1
|
Nath VR, Krishnan H, Mishra S, Raghu P. Ca2+ binding to Esyt modulates membrane contact site density in Drosophila photoreceptors. J Cell Biol 2025; 224:e202407190. [PMID: 40042442 PMCID: PMC11893162 DOI: 10.1083/jcb.202407190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 03/12/2025] Open
Abstract
Membrane contact sites (MCS) between the plasma membrane (PM) and endoplasmic reticulum (ER) regulate Ca2+ influx. However, the mechanisms by which cells modulate ER-PM MCS density are not understood, and the role of Ca2+, if any, in regulating these is unknown. We report that in Drosophila photoreceptors, MCS density is regulated by the Ca2+ channels, TRP and TRPL. Regulation of MCS density by Ca2+ is mediated by Drosophila extended synaptotagmin (dEsyt), a protein localized to ER-PM MCS and previously shown to regulate MCS density. We find that the Ca2+-binding activity of dEsyt is required for its function in vivo. dEsytCaBM, a Ca2+ non-binding mutant of dEsyt is unable to modulate MCS structure. Further, reconstitution of dEsyt null photoreceptors with dEsytCaBM is unable to rescue ER-PM MCS density and other key phenotypes. Thus, our data supports a role for Ca2+ binding to dEsyt in regulating ER-PM MCS density in photoreceptors thus tuning signal transduction during light-activated Ca2+ influx.
Collapse
Affiliation(s)
- Vaisaly R. Nath
- National Centre for Biological Sciences-TIFR, Bangalore, India
- School of Biotechnology, Amrita University, Kollam, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Shirish Mishra
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bangalore, India
| |
Collapse
|
2
|
Ferreira PA. Personal essay of a rookie's journey with Bill Pak and his legacy: tales and perspectives on PI-PLC, NorpA and cyclophilin, NinaA - William L. Pak, PhD., 1932-2023: in memoriam. J Neurogenet 2024; 38:165-174. [PMID: 38913811 DOI: 10.1080/01677063.2024.2366455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
The neurogenetics and vision community recently mourned William L. Pak, PhD, whose pioneering work spearheaded the genetic, electrophysiological, and molecular bases of biological processes underpinning vision. This essay provides a historical background to the daunting challenges and personal experiences that carved the path to seminal findings. It also reflects on the intellectual framework, mentoring philosophy, and inspirational legacy of Bill Pak's research. An emphasis and perspectives are placed on the discoveries and implications to date of the phosphatidylinositol-specific phospholipase C (PI-PLC), NorpA, and the cyclophilin, NinaA of the fruit fly, Drosophila melanogaster, and their respective mammalian homologues, PI-PLCβ4, and cyclophilin-related protein, Ran-binding protein 2 (Ranbp2) in critical biological processes and diseases of photoreceptors and other neurons.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Yang HH, Brezovec BE, Serratosa Capdevila L, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. Cell 2024; 187:6290-6308.e27. [PMID: 39293446 DOI: 10.1016/j.cell.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here, we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream of distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Our results suggest that a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bella E Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | | | - Quinn X Vanderbeck
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Mishra S, Manohar V, Chandel S, Manoj T, Bhattacharya S, Hegde N, Nath VR, Krishnan H, Wendling C, Di Mattia T, Martinet A, Chimata P, Alpy F, Raghu P. A genetic screen to uncover mechanisms underlying lipid transfer protein function at membrane contact sites. Life Sci Alliance 2024; 7:e202302525. [PMID: 38499328 PMCID: PMC10948934 DOI: 10.26508/lsa.202302525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Lipid transfer proteins mediate the transfer of lipids between organelle membranes, and the loss of function of these proteins has been linked to neurodegeneration. However, the mechanism by which loss of lipid transfer activity leads to neurodegeneration is not understood. In Drosophila photoreceptors, depletion of retinal degeneration B (RDGB), a phosphatidylinositol transfer protein, leads to defective phototransduction and retinal degeneration, but the mechanism by which loss of this activity leads to retinal degeneration is not understood. RDGB is localized to membrane contact sites through the interaction of its FFAT motif with the ER integral protein VAP. To identify regulators of RDGB function in vivo, we depleted more than 300 VAP-interacting proteins and identified a set of 52 suppressors of rdgB The molecular identity of these suppressors indicates a role of novel lipids in regulating RDGB function and of transcriptional and ubiquitination processes in mediating retinal degeneration in rdgB9 The human homologs of several of these molecules have been implicated in neurodevelopmental diseases underscoring the importance of VAP-mediated processes in these disorders.
Collapse
Affiliation(s)
- Shirish Mishra
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Vaishnavi Manohar
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Shabnam Chandel
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Tejaswini Manoj
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | | | - Nidhi Hegde
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Vaisaly R Nath
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Harini Krishnan
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Corinne Wendling
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Thomas Di Mattia
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Arthur Martinet
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Prasanth Chimata
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| | - Fabien Alpy
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bangalore, India
| |
Collapse
|
5
|
Brown MP, Verma S, Palmer I, Guerrero Zuniga A, Mehta A, Rosensweig C, Keles MF, Wu MN. A subclass of evening cells promotes the switch from arousal to sleep at dusk. Curr Biol 2024; 34:2186-2199.e3. [PMID: 38723636 PMCID: PMC11111347 DOI: 10.1016/j.cub.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Animals exhibit rhythmic patterns of behavior that are shaped by an internal circadian clock and the external environment. Although light intensity varies across the day, there are particularly robust differences at twilight (dawn/dusk). These periods are also associated with major changes in behavioral states, such as the transition from arousal to sleep. However, the neural mechanisms by which time and environmental conditions promote these behavioral transitions are poorly defined. Here, we show that the E1 subclass of Drosophila evening clock neurons promotes the transition from arousal to sleep at dusk. We first demonstrate that the cell-autonomous clocks of E2 neurons primarily drive and adjust the phase of evening anticipation, the canonical behavior associated with "evening" clock neurons. We next show that conditionally silencing E1 neurons causes a significant delay in sleep onset after dusk. However, rather than simply promoting sleep, activating E1 neurons produces time- and light-dependent effects on behavior. Activation of E1 neurons has no effect early in the day but then triggers arousal before dusk and induces sleep after dusk. Strikingly, these activation-induced phenotypes depend on the presence of light during the day. Despite their influence on behavior around dusk, in vivo voltage imaging of E1 neurons reveals that their spiking rate and pattern do not significantly change throughout the day. Moreover, E1-specific clock ablation has no effect on arousal or sleep. Thus, we suggest that, rather than specifying "evening" time, E1 neurons act, in concert with other rhythmic neurons, to promote behavioral transitions at dusk.
Collapse
Affiliation(s)
- Matthew P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shubha Verma
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Anuradha Mehta
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Mehmet F Keles
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark N Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Yang HH, Brezovec LE, Capdevila LS, Vanderbeck QX, Adachi A, Mann RS, Wilson RI. Fine-grained descending control of steering in walking Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562426. [PMID: 37904997 PMCID: PMC10614758 DOI: 10.1101/2023.10.15.562426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Locomotion involves rhythmic limb movement patterns that originate in circuits outside the brain. Purposeful locomotion requires descending commands from the brain, but we do not understand how these commands are structured. Here we investigate this issue, focusing on the control of steering in walking Drosophila. First, we describe different limb "gestures" associated with different steering maneuvers. Next, we identify a set of descending neurons whose activity predicts steering. Focusing on two descending cell types downstream from distinct brain networks, we show that they evoke specific limb gestures: one lengthens strides on the outside of a turn, while the other attenuates strides on the inside of a turn. Notably, a single descending neuron can have opposite effects during different locomotor rhythm phases, and we identify networks positioned to implement this phase-specific gating. Together, our results show how purposeful locomotion emerges from brain cells that drive specific, coordinated modulations of low-level patterns.
