevated Crk immunostaining on tissue microarrays revealed a significant association with highly proliferative tumors within the basal subtype. RNAi-mediated knockdown of all three Crk proteins in metastatic basal breast cancer cells established a continued requirement for Crk in cell migration and invasion in vitro and metastatic growth in vivo. Furthermore, Crk ablation suppressed anchorage independent growth and in vivo orthotopic tumor growth. This was associated with diminished cell proliferation and was rescued by expression of non-shRNA targeted CrkI/II. Perturbations in tumor progression correlated with altered integrin signaling, including decreased cell spreading, diminished p130Cas phosphorylation, and Cdc42 activation. Conclusions These data highlight the physiological importance of Crk proteins in regulating growth of aggressive basal breast cancer cells and identify Crk-dependent signaling networks as promising therapeutic targets.
Collapse
Affiliation(s)
- Kelly E Fathers
- Department of Biochemistry, McGill University, Rosalind and Morris Goodman Cancer Research Centre, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Abl kinases are prototypic cytoplasmic tyrosine kinases and are involved in a variety of chromosomal aberrations in different cancers. This causes the expression of Abl fusion proteins, such as Bcr-Abl, that are constitutively activated and drivers of tumorigenesis. Over the past decades, biochemical and functional studies on the molecular mechanisms of Abl regulation have gone hand in hand with progression of our structural understanding of autoinhibited and active Abl conformations. In parallel, Abl oncoproteins have become prime molecular targets for cancer therapy, using adenosine triphosphate (ATP)-competitive kinase inhibitors, such as imatinib. Abl-targeting drugs serve as a paradigm for our understanding of kinase inhibitor action, specificity, and resistance development. In this review article, I will review the molecular mechanisms that are responsible for the regulation of Abl kinase activity and how oncogenic Abl fusions signal. Furthermore, past and ongoing efforts to target Abl oncoproteins using ATP-competitive and allosteric inhibitors, as well as future possibilities using combination therapy, will be discussed.
Collapse
Affiliation(s)
- Oliver Hantschel
- École polytechnique fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
| |
Collapse
|
41
|
Yanagi H, Wang L, Nishihara H, Kimura T, Tanino M, Yanagi T, Fukuda S, Tanaka S. CRKL plays a pivotal role in tumorigenesis of head and neck squamous cell carcinoma through the regulation of cell adhesion. Biochem Biophys Res Commun 2012; 418:104-9. [PMID: 22244889 DOI: 10.1016/j.bbrc.2011.12.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 01/19/2023]
Abstract
The signaling adapter protein CRK is an indispensable molecule involved in regulating the malignant potential of human cancers. CRK-like (CRKL) is a hematopoietic cell-dominant homologue of CRK that is reported to be phosphorylated by BCR-ABL tyrosine kinase in chronic myelogenous leukemia patients, but its biological function in non-hematopoietic tumors remains unclear. In this study, we explored the tumorigenic role of CRKL in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. Immunoprecipitation analysis of HNSCC cell line, HSC-3 cells, showed that the dominant binding partner for C3G was CRKL, not CRK. To clarify the molecular function of CRKL, we established lentiviral shRNA-mediated CRKL-knockdown HNSCC cell lines. In CRKL-knockdown HSC-3 and HSC-4 cells, cell growth and motility were diminished compared to control cells. Cell adhesion assays showed that cell attachment onto both fibronectin- and collagen-coated dishes was significantly suppressed in CRKL-knockdown HSC-3 cells, while no significant change was observed for poly-l-lysine-coated dishes. Immunofluorescence staining revealed that focal adhesion was reduced in CRKL-knockdown HSC-3 cells. With a pulldown assay, CRKL-knockdown HSC-3 cells showed decreased amounts of active Rap1 compared to control cells. Moreover, in an in vivo assay, tumor formation of CRKL-knockdown HSC-3 cells in nude mice was significantly abrogated. Our results indicate that CRKL regulates HNSCC-cell growth, motility, and integrin-dependent cell adhesion, suggesting that CRKL plays a principal role in HNSCC tumorigenicity.
