1
|
Saba J, Flores K, Marshall B, Engstrom MD, Peng Y, Garje AS, Comstock LE, Landick R. Bacteroides expand the functional versatility of a conserved transcription factor and transcribed DNA to program capsule diversity. Nat Commun 2024; 15:10862. [PMID: 39738018 PMCID: PMC11685472 DOI: 10.1038/s41467-024-55215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
The genomes of human gut bacteria in the genus Bacteroides include numerous operons for biosynthesis of diverse capsular polysaccharides (CPSs). The first two genes of each CPS operon encode a locus-specific paralog of transcription elongation factor NusG (called UpxY), which enhances transcript elongation, and a UpxZ protein that inhibits noncognate UpxYs. This process, together with promoter inversions, ensures that a single CPS operon is transcribed in most cells. Here, we use in-vivo nascent-RNA sequencing and promoter-less in-vitro transcription (PIVoT) to show that UpxY recognizes a paused RNA polymerase via sequences in both the exposed non-template DNA and the upstream duplex DNA. UpxY association is aided by 'pause-then-escape' nascent RNA hairpins. UpxZ binds non-cognate UpxYs to directly inhibit UpxY association. This UpxY-UpxZ hierarchical regulatory program allows Bacteroides to generate subpopulations of cells producing diverse CPSs for optimal fitness.
Collapse
Affiliation(s)
- Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Katia Flores
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Bailey Marshall
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Engstrom
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yikai Peng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Atharv S Garje
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laurie E Comstock
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Saba J, Flores K, Marshall B, Engstrom MD, Peng Y, Garje AS, Comstock L, Landick R. Bacteroides expand the functional versatility of a universal transcription factor and transcribed DNA to program capsule diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599965. [PMID: 38948710 PMCID: PMC11213015 DOI: 10.1101/2024.06.21.599965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Human gut Bacteroides species encode numerous (eight or more) tightly regulated capsular polysaccharides (CPS). Specialized paralogs of the universal transcription elongation factor NusG, called UpxY (Y), and an anti-Y UpxZ (Z) are encoded by the first two genes of each CPS operon. The Y-Z regulators combine with promoter inversions to limit CPS transcription to a single operon in most cells. Y enhances transcript elongation whereas Z inhibits noncognate Ys. How Y distinguishes among cognate CPS operons and how Z inhibits only noncognate Ys are unknown. Using in-vivo nascent-RNA sequencing and promoter-less in vitro transcription (PIVoT), we establish that Y recognizes a paused RNA polymerase via sequences in both the exposed non-template DNA and the upstream duplex DNA. Y association is aided by novel 'pause-then-escape' nascent RNA hairpins. Z binds non-cognate Ys to directly inhibit Y association. This Y-Z hierarchical regulatory program allows Bacteroides to create CPS subpopulations for optimal fitness.
Collapse
Affiliation(s)
- Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katia Flores
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Bailey Marshall
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael D Engstrom
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yikai Peng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Atharv S Garje
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laurie Comstock
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Differences in RNA polymerase II complexes and their interactions with surrounding chromatin on human and cytomegalovirus genomes. Nat Commun 2022; 13:2006. [PMID: 35422111 PMCID: PMC9010409 DOI: 10.1038/s41467-022-29739-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Interactions of the RNA polymerase II (Pol II) preinitiation complex (PIC) and paused early elongation complexes with the first downstream (+1) nucleosome are thought to be functionally important. However, current methods are limited for investigating these relationships, both for cellular chromatin and the human cytomegalovirus (HCMV) genome. Digestion with human DNA fragmentation factor (DFF) before immunoprecipitation (DFF-ChIP) precisely revealed both similarities and major differences in PICs driven by TBP on the host genome in comparison with PICs driven by TBP or the viral-specific, late initiation factor UL87 on the viral genome. Host PICs and paused Pol II complexes are frequently found in contact with the +1 nucleosome and paused Pol II can also be found in a complex involved in the initial invasion of the +1 nucleosome. In contrast, viral transcription complexes have very limited nucleosomal interactions, reflecting a relative lack of chromatinization of transcriptionally active regions of HCMV genomes. Here the authors digested chromatin with DNA fragmentation factor (DFF) prior to chromatin immunoprecipitation (DFF-ChIP) to depict transcription complex interactions with neighboring nucleosomes in cells. Applying this method to human cytomegalovirus (HMCV)-infected cells, they find that the viral genome is underchromatinized, leading to fewer transcription complex interactions with nucleosomes.
Collapse
|
4
|
Fei J, Ishii H, Hoeksema MA, Meitinger F, Kassavetis GA, Glass CK, Ren B, Kadonaga JT. NDF, a nucleosome-destabilizing factor that facilitates transcription through nucleosomes. Genes Dev 2018; 32:682-694. [PMID: 29759984 PMCID: PMC6004073 DOI: 10.1101/gad.313973.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/11/2018] [Indexed: 12/22/2022]
Abstract
Our understanding of transcription by RNA polymerase II (Pol II) is limited by our knowledge of the factors that mediate this critically important process. Here we describe the identification of NDF, a nucleosome-destabilizing factor that facilitates Pol II transcription in chromatin. NDF has a PWWP motif, interacts with nucleosomes near the dyad, destabilizes nucleosomes in an ATP-independent manner, and facilitates transcription by Pol II through nucleosomes in a purified and defined transcription system as well as in cell nuclei. Upon transcriptional induction, NDF is recruited to the transcribed regions of thousands of genes and colocalizes with a subset of H3K36me3-enriched regions. Notably, the recruitment of NDF to gene bodies is accompanied by an increase in the transcript levels of many of the NDF-enriched genes. In addition, the global loss of NDF results in a decrease in the RNA levels of many genes. In humans, NDF is present at high levels in all tested tissue types, is essential in stem cells, and is frequently overexpressed in breast cancer. These findings indicate that NDF is a nucleosome-destabilizing factor that is recruited to gene bodies during transcriptional activation and facilitates Pol II transcription through nucleosomes.
