1
|
Regulation of mitochondrial FoF1ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977bp deletion of mitochondrial DNA. Biochim Biophys Acta Mol Basis Dis 2013; 1832:216-27. [PMID: 23046812 DOI: 10.1016/j.bbadis.2012.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/22/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022]
|
2
|
Boyle GM, Roucou X, Nagley P, Devenish RJ, Prescott M. Modulation at a distance of proton conductance through the Saccharomyces cerevisiae mitochondrial F1F0-ATP synthase by variants of the oligomycin sensitivity-conferring protein containing substitutions near the C-terminus. J Bioenerg Biomembr 2009; 32:595-607. [PMID: 15254373 DOI: 10.1023/a:1005674628249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have sought to elucidate how the oligomycin sensitivity-conferring protein (OSCP) of the mitochondrial F(1)F(0)-ATP synthase (mtATPase) can influence proton channel function. Variants of OSCP, from the yeast Saccharomyces cerevisiae, having amino acid substitutions at a strictly conserved residue (Gly166) were expressed in place of normal OSCP. Cells expressing the OSCP variants were able to grow on nonfermentable substrates, albeit with some increase in generation time. Moreover, these strains exhibited increased sensitivity to oligomycin, suggestive of modification in functional interactions between the F(1) and F(0) sectors mediated by OSCP. Bioenergetic analysis of mitochondria from cells expressing OSCP variants indicated an increased respiratory rate under conditions of no net ATP synthesis. Using specific inhibitors of mtATPase, in conjunction with measurement of changes in mitochondrial transmembrane potential, it was revealed that this increased respiratory rate was a result of increased proton flux through the F(0) sector. This proton conductance, which is not coupled to phosphorylation, is exquisitely sensitive to inhibition by oligomycin. Nevertheless, the oxidative phosphorylation capacity of these mitochondria from cells expressing OSCP variants was no different to that of the control. These results suggest that the incorporation of OSCP variants into functional ATP synthase complexes can display effects in the control of proton flux through the F(0) sector, most likely mediated through altered protein-protein contacts within the enzyme complex. This conclusion is supported by data indicating impaired stability of solubilized mtATPase complexes that is not, however, reflected in the assembly of functional enzyme complexes in vivo. Given a location for OSCP atop the F(1)-alpha(3)beta(3) hexamer that is distant from the proton channel, then the modulation of proton flux by OSCP must occur "at a distance." We consider how subtle conformational changes in OSCP may be transmitted to F(0).
Collapse
Affiliation(s)
- G M Boyle
- Department of Biochemistry and Molecular Biology, PO Box 13D, Monash University, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
3
|
Devenish RJ, Prescott M, Rodgers AJW. The structure and function of mitochondrial F1F0-ATP synthases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:1-58. [PMID: 18544496 DOI: 10.1016/s1937-6448(08)00601-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We review recent advances in understanding of the structure of the F(1)F(0)-ATP synthase of the mitochondrial inner membrane (mtATPase). A significant achievement has been the determination of the structure of the principal peripheral or stator stalk components bringing us closer to achieving the Holy Grail of a complete 3D structure for the complex. A major focus of the field in recent years has been to understand the physiological significance of dimers or other oligomer forms of mtATPase recoverable from membranes and their relationship to the structure of the cristae of the inner mitochondrial membrane. In addition, the association of mtATPase with other membrane proteins has been described and suggests that further levels of functional organization need to be considered. Many reports in recent years have concerned the location and function of ATP synthase complexes or its component subunits on the external surface of the plasma membrane. We consider whether the evidence supports complete complexes being located on the cell surface, the biogenesis of such complexes, and aspects of function especially related to the structure of mtATPase.
Collapse
Affiliation(s)
- Rodney J Devenish
- Department of Biochemistry and Molecular Biology, and ARC Centre of Excellence in Microbial Structural and Functional Genomics, Monash University, Clayton Campus, Victoria, 3800, Australia
| | | | | |
Collapse
|
4
|
Carbajo RJ, Kellas FA, Yang JC, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. How the N-terminal domain of the OSCP subunit of bovine F1Fo-ATP synthase interacts with the N-terminal region of an alpha subunit. J Mol Biol 2007; 368:310-8. [PMID: 17355883 DOI: 10.1016/j.jmb.2007.02.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 11/23/2022]
Abstract
The peripheral stalk of ATP synthase acts as a stator holding the alpha(3)beta(3) catalytic subcomplex and the membrane subunit a against the torque of the rotating central stalk and attached c ring. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha subunits of the F(1) subcomplex. Here, we present an NMR characterisation of the interaction between OSCP-NT and a peptide corresponding to residues 1-25 of the alpha-subunit of bovine F(1)-ATPase. The interaction site contains adjoining hydrophobic surfaces of helices 1 and 5 of OSCP-NT binding to hydrophobic side-chains of the alpha-peptide.
Collapse
|
5
|
Walker JE, Dickson VK. The peripheral stalk of the mitochondrial ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:286-96. [PMID: 16697972 DOI: 10.1016/j.bbabio.2006.01.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/04/2006] [Indexed: 12/23/2022]
Abstract
The peripheral stalk of F-ATPases is an essential component of these enzymes. It extends from the membrane distal point of the F1 catalytic domain along the surface of the F1 domain with subunit a in the membrane domain. Then, it reaches down some 45 A to the membrane surface, and traverses the membrane, where it is associated with the a-subunit. Its role is to act as a stator to hold the catalytic alpha3beta3 subcomplex and the a-subunit static relative to the rotary element of the enzyme, which consists of the c-ring in the membrane and the attached central stalk. The central stalk extends up about 45 A from the membrane surface and then penetrates into the alpha3beta3 subcomplex along its central axis. The mitochondrial peripheral stalk is an assembly of single copies of the oligomycin sensitivity conferral protein (the OSCP) and subunits b, d and F6. In the F-ATPase in Escherichia coli, its composition is simpler, and it consists of a single copy of the delta-subunit with two copies of subunit b. In some bacteria and in chloroplasts, the two copies of subunit b are replaced by single copies of the related proteins b and b' (known as subunits I and II in chloroplasts). As summarized in this review, considerable progress has been made towards establishing the structure and biophysical properties of the peripheral stalk in both the mitochondrial and bacterial enzymes. However, key issues are unresolved, and so our understanding of the role of the peripheral stalk and the mechanism of synthesis of ATP are incomplete.
Collapse
Affiliation(s)
- John E Walker
- The Medical Research Council Dunn Human Nutrition Unit, The Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | |
Collapse
|
6
|
Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D. Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit. J Mol Biol 2005; 351:824-38. [PMID: 16045926 DOI: 10.1016/j.jmb.2005.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/17/2022]
Abstract
The peripheral stalk of ATP synthase holds the alpha3beta3 catalytic subcomplex stationary against the torque of the rotating central stalk. In bovine mitochondria, the N-terminal domain of the oligomycin sensitivity conferral protein (OSCP-NT; residues 1-120) anchors one end of the peripheral stalk to the N-terminal tails of one or more alpha-subunits of the F1 subcomplex. Here we present the solution structure of OSCP-NT and an NMR titration study of its interaction with peptides representing N-terminal tails of F1 alpha-subunits. The structure comprises a bundle of six alpha-helices, and its interaction site contains adjoining hydrophobic surfaces of helices 1 and 5; residues in the region 1-8 of the alpha-subunit are essential for the interaction. The OSCP-NT is similar to the N-terminal domain of the delta-subunit from Escherichia coli ATP synthase (delta-NT), except that their surface charges differ (basic and acidic, respectively). As the charges of the adjacent crown regions in their alpha3beta3 complexes are similar, the OSCP-NT and delta-NT probably do not contact the crowns extensively. The N-terminal tails of alpha-subunit tails are probably alpha-helical, and so this interface, which is essential for the rotary mechanism of the enzyme, appears to consist of helix-helix interactions.
