1
|
Zhang T, Li L, Fan X, Shou X, Ruan Y, Xie X. Metaxin-2 tunes mitochondrial transportation and neuronal function in Drosophila. Genetics 2025; 229:iyae204. [PMID: 39657051 DOI: 10.1093/genetics/iyae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/23/2024] [Indexed: 12/17/2024] Open
Abstract
Metaxins are a family of evolutionarily conserved proteins that reside on the mitochondria outer membrane (MOM) and participate in the protein import into the mitochondria. Metaxin-2 (Mtx2), a member of this family, has been identified as a key component in the machinery for mitochondrial transport in both C. elegans and human neurons. To deepen our understanding of Mtx2's role in neurons, we examined the homologous genes CG5662 and CG8004 in Drosophila. The CG5662 is a non-essential gene while CG8004 null mutants die at late pupal stages. The CG8004 protein is widely expressed throughout the Drosophila nervous system and is targeted to mitochondria. However, neuronal CG8004 is dispensable for animal survival and is partially required for mitochondrial distribution in certain neuropil regions. Conditional knockout of CG8004 in adult gustatory receptor neurons (GRNs) impairs mitochondrial trafficking along GRN axons and diminishes the mitochondrial quantities in axon terminals. The absence of CG8004 also leads to mitochondrial fragmentation within GRN axons, a phenomenon that may be linked to mitochondrial transport through its genetic interaction with the fusion proteins Marf and Opa1. While the removal of neuronal CG8004 is not lethal during the developmental stage, it does have consequences for the lifespan and healthspan of adult Drosophila. At last, double knockout (KO) of CG5662 and CG8004 shows similar phenotypes as the CG8004 single KO, suggesting that CG5662 does not compensate for the loss of CG8004. In summary, our findings suggest that CG8004 plays a conserved and context-dependent role in axonal mitochondrial transport, as well it is important for sustaining neuronal function. Therefore, we refer to CG8004 as the Drosophila Metaxin-2 (dMtx2).
Collapse
Affiliation(s)
- Ting Zhang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Ling Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Fan
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Xinyi Shou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Yina Ruan
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Xiaojun Xie
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
2
|
Ravi R, Routray D, Mahalakshmi R. Mitochondrial Sorting and Assembly Machinery: Chaperoning a Moonlighting Role? Biochemistry 2025; 64:312-328. [PMID: 39754567 DOI: 10.1021/acs.biochem.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50. For over two decades, the primary role of Sam50 has been linked to its function as a chaperone in the OMM, wherein it assembles all β-barrels through a lateral gating and β-barrel switching mechanism. Interestingly, recent studies have demonstrated that despite its low copy number, Sam50 performs various diverse functions beyond assembling β-barrels. This includes maintaining cristae morphology, bidirectional lipid shuttling between the ER and mitochondrial inner membrane, import of select proteins, regulation of PINK1-Parkin function, and timed trigger of cell death. Given these multifaceted critical regulatory functions of SAM across all eukaryotes, we now reason that SAM merely moonlights as the hub for β-barrel biogenesis and has indeed evolved a diverse array of primary roles in maintaining mitochondrial function and cellular homeostasis.
Collapse
Affiliation(s)
- Roshika Ravi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Deepsikha Routray
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
3
|
Talarmin-Gas C, Smolyakov G, Parisi C, Scandola C, Andrianasolonirina V, Lecoq C, Houtart V, Lee SH, Adle-Biassette H, Thiébot B, Ganderton T, Manivet P. Validation of metaxin-2 deficient C. elegans as a model for MandibuloAcral Dysplasia associated to mtx-2 (MADaM) syndrome. Commun Biol 2024; 7:1398. [PMID: 39462037 PMCID: PMC11513083 DOI: 10.1038/s42003-024-06967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
MandibuloAcral Dysplasia associated to MTX2 gene (MADaM) is a recently described progeroid syndrome (accelerated aging disease) whose clinical manifestations include skin abnormalities, growth retardation, and cardiovascular diseases. We previously proposed that mtx-2-deficient C. elegans could be used as a model for MADaM and to support this, we present here our comprehensive phenotypic characterization of these worms using atomic force microscopy (AFM), transcriptomic, and oxygen consumption rate analyses. AFM analysis showed that young mtx-2-less worms had a significantly rougher, less elastic cuticle which becomes significantly rougher and less elastic as they age, and abnormal mitochondrial morphology. mtx-2 C. elegans displayed slightly delayed development, decreased pharyngeal pumping, significantly reduced mitochondrial respiratory capacities, and transcriptomic analysis identified perturbations in the aging, TOR, and WNT-signaling pathways. The phenotypic characteristics of mtx-2 worms shown here are analogous to many of the human clinical presentations of MADaM and we believe this validates their use as a model which will allow us to uncover the molecular details of the disease and develop new therapeutics and treatments.
Collapse
Affiliation(s)
- Chloé Talarmin-Gas
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
| | - Georges Smolyakov
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cleo Parisi
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Unit, 75015, Paris, France
| | - Valérie Andrianasolonirina
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cloé Lecoq
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Valentine Houtart
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | | | - Homa Adle-Biassette
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
- AP-HP, DMU DREAM, Service d'Anatomocytopathologie, Hôpital Lariboisière, Paris, France
| | - Bénédicte Thiébot
- CY Cergy Paris Université, Université d'Evry, Université Paris-Saclay, CNRS, LAMBE, F-95000, Cergy, France
| | - Timothy Ganderton
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Philippe Manivet
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
- CeleScreen SAS, Paris, France.