Collapse
Affiliation(s)
- Helen H. Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| | - Luke E. Brezovec
- Department of Neurobiology, Stanford University, Stanford, CA 94305 USA
| | | | | | - Atsuko Adachi
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027 USA
| | - Rachel I. Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
- Lead contact
| |
Collapse
|
7
|
Brown MP, Verma S, Palmer I, Zuniga AG, Rosensweig C, Keles MF, Wu MN. A subclass of evening cells promotes the switch from arousal to sleep at dusk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555147. [PMID: 37693540 PMCID: PMC10491161 DOI: 10.1101/2023.08.28.555147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Animals exhibit rhythmic patterns of behavior that are shaped by an internal circadian clock and the external environment. While light intensity varies across the day, there are particularly robust differences at twilight (dawn/dusk). These periods are also associated with major changes in behavioral states, such as the transition from arousal to sleep. However, the neural mechanisms by which time and environmental conditions promote these behavioral transitions are poorly defined. Here, we show that the E1 subclass of Drosophila evening clock neurons promotes the transition from arousal to sleep at dusk. We first demonstrate that the cell-autonomous clocks of E2 neurons alone are required to drive and adjust the phase of evening anticipation, the canonical behavior associated with "evening" clock neurons. We next show that conditionally silencing E1 neurons causes a significant delay in sleep onset after dusk. However, rather than simply promoting sleep, activating E1 neurons produces time- and light- dependent effects on behavior. Activation of E1 neurons has no effect early in the day, but then triggers arousal before dusk and induces sleep after dusk. Strikingly, these phenotypes critically depend on the presence of light during the day. Despite their influence on behavior around dusk, in vivo voltage imaging of E1 neurons reveals that their spiking rate does not vary between dawn and dusk. Moreover, E1-specific clock ablation has no effect on arousal or sleep. Thus, we suggest that, rather than specifying "evening" time, E1 neurons act, in concert with other rhythmic neurons, to promote behavioral transitions at dusk.
Collapse
Affiliation(s)
- Matthew P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - Shubha Verma
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - Isabelle Palmer
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | | | - Clark Rosensweig
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, U.S.A
| | - Mehmet F. Keles
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - Mark N. Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, U.S.A
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| |
Collapse
|
8
|
Ikeda K, Kataoka M, Tanaka NK. Nonsynaptic Transmission Mediates Light Context-Dependent Odor Responses in Drosophila melanogaster. J Neurosci 2022; 42:8621-8628. [PMID: 36180227 PMCID: PMC9671575 DOI: 10.1523/jneurosci.1106-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Recent connectome analyses of the entire synaptic circuit in the nervous system have provided tremendous insights into how neural processing occurs through the synaptic relay of neural information. Conversely, the extent to which ephaptic transmission which does not depend on the synapses contributes to the relay of neural information, especially beyond a distance between adjacent neurons and to neural processing remains unclear. We show that ephaptic transmission mediated by extracellular potential changes in female Drosophila melanogaster can reach >200 µm, equivalent to the depth of its brain. Furthermore, ephaptic transmission driven by retinal photoreceptor cells mediates light-evoked firing rate increases in olfactory sensory neurons. These results indicate that ephaptic transmission contributes to sensory responses that can change momentarily in a context-dependent manner.SIGNIFICANCE STATEMENT Although extracellular field potential activities are commonly observed in many nervous systems, this activity has been generally considered as a side effect of synchronized spiking of neurons. This study, however, shows that field potential changes in retinae evoked by a sensory stimulus can control the excitability of distant neurons in vivo and mediates multimodal sensory integration in Drosophila melanogaster As such ephaptic transmission is more effective at a short distance, the ephaptic transmission from the retinae may contribute significantly to firing rate changes in downstream neurons of the photoreceptor cells in the optic lobe.
Collapse
Affiliation(s)
- Kazuaki Ikeda
- Division of Biology, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Graduate School of Life Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Masaki Kataoka
- Division of Biology, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Graduate School of Life Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - Nobuaki K Tanaka
- Division of Biology, Department of Biological Sciences, School of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Graduate School of Life Sciences, Hokkaido University, Sapporo, 060-0810, Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
9
|
Gaspar M, Dias S, Vasconcelos ML. Mating pair drives aggressive behavior in female Drosophila. Curr Biol 2022; 32:4734-4742.e4. [PMID: 36167074 DOI: 10.1016/j.cub.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/08/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022]
Abstract
Aggression is an adaptive set of behaviors that allows animals to compete against one another in an environment of limited resources. Typically, males fight for mates and food, whereas females fight for food and nest sites.1 Although the study of male aggression has been facilitated by the extravagant nature of the ritualized displays involved and the remarkable armaments sported by males of many species,2-4 the subtler and rarer instances of inter-female aggression have historically received much less attention. In Drosophila, females display high levels of complex and highly structured aggression on a food patch with conspecific females.5-9 Other contexts of female aggression have not been explored. Indeed, whether females compete for mating partners, as males do, has remained unknown so far. In the present work, we report that Drosophila melanogaster females reliably display aggression toward mating pairs. This aggressive behavior is regulated by mating status and perception of mating opportunities and relies heavily on olfaction. Furthermore, we found that food odor in combination with OR47b-dependent fly odor sensing is required for proper expression of aggressive behavior. Taken together, we describe a social context linked to reproduction in which Drosophila females aspiring to mate produce consistent and stereotyped displays of aggression. These findings open the door for further inquiries into the neural mechanisms that govern this behavior.
Collapse
Affiliation(s)
- Miguel Gaspar
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | - Sophie Dias
- Champalimaud Research, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | | |
Collapse
|
10
|
The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels. Biomolecules 2022; 12:biom12030382. [PMID: 35327573 PMCID: PMC8945425 DOI: 10.3390/biom12030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3). However, the events required for channel gating downstream of PLC activation are still under debate and led to several hypotheses regarding the mechanisms by which lipids gate the channels. Despite many efforts, compelling evidence of the involvement of DAG accumulation, PIP2 depletion or IP3-mediated Ca2+ release in light activation of the TRP/TRPL channels are still lacking. Exogeneous application of poly unsaturated fatty acids (PUFAs), a product of DAG hydrolysis was demonstrated as an efficient way to activate the Drosophila TRP/TRPL channels. However, compelling evidence for the involvement of PUFAs in physiological light-activation of the TRP/TRPL channels is still lacking. Light-induced mechanical force generation was measured in photoreceptor cells prior to channel opening. This mechanical force depends on PLC activity, suggesting that the enzymatic activity of PLC converting PIP2 into DAG generates membrane tension, leading to mechanical gating of the channels. In this review, we will present the roles of membrane lipids in light activation of Drosophila TRP channels and present the many advantages of this model system in the exploration of TRP channel activation under physiological conditions.
Collapse
|
11
|
Ready DF, Chang HC. Calcium waves facilitate and coordinate the contraction of endfeet actin stress fibers in Drosophila interommatidial cells. Development 2021; 148:272616. [PMID: 34698814 DOI: 10.1242/dev.199700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Actomyosin contraction shapes the Drosophila eye's panoramic view. The convex curvature of the retinal epithelium, organized in ∼800 close-packed ommatidia, depends upon a fourfold condensation of the retinal floor mediated by contraction of actin stress fibers in the endfeet of interommatidial cells (IOCs). How these tensile forces are coordinated is not known. Here, we discover a novel phenomenon: Ca2+ waves regularly propagate across the IOC network in pupal and adult eyes. Genetic evidence demonstrates that IOC waves are independent of phototransduction, but require inositol 1,4,5-triphosphate receptor (IP3R), suggesting these waves are mediated by Ca2+ releases from ER stores. Removal of IP3R disrupts stress fibers in IOC endfeet and increases the basal retinal surface by ∼40%, linking IOC waves to facilitating stress fiber contraction and floor morphogenesis. Further, IP3R loss disrupts the organization of a collagen IV network underneath the IOC endfeet, implicating ECM and its interaction with stress fibers in eye morphogenesis. We propose that coordinated cytosolic Ca2+ increases in IOC waves promote stress fiber contractions, ensuring an organized application of the planar tensile forces that condense the retinal floor.