Collapse
|
7
|
Wilkens S, Borchardt D, Weber J, Senior AE. Structural Characterization of the Interaction of the δ and α Subunits of the Escherichia coli F1F0-ATP Synthase by NMR Spectroscopy,. Biochemistry 2005; 44:11786-94. [PMID: 16128580 DOI: 10.1021/bi0510678] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical point of interaction between F(1) and F(0) in the bacterial F(1)F(0)-ATP synthase is formed by the alpha and delta subunits. Previous work has shown that the N-terminal domain (residues 3-105) of the delta subunit forms a 6 alpha-helix bundle [Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, F. W., and Capaldi, R. A. (1997) Nat. Struct. Biol. 4, 198-201] and that the majority of the binding energy between delta and F(1) is provided by the interaction between the N-terminal 22 residues of the alpha- and N-terminal domain of the delta subunit [Weber, J., Muharemagic, A., Wilke-Mounts, S., and Senior, A. E. (2003) J. Biol. Chem. 278, 13623-13626]. We have now analyzed a 1:1 complex of the delta-subunit N-terminal domain and a peptide comprising the N-terminal 22 residues of the alpha subunit by heteronuclear protein NMR spectroscopy. A comparison of the chemical-shift values of delta-subunit residues with and without alpha N-terminal peptide bound indicates that the binding interface on the N-terminal domain of the delta subunit is formed by alpha helices I and V. NOE cross-peak patterns in 2D (12)C/(12)C-filtered NOESY spectra of the (13)C-labeled delta-subunit N-terminal domain in complex with unlabeled peptide verify that residues 8-18 in the alpha-subunit N-terminal peptide are folded as an alpha helix when bound to delta N-terminal domain. On the basis of intermolecular contacts observed in (12)C/(13)C-filtered NOESY experiments, we describe structural details of the interaction of the delta-subunit N-terminal domain with the alpha-subunit N-terminal alpha helix.
Collapse
Affiliation(s)
- Stephan Wilkens
- Departments of Biochemistry, University of California at Riverside, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
8
|
Ni ZL, Shi XB, Wei JM. Functional Consequences of N- or C-Terminal Deletions of the δ Subunit of Chloroplast ATP Synthase. Biochemistry 2004; 43:2272-8. [PMID: 14979723 DOI: 10.1021/bi035954r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutagenesis was used to generate seven truncation mutants of the spinach (Spinacia oleracea) chloroplast ATP synthase delta subunit lacking 5, 11, 17, or 35 amino acid residues from the N-terminus or 3, 9, or 15 residues from the C-terminus. Interactions between these mutants and all other subunits of the chloroplast ATPase were investigated by a yeast two-hybrid system. The results indicate that the N-terminal deletions mainly affected interactions between the delta subunit and the other part of CF(1), but did not significantly affect interactions with the CF(0) sector. In contrast, C-terminal truncations of the delta subunit mainly affected its interaction with the CF(0) sector and caused little impairment in interactions with the other part of CF(1). The conformation of the delta subunit C-terminal domain seems to be more sensitive to the truncations, as shown by minimal expression driven by C-terminal deleted (nine residues) mutants. Further studies showed C-terminal truncations of the delta subunit greatly impaired its ability to restore cyclic photophosphorylation in NaBr vesicles, whereas N-terminal truncations had little effect on the ability of delta to plug the CF(0) channel. None of the mutants impaired ATP hydrolysis by CF(1).
Collapse
Affiliation(s)
- Zhang-Lin Ni
- Shanghai Institute of Plant Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | |
Collapse
|
9
|
Gavin PD, Devenish RJ, Prescott M. FRET reveals changes in the F1–stator stalk interaction during activity of F1F0-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:167-79. [PMID: 14670607 DOI: 10.1016/j.bbabio.2003.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A stator is proposed as necessary to prevent futile rotation of the F(1) catalytic sector of mitochondrial ATP synthase (mtATPase) during periods of ATP synthesis or ATP hydrolysis. Although the second stalk of mtATPase is generally believed to fulfil the role of a stator capable of withstanding the stress produced by rotation of the central rotor, there is little evidence to directly support this view. We show that interaction between two candidate proteins of the second stalk, OSCP and subunit b, fused at their C-termini to GFP variants and assembled into functional mtATPase can be monitored in mitochondria using fluorescence resonance energy transfer (FRET). Substitution of native OSCP with a variant containing a glycine 166 to asparagine (G166N) substitution yielded a metastable complex. In contrast to the enzyme containing native OSCP, FRET could be irreversibly lowered for the enzyme containing G166N at a rate that correlated closely with the rate of enzyme activity (ATP hydrolysis). The non-hydrolysable ATP analogue, AMP-PCP did not have this effect. We conclude that two candidate proteins of the stator stalk, OSCP and b, are subject to stresses during enzyme catalytic activity commensurate with their role as a part of a stator stalk.
Collapse
Affiliation(s)
- Paul D Gavin
- Department of Biochemistry and Molecular Biology, ARC Center for Structural and Functional Genomics, Monash University, Clayton Campus, Victoria 3800, Australia
| | | | | |
Collapse
|
10
|
Maiwald D, Dietzmann A, Jahns P, Pesaresi P, Joliot P, Joliot A, Levin JZ, Salamini F, Leister D. Knock-out of the genes coding for the Rieske protein and the ATP-synthase delta-subunit of Arabidopsis. Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression. PLANT PHYSIOLOGY 2003; 133:191-202. [PMID: 12970486 PMCID: PMC196597 DOI: 10.1104/pp.103.024190] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Revised: 04/24/2003] [Accepted: 06/17/2003] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, the nuclear genes PetC and AtpD code for the Rieske protein of the cytochrome b(6)/f (cyt b(6)/f) complex and the delta-subunit of the chloroplast ATP synthase (cpATPase), respectively. Knock-out alleles for each of these loci have been identified. Greenhouse-grown petc-2 and atpd-1 mutants are seedling lethal, whereas heterotrophically propagated plants display a high-chlorophyll (Chl)-fluorescence phenotype, indicating that the products of PetC and AtpD are essential for photosynthesis. Additional effects of the mutations in axenic culture include altered leaf coloration and increased photosensitivity. Lack of the Rieske protein affects the stability of cyt b(6)/f and influences the level of other thylakoid proteins, particularly those of photosystem II. In petc-2, linear electron flow is blocked, leading to an altered redox state of both the primary quinone acceptor Q(A) in photosystem II and the reaction center Chl P700 in photosystem I. Absence of cpATPase-delta destabilizes the entire cpATPase complex, whereas residual accumulation of cyt b(6)/f and of the photosystems still allows linear electron flow. In atpd-1, the increase in non-photochemical quenching of Chl fluorescence and a higher de-epoxidation state of xanthophyll cycle pigments under low light is compatible with a slower dissipation of the transthylakoid proton gradient. Further and clear differences between the two mutations are evident when mRNA expression profiles of nucleus-encoded chloroplast proteins are considered, suggesting that the physiological states conditioned by the two mutations trigger different modes of plastid signaling and nuclear response.
Collapse
Affiliation(s)
- Daniela Maiwald
- Abteilung für Pflanzenzüchtung und Ertragsphysiologie, Max-Planck-Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Weber J, Wilke-Mounts S, Senior AE. Quantitative determination of binding affinity of delta-subunit in Escherichia coli F1-ATPase: effects of mutation, Mg2+, and pH on Kd. J Biol Chem 2002; 277:18390-6. [PMID: 11864990 DOI: 10.1074/jbc.m201047200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the stator function in ATP synthase, a fluorimetric assay has been devised for quantitative determination of binding affinity of delta-subunit to Escherichia coli F(1)-ATPase. The signal used is that of the natural tryptophan at residue delta28, which is enhanced by 50% upon binding of delta-subunit to alpha(3)beta(3)gammaepsilon complex. K(d) for delta binding is 1.4 nm, which is energetically equivalent (50.2 kJ/mol) to that required to resist the rotor strain. Only one site for delta binding was detected. The deltaW28L mutation increased K(d) to 4.6 nm, equivalent to a loss of 2.9 kJ/mol binding energy. While this was insufficient to cause detectable functional impairment, it did facilitate preparation of delta-depleted F(1). The alphaG29D mutation reduced K(d) to 26 nm, equivalent to a loss of 7.2 kJ/mol binding energy. This mutation did cause serious functional impairment, referable to interruption of binding of delta to F(1). Results with the two mutants illuminate how finely balanced is the stator resistance function. delta' fragment, consisting of residues delta1-134, bound with the same K(d) as intact delta, showing that, at least in absence of F(o) subunits, the C-terminal domain of delta contributes zero binding energy. Mg(2+) ions had a strong effect on increasing delta binding affinity, supporting the possibility of bridging metal ion involvement in stator function. High pH environment greatly reduced delta binding affinity, suggesting the involvement of protonatable side-chains in the binding site.