| |
Collapse
|
4
|
Ganesan I, Busto JV, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel membrane proteins. FEBS Open Bio 2024; 14:1595-1609. [PMID: 39343721 PMCID: PMC11452307 DOI: 10.1002/2211-5463.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins. The core subunit Sam50, which has been conserved from bacteria to humans, is itself a β-barrel protein. The β-strands of β-barrel precursor proteins are assembled at the Sam50 lateral gate forming a Sam50-preprotein hybrid barrel. The assembled precursor β-barrel is finally released into the outer mitochondrial membrane by displacement of the nascent β-barrel, termed the β-barrel switching mechanism. SAM forms supercomplexes with TOM and forms a mitochondrial outer-to-inner membrane contact site with the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. SAM shares subunits with the ER-mitochondria encounter structure (ERMES), which forms a membrane contact site between the mitochondrial outer membrane and the endoplasmic reticulum. Therefore, β-barrel membrane protein biogenesis is closely connected to general mitochondrial protein and lipid biogenesis and plays a central role in mitochondrial maintenance.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Jon V. Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| |
Collapse
|
5
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
6
|
Lu D, Feng Y, Liu G, Yang Y, Ren Y, Chen Z, Sun X, Guan Y, Wang Z. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17:1268883. [PMID: 37901436 PMCID: PMC10600463 DOI: 10.3389/fnins.2023.1268883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Feng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yayi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yixiang Guan
- Department of Neurosurgery, Hai'an People's Hospital Affiliated of Nantong University, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Oakley AJ. Hidden Glutathione Transferases in the Human Genome. Biomolecules 2023; 13:1240. [PMID: 37627305 PMCID: PMC10452860 DOI: 10.3390/biom13081240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
With the development of accurate protein structure prediction algorithms, artificial intelligence (AI) has emerged as a powerful tool in the field of structural biology. AI-based algorithms have been used to analyze large amounts of protein sequence data including the human proteome, complementing experimental structure data found in resources such as the Protein Data Bank. The EBI AlphaFold Protein Structure Database (for example) contains over 230 million structures. In this study, these data have been analyzed to find all human proteins containing (or predicted to contain) the cytosolic glutathione transferase (cGST) fold. A total of 39 proteins were found, including the alpha-, mu-, pi-, sigma-, zeta- and omega-class GSTs, intracellular chloride channels, metaxins, multisynthetase complex components, elongation factor 1 complex components and others. Three broad themes emerge: cGST domains as enzymes, as chloride ion channels and as protein-protein interaction mediators. As the majority of cGSTs are dimers, the AI-based structure prediction algorithm AlphaFold-multimer was used to predict structures of all pairwise combinations of these cGST domains. Potential homo- and heterodimers are described. Experimental biochemical and structure data is used to highlight the strengths and limitations of AI-predicted structures.
Collapse
Affiliation(s)
- Aaron J Oakley
- School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Lionaki E, Gkikas I, Tavernarakis N. Mitochondrial protein import machinery conveys stress signals to the cytosol and beyond. Bioessays 2023; 45:e2200160. [PMID: 36709422 DOI: 10.1002/bies.202200160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/30/2023]
Abstract
Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
9
|
Ul Fatima N, Ananthanarayanan V. Mitochondrial movers and shapers: Recent insights into regulators of fission, fusion and transport. Curr Opin Cell Biol 2023; 80:102150. [PMID: 36580830 DOI: 10.1016/j.ceb.2022.102150] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/28/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022]
Abstract
Mitochondria are highly dynamic organelles that undergo rapid morphological adaptations influencing their number, transport, cellular distribution, and function, which in turn facilitate the integration of mitochondrial function with physiological changes in the cell. These mitochondrial dynamics are dependent on tightly regulated processes such as fission, fusion, and attachment to the cytoskeleton, and their defects are observed in various pathophysiological conditions including cancer, cardiovascular disease, and neurodegeneration. Various studies over the years have identified key molecular players and uncovered the mechanisms that mediate and regulate these processes and have highlighted their complexity and context-specificity. This review focuses on the recent studies that have contributed to the understanding of processes that influence mitochondrial morphology including fission, fusion, and transport in the cell.
Collapse
Affiliation(s)
- Nida Ul Fatima
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Australia.
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Australia.
| |
Collapse
|
10
|
Yeter Doğan B, Günay N, Ada Y, Doğan ME. A novel MTX2 gene splice site variant resulting in exon skipping, causing the recently described mandibuloacral dysplasia progeroid syndrome. Am J Med Genet A 2023; 191:173-182. [PMID: 36269149 DOI: 10.1002/ajmg.a.63010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Until recently, mandibuloacral dysplasia (MAD) with type A and type B lipodystrophy was the first to come to mind in the association of mandibular hypoplasia, lipodystrophy, and acro-osteolysis. However, it has recently been added to the differential diagnosis of MAD, a newly defined syndrome, called MDPS. MDPS is a skeletal dysplasia characterized by postnatal growth retardation, hypotonia, generalized lipodystrophy, skin changes, progeroid traits, and dysmorphic facial features, including prominent eyes, long pinched nose, mandibular hypoplasia, and a small mouth. Biallelic null variants of the MTX2 gene are responsible for this syndrome. We performed whole-exome sequencing (WES) in a 6-year-old patient with skeletal dysplasia. WES revealed a novel homozygous c.543+1G>T splice site variant in the MTX2 gene. We also extracted total RNA from peripheral blood and used reverse transcription-polymerase chain reaction to generate cDNA. Sanger sequencing from cDNA showed that exon 8 of MTX2 was skipped. This study adds to the genetics and phenotype of MDPS and underlines the importance of comprehensive clinical and molecular research.