Collapse
Affiliation(s)
- Jia Fei
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Haruhiko Ishii
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - Marten A Hoeksema
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
| | - George A Kassavetis
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, California 92093, USA
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
- Center for Epigenomics, Institute of Genome Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - James T Kadonaga
- Section of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Skene PJ, Henikoff S. A simple method for generating high-resolution maps of genome-wide protein binding. eLife 2015; 4:e09225. [PMID: 26079792 PMCID: PMC4480131 DOI: 10.7554/elife.09225] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 01/10/2023] Open
Abstract
Chromatin immunoprecipitation (ChIP) and its derivatives are the main techniques used to determine transcription factor binding sites. However, conventional ChIP with sequencing (ChIP-seq) has problems with poor resolution, and newer techniques require significant experimental alterations and complex bioinformatics. Previously, we have used a new crosslinking ChIP-seq protocol (X-ChIP-seq) to perform high-resolution mapping of RNA Polymerase II (Skene et al., 2014). Here, we build upon this work and compare X-ChIP-seq to existing methodologies. By using micrococcal nuclease, which has both endo- and exo-nuclease activity, to fragment the chromatin and thereby generate precise protein-DNA footprints, high-resolution X-ChIP-seq achieves single base-pair resolution of transcription factor binding. A significant advantage of this protocol is the minimal alteration to the conventional ChIP-seq workflow and simple bioinformatic processing.
Collapse
Affiliation(s)
- Peter J Skene
- Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Steven Henikoff
- Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
6
|
Weber CM, Ramachandran S, Henikoff S. Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase. Mol Cell 2014; 53:819-30. [PMID: 24606920 DOI: 10.1016/j.molcel.2014.02.014] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/04/2013] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
Abstract
Nucleosomes are barriers to transcription in vitro; however, their effects on RNA polymerase in vivo are unknown. Here we describe a simple and general strategy to comprehensively map the positions of elongating and arrested RNA polymerase II (RNAPII) at nucleotide resolution. We find that the entry site of the first (+1) nucleosome is a barrier to RNAPII for essentially all genes, including those undergoing regulated pausing farther upstream. In contrast to the +1 nucleosome, gene body nucleosomes are low barriers and cause RNAPII stalling both at the entry site and near the dyad axis. The extent of the +1 nucleosome barrier correlates with nucleosome occupancy but anticorrelates with enrichment of histone variant H2A.Z. Importantly, depletion of H2A.Z from a nucleosome position results in a higher barrier to RNAPII. Our results suggest that nucleosomes present significant, context-specific barriers to RNAPII in vivo that can be tuned by the incorporation of H2A.Z.
Collapse
Affiliation(s)
- Christopher M Weber
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Srinivas Ramachandran
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Skene PJ, Hernandez AE, Groudine M, Henikoff S. The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. eLife 2014; 3:e02042. [PMID: 24737864 PMCID: PMC3983905 DOI: 10.7554/elife.02042] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/04/2014] [Indexed: 12/18/2022] Open
Abstract
RNA polymerase II (PolII) transcribes RNA within a chromatin context, with nucleosomes acting as barriers to transcription. Despite these barriers, transcription through chromatin in vivo is highly efficient, suggesting the existence of factors that overcome this obstacle. To increase the resolution obtained by standard chromatin immunoprecipitation, we developed a novel strategy using micrococcal nuclease digestion of cross-linked chromatin. We find that the chromatin remodeler Chd1 is recruited to promoter proximal nucleosomes of genes undergoing active transcription, where Chd1 is responsible for the vast majority of PolII-directed nucleosome turnover. The expression of a dominant negative form of Chd1 results in increased stalling of PolII past the entry site of the promoter proximal nucleosomes. We find that Chd1 evicts nucleosomes downstream of the promoter in order to overcome the nucleosomal barrier and enable PolII promoter escape, thus providing mechanistic insight into the role of Chd1 in transcription and pluripotency. DOI: http://dx.doi.org/10.7554/eLife.02042.001.
Collapse
Affiliation(s)
- Peter J Skene
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Aaron E Hernandez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Mark Groudine
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, United States
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
8
|
Zhou YN, Lubkowska L, Hui M, Court C, Chen S, Court DL, Strathern J, Jin DJ, Kashlev M. Isolation and characterization of RNA polymerase rpoB mutations that alter transcription slippage during elongation in Escherichia coli. J Biol Chem 2013; 288:2700-10. [PMID: 23223236 PMCID: PMC3554936 DOI: 10.1074/jbc.m112.429464] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 01/05/2023] Open
Abstract
Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA. However, the regions in RNAP involved in elongation slippage and its molecular mechanism are unknown. We constructed an A/T tract that is out of frame relative to a downstream lacZ gene on the chromosome to examine transcriptional slippage during elongation. Further, we developed a genetic system that enabled us for the first time to isolate and characterize E. coli RNAP mutants with altered transcriptional slippage in vivo. We identified several amino acid residues in the β subunit of RNAP that affect slippage in vivo and in vitro. Interestingly, these highly clustered residues are located near the RNA strand of the RNA-DNA hybrid in the elongation complex. Our E. coli study complements an accompanying study of slippage by yeast RNAP II and provides the basis for future studies on the mechanism of transcription fidelity.
Collapse
Affiliation(s)
- Yan Ning Zhou
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Lucyna Lubkowska
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Monica Hui
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Carolyn Court
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Shuo Chen
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Donald L. Court
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Jeffrey Strathern
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ding Jun Jin
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Mikhail Kashlev
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
9
|
Bintu L, Ishibashi T, Dangkulwanich M, Wu YY, Lubkowska L, Kashlev M, Bustamante C. Nucleosomal elements that control the topography of the barrier to transcription. Cell 2013; 151:738-749. [PMID: 23141536 DOI: 10.1016/j.cell.2012.10.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/08/2012] [Accepted: 09/18/2012] [Indexed: 10/27/2022]
Abstract
The nucleosome represents a mechanical barrier to transcription that operates as a general regulator of gene expression. We investigate how each nucleosomal component-the histone tails, the specific histone-DNA contacts, and the DNA sequence-contributes to the strength of the barrier. Removal of the tails favors progression of RNA polymerase II into the entry region of the nucleosome by locally increasing the wrapping-unwrapping rates of the DNA around histones. In contrast, point mutations that affect histone-DNA contacts at the dyad abolish the barrier to transcription in the central region by decreasing the local wrapping rate. Moreover, we show that the nucleosome amplifies sequence-dependent transcriptional pausing, an effect mediated through the structure of the nascent RNA. Each of these nucleosomal elements controls transcription elongation by affecting distinctly the density and duration of polymerase pauses, thus providing multiple and alternative mechanisms for control of gene expression by chromatin remodeling and transcription factors.