Collapse
Affiliation(s)
- Joachim Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
12
|
Matthey U, Braun D, Dimroth P. NMR investigations of subunit c of the ATP synthase from Propionigenium modestum in chloroform/methanol/water (4 : 4 : 1). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1942-6. [PMID: 11952796 DOI: 10.1046/j.1432-1033.2002.02851.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The subunit c from the ATP synthase of Propionigenium modestum was studied by NMR in chloroform/methanol/water (4 : 4 : 1). In this solvent, subunit c consists of two helical segments, comprised of residues L5 to I26 and G29 to N82, respectively. On comparing the secondary structure of subunit c from P. modestum in the organic solvent mixture with that in dodecylsulfate micelles several deviations became apparent: in the organic solvent, the interruption of the alpha helical structure within the conserved GXGXGXGX motif was shortened from five to two residues, the prominent interruption of the alpha helical structure in the cystoplasmic loop region was not apparent, and neither was there a break in the alpha helix after the sodium ion-binding Glu65 residue. The folding of subunit c of P. modestum in the organic solvent also deviated from that of Escherichia coli in the same environment, the most important difference being that subunit c of P. modestum did not adopt a stable hairpin structure like subunit c of E. coli.
Collapse
Affiliation(s)
- Ulrich Matthey
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland.
| | | | | |
Collapse
|
13
|
Suzuki T, Suzuki J, Mitome N, Ueno H, Yoshida M. Second stalk of ATP synthase. Cross-linking of gamma subunit in F1 to truncated Fob subunit prevents ATP hydrolysis. J Biol Chem 2000; 275:37902-6. [PMID: 10970900 DOI: 10.1074/jbc.m007075200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthase consists of two portions, F(1) and F(o), connected by two stalks: a central rotor stalk containing gamma and epsilon subunits and a peripheral, second stalk formed by delta and two copies of F(o)b subunits. The second stalk is expected to keep the stator subunits from spinning along with the rotor. We isolated a TF(1)-b'(2) complex (alpha(3)beta(3)gammadeltaepsilonb'(2)) of a thermophilic Bacillus PS3, in which b' was a truncated cytoplasmic fragment of F(o)b subunit, and introduced a cysteine at its N terminus (bc'). Association of b'(2) or bc'(2) with TF(1) did not have significant effect on ATPase activity. A disulfide bond between the introduced cysteine of bc' and cysteine 109 of gamma subunit was readily formed, and this cross-link caused inactivation of ATPase. This implies that F(o)b subunit bound to stator subunits of F(1) with enough strength to resist rotation of gamma subunit and to prevent catalysis. Contrary to this apparent tight binding, some detergents such as lauryldodecylamine oxide tend to cause release of b'(2) from TF(1).
Collapse
Affiliation(s)
- T Suzuki
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
14
|
Ko YH, Hullihen J, Hong S, Pedersen PL. Mitochondrial F(0)F(1) ATP synthase. Subunit regions on the F1 motor shielded by F(0), Functional significance, and evidence for an involvement of the unique F(0) subunit F(6). J Biol Chem 2000; 275:32931-9. [PMID: 10887193 DOI: 10.1074/jbc.m004453200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies reported here were undertaken to gain greater molecular insight into the complex structure of mitochondrial ATP synthase (F(0)F(1)) and its relationship to the enzyme's function and motor-related properties. Significantly, these studies, which employed N-terminal sequence, mass spectral, proteolytic, immunological, and functional analyses, led to the following novel findings. First, at the top of F(1) within F(0)F(1), all six N-terminal regions derived from alpha + beta subunits are shielded, indicating that one or more F(0) subunits forms a "cap." Second, at the bottom of F(1) within F(0)F(1), the N-terminal region of the single delta subunit and the C-terminal regions of all three alpha subunits are shielded also by F(0). Third, and in contrast, part of the gamma subunit located at the bottom of F(1) is already shielded in F(1), indicating that there is a preferential propensity for interaction with other F(1) subunits, most likely delta and epsilon. Fourth, and consistent with the first two conclusions above that specific regions at the top and bottom of F(1) are shielded by F(0), further proteolytic shaving of alpha and beta subunits at these locations eliminates the capacity of F(1) to couple a proton gradient to ATP synthesis. Finally, evidence was obtained that the F(0) subunit called "F(6)," unique to animal ATP synthases, is involved in shielding F(1). The significance of the studies reported here, in relation to current views about ATP synthase structure and function in animal mitochondria, is discussed.
Collapse
Affiliation(s)
- Y H Ko
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | |
Collapse
|
15
|
Greie JC, Deckers-Hebestreit G, Altendorf K. Subunit organization of the stator part of the F0 complex from Escherichia coli ATP synthase. J Bioenerg Biomembr 2000; 32:357-64. [PMID: 11768297 DOI: 10.1023/a:1005523902800] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Membrane-bound ATP synthases (F1F0) catalyze the synthesis of ATP via a rotary catalytic mechanism utilizing the energy of an electrochemical ion gradient. The transmembrane potential is supposed to propel rotation of a subunit c ring of F0 together with subunits gamma and epsilon of F1, thereby forming the rotor part of the enzyme, whereas the remainder of the F1F0 complex functions as a stator for compensation of the torque generated during rotation. This review focuses on our recent work on the stator part of the F0 complex, e.g., subunits a and b. Using epitope insertion and antibody binding, subunit a was shown to comprise six transmembrane helixes with both the N- and C-terminus oriented toward the cytoplasm. By use of circular dichroism (CD) spectroscopy, the secondary structure of subunit b incorporated into proteoliposomes was determined to be 80% alpha-helical together with 14% beta turn conformation, providing flexibility to the second stalk. Reconstituted subunit b together with isolated ac subcomplex was shown to be active in proton translocation and functional F1 binding revealing the native conformation of the polypeptide chain. Chemical crosslinking in everted membrane vesicles led to the formation of subunit b homodimers around residues bQ37 to bL65, whereas bA32C could be crosslinked to subunit a, indicating a close proximity of subunits a and b near the membrane. Further evidence for the proposed direct interaction between subunits a and b was obtained by purification of a stable ab2 subcomplex via affinity chromatography using His tags fused to subunit a or b. This ab2 subcomplex was shown to be active in proton translocation and F1 binding, when coreconstituted with subunit c. Consequences of crosslink formation and subunit interaction within the F1F0 complex are discussed.
Collapse
Affiliation(s)
- J C Greie
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Germany.
| | | | | |
Collapse
|
16
|
Abstract
Electron microscopy together with image analysis has been used to study the structure of the intact F1F0-ATPsynthase from Escherichia coli. A procedure has been developed which allows preparation of detergent-free enzyme. Aside from the well known two-domain structure, images of F1F0 prepared by this procedure show a number of additional features, including a second stalk, which can be seen extending all the way from the F0 to the top of the F1 in some images, and a small protein on the very top of the F1, which has been identified as the delta subunit by decoration with a monoclonal antibody. In light of these results, a refined model of the subunit arrangement of the complex is presented.