Collapse
Affiliation(s)
- Burcu Yeter Doğan
- Division of Pediatric Genetics, Department of Pediatrics, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Neslihan Günay
- Division of Pediatric Nephrology, Department of Pediatrics, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Yasin Ada
- Department of Medical Genetics, Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - Muhammet Ensar Doğan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
11
|
Davis K, Basu H, Izquierdo-Villalba I, Shurberg E, Schwarz TL. Miro GTPase domains regulate the assembly of the mitochondrial motor-adaptor complex. Life Sci Alliance 2023; 6:6/1/e202201406. [PMID: 36302649 PMCID: PMC9615026 DOI: 10.26508/lsa.202201406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial transport relies on a motor-adaptor complex containing Miro1, a mitochondrial outer membrane protein with two GTPase domains, and TRAK1/2, kinesin-1, and dynein. Using a peroxisome-directed Miro1, we quantified the ability of GTPase mutations to influence the peroxisomal recruitment of complex components. Miro1 whose N-GTPase is locked in the GDP state does not recruit TRAK1/2, kinesin, or P135 to peroxisomes, whereas the GTP state does. Similarly, the expression of the MiroGAP VopE dislodges TRAK1 from mitochondria. Miro1 C-GTPase mutations have little influence on complex recruitment. Although Miro2 is thought to support mitochondrial motility, peroxisome-directed Miro2 did not recruit the other complex components regardless of the state of its GTPase domains. Neurons expressing peroxisomal Miro1 with the GTP-state form of the N-GTPase had markedly increased peroxisomal transport to growth cones, whereas the GDP-state caused their retention in the soma. Thus, the N-GTPase domain of Miro1 is critical for regulating Miro1's interaction with the other components of the motor-adaptor complex and thereby for regulating mitochondrial motility.
Collapse
Affiliation(s)
- Kayla Davis
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Himanish Basu
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Ismael Izquierdo-Villalba
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ethan Shurberg
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Thomas L Schwarz
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA .,Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Dutta T, Das S, Gupta I, Koner AL. Construing the metaxin-2 mediated simultaneous localization between mitochondria and nucleolus using molecular viscometry. Chem Sci 2022; 13:12987-12995. [PMID: 36425508 PMCID: PMC9668072 DOI: 10.1039/d2sc03587a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2023] Open
Abstract
Fluorescent probes for specific inter-organelle communication are of massive significance as such communication is essential for a diverse range of cellular events. Here, we present the microviscosity-sensitive fluorescence marker, Quinaldine Red (QR), and its dual organelle targeting light-up response in live cells. This biocompatible probe was able to localize in mitochondria and nucleolus simultaneously. While QR was able to sense the viscosity change inside these compartments under the induced effect of an ionophore and ROS-rich microenvironment, the probe's ability to stain mitochondria remained unperturbed even after protonophore-induced depolarization. Consequently, a systematic quantification was performed to understand the alteration of microviscosity. Similar behavior in two distinct organelles implied that QR binds to metaxin-2 protein, common to mitochondrial and nucleolar proteomes. We believe this is the first of its kind investigation that identifies the inter-organelle communications marker and opens up a new dimension in this field.
Collapse
Affiliation(s)
- Tanoy Dutta
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| | - Sreeparna Das
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh-462066 India
| |
Collapse
|
13
|
Neurons: The Interplay between Cytoskeleton, Ion Channels/Transporters and Mitochondria. Cells 2022; 11:cells11162499. [PMID: 36010576 PMCID: PMC9406945 DOI: 10.3390/cells11162499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons are permanent cells whose key feature is information transmission via chemical and electrical signals. Therefore, a finely tuned homeostasis is necessary to maintain function and preserve neuronal lifelong survival. The cytoskeleton, and in particular microtubules, are far from being inert actors in the maintenance of this complex cellular equilibrium, and they participate in the mobilization of molecular cargos and organelles, thus influencing neuronal migration, neuritis growth and synaptic transmission. Notably, alterations of cytoskeletal dynamics have been linked to alterations of neuronal excitability. In this review, we discuss the characteristics of the neuronal cytoskeleton and provide insights into alterations of this component leading to human diseases, addressing how these might affect excitability/synaptic activity, as well as neuronal functioning. We also provide an overview of the microscopic approaches to visualize and assess the cytoskeleton, with a specific focus on mitochondrial trafficking.
Collapse
|
14
|
Diederichs KA, Pitt AS, Varughese JT, Hackel TN, Buchanan SK, Shaw PL. Mechanistic insights into fungal mitochondrial outer membrane protein biogenesis. Curr Opin Struct Biol 2022; 74:102383. [DOI: 10.1016/j.sbi.2022.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
15
|
Bogorodskiy A, Okhrimenko I, Burkatovskii D, Jakobs P, Maslov I, Gordeliy V, Dencher NA, Gensch T, Voos W, Altschmied J, Haendeler J, Borshchevskiy V. Role of Mitochondrial Protein Import in Age-Related Neurodegenerative and Cardiovascular Diseases. Cells 2021; 10:3528. [PMID: 34944035 PMCID: PMC8699856 DOI: 10.3390/cells10123528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondria play a critical role in providing energy, maintaining cellular metabolism, and regulating cell survival and death. To carry out these crucial functions, mitochondria employ more than 1500 proteins, distributed between two membranes and two aqueous compartments. An extensive network of dedicated proteins is engaged in importing and sorting these nuclear-encoded proteins into their designated mitochondrial compartments. Defects in this fundamental system are related to a variety of pathologies, particularly engaging the most energy-demanding tissues. In this review, we summarize the state-of-the-art knowledge about the mitochondrial protein import machinery and describe the known interrelation of its failure with age-related neurodegenerative and cardiovascular diseases.