Collapse
Affiliation(s)
- Lacramioara Bintu
- Jason L. Choy Laboratory of Single-Molecule Biophysics and Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Toyotaka Ishibashi
- QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Yueh-Yi Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics and Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Luse DS. Promoter clearance by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:63-8. [PMID: 22982364 DOI: 10.1016/j.bbagrm.2012.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/17/2012] [Accepted: 08/29/2012] [Indexed: 12/17/2022]
Abstract
Many changes must occur to the RNA polymerase II (pol II) transcription complex as it makes the transition from initiation into transcript elongation. During this intermediate phase of transcription, contact with initiation factors is lost and stable association with the nascent transcript is established. These changes collectively comprise promoter clearance. Once the transcript elongation complex has reached a point where its properties are indistinguishable from those of complexes with much longer transcripts, promoter clearance is complete. The clearance process for pol II consists of a number of steps and it extends for a surprisingly long distance downstream of transcription start. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
11
|
Luse DS, Spangler LC, Újvári A. Efficient and rapid nucleosome traversal by RNA polymerase II depends on a combination of transcript elongation factors. J Biol Chem 2010; 286:6040-8. [PMID: 21177855 DOI: 10.1074/jbc.m110.174722] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nucleosome is generally found to be a strong barrier to transcript elongation by RNA polymerase II (pol II) in vitro. The elongation factors TFIIF and TFIIS have been shown to cooperate in maintaining pol II in the catalytically competent state on pure DNA templates. We now show that although TFIIF or TFIIS alone is modestly stimulatory for nucleosome traversal, both factors together increase transcription through nucleosomes in a synergistic manner. We also studied the effect of TFIIF and TFIIS on transcription of nucleosomes containing a Sin mutant histone. The Sin point mutations reduce critical histone-DNA contacts near the center of the nucleosome. Significantly, we found that nucleosomes with a Sin mutant histone are traversed to the same extent and at nearly the same rate as equivalent pure DNA templates if both TFIIS and TFIIF are present. Thus, the nucleosome is not necessarily an insurmountable barrier to transcript elongation by pol II. If unfolding of template DNA from the nucleosome surface is facilitated and the tendency of pol II to retreat from barriers is countered, transcription of nucleosomal templates can be rapid and efficient.
Collapse
Affiliation(s)
- Donal S Luse
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
12
|
Jin J, Bai L, Johnson DS, Fulbright RM, Kireeva ML, Kashlev M, Wang MD. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nat Struct Mol Biol 2010; 17:745-52. [PMID: 20453861 PMCID: PMC2938954 DOI: 10.1038/nsmb.1798] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 03/05/2010] [Indexed: 12/25/2022]
Abstract
During gene expression, RNA polymerase (RNAP) encounters a major barrier at a nucleosome and yet must access the nucleosomal DNA. Previous in vivo evidence has suggested that multiple RNAPs might increase transcription efficiency through nucleosomes. Here we have quantitatively investigated this hypothesis using Escherichia coli RNAP as a model system by directly monitoring its location on the DNA via a single-molecule DNA-unzipping technique. When an RNAP encountered a nucleosome, it paused with a distinctive 10-base pair periodicity and backtracked by approximately 10-15 base pairs. When two RNAPs elongate in close proximity, the trailing RNAP apparently assists in the leading RNAP's elongation, reducing its backtracking and enhancing its transcription through a nucleosome by a factor of 5. Taken together, our data indicate that histone-DNA interactions dictate RNAP pausing behavior, and alleviation of nucleosome-induced backtracking by multiple polymerases may prove to be a mechanism for overcoming the nucleosomal barrier in vivo.
Collapse
Affiliation(s)
- Jing Jin
- Department of Physics, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Kireeva M, Nedialkov YA, Gong XQ, Zhang C, Xiong Y, Moon W, Burton ZF, Kashlev M. Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase. Methods 2009; 48:333-45. [PMID: 19398005 PMCID: PMC2721912 DOI: 10.1016/j.ymeth.2009.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 04/05/2009] [Accepted: 04/06/2009] [Indexed: 11/16/2022] Open
Abstract
Strategies for assembly and analysis of human, yeast, and bacterial RNA polymerase elongation complexes are described, and methods are shown for millisecond phase kinetic analyses of elongation using rapid chemical quench flow. Human, yeast, and bacterial RNA polymerases function very similarly in NTP-Mg2+ commitment and phosphodiester bond formation. A "running start, two-bond, double-quench" protocol is described and its advantages discussed. These studies provide information about stable NTP-Mg2+ loading, phosphodiester bond synthesis, the processive transition between bonds, and sequence-specific effects on transcription elongation dynamics.
Collapse
Affiliation(s)
- Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick, Bldg. 539, Room 222, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Sequence-specific pausing of multisubunit RNA polymerases (RNAPs) represents a rate-limiting step during transcription elongation. Pausing occurs on average every 100 bases of DNA. Several models have been proposed to explain pausing, including backtracking of the ternary elongation complex, delay of translocation of the enzyme along DNA, or a conformational change in the active site preventing formation of the phosphodiester bond. Here, we performed biochemical characterization of previously-reported pauses of Escherichia coli RNAP and found that they are not associated with backtracking or a translocation delay. Instead, the paused complex contains the 3' end of the transcript in the active center and is capable of binding the next cognate NTP. However, bond formation occurs much slower in the paused complex compared with its fully-active counterpart. The pausing is dramatically decreased by a substitution of the base encoding the next incoming NTP and the base encoding the 3' end of the nascent RNA, suggesting that (mis)-alignment of the 3' end of the RNA and the incoming NTP in the active site is crucial for pausing. These pause sites are conserved between E. coli and Thermus thermophilus RNAPs, but are not recognized by Saccharomyces cerevisiae RNAP II, indicating that prokaryotic RNAPs might be more sensitive to the changes in the alignment of the nascent transcript and the substrate NTP in the active site.
Collapse
|
15
|
Bondarenko VA, Steele LM, Ujvári A, Gaykalova DA, Kulaeva OI, Polikanov YS, Luse DS, Studitsky VM. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol Cell 2006; 24:469-79. [PMID: 17081995 DOI: 10.1016/j.molcel.2006.09.009] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/05/2006] [Accepted: 09/20/2006] [Indexed: 11/25/2022]
Abstract
Nucleosomes uniquely positioned on high-affinity DNA sequences present a polar barrier to transcription by human and yeast RNA polymerase II (Pol II). In one transcriptional orientation, these nucleosomes provide a strong, factor- and salt-insensitive barrier at the entry into the H3/H4 tetramer that can be recapitulated without H2A/H2B dimers. The same nucleosomes transcribed in the opposite orientation form a weaker, more diffuse barrier that is largely relieved by higher salt, TFIIS, or FACT. Barrier properties are therefore dictated by both the local nucleosome structure (influenced by the strength of the histone-DNA interactions) and the location of the high-affinity DNA region within the nucleosome. Pol II transcribes DNA sequences at the entry into the tetramer much less efficiently than the same sequences located distal to the nucleosome dyad. Thus, entry into the tetramer by Pol II facilitates further transcription, perhaps due to partial unfolding of the tetramer from DNA.