Collapse
Affiliation(s)
- Hiroko Yanagi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Adaptor proteins are named for their function in assembling complexes of cellular proteins to execute and facilitate transmission of signals. The Crk family of adaptors consists of 2 members, Crk and CrkL. Crk, which was originally isolated as an oncogene, v-Crk, that transforms CEFs, has at least 2 splice variants, CrkI and CrkII, with differing biological activities. All Crk family proteins serve to act as molecular bridges between tyrosine kinases and their substrates and also modulate the specificity and stoichiometry of signaling processes. Signaling via CrkII and CrkL can be negatively regulated via tyrosine phosphorylation-mediated autoinhibition, while such a mechanism is not known to exist for CrkI. Although v-Crk clearly functions as a bona fide oncogene, in recent years, an emerging body of evidence suggests that cellular Crk proteins are overexpressed in human tumors and the expression levels correlate with aggressive and malignant behavior of cancer cells. These properties of Crk proteins make them potential cancer prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Ganapathy Sriram
- University of Medicine & Dentistry of New Jersey, Newark, NJ, USA
| | | |
Collapse
|
43
|
Cheung HW, Du J, Boehm JS, He F, Weir BA, Wang X, Butaney M, Sequist LV, Luo B, Engelman JA, Root DE, Meyerson M, Golub TR, Jänne PA, Hahn WC. Amplification of CRKL induces transformation and epidermal growth factor receptor inhibitor resistance in human non-small cell lung cancers. Cancer Discov 2011; 1:608-25. [PMID: 22586683 DOI: 10.1158/2159-8290.cd-11-0046] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
UNLABELLED We previously identified a region of recurrent amplification on chromosome 22q11.21 in a subset of primary lung adenocarcinomas. Here we show that CRKL, encoding for an adaptor protein, is amplified and overexpressed in non-small cell lung cancer (NSCLC) cells that harbor 22q11.21 amplifications. Overexpression of CRKL in immortalized human airway epithelial cells promoted anchorage-independent growth and tumorigenicity. Oncogenic CRKL activates the SOS1-RAS-RAF-ERK and SRC-C3G-RAP1 pathways. Suppression of CRKL in NSCLC cells that harbor CRKL amplifications induced cell death. Overexpression of CRKL in epidermal growth factor receptor (EGFR)-mutant cells induces resistance to gefitinib by activating extracellular signal-regulated kinase and AKT signaling. We identified CRKL amplification in an EGFR inhibitor-treated lung adenocarcinoma that was not present before treatment. These observations demonstrate that CRKL overexpression induces cell transformation, credential CRKL as a therapeutic target for a subset of NSCLC that harbor CRKL amplifications, and implicate CRKL as an additional mechanism of resistance to EGFR-directed therapy. SIGNIFICANCE These studies credential CRKL as an oncogene in a subset of NSCLC. Overexpression of CRKL induces cell transformation and resistance to epidermal growth factor receptor inhibitor treatment and suggest that therapeutic interventions targeting CRKL may confer a clinical benefit in a defined subset of NSCLCs.
Collapse
Affiliation(s)
- Hihu Wing Cheung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Padmanabhan RA, Nirmala L, Murali M, Laloraya M. CrkL is a co-activator of estrogen receptor alpha that enhances tumorigenic potential in cancer. Mol Endocrinol 2011; 25:1499-512. [PMID: 21700719 DOI: 10.1210/me.2011-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Signaling via estrogen receptor (ER) occurs by interacting with many proteins. Nuclear interactome analysis of ERα in an embryo implantation model revealed the association of chicken tumor virus no. 10 regulator of kinase like (CrkL) with ERα, which was further validated by mammalian two-hybrid assay as well as coimmunoprecipitation and colocalization. Mutation in LPALL motif of CrkL disrupts the ERα-CrkL interaction and its transactivation potential, thereby suggesting that the interaction is mediated via its single ER binding motif, Leu-Pro-Ala-Leu-Leu (LXXLL) motif in the sarcoma homology (SH)2 domain. CrkL deletion constructs of SH2 domain target to the nucleus due to presence of nuclear localization signal. Interestingly, the SH2-SH3 (N terminal) construct shows an increased transactivation potential like CrkI. Weak interaction capability of mutated ERα-Y538F with CrkL validates that CrkL interacts with ERα via its YDLL motif at Tyr 541. In an attempt to understand the physiological relevance of this association, we investigated the impact on cell proliferation using a cancer model, because events associated in the process of pregnancy and cancer are analogous. Also, overexpression of CrkL is frequently associated with tumorigenesis. However, its significance in hormone-regulated cancers still remains obscure. Here, we demonstrate that association of ERα and CrkL directly enhances the tumorigenic potential of CrkL, thus pointing to its role in cell proliferation. In human endometrial cancers, we observed a strong association between ERα and CrkL levels. Thus, the molecular signaling set off by ERα and CrkL association may have a central role in pregnancy and cancer, two events which share parallels in growth, invasion, and immune tolerance.