Collapse
Affiliation(s)
- S Wilkens
- Department of Biochemistry, University of California, Riverside, 92521, USA.
| |
Collapse
|
17
|
McLachlin DT, Coveny AM, Clark SM, Dunn SD. Site-directed cross-linking of b to the alpha, beta, and a subunits of the Escherichia coli ATP synthase. J Biol Chem 2000; 275:17571-7. [PMID: 10747904 DOI: 10.1074/jbc.m000375200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The b subunit dimer of the Escherichia coli ATP synthase, along with the delta subunit, is thought to act as a stator to hold the alpha(3)beta(3) hexamer stationary relative to the a subunit as the gammaepsilonc(9-12) complex rotates. Despite their essential nature, the contacts between b and the alpha, beta, and a subunits remain largely undefined. We have introduced cysteine residues individually at various positions within the wild type membrane-bound b subunit, or within b(24-156), a truncated, soluble version consisting only of the hydrophilic C-terminal domain. The introduced cysteine residues were modified with a photoactivatable cross-linking agent, and cross-linking to subunits of the F(1) sector or to complete F(1)F(0) was attempted. Cross-linking in both the full-length and truncated forms of b was obtained at positions 92 (to alpha and beta), and 109 and 110 (to alpha only). Mass spectrometric analysis of peptide fragments derived from the b(24-156)A92C cross-link revealed that cross-linking took place within the region of alpha between Ile-464 and Met-483. This result indicates that the b dimer interacts with the alpha subunit near a non-catalytic alpha/beta interface. A cysteine residue introduced in place of the highly conserved arginine at position 36 of the b subunit could be cross-linked to the a subunit of F(0) in membrane-bound ATP synthase, implying that at least 10 residues of the polar domain of b are adjacent to residues of a. Sites of cross-linking between b(24-156)A92C and beta as well as b(24-156)I109C and alpha are proposed based on the mass spectrometric data, and these sites are discussed in terms of the structure of b and its interactions with the rest of the complex.
Collapse
Affiliation(s)
- D T McLachlin
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
18
|
Abstract
The F(0)F(1) ATP synthase functions as a rotary motor where subunit rotation driven by a current of protons flowing through F(0) drives the binding changes in F(1) that are required for net ATP synthesis. Recent work that has led to the identification of components of the rotor and stator is reviewed. In addition, a model is proposed to describe the transmission of energy from four proton transport steps to the synthesis of one ATP. Finally, some of the requirements for efficient energy coupling by a rotary binding change mechanism are considered.
Collapse
Affiliation(s)
- R L Cross
- Department of Biochemistry and Molecular Biology, State University of New York, Health Science Center, Syracuse, NY 13210, USA.
| |
Collapse
|
19
|
Abstract
ATP, the universal carrier of cell energy is manufactured from ADP and phosphate by the enzyme ATP synthase using the energy stored in a transmembrane ion gradient. The two components of the ion gradient (DeltapH or DeltapNa(+)) and the electrical potential difference Deltapsi are thermodynamically but not kinetically equivalent. In contrast to accepted wisdom, the electrical component is kinetically indispensable not only for bacterial ATP synthases but also for that from chloroplasts. Recent biochemical studies with the Na(+)-translocating ATP synthase of Propionigenium modestum have given a good idea of the ion translocation pathway in the F(0) motor. Taken together with biophysical data, the operating principles of the motor have been delineated.
Collapse
Affiliation(s)
- P Dimroth
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, CH-8092, Zürich, Switzerland.
| |
Collapse
|
20
|
Deckers-Hebestreit G, Greie J, Stalz W, Altendorf K. The ATP synthase of Escherichia coli: structure and function of F(0) subunits. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:364-73. [PMID: 10838051 DOI: 10.1016/s0005-2728(00)00087-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this review we discuss recent work from our laboratory concerning the structure and/or function of the F(0) subunits of the proton-translocating ATP synthase of Escherichia coli. For the topology of subunit a a brief discussion gives (i) a detailed picture of the C-terminal two-thirds of the protein with four transmembrane helices and the C terminus exposed to the cytoplasm and (ii) an evaluation of the controversial results obtained for the localization of the N-terminal region of subunit a including its consequences on the number of transmembrane helices. The structure of membrane-bound subunit b has been determined by circular dichroism spectroscopy to be at least 75% alpha-helical. For this purpose a method was developed, which allows the determination of the structure composition of membrane proteins in proteoliposomes. Subunit b was purified to homogeneity by preparative SDS gel electrophoresis, precipitated with acetone, and redissolved in cholate-containing buffer, thereby retaining its native conformation as shown by functional coreconstitution with an ac subcomplex. Monoclonal antibodies, which have their epitopes located within the hydrophilic loop region of subunit c, and the F(1) part are bound simultaneously to the F(0) complex without an effect on the function of F(0), indicating that not all c subunits are involved in F(1) interaction. Consequences on the coupling mechanism between ATP synthesis/hydrolysis and proton translocation are discussed.
Collapse
Affiliation(s)
- G Deckers-Hebestreit
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069, Osnabrück, Germany.
| | | | | | | |
Collapse
|
21
|
Richter ML, Hein R, Huchzermeyer B. Important subunit interactions in the chloroplast ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:326-42. [PMID: 10838048 DOI: 10.1016/s0005-2728(00)00084-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.
Collapse
Affiliation(s)
- M L Richter
- Department of Molecular Biosciences, The University of Kansas, Lawrence 66045, USA
| | | | | |
Collapse
|
22
|
Dunn SD, McLachlin DT, Revington M. The second stalk of Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:356-63. [PMID: 10838050 DOI: 10.1016/s0005-2728(00)00086-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Two stalks link the F(1) and F(0) sectors of ATP synthase. The central stalk contains the gamma and epsilon subunits and is thought to function in rotational catalysis as a rotor driving conformational changes in the catalytic alpha(3)beta(3) complex. The two b subunits and the delta subunit associate to form b(2)delta, a second, peripheral stalk extending from the membrane up the side of alpha(3)beta(3) and binding to the N-terminal regions of the alpha subunits, which are approx. 125 A from the membrane. This second stalk is essential for binding F(1) to F(0) and is believed to function as a stator during rotational catalysis. In vitro, b(2)delta is a highly extended complex held together by weak interactions. Recent work has identified the domains of b which are essential for dimerization and for interaction with delta. Disulphide cross-linking studies imply that the second stalk is a permanent structure which remains associated with one alpha subunit or alphabeta pair. However, the weak interactions between the polypeptides in b(2)delta pose a challenge for the proposed stator function.
Collapse
Affiliation(s)
- S D Dunn
- Department of Biochemistry, University of Western Ontario, N6A 5C1, London, Ont., Canada.
| | | | | |
Collapse
|
23
|
Böttcher B, Gräber P. The structure of the H(+)-ATP synthase from chloroplasts and its subcomplexes as revealed by electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:404-16. [PMID: 10838054 DOI: 10.1016/s0005-2728(00)00090-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electron microscopic data available on CF(0)F(1) and its subcomplexes, CF(0), CF(1), subunit III complex are collected and the CF(1) data are compared with the high resolution structure of MF(1). The data are based on electron microscopic investigation of negatively stained isolated CF(1), CF(0)F(1) and subunit III complex. In addition, two-dimensional crystals of CF(0)F(1) and CF(0)F(1) reconstituted liposomes were investigated by cryo-electron microscopy. Progress in the interpretation of electron microscopic data from biological samples has been made with the introduction of image analysis. Multi-reference alignment and classification of images have led to the differentiation between different conformational states and to the detection of a second stalk. Recently, the calculation of three-dimensional maps from the class averages led to the understanding of the spatial organisation of the enzyme. Such three-dimensional maps give evidence of the existence of a third connection between the F(0) part and F(1) part.
Collapse
Affiliation(s)
- B Böttcher
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
24
|
Greie JC, Deckers-Hebestreit G, Altendorf K. Secondary structure composition of reconstituted subunit b of the Escherichia coli ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3040-8. [PMID: 10806404 DOI: 10.1046/j.1432-1033.2000.01327.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subunit b of the Escherichia coli ATP synthase was isolated by preparative gel electrophoresis, acetone precipitated and after ion-pair extraction redissolved in a buffer either containing n-dodecyl-beta-D-maltoside or sodium cholate. The secondary structure of isolated subunit b was shown to be the same as within the FO complex, but was strongly dependent on the detergent used for replacement of the phospholipid environment. This was shown by an identical tryptic digestion pattern, which was strongly influenced by the detergent used for solubilization. An influence of the detergent n-dodecyl-beta-D-maltoside on the secondary structure of the hydrophilic part of subunit b was also shown for the soluble part of the polypeptide comprising residues Val25 to Leu156 (bsol) using CD spectroscopy. In order to determine the secondary structure of subunit b in its native conformation, isolated subunit b was reconstituted into E. coli lipid vesicles and analyzed with CD spectroscopy. The resulting spectrum revealed a secondary structure composition of 80% alpha helix together with 14% beta turn conformation. These results suggest that subunit b is not a rigid rod-like alpha helix simply linking F1 to FO, but rather provides an inherent flexibility for the storage of elastic energy within the second stalk generated by rotational movements within the F1FO complex.