Collapse
Affiliation(s)
- Vladimir A Bondarenko
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lange U, Hausner W. Transcriptional fidelity and proofreading in Archaea and implications for the mechanism of TFS-induced RNA cleavage. Mol Microbiol 2004; 52:1133-43. [PMID: 15130130 DOI: 10.1111/j.1365-2958.2004.04039.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have addressed the question whether TFS, a protein that stimulates the intrinsic cleavage activity of the archaeal RNA polymerase, is able to improve the fidelity of transcription in Methanococcus. Using non-specific transcription experiments, we could demonstrate that misincorporation of non-templated nucleotides is reduced in the presence of TFS. A more detailed analysis revealed that elongation complexes containing a misincorporated nucleotide were arrested, but could be reactivated by TFS. RNase as well as exonuclease III footprinting experiments demonstrated that this arrest was not combined with extended backtracking. Analysis of paused elongation complexes demonstrated that TFS is able to induce a cleavage resynthesis cycle in such complexes, which resulted in the accumulation of dinucleotides corresponding to the last two nucleotides of the transcript. Further analysis of cleavage products revealed that, even under conditions that strongly promote misincorporation, still 50% of the released dinucleotides were correctly incorporated. Therefore, we assume that pausing of elongation complexes is an important determinant of TFS-induced RNA cleavage from the 3' end. As the incorporation rate of wrong nucleotides is about 700-fold reduced, it is possible that this delay also provides an appropriate time window for cleavage induction in order to maintain transcriptional fidelity by preventing misincorporation.
Collapse
Affiliation(s)
- Udo Lange
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | |
Collapse
|
17
|
Hawryluk PJ, Ujvári A, Luse DS. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3' RNA-DNA hybrid. Nucleic Acids Res 2004; 32:1904-16. [PMID: 15047857 PMCID: PMC390359 DOI: 10.1093/nar/gkh505] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcript elongation by RNA polymerase II is blocked at DNA sequences called arrest sites. An exceptionally weak RNA-DNA hybrid is often thought to be necessary at the point of arrest. We have identified an arrest site from the tyrosine hydroxylase (TH) gene which does not fit this pattern. Transcription of many sequence variants of this site shows that the RNA-DNA hybrid over the three bases immediately preceding the major arrest point may be strong (i.e. C:G) without interfering with arrest. However, arrest at the TH site requires the presence of a pyrimidine at the 3' end and arrest increases when the 3'-most segment is pyrimidine rich. We also demonstrated that arrest at the TH site is completely dependent on the presence of a purine-rich element immediately upstream of the RNA-DNA hybrid. Thus, the RNA polymerase II arrest element from the TH gene has several unanticipated characteristics: arrest is independent of a weak RNA-DNA hybrid at the 3' end of the transcript, but it requires both a pyrimidine at the 3' end and a polypurine element upstream of the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Peter J Hawryluk
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
19
|
Spitalny P, Thomm M. Analysis of the open region and of DNA-protein contacts of archaeal RNA polymerase transcription complexes during transition from initiation to elongation. J Biol Chem 2003; 278:30497-505. [PMID: 12783891 DOI: 10.1074/jbc.m303633200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The archaeal transcriptional machinery is polymerase II (pol II)-like but does not require ATP or TFIIH for open complex formation. We have used enzymatic and chemical probes to follow the movement of Pyrococcus RNA polymerase (RNAP) along the glutamate dehydrogenase gene during transcription initiation and transition to elongation. RNAP was stalled between registers +5 and +20 using C-minus cassettes. The upstream edge of RNAP was in close contact with the archaeal transcription factors TATA box-binding protein/transcription factor B in complexes stalled at position +5. Movement of the downstream edge of the RNAP was not detected by exonuclease III footprinting until register +8. A first structural transition characterized by movement of the upstream edge of RNAP was observed at registers +6/+7. A major transition was observed at registers +10/+11. In complexes stalled at these positions also the downstream edge of RNA polymerase started translocation, and reclosure of the initially open complex occurred indicating promoter clearance. Between registers +11 and +20 both RNAP and transcription bubble moved synchronously with RNA synthesis. The distance of the catalytic center to the front edge of the exo III footprint was approximately 12 nucleotides in all registers. The size of the RNA-DNA hybrid in an early archaeal elongation complex was estimated between 9 and 12 nucleotides. For complexes stalled between positions +10 and +20 the size of the transcription bubble was around 17 nucleotides. This study shows characteristic mechanistic properties of the archaeal system and also similarities to prokaryotic RNAP and pol II.
Collapse
Affiliation(s)
- Patrizia Spitalny
- Universität Kiel, Institut für Allgemeine Mikrobiologie, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | |
Collapse
|
20
|
Funk JD, Nedialkov YA, Xu D, Burton ZF. A key role for the alpha 1 helix of human RAP74 in the initiation and elongation of RNA chains. J Biol Chem 2002; 277:46998-7003. [PMID: 12354769 DOI: 10.1074/jbc.m206249200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II-associating protein 74 (RAP74) is the large subunit of transcription factor IIF (TFIIF), which is essential for accurate initiation and stimulates elongation by RNA polymerase II. Mutations within or adjacent to the alpha1 helix of the RAP74 subunit have been shown to decrease both initiation and elongation stimulation activities without strongly affecting the interactions of RAP74 with the RAP30 subunit or the interaction between TFIIF and RNA polymerase II. In this manuscript, mutations within the alpha1 helix are compared with mutations made throughout the neighboring conserved N-terminal domain of RAP74. Changes within the N-terminal domain include disruptions of specific contacts with the alpha1 helix, which were revealed in the recently published x-ray crystal structure (Gaiser, F., Tan, S., and Richmond, T. J. (2000) J. Mol. Biol. 302, 1119-1127). Contacts between the beta4-beta5 loop and the alpha1 helix are shown to be largely unimportant for alpha1 helix function. Other mutations throughout the N-terminal domain are consistent with the establishment of the dimer interface with the RAP30 subunit. The RAP74-RAP30 interface is important for TFIIF function, but no particular RAP74 amino acids within this region have been identified that are required for TFIIF activities. The molecular target of the alpha1 helix remains unknown, but our studies refocus attention on this important functional motif of TFIIF.