Collapse
Affiliation(s)
- Donald F Ready
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, Indiana 47907-2054, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, Indiana 47907-2054, USA
| |
Collapse
|
12
|
Damulewicz M, Ispizua JI, Ceriani MF, Pyza EM. Communication Among Photoreceptors and the Central Clock Affects Sleep Profile. Front Physiol 2020; 11:993. [PMID: 32848895 PMCID: PMC7431659 DOI: 10.3389/fphys.2020.00993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Light is one of the most important factors regulating rhythmical behavior of Drosophila melanogaster. It is received by different photoreceptors and entrains the circadian clock, which controls sleep. The retina is known to be essential for light perception, as it is composed of specialized light-sensitive cells which transmit signal to deeper parts of the brain. In this study we examined the role of specific photoreceptor types and peripheral oscillators located in these cells in the regulation of sleep pattern. We showed that sleep is controlled by the visual system in a very complex way. Photoreceptors expressing Rh1, Rh3 are involved in night-time sleep regulation, while cells expressing Rh5 and Rh6 affect sleep both during the day and night. Moreover, Hofbauer-Buchner (HB) eyelets which can directly contact with s-LN v s and l-LN v s play a wake-promoting function during the day. In addition, we showed that L2 interneurons, which receive signal from R1-6, form direct synaptic contacts with l-LN v s, which provides new light input to the clock network.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Juan I. Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Maria F. Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Elzbieta M. Pyza
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Nath VR, Mishra S, Basak B, Trivedi D, Raghu P. Extended synaptotagmin regulates membrane contact site structure and lipid transfer function in vivo. EMBO Rep 2020; 21:e50264. [PMID: 32716137 DOI: 10.15252/embr.202050264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
Inter-organelle communication between closely apposed membranes is proposed at membrane contact sites (MCS). However, the regulation of MCS structure and their functional relevance in vivo remain debated. The extended synaptotagmins (Esyt) are evolutionarily conserved proteins proposed to function at MCS. However, loss of all three Esyts in yeast or mammals shows minimal phenotypes questioning the functional importance of Esyt. We report that in Drosophila photoreceptors, MCS number is regulated by PLCβ activity. Photoreceptors of a null allele of Drosophila extended synaptotagmin (dEsyt) show loss of ER-PM MCS. Loss of dEsyt results in mislocalization of RDGB, an MCS localized lipid transfer protein, required for photoreceptor structure and function, ultimately leading to retinal degeneration. dEsyt depletion enhanced the retinal degeneration, reduced light responses and slower rates of plasma membrane PIP2 resynthesis seen in rdgB mutants. Thus, dEsyt function and PLCβ signaling regulate ER-PM MCS structure and lipid transfer in Drosophila photoreceptors.
Collapse
Affiliation(s)
- Vaisaly R Nath
- National Centre for Biological Sciences-TIFR, Bangalore, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Shirish Mishra
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Bishal Basak
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Deepti Trivedi
- National Centre for Biological Sciences-TIFR, Bangalore, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bangalore, India
| |
Collapse
|
14
|
Rapid Release of Ca 2+ from Endoplasmic Reticulum Mediated by Na +/Ca 2+ Exchange. J Neurosci 2020; 40:3152-3164. [PMID: 32156830 DOI: 10.1523/jneurosci.2675-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022] Open
Abstract
Phototransduction in Drosophila is mediated by phospholipase C (PLC) and Ca2+-permeable TRP channels, but the function of endoplasmic reticulum (ER) Ca2+ stores in this important model for Ca2+ signaling remains obscure. We therefore expressed a low affinity Ca2+ indicator (ER-GCaMP6-150) in the ER, and measured its fluorescence both in dissociated ommatidia and in vivo from intact flies of both sexes. Blue excitation light induced a rapid (tau ∼0.8 s), PLC-dependent decrease in fluorescence, representing depletion of ER Ca2+ stores, followed by a slower decay, typically reaching ∼50% of initial dark-adapted levels, with significant depletion occurring under natural levels of illumination. The ER stores refilled in the dark within 100-200 s. Both rapid and slow store depletion were largely unaffected in InsP3 receptor mutants, but were much reduced in trp mutants. Strikingly, rapid (but not slow) depletion of ER stores was blocked by removing external Na+ and in mutants of the Na+/Ca2+ exchanger, CalX, which we immuno-localized to ER membranes in addition to its established localization in the plasma membrane. Conversely, overexpression of calx greatly enhanced rapid depletion. These results indicate that rapid store depletion is mediated by Na+/Ca2+ exchange across the ER membrane induced by Na+ influx via the light-sensitive channels. Although too slow to be involved in channel activation, this Na+/Ca2+ exchange-dependent release explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors exposed to Ca2+-free solutions.SIGNIFICANCE STATEMENT Phototransduction in Drosophila is mediated by phospholipase C, which activates TRP cation channels by an unknown mechanism. Despite much speculation, it is unknown whether endoplasmic reticulum (ER) Ca2+ stores play any role. We therefore engineered flies expressing a genetically encoded Ca2+ indicator in the photoreceptor ER. Although NCX Na+/Ca2+ exchangers are classically believed to operate only at the plasma membrane, we demonstrate a rapid light-induced depletion of ER Ca2+ stores mediated by Na+/Ca2+ exchange across the ER membrane. This NCX-dependent release was too slow to be involved in channel activation, but explains the decades-old observation of a light-induced rise in cytosolic Ca2+ in photoreceptors bathed in Ca2+-free solutions.
Collapse
|
15
|
Guo H, Kunwar K, Smith D. Multiple channels of DEET repellency in Drosophila. PEST MANAGEMENT SCIENCE 2020; 76:880-887. [PMID: 31429190 PMCID: PMC7015792 DOI: 10.1002/ps.5592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/09/2019] [Accepted: 08/14/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND N,N-Diethyl-meta-toluamide (DEET) is the prophylactic insect repellent used most widely to inhibit insect bites. Despite its use since 1944, the mechanism of DEET repellency remains controversial. Here, we revisited the role of smell and taste in DEET repellence using Drosophila as a model. RESULTS Analysis of the responses of individual olfactory receptor neuron (ORN) classes to DEET reveals that 11 ORNs are activated and two are inhibited by this compound. Blocking individual ORN classes in the antenna does not block DEET repellence. This argues against the existence of a single ORN mediating DEET repellence in Drosophila. Activation of all ORCO-expressing neurons using channelrhodopsin favors attraction, not repellence, in behavioral valence. We also demonstrate that gustatory neurons are highly sensitive to DEET. We used RNA interference to screen candidate receptors encoded by gene families involved in the detection of bitter compounds, including 34 gustatory receptors (Grs), 14 ionotropic receptors (Irs), five pick-pocket subunits (PPKs), three transient receptor potential ion channels (TrpA, TrpL, Painless) and one metabotropic glutamate receptors gene (DmXR). We saw striking defects in DEET-mediated oviposition behavior when expression of either Gr32a or Gr33a was inhibited. CONCLUSION Our findings support a multimodal mechanism for DEET detection in fruit flies and indicate a prominent role for taste detection mediating DEET repellence. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111
| | - Kishor Kunwar
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111
| | - Dean Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111
| |
Collapse
|
16
|
Interplay between integrins and PI4P5K Sktl is crucial for cell polarization and reepithelialisation during Drosophila wound healing. Sci Rep 2019; 9:16331. [PMID: 31704968 PMCID: PMC6842001 DOI: 10.1038/s41598-019-52743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/22/2019] [Indexed: 11/08/2022] Open
Abstract
Phosphatidylinositol(4,5)-bisphosphate [PI(4,5)P2] regulates cell adhesion and actin dynamics during cell migration. PI(4,5)P2 binds various components of the cell adhesion machinery, but how these processes affect migration of the epithelial cell sheet is not well understood. Here, we report that PI(4,5)P2 and Sktl, the kinase that converts PI4P to PI(4,5)P2, are both localized to the rear side of cells during wound healing of the Drosophila larval epidermis. The Sktl localization requires JNK pathway activation and integrins, but not PVR. The sktl knockdown epidermis displays strong defects in would closure, reminiscent of the JNK-depleted epidermis, and shows severe disruption of cell polarity, as determined by myosin II localization. Sktl and βPS integrin colocalize at the rear side of cells forming the trailing edge during wound healing and the two are inter-dependent in that the absence of one severely disrupts the rear localization of the other. These results strongly suggest that the JNK pathway regulates the rear localization of Sktl and integrins and the interplay between Sktl and integrins sets up cell polarity, which is crucial for reepithelialisation during wound healing.