Collapse
Affiliation(s)
- J C Greie
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, Germany.
| | | | | |
Collapse
|
25
|
García JJ, Ogilvie I, Robinson BH, Capaldi RA. Structure, functioning, and assembly of the ATP synthase in cells from patients with the T8993G mitochondrial DNA mutation. Comparison with the enzyme in Rho(0) cells completely lacking mtdna. J Biol Chem 2000; 275:11075-81. [PMID: 10753912 DOI: 10.1074/jbc.275.15.11075] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure and functioning of the ATP synthase of human fibroblast cell lines with 91 and 100%, respectively, of the T8993G mutation have been studied, with MRC5 human fibroblasts and Rho(0) cells derived from this cell line as controls. ATP hydrolysis was normal but ATP synthesis was reduced by 60% in the 100% mutants. Both activities were highly oligomycin-sensitive. The levels of F(1)F(0) were close to normal, and the enzyme was stable. It is concluded that the loss of ATP synthesis is because of disruption of the proton translocation step within the F(0) part. This is supported by membrane potential measurements using the dye JC-1. Cells with a 91% mutation load grew well and showed only a 25% loss in ATP synthesis. This much reduced effect for only a 9% difference in mutation load mirrors the reduced pathogenicity in patients. F(1)F(0) has been purified for the first time from human cell lines. A partial complex was obtained from Rho(0) cells containing the F(1) subunits associated with several stalk, as well as F(0) subunits, including oligomycin sensitivity conferring protein, b, and c subunits. This partial complex no longer binds inhibitor protein.
Collapse
Affiliation(s)
- J J García
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|
26
|
McLachlin DT, Dunn SD. Disulfide linkage of the b and delta subunits does not affect the function of the Escherichia coli ATP synthase. Biochemistry 2000; 39:3486-90. [PMID: 10727244 DOI: 10.1021/bi992586b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ATP synthase of Escherichia coli is believed to act through a rotational mechanism in which the b(2)delta subcomplex holds the alphabeta hexamer stationary relative to the rotating gamma and epsilon subunits. We have engineered a disulfide bond between cysteines introduced at position 158 of the delta subunit and at a position just beyond the normal C-terminus of the b subunit. The formation of this disulfide bond verifies that the C-terminal region of b is proximal to residue 158 of delta. The disulfide bond does not affect the ability of the F(1)F(0) complex to hydrolyze ATP, couple ATP hydrolysis to the establishment of a proton gradient, or maintain a proton gradient generated by the electron transport chain. These results are consistent with a permanent association of b(2) with delta as suggested by the rotational model of enzyme function.
Collapse
Affiliation(s)
- D T McLachlin
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
27
|
Böttcher B, Bertsche I, Reuter R, Gräber P. Direct visualisation of conformational changes in EF(0)F(1) by electron microscopy. J Mol Biol 2000; 296:449-57. [PMID: 10669600 DOI: 10.1006/jmbi.1999.3435] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The isolated H(+)-ATPase from Escherichia coli (EF(0)F(1)) was investigated by electron microscopy of samples of negatively stained monodisperse molecules, followed by single-particle image processing. The resulting three-dimensional maps showed that the F(1)-part is connected by a prominent stalk to a more peripheral part of F(0). The F(1)-part showed stain-accessible cavities inside. In three-dimensional maps from selected particles, a second stalk could be detected which was thinner than the main stalk and is thought to correspond to the stator.Three-dimensional maps of the enzyme in the absence and in the presence of the substrate analogue adenyl-beta, gamma-imidodiphosphate (AMP-PNP) were calculated. Upon binding of AMP-PNP the three-dimensional maps showed no significant changes in the F(0)-part of EF(0)F(1), whereas a major conformational change in the F(1)-part was observed. (1) The diameter of the F(1)-part decreased upon binding of AMP-PNP mainly in the upper half of F(1). (2) Enzyme particles prepared in the presence of AMP-PNP had a pointed cap at the top of the F(1)-part which was missing in its absence. (3) The stain-accessible cavity inside the F(1)-part altered its pattern significantly.
Collapse
Affiliation(s)
- B Böttcher
- Institut für Physikalische Chemie, Albertstrasse 23a, Universität Freiburg, D-79104, Germany.
| | | | | | | |
Collapse
|
28
|
Wilkens S, Zhou J, Nakayama R, Dunn SD, Capaldi RA. Localization of the delta subunit in the Escherichia coli F(1)F(0)-ATPsynthase by immuno electron microscopy: the delta subunit binds on top of the F(1). J Mol Biol 2000; 295:387-91. [PMID: 10623533 DOI: 10.1006/jmbi.1999.3381] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding site of the delta subunit in the F(1)F(0)-ATPsynthase from Escherichia coli has been determined by electron microscopy of negatively stained, antibody-decorated enzyme molecules. The images show that the antibody is bound at the very top of the F(1) domain indicating that at least part of delta is bound in the dimple formed by the N termini of the alpha and beta subunits. The data may explain why there is only one binding site for delta on the F(1) despite there being three identical alphabeta pairs. The finding also implies that the b subunits of the F(0) have to extend all the way from the membrane surface to the very top of the F(1) domain to make contact with the delta subunit.
Collapse
Affiliation(s)
- S Wilkens
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA.
| | | | | | | | | |
Collapse
|
29
|
Häsler K, Pänke O, Junge W. On the stator of rotary ATP synthase: the binding strength of subunit delta to (alpha beta)3 as determined by fluorescence correlation spectroscopy. Biochemistry 1999; 38:13759-65. [PMID: 10521283 DOI: 10.1021/bi991236m] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ATP synthase is conceived as a rotary enzyme. Proton flow drives the rotor (namely, subunits c12 epsilon gamma) relative to the stator (namely, subunits ab2 delta(alpha beta)3) and extrudes spontaneously formed ATP from three symmetrically arranged binding sites on (alpha beta)3 into the solution. We asked whether the binding of subunit delta to (alpha beta)3 is of sufficient strength to hold against the elastic strain, which is generated during the operation of this enzyme. According to current estimates, the elastically stored energy is about 50 kJ/mol. Subunit delta was specifically labeled without impairing its function. Its association with solubilized (alpha beta)3 gamma in detergent-free buffer was studied by fluorescence correlation spectroscopy (FCS). A very strong tendency of delta to dimerize in detergent-free buffer was apparent (K(d) </= 0.2 nM). Taking the upper limit of this figure into account, the dissociation constant between monomeric delta and (alpha beta)3 gamma was 0.8 nM if not smaller. It is equivalent to a free energy of binding of at least 52 kJ/mol and therewith is sufficient for the assumed hold-function of delta in the stator. Our data were compatible with a single binding site for delta on the hexagon of (alpha beta)3.
Collapse
Affiliation(s)
- K Häsler
- Department of Biology/Chemistry, Division of Biophysics, Universität Osnabrück, Germany
| | | | | |
Collapse
|
30
|
Bakhtiari N, Lai-Zhang J, Yao B, Mueller DM. Structure/function of the beta-barrel domain of F1-ATPase in the yeast Saccharomyces cerevisiae. J Biol Chem 1999; 274:16363-9. [PMID: 10347195 DOI: 10.1074/jbc.274.23.16363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first 90 amino acids of the alpha- and beta-subunits of mitochondrial F1-ATPase are folded into beta-barrel domains and were postulated to be important for stabilizing the enzyme (Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). The role of the domains was studied by making chimeric enzymes, replacing the domains from the yeast Saccharomyces cerevisiae enzyme with the corresponding domains from the enzyme of the thermophilic bacterium Bacillus PS3. The enzymes containing the chimeric alpha-, beta-, or alpha- and beta-subunits were not functional. However, gain-of-function mutations were obtained from the strain containing the enzyme with the chimeric PS3/yeast beta-subunit. The gain-of-function mutations were all in codons encoding the beta-barrel domain of the beta-subunit, and the residues appear to map out a region of subunit-subunit interactions. Gain-of-function mutations were also obtained that provided functional expression of the chimeric PS3/yeast alpha- and beta-subunits together. Biochemical analysis of this active chimeric enzyme indicated that it was not significantly more thermostable or labile than the wild type. The results of this study indicate that the beta-barrel domains form critical contacts (distinct from those between the alpha- and beta-subunits) that are important for the assembly of the ATP synthase.