Collapse
Affiliation(s)
- Janel D Funk
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | | | |
Collapse
|
21
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
22
|
Ujvári A, Pal M, Luse DS. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides. J Biol Chem 2002; 277:32527-37. [PMID: 12087087 DOI: 10.1074/jbc.m201145200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A significant fraction of RNA polymerase II transcription complexes become arrested when halted within a particular initially transcribed region after the synthesis of 23-32-nucleotide RNAs. If polymerases are halted within the same sequence at a promoter-distal location, they remain elongation-competent. However, when the RNAs within these promoter-distal complexes are truncated to between 21 and 48 nucleotides, many of the polymerases become arrested. The degree of the arrest correlates very well with the length of the RNA in both the promoter-proximal and -distal complexes. This effect is also observed when comparing promoter-proximal and promoter-distal complexes halted over a completely different sequence. The unusual propensity of many promoter-proximal RNA polymerase II complexes to arrest may therefore be recreated in promoter-distal complexes simply by shortening the nascent RNA. Thus, the transition to full elongation competence by RNA polymerase II is dependent on the synthesis of about 50 nt of RNA, and this transition is reversible. We also found that arrest is facilitated in promoter-distal complexes by the hybridization of oligonucleotides to the transcript between 30 and 45 bases upstream of the 3'-end.
Collapse
Affiliation(s)
- Andrea Ujvári
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
23
|
Sijbrandi R, Fiedler U, Timmers HTM. RNA polymerase II complexes in the very early phase of transcription are not susceptible to TFIIS-induced exonucleolytic cleavage. Nucleic Acids Res 2002; 30:2290-8. [PMID: 12034815 PMCID: PMC117193 DOI: 10.1093/nar/30.11.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2002] [Revised: 04/03/2002] [Accepted: 04/03/2002] [Indexed: 11/14/2022] Open
Abstract
TFIIS is a transcription elongation factor for RNA polymerase II (pol II), which can suppress ribonucleotide misincorporation. We reconstituted transcription complexes in a highly purified pol II system on adenovirus Major-Late promoter constructs. We noted that these complexes have a high propensity for read-through upon GTP omission. Read-through occurred during the early stages at all registers analyzed. Addition of TFIIS reversed read-through of productive elongation complexes, which indicated that it was due to misincorporation. However, before register 13 transcription complexes were insensitive to TFIIS. These findings are discussed with respect to the structural models for pol II and we propose that TFIIS action is linked to the RNA:DNA hybrid.
Collapse
Affiliation(s)
- Robert Sijbrandi
- Laboratory for Physiological Chemistry, UMCU, Stratenum, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
24
|
Pal M, Luse DS. Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol Cell Biol 2002; 22:30-40. [PMID: 11739720 PMCID: PMC134219 DOI: 10.1128/mcb.22.1.30-40.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/09/2001] [Accepted: 09/17/2001] [Indexed: 11/20/2022] Open
Abstract
We find that immediately following transcript initiation, RNA polymerase II pauses at several locations even in the presence of relatively high (200 microM) levels of nucleoside triphosphates. Strong pauses with half-lives of >30 s were observed at +7, +18/19, and about +25 on the template used in these experiments. We show that the strong pause at +7, after the synthesis of 5'-ACUCUCU, leads to repeated cycles of upstream slippage of the RNA-DNA hybrid followed by re-pairing with the DNA and continued RNA synthesis. The resulting transcripts are 2, 4, and 6 bases longer than predicted by the template sequence. Slippage is efficient when transcription is primed with the +1/+2 (ApC) dinucleotide, and it occurs at even higher levels with the +2/+3 primer (CpU). Slippage can occur at high levels with ATP initiation, but priming with CpA (-1/+1) supports very little slippage. This latter result is not simply an effect of transcript length at the point of pausing. Slippage can also occur with a second template on which the polymerase can be paused after synthesizing ACUCU. Slippage is not reduced by an ATP analog that blocks promoter escape, but it is inhibited by substitution of 5Br-U for U in the RNA. Our results reveal an unexpected flexibility of RNA polymerase II ternary complexes during the very early stage of transcription, and they suggest that initiation at different locations within the same promoter gives rise to transcription complexes with different properties.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
25
|
Tornaletti S, Maeda LS, Lloyd DR, Reines D, Hanawalt PC. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 2001; 276:45367-71. [PMID: 11571287 PMCID: PMC3373304 DOI: 10.1074/jbc.m105282200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymine glycols are formed in DNA by exposure to ionizing radiation or oxidative stress. Although these lesions are repaired by the base excision repair pathway, they have been shown also to be subject to transcription-coupled repair. A current model for transcription-coupled repair proposes that RNA polymerase II arrested at a DNA lesion provides a signal for recruitment of the repair enzymes to the lesion site. Here we report the effect of thymine glycol on transcription elongation by T7 RNA polymerase and RNA polymerase II from rat liver. DNA substrates containing a single thymine glycol located either in the transcribed or nontranscribed strand were used to carry out in vitro transcription. We found that thymine glycol in the transcribed strand blocked transcription elongation by T7 RNA polymerase approximately 50% of the time but did not block RNA polymerase II. Thymine glycol in the nontranscribed strand did not affect transcription by either polymerase. These results suggest that arrest of RNA polymerase elongation by thymine glycol is not necessary for transcription-coupled repair of this lesion. Additional factors that recognize and bind thymine glycol in DNA may be required to ensure RNA polymerase arrest and the initiation of transcription-coupled repair in vivo.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| | - Lauren S. Maeda
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| | - Daniel R. Lloyd
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Philip C. Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
- To whom correspondence should be addressed: Dept. of Biological Sciences, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020. Tel.: 650-723-2424; Fax: 650-725-1848;
| |
Collapse
|
26
|
Pal M, McKean D, Luse DS. Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence. Mol Cell Biol 2001; 21:5815-25. [PMID: 11486021 PMCID: PMC87301 DOI: 10.1128/mcb.21.17.5815-5825.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized RNA polymerase II complexes halted from +16 to +49 on two templates which differ in the initial 20 nucleotides (nt) of the transcribed region. On a template with a purine-rich initial transcript, most complexes halted between +20 and +32 become arrested and cannot resume RNA synthesis without the SII elongation factor. These arrested complexes all translocate upstream to the same location, such that about 12 to 13 bases of RNA remain in each of the complexes after SII-mediated transcript cleavage. Much less arrest is observed over this same region with a second template in which the initially transcribed region is pyrimidine rich, but those complexes which do arrest on the second template also translocate upstream to the same location observed with the first template. Complexes stalled at +16 to +18 on either template do not become arrested. Complexes stalled at several locations downstream of +35 become partially arrested, but these more promoter-distal arrested complexes translocate upstream by less than 10 nt; that is, they do not translocate to a common, far-upstream location. Kinetic studies with nonlimiting levels of nucleoside triphosphates reveal strong pausing between +20 and +30 on both templates. These results indicate that promoter clearance by RNA polymerase II is at least a two-step process: a preclearance escape phase extending up to about +18 followed by an unstable clearance phase which extends over the formation of 9 to 17 more bonds. Polymerases halted during the clearance phase translocate upstream to the preclearance location and arrest in at least one sequence context.