Collapse
Affiliation(s)
- Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Dmitrii Burkatovskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Philipp Jakobs
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
| | - Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38400 Grenoble, France
| | - Norbert A. Dencher
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Physical Biochemistry, Chemistry Department, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing (IBI-1: Molecular and Cellular Physiology), Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Wolfgang Voos
- Institute of Biochemistry and Molecular Biology (IBMB), Faculty of Medicine, University of Bonn, 53113 Bonn, Germany;
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University Hospital and Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (P.J.); (J.A.); (J.H.)
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.B.); (I.O.); (D.B.); (I.M.); (V.G.); (N.A.D.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
16
|
AREL1 E3 ubiquitin ligase inhibits TNF-induced necroptosis via the ubiquitination of MTX2. Exp Ther Med 2021; 22:1195. [PMID: 34584540 PMCID: PMC8422393 DOI: 10.3892/etm.2021.10629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported on a novel anti-apoptotic E3 ubiquitin ligase, apoptosis-resistant E3 ubiquitin protein ligase 1 (AREL1), that ubiquitinates inhibitors of apoptosis proteins antagonists. The present study demonstrated that AREL1 ubiquitinated Metaxin 2 (MTX2), which was involved in TNF-induced necroptosis. MTX2 has been identified as a protein that belongs to the Metaxin family. It interacts with another Metaxin protein, Metaxin 1 (MTX1), which is localized in the outer membrane of mitochondria, and is involved in TNF-induced necroptosis. This study found that AREL1 interacted with MTX2, but not MTX1, while the amino-terminal domain of MTX2 interacted with MTX1, AREL1 interacted with the carboxyl-terminal domain of MTX2. Furthermore, AREL1 expression led to a decrease in the protein expression of MTX2, but not MTX1. However, a mutant form of AREL1, AREL1C790A, which is deficient for E3 activity, did not cause MTX2 degradation. Moreover, the protein levels of MTX2 were increased by AREL1 knockdown. Therefore, these results implied that AREL1 ubiquitinates and promotes the degradation of MTX2. The expression of MTX2, together with MTX1, enhanced TNF-induced necroptosis. However, AREL1 inhibited necroptosis even in cells expressing Metaxin proteins. Therefore, these results suggested that the inhibition of AREL1-dependent ubiquitination of MTX2 could be beneficial to sensitize tumor cells to TNF-induced necroptosis.
Collapse
|
17
|
Abudu YP, Shrestha BK, Zhang W, Palara A, Brenne HB, Larsen KB, Wolfson DL, Dumitriu G, Øie CI, Ahluwalia BS, Levy G, Behrends C, Tooze SA, Mouilleron S, Lamark T, Johansen T. SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. J Cell Biol 2021; 220:e202009092. [PMID: 34037656 PMCID: PMC8160579 DOI: 10.1083/jcb.202009092] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.
Collapse
Affiliation(s)
- Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Birendra Kumar Shrestha
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Wenxin Zhang
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Anthimi Palara
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Hanne Britt Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Deanna Lynn Wolfson
- Department of Physics and Technology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Gianina Dumitriu
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Cristina Ionica Øie
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Balpreet Singh Ahluwalia
- Department of Physics and Technology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Gahl Levy
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University Hospital, Frankfurt am Main, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilian University, Munich, Germany
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Trond Lamark
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø–The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
18
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
20
|
Loss of MTX2 causes mandibuloacral dysplasia and links mitochondrial dysfunction to altered nuclear morphology. Nat Commun 2020; 11:4589. [PMID: 32917887 PMCID: PMC7486921 DOI: 10.1038/s41467-020-18146-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/27/2020] [Indexed: 11/08/2022] Open
Abstract
Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.
Collapse
|
21
|
Wei L, Zhu Y, Liu R, Zhang A, Zhu M, Xu W, Lin A, Lu K, Li J. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci Rep 2019; 9:9196. [PMID: 31235772 PMCID: PMC6591421 DOI: 10.1038/s41598-019-45744-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/14/2019] [Indexed: 11/09/2022] Open
Abstract
Glutathione transferases (GSTs) are multifunctional enzymes that play important roles in plant development and responses to biotic and abiotic stress. However, a systematic analysis of GST family members in Brassica napus has not yet been reported. In this study, we identified 179 full-length GST genes in B. napus, 44.2% of which are clustered on various chromosomes. In addition, we identified 141 duplicated GST gene pairs in B. napus. Molecular evolutionary analysis showed that speciation and whole-genome triplication played important roles in the divergence of the B. napus GST duplicated genes. Transcriptome analysis of 21 tissues at different developmental stages showed that 47.6% of duplicated GST gene pairs have divergent expression patterns, perhaps due to structural divergence. We constructed a GST gene coexpression network with genes encoding various transcription factors (NAC, MYB, WRKY and bZIP) and identified six modules, including genes expressed during late seed development (after 40 days; BnGSTU19, BnGSTU20 and BnGSTZ1) and in the seed coat (BnGSTF6 and BnGSTF12), stamen and anther (BnGSTF8), root and stem (BnGSTU21), leaves and funiculus, as well as during the late stage of pericarp development (after 40 days; BnGSTU12 and BnGSTF2) and in the radicle during seed germination (BnGSTF14, BnGSTU1, BnGSTU28, and BnGSTZ1). These findings lay the foundation for elucidating the roles of GSTs in B. napus.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yan Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ruiying Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Meicheng Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wen Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ai Lin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
22
|
Davidson BA, Hassan S, Garcia EJ, Tayebi N, Sidransky E. Exploring genetic modifiers of Gaucher disease: The next horizon. Hum Mutat 2018; 39:1739-1751. [PMID: 30098107 PMCID: PMC6240360 DOI: 10.1002/humu.23611] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/26/2022]
Abstract
Gaucher disease is an autosomal recessive lysosomal storage disorder resulting from mutations in the gene GBA1 that lead to a deficiency in the enzyme glucocerebrosidase. Accumulation of the enzyme's substrates, glucosylceramide and glucosylsphingosine, results in symptoms ranging from skeletal and visceral involvement to neurological manifestations. Nonetheless, there is significant variability in clinical presentations amongst patients, with limited correlation between genotype and phenotype. Contributing to this clinical variation are genetic modifiers that influence the phenotypic outcome of the disorder. In this review, we explore the role of genetic modifiers in Mendelian disorders and describe methods to facilitate their discovery. In addition, we provide examples of candidate modifiers of Gaucher disease, explore their relevance in the development of potential therapeutics, and discuss the impact of GBA1 and modifying mutations on other more common diseases like Parkinson disease. Identifying these important modulators of Gaucher phenotype may ultimately unravel the complex relationship between genotype and phenotype and lead to improved counseling and treatments.