Collapse
Affiliation(s)
- N Bakhtiari
- Department of Biochemistry and Molecular Biology, Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
31
|
Dimroth P, Wang H, Grabe M, Oster G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc Natl Acad Sci U S A 1999; 96:4924-9. [PMID: 10220395 PMCID: PMC21793 DOI: 10.1073/pnas.96.9.4924] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The F-ATPase of the bacterium Propionigenium modestum is driven by an electrochemical sodium gradient between the cell interior and its environment. Here we present a mechanochemical model for the transduction of transmembrane sodium-motive force into rotary torque. The same mechanism is likely to operate in other F-ATPases, including the proton-driven F-ATPases of Escherichia coli.
Collapse
Affiliation(s)
- P Dimroth
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- W Junge
- Abteilung Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Germany.
| |
Collapse
|
33
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Ponomarenko S, Volfson I, Strotmann H. Proton gradient-induced changes of the interaction between CF0 and CF1 related to activation of the chloroplast ATP synthase. FEBS Lett 1999; 443:136-8. [PMID: 9989591 DOI: 10.1016/s0014-5793(98)01681-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thylakoid energization by light causes destabilization of CF0CF1 so that the peripheral CF1 sector is more readily detached from the membrane by intermediate concentrations of the chaotropic salt NaSCN. Here we have investigated the correlation between the proton gradient-induced change of CF0CF1 interaction and CF0CF1 activation. The results indicate a close relationship between the two phenomena. The effect is most probably due to reduction of the electrostatic interaction between the two subcomplexes CF0 and CF1 as a consequence of protonations in the interface region.
Collapse
Affiliation(s)
- S Ponomarenko
- Institut für Biochemie der Pflanzen, Heinrich Heine Universität Düsseldorf, Germany
| | | | | |
Collapse
|
35
|
Syroeshkin AV, Bakeeva LE, Cherepanov DA. Contraction transitions of F1-F0 ATPase during catalytic turnover. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1409:59-71. [PMID: 9838045 DOI: 10.1016/s0005-2728(98)00150-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Strong acoustic pressure was applied to submitochondrial particles (SMP) from bovine heart in order to drive ATP synthesis by F1-F0 complex for the account of sound waves. We observed a net ATP production at two narrow frequency ranges, about 170 Hz and about 340 Hz, that corresponds to the resonance oscillations of experimental cuvette when the acoustic pressure had a magnitude of 100 kPa. The results can be explained quantitatively by contractive conformational changes of F1-F0 complex during catalytic turnover. Negative staining electron microscopy of SMP preparations was used to visualize the ADP(Mg2+)-induced conformational changes of F1-F0 complex. In the particles with high ATPase activity in the presence of phosphate the factors F1 and F0 formed a congregated domain plunged into the membrane without any observable stalk in between. The presence of ADP(Mg2+) caused a structural rearrangement of F1-F0 to the essentially different conformation: the domains F1 and F0 were dislodged distinctly from each other and connected by a long thin stalk. The latter conformation resembled well the usual bipartite profile of ATPase. The data indicate that besides rotation, the catalytic turnover of ATP synthase is also accompanied by stretch transitions of F1-F0 complex.
Collapse
|
36
|
Rodgers AJ, Capaldi RA. The second stalk composed of the b- and delta-subunits connects F0 to F1 via an alpha-subunit in the Escherichia coli ATP synthase. J Biol Chem 1998; 273:29406-10. [PMID: 9792643 DOI: 10.1074/jbc.273.45.29406] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The b- and delta-subunits of the Escherichia coli ATP synthase are critical for binding ECF1 to the F0 part, and appear to constitute the stator necessary for holding the alpha3beta3 hexamer as the c-epsilon-gamma domain rotates during catalysis. Previous studies have determined that the b-subunits are dimeric for a large part of their length, and interact with the F1 part through the delta-subunit (Rodgers, A. J. W., Wilkens, S., Aggeler, R., Morris, M. B., Howitt, S. M., and Capaldi, R. A. (1997) J. Biol. Chem. 272, 31058-31064). To further study b-subunit interactions, three mutants were constructed in which Ser-84, Ala-144, and Leu-156, respectively, were replaced by Cys. Treatment of purified ECF1F0 from all three mutants with CuCl2 induced disulfide formation resulting in b-subunit dimer cross-link products. In addition, the mutant bL156C formed a cross-link from a b-subunit to an alpha-subunit via alphaCys90. Neither b-b nor b-alpha cross-linking had significant effect on ATPase activities in any of the mutants. Proton pumping activities were measured in inner membranes from the three mutants. Dimerization of the b-subunit did not effect proton pumping in mutants bS84C or bA144C. In the mutant bL156C, CuCl2 treatment reduced proton pumping markedly, probably because of uncoupling caused by the b-alpha cross-link formation. The results show that the alpha-subunit forms part of the binding site on ECF1 for the b2delta domain and that the b-subunit extends all the way from the membrane to the top of the F1 structure. Some conformational flexibility in the connection between the second stalk and F1 appears to be required for coupled catalysis.
Collapse
Affiliation(s)
- A J Rodgers
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
37
|
Abstract
The mechanism by which ion-flux through the membrane-bound motor module (F0) induces rotational torque, driving the rotation of the gamma subunit, was probed with a Na+-translocating hybrid ATP synthase. The ATP-dependent occlusion of 1 (22)Na+ per ATP synthase persisted after modification of the c subunit ring with dicyclohexylcarbodiimide (DCCD), when 22Na+ was added first and ATP second, but not if the order of addition was reversed. These results support the model of ATP-driven rotation of the c subunit oligomer (rotor) versus subunit a (stator) that stops when either a 22Na+-loaded or a DCCD-modified rotor subunit reaches the Na+-impermeable stator. The ATP synthase with a Na+-permeable stator catalyzed 22Na+out/Na+in-exchange after reconstitution into proteoliposomes, which was not significantly affected by DCCD modification of the c subunit oligomer, but was abolished by the additional presence of ATP or by a membrane potential (DeltaPsi) of 90 mV. We propose that in the idling mode of the motor, Na+ ions are shuttled across the membrane by limited back and forth movements of the rotor against the stator. This motional flexibility is arrested if either ATP or DeltaPsi induces the switch from idling into a directed rotation. The Propionigenium modestum ATP synthase catalyzed ATP formation with DeltaPsi of 60-125 mV but not with DeltapNa+ of 195 mV. These results demonstrate that electric forces are essential for ATP synthesis and lead to a new concept of rotary-torque generation in the ATP synthase motor.