Collapse
|
17
|
Daytime colour preference in Drosophila depends on the circadian clock and TRP channels. Nature 2019; 574:108-111. [DOI: 10.1038/s41586-019-1571-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/28/2019] [Indexed: 11/08/2022]
|
18
|
Akin O, Bajar BT, Keles MF, Frye MA, Zipursky SL. Cell-type-Specific Patterned Stimulus-Independent Neuronal Activity in the Drosophila Visual System during Synapse Formation. Neuron 2019; 101:894-904.e5. [PMID: 30711355 DOI: 10.1016/j.neuron.2019.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/31/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
Abstract
Stereotyped synaptic connections define the neural circuits of the brain. In vertebrates, stimulus-independent activity contributes to neural circuit formation. It is unknown whether this type of activity is a general feature of nervous system development. Here, we report patterned, stimulus-independent neural activity in the Drosophila visual system during synaptogenesis. Using in vivo calcium, voltage, and glutamate imaging, we found that all neurons participate in this spontaneous activity, which is characterized by brain-wide periodic active and silent phases. Glia are active in a complementary pattern. Each of the 15 of over 100 specific neuron types in the fly visual system examined exhibited a unique activity signature. The activity of neurons that are synaptic partners in the adult was highly correlated during development. We propose that this cell-type-specific activity coordinates the development of the functional circuitry of the adult brain.
Collapse
Affiliation(s)
- Orkun Akin
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Bryce T Bajar
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet F Keles
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Light-Induced Opening of the TRP Channel in Isolated Membrane Patches Excised from Photosensitive Microvilli from Drosophila Photoreceptors. Neuroscience 2018; 396:66-72. [PMID: 30458219 DOI: 10.1016/j.neuroscience.2018.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/20/2022]
Abstract
Drosophila phototransduction occurs in light-sensitive microvilli arranged in a longitudinal structure of the photoreceptor, termed the rhabdomere. Rhodopsin (Rh), isomerized by light, couples to G-protein, which activates phospholipase C (PLC), which in turn cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol (DAG), inositol trisphosphate and H+. This pathway opens the light-dependent channels, transient receptor potential (TRP) and transient receptor potential like (TRPL). PLC and TRP are held together in a protein assembly by the scaffold protein INAD. We report that the channels can be photoactivated in on-cell rhabdomeric patches and in excised patches by DAG. In excised patches, addition of PLC-activator, m-3M3FBS, or G-protein-activator, GTP-γ-S, opened TRP. These reagents were ineffective in PLC-mutant norpA and in the presence of PLC inhibitor U17322. However, DAG activated TRP even when PLC was pharmacologically or mutationally suppressed. These observations indicate that PLC, G-protein, and TRP were retained functional in these patches. DAG also activated TRP in the protein kinase C (PKC) mutant, inaC, excluding the possibility that PKC could mediate DAG-dependent TRP activation. Labeling diacylglycerol kinase (DGK) by fusion of fluorescent mCherry (mCherry-DGK) indicates that DGK, which returns DAG to dark levels, is highly expressed in the microvilli. In excised patches, TRP channels could be light-activated in the presence of GTP, which is required for G-protein activation. The evidence indicates that the proteins necessary for phototransduction are retained functionally after excision and that DAG is necessary and sufficient for TRP opening. This work opens up unique possibilities for studying, in sub-microscopic native membrane patches, the ubiquitous phosphoinositide signaling pathway and its regulatory mechanisms in unprecedented detail.
Collapse
|
20
|
Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, Luo DG. Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nat Commun 2018; 9:4247. [PMID: 30315165 PMCID: PMC6185921 DOI: 10.1038/s41467-018-06506-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms are orchestrated by a master clock that emerges from a network of circadian pacemaker neurons. The master clock is synchronized to external light/dark cycles through photoentrainment, but the circuit mechanisms underlying visual photoentrainment remain largely unknown. Here, we report that Drosophila has eye-mediated photoentrainment via a parallel pacemaker neuron organization. Patch-clamp recordings of central circadian pacemaker neurons reveal that light excites most of them independently of one another. We also show that light-responding pacemaker neurons send their dendrites to a neuropil called accessary medulla (aMe), where they make monosynaptic connections with Hofbauer–Buchner eyelet photoreceptors and interneurons that transmit compound-eye signals. Laser ablation of aMe and eye removal both abolish light responses of circadian pacemaker neurons, revealing aMe as a hub to channel eye inputs to central circadian clock. Taken together, we demonstrate that the central clock receives eye inputs via hub-organized parallel circuits in Drosophila. The central circadian clock in Drosophila is made up of ~ 150 anatomically distributed neurons; the circuits underlying photoentrainment is unclear. This study describes ex vivo patch-clamp recording of the eye-mediated light response of all known circadian clock neurons, and shows that they are organized in parallel circuits centered around a hub.
Collapse
Affiliation(s)
- Meng-Tong Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Li-Hui Cao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Na Xiao
- IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Min Tang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Bowen Deng
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
21
|
Herman JA, Willits AB, Bellemer A. Gαq and Phospholipase Cβ signaling regulate nociceptor sensitivity in Drosophila melanogaster larvae. PeerJ 2018; 6:e5632. [PMID: 30258723 PMCID: PMC6151255 DOI: 10.7717/peerj.5632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/24/2018] [Indexed: 12/29/2022] Open
Abstract
Drosophila melanogaster larvae detect noxious thermal and mechanical stimuli in their environment using polymodal nociceptor neurons whose dendrites tile the larval body wall. Activation of these nociceptors by potentially tissue-damaging stimuli elicits a stereotyped escape locomotion response. The cellular and molecular mechanisms that regulate nociceptor function are increasingly well understood, but gaps remain in our knowledge of the broad mechanisms that control nociceptor sensitivity. In this study, we use cell-specific knockdown and overexpression to show that nociceptor sensitivity to noxious thermal and mechanical stimuli is correlated with levels of Gαq and phospholipase Cβ signaling. Genetic manipulation of these signaling mechanisms does not result in changes in nociceptor morphology, suggesting that changes in nociceptor function do not arise from changes in nociceptor development, but instead from changes in nociceptor activity. These results demonstrate roles for Gαq and phospholipase Cβ signaling in facilitating the basal sensitivity of the larval nociceptors to noxious thermal and mechanical stimuli and suggest future studies to investigate how these signaling mechanisms may participate in neuromodulation of sensory function.
Collapse
Affiliation(s)
- Joshua A Herman
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Adam B Willits
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| | - Andrew Bellemer
- Department of Biology, Appalachian State University, Boone, NC, United States of America
| |
Collapse
|
22
|
Katz B, Minke B. The Drosophila light-activated TRP and TRPL channels - Targets of the phosphoinositide signaling cascade. Prog Retin Eye Res 2018; 66:200-219. [DOI: 10.1016/j.preteyeres.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/28/2023]
|
23
|
Álvarez-Salvado E, Licata AM, Connor EG, McHugh MK, King BMN, Stavropoulos N, Victor JD, Crimaldi JP, Nagel KI. Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies. eLife 2018; 7:e37815. [PMID: 30129438 PMCID: PMC6103744 DOI: 10.7554/elife.37815] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
Odor attraction in walking Drosophila melanogaster is commonly used to relate neural function to behavior, but the algorithms underlying attraction are unclear. Here, we develop a high-throughput assay to measure olfactory behavior in response to well-controlled sensory stimuli. We show that odor evokes two behaviors: an upwind run during odor (ON response), and a local search at odor offset (OFF response). Wind orientation requires antennal mechanoreceptors, but search is driven solely by odor. Using dynamic odor stimuli, we measure the dependence of these two behaviors on odor intensity and history. Based on these data, we develop a navigation model that recapitulates the behavior of flies in our apparatus, and generates realistic trajectories when run in a turbulent boundary layer plume. The ability to parse olfactory navigation into quantifiable elementary sensori-motor transformations provides a foundation for dissecting neural circuits that govern olfactory behavior.