Collapse
Affiliation(s)
- Brad A. Davidson
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Shahzeb Hassan
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Eric Joshua Garcia
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Nahid Tayebi
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
23
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
24
|
Hagege E, Grey RJ, Lopez G, Roshan Lal T, Sidransky E, Tayebi N. Type 2 Gaucher disease in an infant despite a normal maternal glucocerebrosidase gene. Am J Med Genet A 2017; 173:3211-3215. [PMID: 29091352 DOI: 10.1002/ajmg.a.38487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 01/15/2023]
Abstract
Gaucher disease (GD) is a recessively inherited autosomal lysosomal storage disease, the most severe of which is type 2, an acute neuronopathic form. We report an affected infant who inherited one mutant allele, Arg257Gln (c.887G>A; p.Arg296Gln) from his father, while the second, Gly202Arg (c.721G>A; p.Gly241Arg) arose by either maternal germline mosaicism or as a de novo mutation. This is the first time mutation Gly202Arg has been reported to be inherited non-traditionally. This report is part of a growing literature suggesting that GD can be inherited via germline or de novo mutations, and emphasizes that it is critical for clinicians to consider such inheritance when making diagnostic decisions or providing genetic counseling.
Collapse
Affiliation(s)
- Ermias Hagege
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Richard J Grey
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Grisel Lopez
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Tamanna Roshan Lal
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| | - Nahid Tayebi
- Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland
| |
Collapse
|
25
|
Kang Y, Fielden LF, Stojanovski D. Mitochondrial protein transport in health and disease. Semin Cell Dev Biol 2017; 76:142-153. [PMID: 28765093 DOI: 10.1016/j.semcdb.2017.07.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura F Fielden
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
26
|
Christensen CL, Choy FYM. A Prospective Treatment Option for Lysosomal Storage Diseases: CRISPR/Cas9 Gene Editing Technology for Mutation Correction in Induced Pluripotent Stem Cells. Diseases 2017; 5:E6. [PMID: 28933359 PMCID: PMC5456334 DOI: 10.3390/diseases5010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Ease of design, relatively low cost and a multitude of gene-altering capabilities have all led to the adoption of the sophisticated and yet simple gene editing system: clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The CRISPR/Cas9 system holds promise for the correction of deleterious mutations by taking advantage of the homology directed repair pathway and by supplying a correction template to the affected patient's cells. Currently, this technique is being applied in vitro in human-induced pluripotent stem cells (iPSCs) to correct a variety of severe genetic diseases, but has not as of yet been used in iPSCs derived from patients affected with a lysosomal storage disease (LSD). If adopted into clinical practice, corrected iPSCs derived from cells that originate from the patient themselves could be used for therapeutic amelioration of LSD symptoms without the risks associated with allogeneic stem cell transplantation. CRISPR/Cas9 editing in a patient's cells would overcome the costly, lifelong process associated with currently available treatment methods, including enzyme replacement and substrate reduction therapies. In this review, the overall utility of the CRISPR/Cas9 gene editing technique for treatment of genetic diseases, the potential for the treatment of LSDs and methods currently employed to increase the efficiency of this re-engineered biological system will be discussed.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
27
|
Petit E, Cartron PF, Oliver L, Vallette FM. The phosphorylation of Metaxin 1 controls Bak activation during TNFα induced cell death. Cell Signal 2016; 30:171-178. [PMID: 27845183 DOI: 10.1016/j.cellsig.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022]
Abstract
The proapoptotic protein Bak is implicated in the execution phase of apoptosis, a cell death program. Bak is essentially mitochondrial and during early steps of apoptosis undergoes conformational changes that lead to its full membrane integration in mitochondria and the subsequent liberation of pro-apoptotic mitochondrial proteins. Little is known about the partners and mechanisms implicated in the activation of Bak. We have recently shown that Bak is incorporated into a Voltage dependent anionic channel of type 2 (VDAC2)/Metaxin 1(Mtx1)/Metaxin 2 (Mtx2) multi-protein complex in both resting and dying cells. Here, we show that, after the induction of apoptosis, Bak switches from its association with Mtx2 and VDAC2 to a closer association with Mtx1. This change of partners is under the control of a tyrosine phosphorylation of Mtx1 by c-Abl.