Collapse
Affiliation(s)
- M Pal
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | |
Collapse
|
27
|
Abstract
In order to gain insight into requirements for template activation and commitment in mammalian transcription, TATA site occupancy was measured in native SV40 viral transcription complexes that were in the process of transcription elongation at the time of cell lysis. This was accomplished by quantifying resistance to restriction enzyme digestion of transcription complexes in nuclear lysate. The rate of cleavage at the TATA site of the late gene in the native complex was slower than that of a bare DNA control, both for wild-type virus and for a virus containing a TATA consensus sequence. These results suggest that the TATA site in the transcription elongation complex in vivo is occupied with transcription factor TBP/TFIID. When considered in light of previous work, these findings support a model in which transcription activation involves reinitiation from a promoter that contains both activator and TFIID bound in a stable complex.
Collapse
Affiliation(s)
- O I Kulaeva
- Molecular Biology Research Program, Henry Ford Hospital, One Ford Place 5D, Detroit, Michigan 48202-3450, USA
| | | |
Collapse
|
28
|
Wind-Rotolo M, Reines D. Analysis of gene induction and arrest site transcription in yeast with mutations in the transcription elongation machinery. J Biol Chem 2001; 276:11531-8. [PMID: 11278887 PMCID: PMC3373193 DOI: 10.1074/jbc.m011322200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro, transcript elongation by RNA polymerase II is impeded by DNA sequences, DNA-bound proteins, and small ligands. Transcription elongation factor SII (TFIIS) assists RNA polymerase II to transcribe through these obstacles. There is however, little direct evidence that SII-responsive arrest sites function in living cells nor that SII facilitates readthrough in vivo. Saccharomyces cerevisiae strains lacking elongation factor SII and/or containing a point mutation in the second largest subunit of RNA polymerase II, which slows the enzyme's RNA elongation rate, grow slowly and have defects in mRNA metabolism, particularly in the presence of nucleotide-depleting drugs. Here we have examined transcriptional induction in strains lacking SII or containing the slow polymerase mutation. Both mutants and a combined double mutant were defective in induction of GAL1 and ENA1. This was not due to an increase in mRNA degradation and was independent of any drug treatment, although treatment with the nucleotide-depleting drug 6-azauracil exacerbated the effect preferentially in the mutants. These data are consistent with mutants in the Elongator complex, which show slow inductive responses. When a potent in vitro arrest site was transcribed in these strains, there was no perceptible effect upon mRNA accumulation. These data suggest that an alternative elongation surveillance mechanism exists in vivo to overcome arrest.
Collapse
Affiliation(s)
| | - Daniel Reines
- To whom correspondence should be addressed: Dept. of Biochemistry, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Rd., Atlanta, GA 30322. Tel.: 404-727-3361; Fax: 404-727-3452;
| |
Collapse
|
29
|
Dieci G, Corradini R, Sforza S, Marchelli R, Ottonello S. Inhibition of RNA polymerase III elongation by a T10 peptide nucleic acid. J Biol Chem 2001; 276:5720-5. [PMID: 11073963 DOI: 10.1074/jbc.m009367200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The terminator elements of eukaryotic class III genes strongly contribute to overall transcription efficiency by allowing fast RNA polymerase III (pol III) recycling. Being constituted by a run of thymidine residues on the coding strand (a poly(dA) tract on the transcribed strand), pol III terminators are expected to form highly stable triple-helix complexes with oligothymine peptide nucleic acids (PNAs). We analyzed the effect of a T10 PNA on in vitro transcription of three yeast class III genes (coding for two different tRNAs and the U6 small nuclear RNA) having termination signals of at least ten T residues. At nanomolar concentrations, the PNA almost completely inhibited transcription of supercoiled, but not linearized, templates in a sequence-specific manner. The total RNA output of the first transcription cycle was not affected by PNA concentrations strongly inhibiting multiple round transcription. Thus, an impairment of pol III recycling fully accounts for the observed inhibition. As revealed by the size and the state (free or transcription complex-associated) of the RNAs produced in PNA-inhibited reactions, pol III is "roadblocked" by the DNA-PNA adduct before reaching the terminator region. On different templates, the distance between the active site and the leading edge of the arrested polymerase ranged from 10 to 20 base pairs. Given their ability to efficiently block pol III elongation, oligothymine PNAs lend themselves as potential cell growth inhibitors interfering with eukaryotic class III gene transcription.
Collapse
Affiliation(s)
- G Dieci
- Istituto di Scienze Biochimiche, Università di Parma, I-43100 Parma, Italy.
| | | | | | | | | |
Collapse
|
30
|
Kireeva ML, Komissarova N, Waugh DS, Kashlev M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J Biol Chem 2000; 275:6530-6. [PMID: 10692458 DOI: 10.1074/jbc.275.9.6530] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sliding clamp model of transcription processivity, based on extensive studies of Escherichia coli RNA polymerase, suggests that formation of a stable elongation complex requires two distinct nucleic acid components: an 8-9-nt transcript-template hybrid, and a DNA duplex immediately downstream from the hybrid. Here, we address the minimal composition of the processive elongation complex in the eukaryotes by developing a method for promoter-independent assembly of functional elongation complex of S. cerevisiae RNA polymerase II from synthetic DNA and RNA oligonucleotides. We show that only one of the nucleic acid components, the 8-nt RNA:DNA hybrid, is necessary for the formation of a stable elongation complex with RNA polymerase II. The double-strand DNA upstream and downstream of the hybrid does not affect stability of the elongation complex. This finding reveals a significant difference in processivity determinants of RNA polymerase II and E. coli RNA polymerase. In addition, using the imperfect RNA:DNA hybrid disturbed by the mismatches in the RNA, we show that nontemplate DNA strand may reduce the elongation complex stability via the reduction of the RNA:DNA hybrid length. The structure of a "minimal stable" elongation complex suggests a key role of the RNA:DNA hybrid in RNA polymerase II processivity.