Collapse
Affiliation(s)
- Efrén Álvarez-Salvado
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Angela M Licata
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Erin G Connor
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Margaret K McHugh
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Benjamin MN King
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Nicholas Stavropoulos
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| | - Jonathan D Victor
- Institute for Computational BiomedicineWeill Cornell Medical CollegeNew YorkUnited States
- Feil Family Brain and Mind Research InstituteWeill Cornell Medical CollegeNew YorkUnited States
| | - John P Crimaldi
- Department of Civil, Environmental and Architectural EngineeringUniversity of Colorado BoulderBoulderUnited States
| | - Katherine I Nagel
- Neuroscience InstituteNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
24
|
Watanabe K, Suzuki Y, Inami S, Ohashi H, Sakai T. Light is required for proper female mate choice between winged and wingless males in Drosophila. Genes Genet Syst 2018; 93:119-123. [PMID: 29998908 DOI: 10.1266/ggs.18-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In many animal species, females choose potential mating partners according to their own preferences. Thus, female preference-based mate choice affects intraspecific mating success and prevents interspecific mating. To clarify the neuronal basis of female mate choice, it is essential to identify the important relevant sensory cues. In the fruitfly Drosophila melanogaster, the courtship song of males promotes female sexual receptivity. When wild-type virgin females can freely choose one of two types of courting males (winged or wingless males), they prefer to mate with winged males. Here, we report a crucial sensory cue relevant to this female mate choice. In a female choice test, female receptivity toward winged and wingless males was markedly reduced when females had auditory impairments, although females with visual or olfactory impairments showed normal receptivity similar to wild-type females. However, females with visual impairments did not show clear mate preference toward winged males. Thus, these findings suggest that females utilize visual cues in mate choice between winged and wingless males in Drosophila.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Yuki Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Show Inami
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Hirono Ohashi
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Takaomi Sakai
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
25
|
Ogueta M, Hardie RC, Stanewsky R. Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses. Curr Biol 2018; 28:1725-1735.e3. [PMID: 29779871 PMCID: PMC5988559 DOI: 10.1016/j.cub.2018.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
The daily light-dark cycles represent a key signal for synchronizing circadian clocks. Both insects and mammals possess dedicated "circadian" photoreceptors but also utilize the visual system for clock resetting. In Drosophila, circadian clock resetting is achieved by the blue-light photoreceptor cryptochrome (CRY), which is expressed within subsets of the brain clock neurons. In addition, rhodopsin-expressing photoreceptor cells contribute to light synchronization. Light resets the molecular clock by CRY-dependent degradation of the clock protein Timeless (TIM), although in specific subsets of key circadian pacemaker neurons, including the small ventral lateral neurons (s-LNvs), TIM and Period (PER) oscillations can be synchronized by light independent of CRY and canonical visual Rhodopsin phototransduction. Here, we show that at least three of the seven Drosophila rhodopsins can utilize an alternative transduction mechanism involving the same α-subunit of the heterotrimeric G protein operating in canonical visual phototransduction (Gq). Surprisingly, in mutants lacking the canonical phospholipase C-β (PLC-β) encoded by the no receptor potential A (norpA) gene, we uncovered a novel transduction pathway using a different PLC-β encoded by the Plc21C gene. This novel pathway is important for behavioral clock resetting to semi-natural light-dark cycles and mediates light-dependent molecular synchronization within the s-LNv clock neurons. The same pathway appears to be responsible for norpA-independent light responses in the compound eye. We show that Rhodopsin 5 (Rh5) and Rh6, present in the R8 subset of retinal photoreceptor cells, drive both the long-term circadian and rapid light responses in the eye.
Collapse
Affiliation(s)
- Maite Ogueta
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Roger C Hardie
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, 48149 Münster, Germany.
| |
Collapse
|
26
|
Haeme oxygenase protects against UV light DNA damages in the retina in clock-dependent manner. Sci Rep 2017; 7:5197. [PMID: 28701782 PMCID: PMC5507878 DOI: 10.1038/s41598-017-05418-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
In the present study, we showed that in the retina of Drosophila, the expression of the ho gene, encoding haeme oxygenase (HO), is regulated by light but only at the beginning of the day. This timing must be set by the circadian clock as light pulses applied at other time points during the day do not increase the ho mRNA level. Moreover, light-induced activation of HO does not depend on the canonical phototransduction pathway but instead involves cryptochrome and is enhanced by ultraviolet (UV) light. Interestingly, the level of DNA damage in the retina after UV exposure was inversely related to the circadian oscillation of the ho mRNA level during the night, being the highest when the HO level was low and reversed during the day. Accordingly, induction of HO by hemin was associated with low DNA damage, while inhibition of HO activity by SnPPIX aggravated the damage. Our data suggest that HO acts in the retina to decrease oxidative DNA damage in photoreceptors caused by UV-rich light in the morning.
Collapse
|
27
|
Aranha MM, Herrmann D, Cachitas H, Neto-Silva RM, Dias S, Vasconcelos ML. apterous Brain Neurons Control Receptivity to Male Courtship in Drosophila Melanogaster Females. Sci Rep 2017; 7:46242. [PMID: 28401905 PMCID: PMC5388873 DOI: 10.1038/srep46242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/07/2017] [Indexed: 11/26/2022] Open
Abstract
Courtship behaviours allow animals to interact and display their qualities before committing to reproduction. In fly courtship, the female decides whether or not to mate and is thought to display receptivity by slowing down to accept the male. Very little is known on the neuronal brain circuitry controlling female receptivity. Here we use genetic manipulation and behavioural studies to identify a novel set of neurons in the brain that controls sexual receptivity in the female without triggering the postmating response. We show that these neurons, defined by the expression of the transcription factor apterous, affect the modulation of female walking speed during courtship. Interestingly, we found that the apterous neurons required for female receptivity are neither doublesex nor fruitless positive suggesting that apterous neurons are not specified by the sex-determination cascade. Overall, these findings identify a neuronal substrate underlying female response to courtship and highlight the central role of walking speed in the receptivity behaviour.