Collapse
Affiliation(s)
- Elise Petit
- Team 9 Centre de Recherche en Cancérologie Nantes-Angers, UMR INSERM 892/CNRS UMR 6299, F-44007 Nantes, France; Université de Nantes, Faculté de Médecine, 9 Quai Moncousu, 44035 Nantes Cedex 01, France
| | - Pierre-François Cartron
- Team 9 Centre de Recherche en Cancérologie Nantes-Angers, UMR INSERM 892/CNRS UMR 6299, F-44007 Nantes, France; Université de Nantes, Faculté de Médecine, 9 Quai Moncousu, 44035 Nantes Cedex 01, France; LaBCT, Institut de Cancérologie de l'Ouest-avenue Jean Monnet St Herblain, France
| | - Lisa Oliver
- Team 9 Centre de Recherche en Cancérologie Nantes-Angers, UMR INSERM 892/CNRS UMR 6299, F-44007 Nantes, France; Université de Nantes, Faculté de Médecine, 9 Quai Moncousu, 44035 Nantes Cedex 01, France; CHU de Nantes, 1 place Alexis-Ricordeau, 44093 Nantes Cedex 1, France
| | - François M Vallette
- Team 9 Centre de Recherche en Cancérologie Nantes-Angers, UMR INSERM 892/CNRS UMR 6299, F-44007 Nantes, France; Université de Nantes, Faculté de Médecine, 9 Quai Moncousu, 44035 Nantes Cedex 01, France; LaBCT, Institut de Cancérologie de l'Ouest-avenue Jean Monnet St Herblain, France.
| |
Collapse
|
28
|
Kozjak-Pavlovic V. The MICOS complex of human mitochondria. Cell Tissue Res 2016; 367:83-93. [PMID: 27245231 DOI: 10.1007/s00441-016-2433-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022]
Abstract
Mitochondria are organelles of endosymbiotic origin, surrounded by two membranes. The inner membrane forms invaginations called cristae that enhance its surface and are important for mitochondrial function. A recently described mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane is crucial for the formation and maintenance of cristae structure. The MICOS complex in human mitochondria exhibits specificities and greater complexity in comparison to the yeast system. Many subunits of this complex have been previously described, but several others and their function remain to be explored. This review will summarize our present knowledge about the human MICOS complex and its constituents, while discussing the future research perspectives in this exciting and important field.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
29
|
Ding C, Wu Z, Huang L, Wang Y, Xue J, Chen S, Deng Z, Wang L, Song Z, Chen S. Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Sci Rep 2015; 5:16064. [PMID: 26530328 PMCID: PMC4632003 DOI: 10.1038/srep16064] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022] Open
Abstract
The inner mitochondrial membrane (IMM) invaginates to form cristae and the maintenance of cristae depends on the mitochondrial contact site (MICOS) complex. Mitofilin and CHCHD6, which physically interact, are two components of the MICOS. In this study, we performed immunoprecipitation experiments with Mitofilin and CHCHD6 antibodies and identified a complex containing Mitofilin, Sam50, and CHCHD 3 and 6. Using transcription activator-like effector nucleases (TALENs), we generated knockdown/knockout clones of Mitofilin and CHCHD6. Transmission electron microscopy (TEM) revealed that vesicle-like cristae morphology appeared in cell lines lacking Mitofilin, and mitochondria exhibited lower cristae density in CHCHD6-knockout cells. Immunoblot analysis showed that knockdown of Mitofilin, but not knockout of CHCHD6, affected their binding partners that control cristae morphology. We also demonstrated that Mitofilin and CHCHD6 directly interacted with Sam50. Additionally, we observed that Mitofilin-knockdown cells showed decreased mitochondrial membrane potential (ΔΨm) and intracellular ATP content, which were minimally affected in CHCHD6-knockout cells. Taken together, we conclude that the integrity of MICOS and its efficient interaction with Sam50 are indispensable for cristae organization, which is relevant to mitochondrial function.
Collapse
Affiliation(s)
- Chengli Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhifei Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Yajie Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jie Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Si Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhiyin Song
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
31
|
Shen M, Zhao DK, Qiao Q, Liu L, Wang JL, Cao GH, Li T, Zhao ZW. Identification of glutathione S-transferase (GST) genes from a dark septate endophytic fungus (Exophiala pisciphila) and their expression patterns under varied metals stress. PLoS One 2015; 10:e0123418. [PMID: 25884726 PMCID: PMC4401685 DOI: 10.1371/journal.pone.0123418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022] Open
Abstract
Glutathione S-transferases (GSTs) compose a family of multifunctional enzymes that play important roles in the detoxification of xenobiotics and the oxidative stress response. In the present study, twenty four GST genes from the transcriptome of a metal-tolerant dark septate endophyte (DSE), Exophiala pisciphila, were identified based on sequence homology, and their responses to various heavy metal exposures were also analyzed. Phylogenetic analysis showed that the 24 GST genes from E. pisciphila (EpGSTs) were divided into eight distinct classes, including seven cytosolic classes and one mitochondrial metaxin 1-like class. Moreover, the variable expression patterns of these EpGSTs were observed under different heavy metal stresses at their effective concentrations for inhibiting growth by 50% (EC50). Lead (Pb) exposure caused the up-regulation of all EpGSTs, while cadmium (Cd), copper (Cu) and zinc (Zn) treatments led to the significant up-regulation of most of the EpGSTs (p < 0.05 to p < 0.001). Furthermore, although heavy metal-specific differences in performance were observed under various heavy metals in Escherichia coli BL21 (DE3) transformed with EpGSTN-31, the over-expression of this gene was able to enhance the heavy metal tolerance of the host cells. These results indicate that E. Pisciphila harbored a diverse of GST genes and the up-regulated EpGSTs are closely related to the heavy metal tolerance of E. pisciphila. The study represents the first investigation of the GST family in E. pisciphila and provides a primary interpretation of heavy metal detoxification for E. pisciphila.
Collapse
Affiliation(s)
- Mi Shen
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Da-Ke Zhao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China; School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Qin Qiao
- School of Agriculture, Yunnan University, Kunming, Yunnan, China
| | - Lei Liu
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Jun-Ling Wang
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Guan-Hua Cao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Tao Li
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Zhi-Wei Zhao
- Key Laboratory of Conservation and Utilization for Bioresources and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming, Yunnan, China; School of Agriculture, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
32
|
Ott C, Dorsch E, Fraunholz M, Straub S, Kozjak-Pavlovic V. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits. PLoS One 2015; 10:e0120213. [PMID: 25781180 PMCID: PMC4363703 DOI: 10.1371/journal.pone.0120213] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/20/2015] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.