Collapse
Affiliation(s)
- M L Kireeva
- Advanced BioScience Laboratories, Inc.-Basic Research Program, NCI-Frederick Cancer Research and Development Center, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
31
|
Tornaletti S, Reines D, Hanawalt PC. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J Biol Chem 1999; 274:24124-30. [PMID: 10446184 PMCID: PMC3371614 DOI: 10.1074/jbc.274.34.24124] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have characterized the properties of immunopurified transcription complexes arrested at a specifically located cyclobutane pyrimidine dimer (CPD) using enzymatic probes and an in vitro transcription system with purified RNA polymerase II (RNAP II) and initiation factors. To help understand how RNAP II distinguishes between a natural impediment and a lesion in the DNA to initiate a repair event, we have compared the conformation of RNAP II complexes arrested at a CPD with complexes arrested at a naturally occurring elongation impediment. The footprint of RNAP II arrested at a CPD, using exonuclease III and T4 DNA polymerase's 3'-->5' exonuclease, covers approximately 35 base pairs and is asymmetrically located around the dimer. A similar footprint is observed when RNAP II is arrested at the human histone H3.3 arrest site. Addition of elongation factor SII to RNAP II arrested at a CPD produced shortened transcripts of discrete lengths up to 25 nucleotides shorter than those seen without SII. After addition of photolyase and exposure to visible light, some of the transcripts could be reelongated beyond the dimer, suggesting that SII-mediated transcript cleavage accompanied significant RNAP II backup, thereby providing access of the repair enzyme to the arresting CPD.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
| | - Daniel Reines
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Philip C. Hanawalt
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020
- To whom correspondence should be addressed. Tel.: 650-723-2424; Fax: 650-725-1848;
| |
Collapse
|
32
|
Keene RG, Mueller A, Landick R, London L. Transcriptional pause, arrest and termination sites for RNA polymerase II in mammalian N- and c-myc genes. Nucleic Acids Res 1999; 27:3173-82. [PMID: 10454615 PMCID: PMC148545 DOI: 10.1093/nar/27.15.3173] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using either highly purified RNA polymerase II (pol II) elongation complexes assembled on oligo(dC)-tailed templates or promoter-initiated (extract-generated) pol II elongation complexes, the precise 3" ends of transcripts produced during transcription in vitro at several human c- and N- myc pause, arrest and termination sites were determined. Despite a low overall similarity between the entire c- and N- myc first exon sequences, many positions of pol II pausing, arrest or termination occurred within short regions of related sequence shared between the c- and N- myc templates. The c- and N- myc genes showed three general classes of sequence conservation near intrinsic pause, arrest or termination sites: (i) sites where arrest or termination occurred after the synthesis of runs of uridines (Us) preceding the transcript 3" end, (ii) sites downstream of potential RNA hairpins and (iii) sites after nucleotide addition following either a U or a C or following a combination of several pyrimidines near the transcript 3" end. The finding that regions of similarity occur near the sites of pol II pausing, arrest or termination suggests that the mechanism of c- and N- myc regulation at the level of transcript elongation may be similar and not divergent as previously proposed.
Collapse
Affiliation(s)
- R G Keene
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
33
|
Abstract
On 5'-template strand protruding templates, promoter-initiated run-off transcription by RNA polymerase II generates discrete, 15-16-nucleotide (nt) longer than expected products whose production is abrogated by elongation factor SII (Parsons, M. A., Sinden, R. R., and Izban, M. G. (1998) J. Biol. Chem. 273, 26998-27008). We demonstrate that template terminal complexes produce these RNAs and that transcript extension is a general and salt-sensitive (250 mM) feature of run-off transcription. On 5'-overhung templates the extended run-off transcripts appear to be retained within an RNA-DNA-enzyme ternary complex, and SII facilitates resumption of transcript elongation via a dinucleotide truncation intermediate. Moreover, on one of the 5-overhung templates, the initially extended complexes spontaneously resumed transcript extension and were uniquely resistant to salt (250 mM) challenge. However, SII did not facilitate this long distance extension on all template ends. Run-off transcripts on a blunt-ended template were initially extended by 2-11 nt (roughly in 2-nt increments); SII addition either before or after extension resulted in the accumulation of a 4-5-nt extension product. Based on these findings, we propose that the initial and continuously extended RNAs reflect intermediates and successful completion of template end-to-end transposition (template switching) by RNA polymerase II, respectively. Both the template end sequence and structure influenced the success of such an event.
Collapse
Affiliation(s)
- M G Izban
- Department of Obstetrics and Gynecology, Sealy Center for Molecular Science, the University of Texas Medical Branch, Galveston, Texas 77555-1062, USA.
| | | | | |
Collapse
|
34
|
Parsons MA, Sinden RR, Izban MG. Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci. J Biol Chem 1998; 273:26998-7008. [PMID: 9756950 DOI: 10.1074/jbc.273.41.26998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansion of a (CTG)n segment within the 3'-untranslated region of the myotonic dystrophy protein kinase gene alters mRNA production. The inherent ability of RNA polymerase II to transcribe (CTG)17-255 tracts corresponding to DNA from normal, unstable, and affected individuals, and the normal (CGG)54 fragile X repeat tract, was analyzed using a synchronized in vitro transcription system. Core RNA polymerase II transcribed all repeat units irrespective of repeat length or orientation. However, approximately 50% of polymerases transiently halted transcription (with a half-life of approximately 10 +/- 1 s) within the first and second CTG repeat unit and a more transient barrier to elongation was observed roughly centered within repeats 6-9. Transcription within the remainder of the CTG tracts and within the CCG, CGG, and CAG tracts appeared uniform with average transcription rates of 170, 250, 300, and 410 nucleotides/min, respectively. These differences correlated with changes in the sequence-specific transient pausing pattern within the CNG repeat tracts; individual incorporation rates were slower after incorporation of pyrimidine residues. Unexpectedly, approximately 4% of the run-off transcripts were, depending on the repeat sequence, either 15 or 18 nucleotides longer than expected. However, these products were not produced by transcriptional slippage within the repeat tract.
Collapse
Affiliation(s)
- M A Parsons
- Center for Genome Research, Institute of Biosciences and Technology, Department of Biochemistry and Biophysics, Texas A & M University, Houston, Texas 77030-0030, USA
| | | | | |
Collapse
|
35
|
Samkurashvili I, Luse DS. Structural changes in the RNA polymerase II transcription complex during transition from initiation to elongation. Mol Cell Biol 1998; 18:5343-54. [PMID: 9710618 PMCID: PMC109119 DOI: 10.1128/mcb.18.9.5343] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
We obtained exonuclease III (exoIII) footprints for a series of RNA polymerase II transcription complexes stalled between positions +20 to +51. Downstream advance of the exoIII footprint is normally tightly coordinated with RNA synthesis. However, arrested RNA polymerases slide back along the template, as indicated by exoIII footprints in which the last transcribed base is abnormally close to the downstream edge of the footprint. None of the polymerase II complexes stalled between +20 and +51 were arrested. Nevertheless, the exoIII footprints of complexes with 20-, 23-, or 25-nucleotide RNAs resembled those of arrested complexes, with the last transcribed base very close to the footprint's front edge. The exoIII footprint of the +27 complex was displaced downstream by 17 bp compared to the footprint of the +25 complex. Many complexes between +27 and +42 also showed evidence of sliding back along the template. We compared the effects of template sequence and transcript length by constructing a new template in which the initial transcribed sequence was duplicated beginning at +98. The exoIII footprints of transcription complexes stalled between +122 to +130 on this DNA did not resemble those of arrested complexes, in contrast to the footprints of analogous complexes stalled over the same DNA sequences early in transcription. Our results indicate that the RNA polymerase II transcription complex passes through a major, sequence-independent structural transition about 25 bases downstream of the starting point of transcription. The fully mature form of the elongation complex may not appear until more than 40 bonds have been made.