Collapse
Affiliation(s)
- G Kaim
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
38
|
Golden TR, Pedersen PL. The oligomycin sensitivity conferring protein of rat liver mitochondrial ATP synthase: arginine 94 is important for the binding of OSCP to F1. Biochemistry 1998; 37:13871-81. [PMID: 9753477 DOI: 10.1021/bi981120a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oligomycin sensitivity conferring protein (OSCP) is an essential subunit of the mitochondrial ATP synthase (F0F1) long regarded as being directly involved in the energetic coupling of proton transport to ATP synthesis. To gain insight into the function of OSCP, mutations were made in a highly conserved central region of the subunit, and the recombinant proteins were studied using several biochemical assays. Rat liver OSCP was expressed to high levels in Escherichia coli, solubilized from inclusion bodies, renatured, and purified to homogeneity. The recombinant protein was able to reconstitute oligomycin-sensitive ATPase activity to inner membrane vesicles depleted of F1 and OSCP, and bound to F1 with a stoichiometry of 1:1. A novel fluorescence anisotropy assay was developed to study the affinity of binding of F1 to OSCP, providing a Kd value of 51 +/- 11 nM. Two highly conserved, charged residues (E91 and R94) which lie within the central region of OSCP were mutated, and the recombinant proteins (E91Q, R94Q, and R94A) were purified to homogeneity and judged by CD spectroscopy to have structures similar to that of the wild-type protein. Both R94 mutants demonstrated little or no binding to F1, while the E91Q bound in a manner identical to that of wild-type OSCP. Significantly, all three mutant proteins were able to reconstitute F1 with membranes and to confer oligomycin sensitivity to the same extent as wild-type OSCP. These results demonstrate that a single tight binding site exists on isolated rat liver F1 for OSCP, and implicate arginine 94 as playing a critical role in this site. In addition, these results indicate that this tight binding site is not required for conferral of oligomycin sensitivity to the reconstituted F0F1 complex.
Collapse
Affiliation(s)
- T R Golden
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | |
Collapse
|
39
|
Böttcher B, Schwarz L, Gräber P. Direct indication for the existence of a double stalk in CF0F1. J Mol Biol 1998; 281:757-62. [PMID: 9719632 DOI: 10.1006/jmbi.1998.1957] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The H+-ATPase from chloroplasts (CF0F1) was investigated by electron microscopy of negatively stained single molecules followed by image processing. The analysis of about 4700 particles from 72 micrographs gave clear evidence that the membrane-integrated F0 part is connected by at least two stalks to the F1 part. One of the two stalks is more prominent and connects a central part of F1 with a slightly peripheral part of F0. The other stalk connects a peripheral part of F1 to a peripheral part of F0.
Collapse
Affiliation(s)
- B Böttcher
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 23a, Freiburg, D-79104, Germany.
| | | | | |
Collapse
|
40
|
Jones PC, Jiang W, Fillingame RH. Arrangement of the multicopy H+-translocating subunit c in the membrane sector of the Escherichia coli F1F0 ATP synthase. J Biol Chem 1998; 273:17178-85. [PMID: 9642286 DOI: 10.1074/jbc.273.27.17178] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multicopy subunit c of the H+-transporting F1F0 ATP synthase of Escherichia coli is thought to fold across the membrane as a hairpin of two hydrophobic alpha-helices. The conserved Asp61, centered in the second transmembrane helix, is essential for H+ transport. In this study, we have made sequential Cys substitutions across both transmembrane helices and used disulfide cross-link formation to determine the oligomeric arrangement of the c subunits. Cross-link formation between single Cys substitutions in helix 1 provided initial limitations on how the subunits could be arranged. Double Cys substitutions at positions 14/16, 16/18, and 21/23 in helix 1 and 70/72 in helix 2 led to the formation of cross-linked multimers upon oxidation. Double Cys substitutions in helix 1 and helix 2, at residues 14/72, 21/65, and 20/66, respectively, also formed cross-linked multimers. These results indicate that at least 10 and probably 12 subunits c interact in a front-to-back fashion to form a ring-like arrangement in F0. Helix 1 packs at the interior and helix 2 at the periphery of the ring. The model indicates that the Asp61 carboxylate is centered between the helical faces of adjacent subunit c at the center of a four-helix bundle.
Collapse
Affiliation(s)
- P C Jones
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
41
|
Long JC, Wang S, Vik SB. Membrane topology of subunit a of the F1F0 ATP synthase as determined by labeling of unique cysteine residues. J Biol Chem 1998; 273:16235-40. [PMID: 9632682 DOI: 10.1074/jbc.273.26.16235] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane topology of the a subunit of the F1F0 ATP synthase from Escherichia coli has been probed by surface labeling using 3-(N-maleimidylpropionyl) biocytin. Subunit a has no naturally occurring cysteine residues, allowing unique cysteines to be introduced at the following positions: 8, 24, 27, 69, 89, 128, 131, 172, 176, 196, 238, 241, and 277 (following the COOH-terminal 271 and a hexahistidine tag). None of the single mutations affected the function of the enzyme, as judged by growth on succinate minimal medium. Membrane vesicles with an exposed cytoplasmic surface were prepared using a French pressure cell. Before labeling, the membranes were incubated with or without a highly charged sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. After labeling with the less polar biotin maleimide, the samples were solubilized with octyl glucoside/cholate and the subunit a was purified via the oligohistidine at its COOH terminus using immobilized nickel chromatography. The purified samples were electrophoresed and transferred to nitrocellulose for detection by avidin conjugated to alkaline phosphatase. Results indicated cytoplasmic accessibility for residues 69, 172, 176, and 277 and periplasmic accessibility for residues 8, 24, 27, and 131. On the basis of these and earlier results, a transmembrane topology for the subunit a is proposed.
Collapse
Affiliation(s)
- J C Long
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275, USA
| | | | | |
Collapse
|
42
|
McLachlin DT, Bestard JA, Dunn SD. The b and delta subunits of the Escherichia coli ATP synthase interact via residues in their C-terminal regions. J Biol Chem 1998; 273:15162-8. [PMID: 9614129 DOI: 10.1074/jbc.273.24.15162] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An affinity resin for the F1 sector of the Escherichia coli ATP synthase was prepared by coupling the b subunit to a solid support through a unique cysteine residue in the N-terminal leader. b24-156, a form of b lacking the N-terminal transmembrane domain, was able to compete with the affinity resin for binding of F1. Truncated forms of b24-156, in which one or four residues from the C terminus were removed, competed poorly for F1 binding, suggesting that these residues play an important role in b-F1 interactions. Sedimentation velocity analytical ultracentrifugation revealed that removal of these C-terminal residues from b24-156 resulted in a disruption of its association with the purified delta subunit of the enzyme. To determine whether these residues interact directly with delta, cysteine residues were introduced at various C-terminal positions of b and modified with the heterobifunctional cross-linker benzophenone-4-maleimide. Cross-links between b and delta were obtained when the reagent was incorporated at positions 155 and 158 (two residues beyond the normal C terminus) in both the reconstituted b24-156-F1 complex and the membrane-bound F1F0 complex. CNBr digestion followed by peptide sequencing showed the site of cross-linking within the 177-residue delta subunit to be C-terminal to residue 148, possibly at Met-158. These results indicate that the b and delta subunits interact via their C-terminal regions and that this interaction is instrumental in the binding of the F1 sector to the b subunit of F0.
Collapse
Affiliation(s)
- D T McLachlin
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
43
|
Wilkens S, Capaldi RA. Electron microscopic evidence of two stalks linking the F1 and F0 parts of the Escherichia coli ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:93-7. [PMID: 9693727 DOI: 10.1016/s0005-2728(98)00048-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structure of monodisperse ATP synthase from Escherichia coli (ECF1F0) has been examined by electron microscopy after negative staining of specimens. The F1 part is seen to be connected by two stalks. One is more centrally located and includes the gamma and epsilon subunits. The second stalk, observed here in ECF1F0, is arranged peripherally. It probably contains the delta and b subunits which, in addition to gamma and epsilon, are required for binding of the F1 and F0 parts of the complex. Other novel features of the F1F0 complex can be discerned. There is a cap at the top of the F1 part at which the second stalk may bind. This likely includes N-terminal stretches of the three copies of the alpha subunit and a part of the delta subunit. The F0 part is clearly asymmetric. The presence of two stalks in the complex has important functional implications. There is good evidence that the more central stalk of gamma and epsilon subunits is a mobile domain that rotates to link the three catalytic sites on beta subunits in turn, with the proton channel of the F0 part. The second stalk of delta and b subunits is then the stator which makes this rotation possible.