Collapse
Affiliation(s)
- Christine Ott
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Eva Dorsch
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Martin Fraunholz
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Sebastian Straub
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
33
|
Aghazadeh Y, Zirkin BR, Papadopoulos V. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis. VITAMINS AND HORMONES 2015; 98:189-227. [PMID: 25817870 DOI: 10.1016/bs.vh.2014.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced serum testosterone (T), or hypogonadism, is estimated to affect about 5 million American men, including both aging and young men. Low serum T has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass and bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Administering exogenous T, known as T-replacement therapy (TRT), reverses many of the symptoms of low T levels. However, this treatment can result in luteinizing hormone suppression which, in turn, can lead to reduced sperm numbers and infertility, making TRT inappropriate for men who wish to father children. Additionally, TRT may result in supraphysiologic T levels, skin irritation, and T transfer to others upon contact; and there may be increased risk of prostate cancer and cardiovascular disease, particularly in aging men. Therefore, the development of alternate therapies for treating hypogonadism would be highly desirable. To do so requires greater understanding of the series of steps leading to T formation and how they are regulated, and the identification of key steps that are amenable to pharmacological modulation so as to induce T production. We review herein our current understanding of mechanisms underlying the pharmacological induction of T formation in hypogonadal testis.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Complexity of Genotype-Phenotype Correlations in Mendelian Disorders: Lessons from Gaucher Disease. Rare Dis 2015. [DOI: 10.1007/978-94-017-9214-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
35
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
36
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
37
|
Cartron PF, Petit E, Bellot G, Oliver L, Vallette FM. Metaxins 1 and 2, two proteins of the mitochondrial protein sorting and assembly machinery, are essential for Bak activation during TNF alpha triggered apoptosis. Cell Signal 2014; 26:1928-34. [DOI: 10.1016/j.cellsig.2014.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
|
38
|
Mitochondrial protein translocases for survival and wellbeing. FEBS Lett 2014; 588:2484-95. [DOI: 10.1016/j.febslet.2014.05.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
|
39
|
Anitha A, Nakamura K, Thanseem I, Yamada K, Iwayama Y, Toyota T, Matsuzaki H, Miyachi T, Yamada S, Tsujii M, Tsuchiya KJ, Matsumoto K, Iwata Y, Suzuki K, Ichikawa H, Sugiyama T, Yoshikawa T, Mori N. Brain region-specific altered expression and association of mitochondria-related genes in autism. Mol Autism 2012; 3:12. [PMID: 23116158 PMCID: PMC3528421 DOI: 10.1186/2040-2392-3-12] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/04/2012] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED BACKGROUND Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. METHODS For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. RESULTS Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were reduced in at least two of the brain regions of autism patients. CONCLUSIONS Our study, though preliminary, brings to light some new genes associated with MtD in autism. If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Ismail Thanseem
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kazuo Yamada
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Taishi Miyachi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Satoru Yamada
- Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, 183 8561, Japan
| | - Masatsugu Tsujii
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan.,Faculty of Sociology, Chukyo University, 101 Tokodachi, Toyota, 470 0393, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Kaori Matsumoto
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Yasuhide Iwata
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Katsuaki Suzuki
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Hironobu Ichikawa
- Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, 183 8561, Japan
| | - Toshiro Sugiyama
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, 351 0198, Japan
| | - Norio Mori
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan.,Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431 3192, Japan
| |
Collapse
|
40
|
Duncan O, Murcha MW, Whelan J. Unique components of the plant mitochondrial protein import apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:304-13. [PMID: 22406071 DOI: 10.1016/j.bbamcr.2012.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
The basic mitochondrial protein import apparatus was established in the earliest eukaryotes. Over the subsequent course of evolution and the divergence of the plant, animal and fungal lineages, this basic import apparatus has been modified and expanded in order to meet the specific needs of protein import in each kingdom. In the plant kingdom, the arrival of the plastid complicated the process of protein trafficking and is thought to have given rise to the evolution of a number of unique components that allow specific and efficient targeting of mitochondrial proteins from their site of synthesis in the cytosol, to their final location in the organelle. This includes the evolution of two unique outer membrane import receptors, plant Translocase of outer membrane 20 kDa subunit (TOM20) and Outer membrane protein of 64 kDa (OM64), the loss of a receptor domain from an ancestral import component, Translocase of outer membrane 22 kDa subunit (TOM22), evolution of unique features in the disulfide relay system of the inter membrane space, and the addition of an extra membrane spanning domain to another ancestral component of the inner membrane, Translocase of inner membrane 17 kDa subunit (TIM17). Notably, many of these components are encoded by multi-gene families and exhibit differential sub-cellular localisation and functional specialisation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
41
|
Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence. EUKARYOTIC CELL 2012; 11:532-44. [PMID: 22286093 DOI: 10.1128/ec.05292-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies indicate that mitochondrial functions impinge on cell wall integrity, drug tolerance, and virulence of human fungal pathogens. However, the mechanistic aspects of these processes are poorly understood. We focused on the mitochondrial outer membrane SAM (Sorting and Assembly Machinery) complex subunit Sam37 in Candida albicans. Inactivation of SAM37 in C. albicans leads to a large reduction in fitness, a phenotype not conserved with the model yeast Saccharomyces cerevisiae. Our data indicate that slow growth of the sam37ΔΔ mutant results from mitochondrial DNA loss, a new function for Sam37 in C. albicans, and from reduced activity of the essential SAM complex subunit Sam35. The sam37ΔΔ mutant was hypersensitive to drugs that target the cell wall and displayed altered cell wall structure, supporting a role for Sam37 in cell wall integrity in C. albicans. The sensitivity of the mutant to membrane-targeting antifungals was not significantly altered. The sam37ΔΔ mutant was avirulent in the mouse model, and bioinformatics showed that the fungal Sam37 proteins are distant from their animal counterparts and could thus represent potential drug targets. Our study provides the first direct evidence for a link between mitochondrial function and cell wall integrity in C. albicans and is further relevant for understanding mitochondrial function in fitness, antifungal drug tolerance, and virulence of this major pathogen. Beyond the relevance to fungal pathogenesis, this work also provides new insight into the mitochondrial and cellular roles of the SAM complex in fungi.