Collapse
|
45
|
Fathers KE, Rodrigues S, Zuo D, Murthy IV, Hallett M, Cardiff R, Park M. CrkII transgene induces atypical mammary gland development and tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:446-60. [PMID: 20008144 DOI: 10.2353/ajpath.2010.090383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The v-Crk protein was originally isolated as the oncogene fusion product of the CT10 chicken retrovirus. Cellular homologues of v-Crk include Crk, which encodes two alternatively spliced proteins (CrkI and CrkII), and CrkL. Though CrkI/II proteins are elevated in several types of cancer, including breast, the question of whether these Crk adaptor proteins can promote breast cancer has not been addressed. We created a transgenic mouse model that allows the expression of CrkII through the hormonally responsive mouse mammary tumor virus promoter. During puberty, transgenic mice were found to have delayed ductal outgrowth, characterized by increased collagen surrounding the terminal end buds. In post-pubertal mice, precocious ductal branching was observed and associated with increased proliferation. Focal mammary tumors appeared in a subset of animals, with a latency of approximately 15 months. Mouse mammary tumor virus/CrkII tumors showed high levels of Crk protein as well as various cytokeratin markers characteristic of their respective tumor pathologies. This study demonstrates that the precise expression of CrkII is critical for integrating signals for ductal outgrowth and branching morphogenesis during mammary gland development. Furthermore, this study provides evidence for a potential role of CrkII in integrating signals for breast cancer progression in vivo, which has important implications for elevated CrkII observed in human cancer.
Collapse
Affiliation(s)
- Kelly E Fathers
- Departments of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim YH, Kwei KA, Girard L, Salari K, Kao J, Pacyna-Gengelbach M, Wang P, Hernandez-Boussard T, Gazdar AF, Petersen I, Minna JD, Pollack JR. Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene 2009; 29:1421-30. [PMID: 19966867 PMCID: PMC3320568 DOI: 10.1038/onc.2009.437] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA amplifications, leading to the overexpression of oncogenes, are a cardinal feature of lung cancer and directly contribute to its pathogenesis. To uncover novel such alterations, we performed an array-based comparative genomic hybridization survey of 128 non-small cell lung cancer cell lines and tumors. Prominent among our findings, we identified recurrent high-level amplification at cytoband 22q11.21 in 3% of lung cancer specimens, with another 11% of specimens exhibiting low-level gain spanning that locus. The 22q11.21 amplicon core contained eight named genes, only four of which were overexpressed (by transcript profiling) when amplified. Among these, CRKL encodes an adaptor protein functioning in signal transduction, best known as a substrate of the BCR-ABL kinase in chronic myelogenous leukemia. RNA interference-mediated knockdown of CRKL in lung cancer cell lines with (but not without) amplification led to significantly decreased cell proliferation, cell-cycle progression, cell survival, and cell motility and invasion. In addition, overexpression of CRKL in immortalized human bronchial epithelial cells led to EGF-independent cell growth. Our findings indicate that amplification and resultant overexpression of CRKL contributes to diverse oncogenic phenotypes in lung cancer, with implications for targeted therapy, and highlighting a role of adapter proteins as primary genetic drivers of tumorigenesis.
Collapse
Affiliation(s)
- Y H Kim
- Department of Pathology, Stanford University, Stanford, CA 94305-5176, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Johnson KJ, Griswold IJ, O'Hare T, Corbin AS, Loriaux M, Deininger MW, Druker BJ. A BCR-ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLoS One 2009; 4:e7439. [PMID: 19823681 PMCID: PMC2757918 DOI: 10.1371/journal.pone.0007439] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 09/17/2009] [Indexed: 11/19/2022] Open
Abstract
The BCR-ABL tyrosine kinase is the defining feature of chronic myeloid leukemia (CML) and its kinase activity is required for induction of this disease. Current thinking holds that BCR-ABL forms a multi-protein complex that incorporates several substrates and adaptor proteins and is stabilized by multiple direct and indirect interactions. Signaling output from this highly redundant network leads to cellular transformation. Proteins known to be associated with BCR-ABL in this complex include: GRB2, c-CBL, p62(DOK), and CRKL. These proteins in turn, link BCR-ABL to various signaling pathways indicated in cellular transformation. In this study we show that a triple mutant of BCR-ABL with mutations of the direct binding sites for GRB2, CBL, p62(DOK) and CRKL, is defective for transformation of primary hematopoietic cells in vitro and in a murine CML model, while it retains the capacity to induce IL-3 independence in 32D cells. Compared to BCR-ABL, the triple mutant's ability to activate the MAP kinase and PI3-kinase pathways is severely compromised, while STAT5 phosphorylation is maintained, suggesting that the former are crucial for the transformation of primary cells, but dispensable for transformation of factor dependent cell lines. Our data suggest that inhibition of BCR-ABL-induced leukemia by disrupting protein interactions could be possible, but would require blocking of multiple sites.