Collapse
Affiliation(s)
- S Wilkens
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
44
|
Häsler K, Engelbrecht S, Junge W. Three-stepped rotation of subunits gamma and epsilon in single molecules of F-ATPase as revealed by polarized, confocal fluorometry. FEBS Lett 1998; 426:301-4. [PMID: 9600255 DOI: 10.1016/s0014-5793(98)00358-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The proton translocating ATP synthase is conceived as a rotatory molecular engine. ATP hydrolysis by its headpiece, CF1, drives the rotation of subunit gamma relative to the hexagonally arranged large subunits, (alphabeta)3. We investigated transition states of the rotatory drive by polarized confocal fluorometry (POCOF) as applied to single molecules of engineered, immobilized and load-free spinach-CF1. We found that the hydrolysis of ATP caused the stepped and sequential progression of subunit gamma through three discrete angular positions, with the transition states of gamma being too shortlived for detection. We also observed the stepped motion of epsilon, whereas delta was immobile as (alphabeta)3.
Collapse
Affiliation(s)
- K Häsler
- Dept. Biology/Chemistry, Universität Osnabrück, Germany
| | | | | |
Collapse
|
45
|
Dunn SD, Chandler J. Characterization of a b2delta complex from Escherichia coli ATP synthase. J Biol Chem 1998; 273:8646-51. [PMID: 9535839 DOI: 10.1074/jbc.273.15.8646] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The delta subunit of Escherichia coli ATP synthase has been expressed and purified, both as the intact polypeptide and as delta', a proteolytic fragment composed of residues 1-134. The solution structure of delta' as a five-helix bundle has been previously reported (Wilkens, S., Dunn, S. D., Chandler, J., Dahlquist, F. W., and Capaldi, R. A. (1997) Nat. Struct. Biol. 4, 198-201). The delta subunit, in conjunction with delta-depleted F1-ATPase, was fully capable of reconstituting energy-dependent fluorescence quenching in membrane vesicles that had been depleted of F1. A complex of delta with the cytoplasmic domain of the b subunit of F0 was demonstrated and characterized by analytical ultracentrifugation using bST34-156, a form of the b domain lacking aromatic residues. Molecular weight determination by sedimentation equilibrium supported a b2delta subunit stoichiometry. The sedimentation coefficient of the complex, 2.1 S, indicated a frictional ratio of approximately 2, suggesting that delta and the b dimer are arranged in an end-to-end rather than side-by-side manner. These results indicate the feasibility of the b2delta complex reaching from the membrane to the membrane-distal portion of the F1 sector, as required if it is to serve as a second stalk.
Collapse
Affiliation(s)
- S D Dunn
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | |
Collapse
|
46
|
Affiliation(s)
- S Khan
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
47
|
Mochimaru M, Sakurai H. Three kinds of binding site for tentoxin on isolated chloroplast coupling factor 1. FEBS Lett 1997; 419:23-6. [PMID: 9426212 DOI: 10.1016/s0014-5793(97)01421-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tentoxin binding on chloroplast coupling factor 1 (CF1) was studied using a centrifugation column method followed by HPLC analysis. From non-linear regression analysis of the results, the presence of three types of binding site with the following Kd values was deduced: 6.9x10(-8) M (first site), 1.4x10(-5) M (second site), and 6.3x10(-3) M (third site). The binding of one tentoxin inhibits, that of two tentoxins moderately restores, and that of three tentoxins greatly stimulates the ATPase activity of CF1. The forward rate constant of the binding of tentoxin on the first site was 6.3x10(3) M-1 s-1.
Collapse
Affiliation(s)
- M Mochimaru
- Department of Biology, School of Education, Waseda University, Tokyo, Japan.
| | | |
Collapse
|
48
|
Rodgers AJ, Wilkens S, Aggeler R, Morris MB, Howitt SM, Capaldi RA. The subunit delta-subunit b domain of the Escherichia coli F1F0 ATPase. The B subunits interact with F1 as a dimer and through the delta subunit. J Biol Chem 1997; 272:31058-64. [PMID: 9388256 DOI: 10.1074/jbc.272.49.31058] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The delta and b subunits are both involved in binding the F1 to the F0 part in the Escherichia coli ATP synthase (ECF1F0). The interaction of the purified delta subunit and the isolated hydrophilic domain of the b subunit (bsol) has been studied here. Purified delta binds to bsol weakly in solution, as indicated by NMR studies and protease protection experiments. On F1, i.e. in the presence of ECF1-delta, delta, and bsol interact strongly, and a complex of ECF1.bsol can be isolated by native gel electrophoresis. Both delta subunit and bsol are protected from trypsin cleavage in this complex. In contrast, the delta subunit is rapidly degraded by the protease when bound to ECF1 when bsol is absent. The interaction of bsol with ECF1 involves the C-terminal domain of delta as delta(1-134) cannot replace intact delta in the binding experiments. As purified, bsol is a stable dimer with 80% alpha helix. A monomeric form of bsol can be obtained by introducing the mutation A128D (Howitt, S. M., Rodgers, A. J.,W., Jeffrey, P. D., and Cox, G. B. (1996) J. Biol. Chem. 271, 7038-7042). Monomeric bsol has less alpha helix, i.e. only 58%, is much more sensitive to trypsin cleavage than dimer, and unfolds at much lower temperatures than the dimer in circular dichroism melting studies, indicating a less stable structure. The bsol dimer, but not monomer, binds to delta in ECF1. To examine whether subunit b is a monomor or dimer in intact ECF1F0, CuCl2 was used to induce cross-link formation in the mutants bS60C, bQ104C, bA128C, bG131C, and bS146C. With the exception of bS60C, CuCl2 treatment resulted in formation of b subunit dimers in all mutants. Cross-linking yield was independent of nucleotide conditions and did not affect ATPase activity. These results show the b subunit to be dimeric for a large portion of the C terminus, with residues 124-131 likely forming a pair of parallel alpha helices.
Collapse
Affiliation(s)
- A J Rodgers
- Institute of Molecular Biology, University of Oregon, Eugene Oregon 97403-1229, USA
| | | | | | | | | | | |
Collapse
|
49
|
Sawada K, Kuroda N, Watanabe H, Moritani-Otsuka C, Kanazawa H. Interaction of the delta and b subunits contributes to F1 and F0 interaction in the Escherichia coli F1F0-ATPase. J Biol Chem 1997; 272:30047-53. [PMID: 9374480 DOI: 10.1074/jbc.272.48.30047] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction.
Collapse
Affiliation(s)
- K Sawada
- Department of Biotechnology, Faculty of Engineering, Okayama University, Okayama, Japan 700.
| | | | | | | | | |
Collapse
|
50
|
Kato Y, Matsui T, Tanaka N, Muneyuki E, Hisabori T, Yoshida M. Thermophilic F1-ATPase is activated without dissociation of an endogenous inhibitor, epsilon subunit. J Biol Chem 1997; 272:24906-12. [PMID: 9312092 DOI: 10.1074/jbc.272.40.24906] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Subunit complexes (alpha3beta3gamma, alpha3beta3gammadelta, alpha3beta3gammaepsilon, and alpha3beta3gammadeltaepsilon) of thermophilic F1-ATPase were prepared, and their catalytic properties were compared to know the role of delta and epsilon subunits in catalysis. The presence of delta subunit in the complexes had slight inhibitory effect on the ATPase activity. The effect of epsilon subunit was more profound. The (-epsilon) complexes, alpha3beta3gamma and alpha3beta3gammadelta, initiated ATP hydrolysis without a lag. In contrast, the (+epsilon) complexes, alpha3beta3gammaepsilon and alpha3beta3gammadeltaepsilon, started hydrolysis of ATP (<700 microM) with a lag phase that was gradually activated during catalytic turnover. As ATP concentration increased, the lag phase of the (+epsilon) complexes became shorter, and it was not observed above 1 mM ATP. Analysis of binding and hydrolysis of the ATP analog, 2',3'-O-(2,4,6-trinitrophenyl)-ATP, suggested that the (+epsilon) complexes bound substrate only slowly. Differing from Escherichia coli F1-ATPase, the activation of the (+epsilon) complexes from the lag phase was not due to dissociation of epsilon subunit since the re-isolated activated complex retained epsilon subunit. This indicates that there are two alternative forms of the (+epsilon) complex, inhibited form and activated form, and the inhibited one is converted to the activated one during catalytic turnover.
Collapse
Affiliation(s)
- Y Kato
- Research Laboratory of Resources Utilization, R-1, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226, Japan
| | | | | | | | | | | |
Collapse
|