Collapse
Affiliation(s)
- Márcia M Aranha
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Dennis Herrmann
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Hugo Cachitas
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ricardo M Neto-Silva
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sophie Dias
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Maria Luísa Vasconcelos
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
28
|
Asteriti S, Liu CH, Hardie RC. Calcium signalling in Drosophila photoreceptors measured with GCaMP6f. Cell Calcium 2017; 65:40-51. [PMID: 28238353 PMCID: PMC5472182 DOI: 10.1016/j.ceca.2017.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/30/2022]
Abstract
Drosophila phototransduction is mediated by phospholipase C leading to activation of cation channels (TRP and TRPL) in the 30000 microvilli forming the light-absorbing rhabdomere. The channels mediate massive Ca2+ influx in response to light, but whether Ca2+ is released from internal stores remains controversial. We generated flies expressing GCaMP6f in their photoreceptors and measured Ca2+ signals from dissociated cells, as well as in vivo by imaging rhabdomeres in intact flies. In response to brief flashes, GCaMP6f signals had latencies of 10-25ms, reached 50% Fmax with ∼1200 effectively absorbed photons and saturated (ΔF/F0∼10-20) with 10000-30000 photons. In Ca2+ free bath, smaller (ΔF/F0 ∼4), long latency (∼200ms) light-induced Ca2+ rises were still detectable. These were unaffected in InsP3 receptor mutants, but virtually eliminated when Na+ was also omitted from the bath, or in trpl;trp mutants lacking light-sensitive channels. Ca2+ free rises were also eliminated in Na+/Ca2+ exchanger mutants, but greatly accelerated in flies over-expressing the exchanger. These results show that Ca2+ free rises are strictly dependent on Na+ influx and activity of the exchanger, suggesting they reflect re-equilibration of Na+/Ca2+ exchange across plasma or intracellular membranes following massive Na+ influx. Any tiny Ca2+ free rise remaining without exchanger activity was equivalent to <10nM (ΔF/F0 ∼0.1), and unlikely to play any role in phototransduction.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Che-Hsiung Liu
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK
| | - Roger C Hardie
- Cambridge University, Department of Physiology Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
29
|
Saint-Charles A, Michard-Vanhée C, Alejevski F, Chélot E, Boivin A, Rouyer F. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light. J Comp Neurol 2016; 524:2828-44. [PMID: 26972685 DOI: 10.1002/cne.23994] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra Saint-Charles
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Christine Michard-Vanhée
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Faredin Alejevski
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Elisabeth Chélot
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Antoine Boivin
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - François Rouyer
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifque, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
30
|
A Stochastic Burst Follows the Periodic Morning Peak in Individual Drosophila Locomotion. PLoS One 2015; 10:e0140481. [PMID: 26528813 PMCID: PMC4631454 DOI: 10.1371/journal.pone.0140481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/25/2015] [Indexed: 02/04/2023] Open
Abstract
Coupling between cyclically varying external light and an endogenous biochemical oscillator known as the circadian clock, modulates a rhythmic pattern with two prominent peaks in the locomotion of Drosophila melanogaster. A morning peak appears around the time lights turn on and an evening peak appears just before lights turn off. The close association between the peaks and the external 12:12 hour light/dark photoperiod means that respective morning and evening peaks of individual flies are well-synchronized in time and, consequently, feature prominently in population-averaged data. Here, we report on a brief but strong stochastic burst in fly activity that, in contrast to morning and evening peaks, is detectable only in single fly recordings. This burst was observed across 3 wild-type strains of Drosophila melanogaster. In a single fly recording, the burst is likely to appear once randomly within 0.5–5 hours after lights turn on, last for only 2–3 minutes and yet show 5 times greater activity compared to the maximum of morning peak with data binned in 3 minutes. Owing to its variable timing and short duration, the burst is virtually undetectable in population-averaged data. We use a locally-built illumination system to study the burst and find that its incidence in a population correlates with light intensity, with ~85% of control flies showing the behavior at 8000 lux (1942 μW/cm2). Consistent with that finding, several mutant flies with impaired vision show substantially reduced frequency of the burst. Additionally, we find that genetic ablation of the clock has insignificant effect on burst frequency. Together, these data suggest that the pronounced burst is likely generated by a light-activated circuit that is independent of the circadian clock.
Collapse
|
31
|
Jaiswal M, Haelterman NA, Sandoval H, Xiong B, Donti T, Kalsotra A, Yamamoto S, Cooper TA, Graham BH, Bellen HJ. Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress. PLoS Biol 2015; 13:e1002197. [PMID: 26176594 PMCID: PMC4503542 DOI: 10.1371/journal.pbio.1002197] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.
Collapse
Affiliation(s)
- Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Howard Hughes Medical Institute, BCM, Houston, Texas, United States of America
| | - Nele A. Haelterman
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Bo Xiong
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Auinash Kalsotra
- Department of Pathology and Immunology, BCM, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, Texas, United States of America
| | - Thomas A. Cooper
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Department of Pathology and Immunology, BCM, Houston, Texas, United States of America
| | - Brett H. Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, Texas, United States of America
- Howard Hughes Medical Institute, BCM, Houston, Texas, United States of America
- Program in Developmental Biology, BCM, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital (TCH), Houston, Texas, United States of America
- Department of Neuroscience, BCM, Houston, Texas, United States of America
| |
Collapse
|
32
|
Milakovic M, Ormerod KG, Klose MK, Mercier AJ. Mode of action of a Drosophila FMRFamide in inducing muscle contraction. ACTA ACUST UNITED AC 2014; 217:1725-36. [PMID: 24526728 DOI: 10.1242/jeb.096941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.
Collapse
Affiliation(s)
- Maja Milakovic
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON, Canada, L2S 3A1
| | - Kiel G Ormerod
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON, Canada, L2S 3A1
| | - Markus K Klose
- Department of Anatomy & Neurobiology, Washington University, St Louis, MO 63110, USA
| | - A Joffre Mercier
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St Catharines, ON, Canada, L2S 3A1
| |
Collapse
|
33
|
Negative regulation of the novel norpA(P24) suppressor, diehard4, in the endo-lysosomal trafficking underlies photoreceptor cell degeneration. PLoS Genet 2013; 9:e1003559. [PMID: 23754968 PMCID: PMC3674991 DOI: 10.1371/journal.pgen.1003559] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 04/24/2013] [Indexed: 12/16/2022] Open
Abstract
Rhodopsin has been used as a prototype system to investigate G protein-coupled receptor (GPCR) internalization and endocytic sorting mechanisms. Failure of rhodopsin recycling upon light activation results in various degenerative retinal diseases. Accumulation of internalized rhodopsin in late endosomes and the impairment of its lysosomal degradation are associated with unregulated cell death that occurs in dystrophies. However, the molecular basis of rhodopsin accumulation remains elusive. We found that the novel norpAP24 suppressor, diehard4, is responsible for the inability of endo-lysosomal rhodopsin trafficking and retinal degeneration in Drosophila models of retinal dystrophies. We found that diehard4 encodes Osiris 21. Loss of its function suppresses retinal degeneration in norpAP24, rdgC306, and trp1, but not in rdgB2, suggesting a common cause of photoreceptor death. In addition, the loss of Osiris 21 function shifts the membrane balance between late endosomes and lysosomes as evidenced by smaller late endosomes and the proliferation of lysosomal compartments, thus facilitating the degradation of endocytosed rhodopsin. Our results demonstrate the existence of negative regulation in vesicular traffic between endosomes and lysosomes. We anticipate that the identification of additional components and an in-depth description of this specific molecular machinery will aid in therapeutic interventions of various retinal dystrophies and GPCR-related human diseases. Malfunctioning of phototransduction is the major cause of human blindness. Without functional phototransduction, rhodopsin-1, the major visual pigment, is rapidly endocytosed and accumulated in late endosomes. Impaired lysosomal delivery of endocytosed rhodopsin and its degradation has been reported to trigger progressive and light-dependent retinal degeneration in Drosophila models. It is intriguing why endocytosed rhodopsin accumulates in late endosomes instead of being delivered to lysosomes for degradation. Is this attributable to a saturation of rhodopsin endocytosis, which impedes the delivery capacity of the cell? To investigate the underlying mechanisms of rhodopsin accumulation in late endosomes, we used a suppressor of phototransduction mutants, which was identified previously from our unbiased genetic screen. This suppressor, called diehard4, shifts the membrane balance between late endosomes and lysosomes, resulting in the facilitated degradation of endocytosed rhodopsin. Our results clearly demonstrate that a previously unknown mechanism of negative regulation is actively engaged in vesicular traffic between endosomes and lysosomes in fly photoreceptors. We showed that eliminating such blockage alone was enough to rescue retinal degeneration in phototransduction mutants. From these results, we anticipate that the identification of additional components and an in-depth description of this molecular machinery will aid in therapeutic interventions of various retinal dystrophies and neurodegenerative disorders.
Collapse
|
34
|
Abstract
Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity.