Collapse
Affiliation(s)
- I Samkurashvili
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
36
|
Mote J, Reines D. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J Biol Chem 1998; 273:16843-52. [PMID: 9642244 PMCID: PMC3371603 DOI: 10.1074/jbc.273.27.16843] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences that arrest transcription by either eukaryotic RNA polymerase II or Escherichia coli RNA polymerase have been identified previously. Elongation factors SII and GreB are RNA polymerase-binding proteins that enable readthrough of arrest sites by these enzymes, respectively. This functional similarity has led to general models of elongation applicable to both eukaryotic and prokaryotic enzymes. Here we have transcribed with phage and bacterial RNA polymerases, a human DNA sequence previously defined as an arrest site for RNA polymerase II. The phage and bacterial enzymes both respond efficiently to the arrest signal in vitro at limiting levels of nucleoside triphosphates. The E. coli polymerase remains in a template-engaged complex for many hours, can be isolated, and is potentially active. The enzyme displays a relatively slow first-order loss of elongation competence as it dwells at the arrest site. Bacterial RNA polymerase arrested at the human site is reactivated by GreB in the same way that RNA polymerase II arrested at this site is stimulated by SII. Very efficient readthrough can be achieved by phage, bacterial, and eukaryotic RNA polymerases in the absence of elongation factors if 5-Br-UTP is substituted for UTP. These findings provide additional and direct evidence for functional similarity between prokaryotic and eukaryotic transcription elongation and readthrough mechanisms.
Collapse
Affiliation(s)
| | - Daniel Reines
- To whom correspondence should be addressed. Tel.: 404-727-3361; Fax: 404-727-3452;
| |
Collapse
|
37
|
Tornaletti S, Donahue BA, Reines D, Hanawalt PC. Nucleotide sequence context effect of a cyclobutane pyrimidine dimer upon RNA polymerase II transcription. J Biol Chem 1997; 272:31719-24. [PMID: 9395515 PMCID: PMC3374599 DOI: 10.1074/jbc.272.50.31719] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the role of sequence context upon RNA polymerase II arrest by a cyclobutane pyrimidine dimer using an in vitro transcription system consisting of templates containing a specifically located cyclobutane pyrimidine dimer (CPD) and purified RNA polymerase II (RNAP II) and initiation factors. We selected a model sequence containing a well characterized site for RNAP II arrest in vitro, the human histone H3.3 gene arrest site. The 13-base pair core of the arrest sequence contains two runs of T in the nontranscribed strand that impose a bend in the DNA. We hypothesized that arrest of RNAP II might be affected by the presence of a CPD, based upon the observation that a CPD located at the center of a dA6.dT6 tract eliminates bending (Wang, C.-I., and Taylor, J.-S. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 9072-9076). We examined the normal H3.3 sequence and a mutant sequence containing a T --> G transversion, which reduces bending and efficiency of arrest. We show that a CPD in the transcribed strand at either of two locations in the arrest site is a potent block to transcription. However, a CPD in the nontranscribed strand only transiently pauses RNAP II. The CPD in concert with a mutation in the arrest site can reduce the extent of bending of the DNA and improve readthrough efficiency. These results demonstrate the potential importance of sequence context for the effect of CPDs within transcribed sequences.
Collapse
Affiliation(s)
- S Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
38
|
Sun JH, Kao CC. Characterization of RNA products associated with or aborted by a viral RNA-dependent RNA polymerase. Virology 1997; 236:348-53. [PMID: 9325242 DOI: 10.1006/viro.1997.8742] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ternary RNA-dependent RNA polymerase complexes were arrested at various stages of synthesis in vitro by limiting one or more NTPs. The RNAs synthesized prior to/during the arrest of the complex were characterized and the ability of the arrested complexes to continue elongation of these nascent RNAs in the presence of all four NTPs was analyzed. Nascent RNAs of 10 nt and longer remained associated with the RdRp complex and could be extended into full-length RNAs while shorter nascent RNAs were released by the complex. These results establish that previously observed RdRp-synthesized oligoribonucleotides of 8 nt or less are abortive initiation products and confirms that RdRp undergoes a transition from initiation to elongation after the synthesis of 8 nt.
Collapse
Affiliation(s)
- J H Sun
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
39
|
Nudler E, Mustaev A, Lukhtanov E, Goldfarb A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 1997; 89:33-41. [PMID: 9094712 DOI: 10.1016/s0092-8674(00)80180-4] [Citation(s) in RCA: 383] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An 8-9 bp RNA-DNA hybrid in the transcription elongation complex is essential for keeping the RNA 3' terminus engaged with the active site of E. coli RNA polymerase (RNAP). Destabilization of the hybrid leads to detachment of the transcript terminus, RNAP backtracking, and shifting of the hybrid upstream. Eventually, the exposed 3' segment of RNA can be removed through transcript cleavage. At certain sites, cycles of unwinding-rewinding of the hybrid are coupled to reverse-forward sliding of the transcription elongation complex. This explains apparent discontinuous elongation, which was previously interpreted as contraction and expansion of an RNAP molecule (inch-worming). Thus, the 3'-proximal RNA-DNA hybrid plays the dual role of keeping the active site in register with the template and sensing the helix-destabilizing mismatches in RNA, launching correction through backtracking and cleavage.
Collapse
Affiliation(s)
- E Nudler
- Public Health Research Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
40
|
Shilatifard A, Conaway JW, Conaway RC. Mechanism and regulation of transcriptional elongation and termination by RNA polymerase II. Curr Opin Genet Dev 1997; 7:199-204. [PMID: 9115429 DOI: 10.1016/s0959-437x(97)80129-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the past year, key advances in several areas of research on the structure and function of the RNA polymerase (pol II) elongation complex have shed considerable light on the mechanisms governing the elongation stage of eukaryotic mRNA synthesis. Novel features of the regulation of elongation by DNA and RNA binding transcriptional activators have been brought to light; the mechanisms of action of elongation factors that suppress pausing and premature arrest by transcribing pol II have been defined in greater detail; and novel elongation factors implicated in human disease have been identified and characterized.
Collapse
Affiliation(s)
- A Shilatifard
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma, 73104, USA
| | | | | |
Collapse
|