Collapse
Affiliation(s)
- Kara J Johnson
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, Oregon, United States of America.
| | | | | | | | | | | | | |
Collapse
|
48
|
Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A 2008; 105:20380-5. [PMID: 19091943 DOI: 10.1073/pnas.0810485105] [Citation(s) in RCA: 436] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.
Collapse
|
49
|
Phillips KS, Kottegoda S, Kang KM, Sims CE, Allbritton NL. Separations in poly(dimethylsiloxane) microchips coated with supported bilayer membranes. Anal Chem 2008; 80:9756-62. [PMID: 19006406 PMCID: PMC2735572 DOI: 10.1021/ac801850z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid microchannels composed of poly(dimethylsiloxane) and glass were coated with supported bilayer membranes (SBMs) by the process of vesicle fusion. The electroosmotic mobility (mu(eo)) of zwitterionic, positively charged, and negatively charged phospholipid membranes was measured over a 4 h time to evaluate the stability of the coatings in an electric field. Coated microchips with a simple cross design were used to separate the fluorescent dyes fluorescein and Oregon Green. Migration time reproducibility was better than 5% RSD over 70 min of continuous separations. Separation of Oregon Green and fluorescein in channels coated with zwitterionic phosphatidylcholine (PC) membranes yielded efficiencies of 611,000 and 499,000 plates/m and a resolution of 2.4 within 2 s. Both zwitterionic and negatively charged membranes were used to separate peptide substrates from their phosphorylated analogues with efficiencies of 200,000-400,000 plates/m. Notably, separations of fluorescently labeled ABL substrate peptide from its phosphorylated counterpart were achieved using a high-salt physiological buffer with near-baseline resolution in 10 s. PC-coated devices were used to successfully separate enhanced green fluorescent protein (eGFP) from a fusion protein (eGFP-Crakl) with an efficiency of 358,000 and 278,000 plates/m respectively in less than 12 s. These SBM-based coatings may enable the separation of a broad range of analytes and may be ideal in biological applications for microfluidics.
Collapse
Affiliation(s)
- K Scott Phillips
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
50
|
Nguyen TK, Rahmani M, Harada H, Dent P, Grant S. MEK1/2 inhibitors sensitize Bcr/Abl+ human leukemia cells to the dual Abl/Src inhibitor BMS-354/825. Blood 2007; 109:4006-15. [PMID: 17218385 PMCID: PMC1874569 DOI: 10.1182/blood-2006-09-045039] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interactions between MEK1/2 inhibitors and the dual Abl/Src kinase inhibitor dasatinib (BMS-354825) were examined in chronic myeloid leukemia (CML) cell lines and primary specimens. Cotreatment of K562 or LAMA cells with subtoxic or marginally toxic concentrations of PD184352 (or U0126) and dasatinib synergistically potentiated mitochondrial damage, caspase activation, and apoptosis. Similar interactions were observed in CD34(+) cells from one CML patient-derived but not in a normal human CD34(+) bone marrow cell specimen. These interactions were associated with multiple perturbations in survival signaling pathways, including inactivation of Bcr/Abl, STAT5, and ERK1/2; down-regulation of Bcl-x(L) and Mcl-1; and dephosphorylation/activation of Bim. They were also associated with BAX/BAK conformational change, mitochondrial dysfunction, and caspase activation. Bim knockdown by shRNA suppressed BAX and BAK conformational change and protected cells from dasatinib/PD184352 lethality. Conversely, K562 cells ectopically expressing Mcl-1 or Bcl-x(L) were significantly less susceptible to dasatinib/PD184352 toxicity. Notably, the dasatinib/PD184352 regimen was active against leukemic cells exhibiting various forms of imatinib mesylate resistance, including Bcr/Abl overexpression, Lyn activation, and several Bcr/Abl kinase domain mutations (eg, E255K, M351T), but not T315I. Together, these findings suggest that strategies combining dasatanib with MEK1/2 inhibitors warrant further investigation in Bcr/Abl(+) malignancies, particularly in the setting of imatinib mesylate-resistant disease.
Collapse
MESH Headings
- Benzamides/agonists
- Benzamides/pharmacology
- Butadienes/agonists
- Butadienes/pharmacology
- Dasatinib
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor
- Drug Synergism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- MAP Kinase Kinase 1/antagonists & inhibitors
- MAP Kinase Kinase 1/metabolism
- MAP Kinase Kinase 2/antagonists & inhibitors
- MAP Kinase Kinase 2/metabolism
- MAP Kinase Kinase 2/pharmacology
- Nitriles/agonists
- Nitriles/pharmacology
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/agonists
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/agonists
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Thiazoles/agonists
- Thiazoles/pharmacology
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Tri K Nguyen
- Department of Medicine, Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|