Collapse
|
35
|
Chu B, Liu CH, Sengupta S, Gupta A, Raghu P, Hardie RC. Common mechanisms regulating dark noise and quantum bump amplification in Drosophila photoreceptors. J Neurophysiol 2013; 109:2044-55. [PMID: 23365183 DOI: 10.1152/jn.00001.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Absolute visual thresholds are limited by "dark noise," which in Drosophila photoreceptors is dominated by brief (∼10 ms), small (∼2 pA) inward current events, occurring at ∼2/s, believed to reflect spontaneous G protein activations. These dark events were increased in rate and amplitude by a point mutation in myosin III (NINAC), which disrupts its interaction with the scaffolding protein, INAD. This phenotype mimics that previously described in null mutants of ninaC (no inactivation no afterpotential; encoding myosin III) and an associated protein, retinophilin (rtp). Dark noise was similarly increased in heterozygote mutants of diacylglycerol kinase (rdgA/+). Dark noise in ninaC, rtp, and rdgA/+ mutants was greatly suppressed by mutations of the Gq α-subunit (Gαq) and the major light-sensitive channel (trp) but not rhodopsin. ninaC, rtp, and rdgA/+ mutations also all facilitated residual light responses in Gαq and PLC hypomorphs. Raising cytosolic Ca(2+) in the submicromolar range increased dark noise, facilitated activation of transient receptor potential (TRP) channels by exogenous agonist, and again facilitated light responses in Gαq hypomorphs. Our results indicate that RTP, NINAC, INAD, and diacylglycerol kinase, together with a Ca(2+)-dependent threshold, share common roles in suppressing dark noise and regulating quantum bump generation; consequently, most spontaneous G protein activations fail to generate dark events under normal conditions. By contrast, quantum bump generation is reliable but delayed until sufficient G proteins and PLC are activated to overcome threshold, thereby ensuring generation of full-size bumps with high quantum efficiency.
Collapse
Affiliation(s)
- Brian Chu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Tian Y, Li T, Sun M, Wan D, Li Q, Li P, Zhang Z, Han J, Xie W. Neurexin Regulates Visual Function via Mediating Retinoid Transport to Promote Rhodopsin Maturation. Neuron 2013; 77:311-22. [DOI: 10.1016/j.neuron.2012.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 12/22/2022]
|
37
|
Lee J. Drosophila mosaic screen identifies diehard mutants as norpA P24 suppressors. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Regulation of arrestin translocation by Ca2+ and myosin III in Drosophila photoreceptors. J Neurosci 2012; 32:9205-16. [PMID: 22764229 DOI: 10.1523/jneurosci.0924-12.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Upon illumination several phototransduction proteins translocate between cell body and photosensory compartments. In Drosophila photoreceptors arrestin (Arr2) translocates from cell body to the microvillar rhabdomere down a diffusion gradient created by binding of Arr2 to photo-isomerized metarhodopsin. Translocation is profoundly slowed in mutants of key phototransduction proteins including phospholipase C (PLC) and the Ca(2+)-permeable transient receptor potential channel (TRP), but how the phototransduction cascade accelerates Arr2 translocation is unknown. Using real-time fluorescent imaging of Arr2-green fluorescent protein translocation in dissociated ommatidia, we show that translocation is profoundly slowed in Ca(2+)-free solutions. Conversely, in a blind PLC mutant with ∼100-fold slower translocation, rapid translocation was rescued by the Ca(2+) ionophore, ionomycin. In mutants lacking NINAC (calmodulin [CaM] binding myosin III) in the cell body, translocation remained rapid even in Ca(2+)-free solutions. Immunolabeling revealed that Arr2 in the cell body colocalized with NINAC in the dark. In intact eyes, the impaired translocation found in trp mutants was rescued in ninaC;trp double mutants. Nevertheless, translocation following prolonged dark adaptation was significantly slower in ninaC mutants, than in wild type: a difference that was reflected in the slow decay of the electroretinogram. The results suggest that cytosolic NINAC is a Ca(2+)-dependent binding target for Arr2, which protects Arr2 from immobilization by a second potential sink that sequesters and releases arrestin on a much slower timescale. We propose that rapid Ca(2+)/CaM-dependent release of Arr2 from NINAC upon Ca(2+) influx accounts for the acceleration of translocation by phototransduction.
Collapse
|
39
|
Nuwal N, Stock P, Hiemeyer J, Schmid B, Fiala A, Buchner E. Avoidance of heat and attraction to optogenetically induced sugar sensation as operant behavior in adult Drosophila. J Neurogenet 2012; 26:298-305. [PMID: 22834571 DOI: 10.3109/01677063.2012.700266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Animals have to perform adequate behavioral actions dependent on internal states and environmental situations, and adjust their behavior according to positive or negative consequences. The fruit fly Drosophila melanogaster represents a key model organism for the investigation of neuronal mechanisms underlying adaptive behavior. The authors are using a behavioral paradigm in which fruit flies attached to a manipulator can walk on a Styrofoam ball whose movements are recorded such that intended left or right turns of the flies can be registered and used to operantly control heat stimuli or optogenetic activation of distinct subsets of neurons. As proof of principle, the authors find that flies in this situation avoid heat stimuli but prefer optogenetic self-stimulation of sugar receptors. Using this setup it now should be possible to study the neuronal network underlying positive and negative value assessment of adult Drosophila in an operant setting.
Collapse
Affiliation(s)
- Nidhi Nuwal
- Theodor-Boveri Institute, Department of Genetics and Neurobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Shortridge RD. Impact of Studies of the Drosophila norpAMutation on Understanding Phototransduction. J Neurogenet 2012; 26:123-31. [DOI: 10.3109/01677063.2011.647142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Szular J, Sehadova H, Gentile C, Szabo G, Chou WH, Britt SG, Stanewsky R. Rhodopsin 5- and Rhodopsin 6-mediated clock synchronization in Drosophila melanogaster is independent of retinal phospholipase C-β signaling. J Biol Rhythms 2012; 27:25-36. [PMID: 22306971 DOI: 10.1177/0748730411431673] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock synchronization. A specialized photoreceptive structure located between the retina and the optic lobes, the Hofbauer-Buchner (H-B) eyelet, projects to the clock neurons in the brain and also participates in light synchronization. The compound eye photoreceptors and the H-B eyelet contain Rhodopsin photopigments, which activate the canonical invertebrate phototransduction cascade after being excited by light. We show here that 2 of the photopigments present in these photoreceptors, Rhodopsin 5 (Rh5) and Rhodopsin 6 (Rh6), contribute to light synchronization in a mutant (norpA(P41) ) that disrupts canonical phototransduction due to the absence of Phospholipase C-β (PLC-β). We reveal that norpA(P41) is a true loss-of-function allele, resulting in a truncated PLC-β protein that lacks the catalytic domain. Light reception mediated by Rh5 and Rh6 must therefore utilize either a different (nonretinal) PLC-β enzyme or alternative signaling mechanisms, at least in terms of clock-relevant photoreception. This novel signaling mode may distinguish Rhodopsin-mediated irradiance detection from image-forming vision in Drosophila.
Collapse
Affiliation(s)
- Joanna Szular
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O'Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M. Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 2012; 336:925-31. [PMID: 22605779 DOI: 10.1126/science.1215317] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Color and motion information are thought to be channeled through separate neural pathways, but it remains unclear whether and how these pathways interact to improve motion perception. In insects, such as Drosophila, it has long been believed that motion information is fed exclusively by one spectral class of photoreceptor, so-called R1 to R6 cells; whereas R7 and R8 photoreceptors, which exist in multiple spectral classes, subserve color vision. Here, we report that R7 and R8 also contribute to the motion pathway. By using electrophysiological, optical, and behavioral assays, we found that R7/R8 information converge with and shape the motion pathway output, explaining flies' broadly tuned optomotor behavior by its composite responses. Our results demonstrate that inputs from photoreceptors of different spectral sensitivities improve motion discrimination, increasing robustness of perception.
Collapse
Affiliation(s)
- Trevor J Wardill
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Phospholipase C-mediated suppression of dark noise enables single-photon detection in Drosophila photoreceptors. J Neurosci 2012; 32:2722-33. [PMID: 22357856 DOI: 10.1523/jneurosci.5221-11.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Drosophila photoreceptor cells use the ubiquitous G-protein-mediated phospholipase C (PLC) cascade to achieve ultimate single-photon sensitivity. This is manifested in the single-photon responses (quantum bumps). In photoreceptor cells, dark activation of G(q)α molecules occurs spontaneously and produces unitary dark events (dark bumps). A high rate of spontaneous G(q)α activation and dark bump production potentially hampers single-photon detection. We found that in wild-type flies the in vivo rate of spontaneous G(q)α activation is very high. Nevertheless, this high rate is not manifested in a substantially high rate of dark bumps. Therefore, it is unclear how phototransduction suppresses dark bump production arising from spontaneous G(q)α activation, while still maintaining high-fidelity representation of single photons. In this study we show that reduced PLC catalytic activity selectively suppressed production of dark bumps but not light-induced bumps. Manipulations of PLC activity using PLC mutant flies and Ca(2+) modulations revealed that a critical level of PLC activity is required to induce bump production. The required minimal level of PLC activity selectively suppressed random production of single G(q)α-activated dark bumps despite a high rate of spontaneous G(q)α activation. This minimal PLC activity level is reliably obtained by photon-induced synchronized activation of several neighboring G(q)α molecules activating several PLC molecules, but not by random activation of single G(q)α molecules. We thus demonstrate how a G-protein-mediated transduction system, with PLC as its target, selectively suppresses its intrinsic noise while preserving reliable signaling.
Collapse
|
44
|
Lee S, Lee SB, Ramirez P, Byun Y, Kim J, Jeong Y, Baek K, Yoon J. The Drosophila melanogaster retinophilin gene encodes the peripheral membrane protein in photoreceptor cells. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Abstract
This is the first of two reviews that include some of the studies that we, members of the Pak lab and collaborators, carried out from 1998 to 2010 on the functional and physical interactions among several Drosophila phototransduction components. The report includes our studies on the regulations and/or the functions of arrestin II (Arr2), norpA (PLC), inactivation no afterpotential D (INAD), transient receptor potential (TRP), TRP-like (TRPL), inactivation no afterpotential E (INAE), and Porin.
Collapse
Affiliation(s)
- Hung-Tat Leung
- Department of Biological Sciences, Grambling State University, 403 Main St., Grambling, LA 71245, USA.
| | | | | |
Collapse
|
46
|
Pak WL, Shino S, Leung HT. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too. J Neurogenet 2012; 26:216-37. [PMID: 22283778 PMCID: PMC3433705 DOI: 10.3109/01677063.2011.642430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our objective is to present a comprehensive view of the PDA (prolonged depolarizing afterpotential)-defective Drosophila mutants, nina's and ina's, from the discussion of the PDA and the PDA-based mutant screening strategy to summaries of the knowledge gained through the studies of mutants generated using the strategy. The PDA is a component of the light-evoked photoreceptor potential that is generated when a substantial fraction of rhodopsin is photoconverted to its active form, metarhodopsin. The PDA-based mutant screening strategy was adopted to enhance the efficiency and efficacy of ERG (electroretinogram)-based screening for identifying phototransduction-defective mutants. Using this strategy, two classes of PDA-defective mutants were identified and isolated, nina and ina, each comprising multiple complementation groups. The nina mutants are characterized by allele-dependent reduction in the major rhodopsin, Rh1, whereas the ina mutants display defects in some aspects of functions related to the transduction channel, TRP (transient receptor potential). The signaling proteins that have been identified and elucidated through the studies of nina mutants include the Drosophila opsin protein (NINAE), the chaperone protein for nascent opsin (NINAA), and the multifunctional protein, NINAC, required in multiple steps of the Drosophila phototransduction cascade. Also identified by the nina mutants are some of the key enzymes involved in the biogenesis of the rhodopsin chromophore. As for the ina mutants, they led to the discovery of the scaffold protein, INAD, responsible for the nucleation of the supramolecular signaling complex. Also identified by the ina mutants is one of the key members of the signaling complex, INAC (ePKC), and two other proteins that are likely to be important, though their roles in the signaling cascade have not yet been fully elucidated. In most of these cases, the protein identified is the first member of its class to be so recognized.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | |
Collapse
|
47
|
Pak WL, Leung HT. Genetic Approaches to Visual Transduction in Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Hardin PE. Molecular genetic analysis of circadian timekeeping in Drosophila. ADVANCES IN GENETICS 2011; 74:141-73. [PMID: 21924977 DOI: 10.1016/b978-0-12-387690-4.00005-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene-the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail and provide an in-depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shifts to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here, I review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24-h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals.
Collapse
Affiliation(s)
- Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&MUniversity, College Station, USA
| |
Collapse
|
49
|
Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc Natl Acad Sci U S A 2010; 107:8440-5. [PMID: 20404155 DOI: 10.1073/pnas.1001425107] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian sweet, bitter, and umami taste is mediated by a single transduction pathway that includes a phospholipase C (PLC)beta and one cation channel, TRPM5. However, in insects such as the fruit fly, Drosophila melanogaster, it is unclear whether different tastants, such as bitter compounds, are sensed in gustatory receptor neurons (GRNs) through one or multiple ion channels, as the cation channels required in insect GRNs are unknown. Here, we set out to explore additional sensory roles for the Drosophila TRPA1 channel, which was known to function in thermosensation. We found that TRPA1 was expressed in GRNs that respond to aversive compounds. Elimination of TRPA1 had no impact on the responses to nearly all bitter compounds tested, including caffeine, quinine, and strychnine. Rather, we found that TRPA1 was required in a subset of avoidance GRNs for the behavioral and electrophysiological responses to aristolochic acid. TRPA1 did not appear to be activated or inhibited directly by aristolochic acid. We found that elimination of the same PLC that leads to activation of TRPA1 in thermosensory neurons was also required in the TRPA1-expressing GRNs for avoiding aristolochic acid. Given that mammalian TRPA1 is required for responding to noxious chemicals, many of which cause pain and injury, our analysis underscores the evolutionarily conserved role for TRPA1 channels in chemical avoidance.
Collapse
|
50
|
Huang J, Liu CH, Hughes SA, Postma M, Schwiening CJ, Hardie RC. Activation of TRP channels by protons and phosphoinositide depletion in Drosophila photoreceptors. Curr Biol 2010; 20:189-97. [PMID: 20116246 DOI: 10.1016/j.cub.2009.12.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/06/2009] [Accepted: 12/04/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND Phototransduction in microvillar photoreceptors is mediated via G protein-coupled phospholipase C (PLC), but how PLC activation leads to the opening of the light-sensitive TRPC channels (TRP and TRPL) remains unresolved. In Drosophila, InsP(3) appears not to be involved, and recent studies have implicated lipid products of PLC activity, e.g., diacylglycerol, its metabolites, or the reduction in PIP(2). The fact that hydrolysis of the phosphodiester bond in PIP(2) by PLC also releases a proton is seldom recognized and has neither been measured in vivo nor implicated previously in a signaling context. RESULTS Following depletion of PIP(2) and other phosphoinositides by a variety of experimental manipulations, the light-sensitive channels in Drosophila photoreceptors become remarkably sensitive to rapid and reversible activation by the lipophilic protonophore 2-4 dinitrophenol in a pH-dependent manner. We further show that light induces a rapid (<10 ms) acidification originating in the microvilli, which is eliminated in mutants of PLC, and that heterologously expressed TRPL channels are activated by acidification of the cytosolic surface of inside-out patches. CONCLUSIONS Our results indicate that a combination of phosphoinositide depletion and acidification of the membrane/boundary layer is sufficient to activate the light-sensitive channels. Together with the demonstration of light-induced, PLC-dependent acidification, this suggests that excitation in Drosophila photoreceptors may be mediated by PLC's dual action of phosphoinositide depletion and proton release.
Collapse
Affiliation(s)
- Jiehong Huang
- Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | | | | | | | | | | |
Collapse
|