Collapse
|
42
|
Lackey SWK, Wideman JG, Kennedy EK, Go NE, Nargang FE. The Neurospora crassa TOB complex: analysis of the topology and function of Tob38 and Tob37. PLoS One 2011; 6:e25650. [PMID: 21980517 PMCID: PMC3182244 DOI: 10.1371/journal.pone.0025650] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
Abstract
The TOB or SAM complex is responsible for assembling several proteins into the mitochondrial outer membrane, including all β-barrel proteins. We have identified several forms of the complex in Neurospora crassa. One form contains Tob55, Tob38, and Tob37; another contains these three subunits plus the Mdm10 protein; while additional complexes contain only Tob55. As previously shown for Tob55, both Tob37 and Tob38 are essential for viability of the organism. Mitochondria deficient in Tob37 or Tob38 have reduced ability to assemble β-barrel proteins. The function of two hydrophobic domains in the C-terminal region of the Tob37 protein was investigated. Mutant Tob37 proteins lacking either or both of these regions are able to restore viability to cells lacking the protein. One of the domains was found to anchor the protein to the outer mitochondrial membrane but was not necessary for targeting or association of the protein with mitochondria. Examination of the import properties of mitochondria containing Tob37 with deletions of the hydrophobic domains reveals that the topology of Tob37 may be important for interactions between specific classes of β-barrel precursors and the TOB complex.
Collapse
Affiliation(s)
| | - Jeremy G. Wideman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Erin K. Kennedy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nancy E. Go
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Frank E. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Velayati A, Knight MA, Stubblefield BK, Sidransky E, Tayebi N. Identification of recombinant alleles using quantitative real-time PCR implications for Gaucher disease. J Mol Diagn 2011; 13:401-5. [PMID: 21704274 PMCID: PMC3123786 DOI: 10.1016/j.jmoldx.2011.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/01/2011] [Accepted: 02/09/2011] [Indexed: 11/16/2022] Open
Abstract
Pseudogenes, resulting from duplications of functional genes, contribute to the functional complexity of their parental genes. The glucocerebrosidase gene (GBA), located in a gene-rich region on chromosome 1q 21, is mutated in Gaucher disease. The presence of contiguous, highly homologous pseudogenes for both GBA and metaxin 1 at this locus increases the likelihood of DNA rearrangement. We describe a facile method to identify and analyze recombinant alleles in patients with Gaucher disease. Genomic DNA from 20 patients with recombinant GBA alleles and five controls was evaluated to identify DNA rearrangements or copy number variation using six probes specific for either the GBA gene or pseudogene. Quantitative real-time PCR was performed on genomic DNA, and Southern blot analyses using HincII together with sequencing confirmed the real-time results. Both GBA fusions and duplications could be detected. Different sites of crossover were identified, and alleles resulting from gene conversion could be distinguished from reciprocal recombinant alleles. Quantitative real-time PCR is a sensitive and rapid method to detect fusions and duplications in patients with recombinant GBA alleles. This technique is more sensitive, faster, and cheaper than Southern blot analysis, and can be used in diagnostic laboratories, and to detect other recombinant alleles within the genome.
Collapse
Affiliation(s)
| | | | | | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
45
|
Midzak A, Rone M, Aghazadeh Y, Culty M, Papadopoulos V. Mitochondrial protein import and the genesis of steroidogenic mitochondria. Mol Cell Endocrinol 2011; 336:70-9. [PMID: 21147195 PMCID: PMC3057322 DOI: 10.1016/j.mce.2010.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 11/23/2022]
Abstract
The principal site of regulation of steroid hormone biosynthesis is the transfer of cholesterol from the outer to inner mitochondrial membrane. Hormonal stimulation of steroidogenic cells promotes this mitochondrial lipid import through a multi-protein complex, termed the transduceosome, spanning the two membranes. The transduceosome complex is assembled from multiple proteins, such as the steroidogenic acute regulatory (STAR) protein and translocator protein (TSPO), and requires their targeting to the mitochondria for transduceosome function. The vast majority of mitochondrial proteins, including those participating in cholesterol import, are encoded in the nucleus. Their subsequent mitochondrial incorporation is performed through a series of protein import machineries located in the outer and inner mitochondrial membranes. Here we review our current knowledge of the mitochondrial cholesterol import machinery of the transduceosome. This is complemented with descriptions of mitochondrial protein import machineries and mechanisms by which these machineries assemble the transduceosome in steroidogenic mitochondria.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Malena Rone
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Yassaman Aghazadeh
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Martine Culty
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Medicine, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1A4, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1A4, Canada
| |
Collapse
|
46
|
Gupta N, Oppenheim IM, Kauvar EF, Tayebi N, Sidransky E. Type 2 Gaucher disease: phenotypic variation and genotypic heterogeneity. Blood Cells Mol Dis 2011; 46:75-84. [PMID: 20880730 PMCID: PMC3018671 DOI: 10.1016/j.bcmd.2010.08.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/24/2010] [Indexed: 11/21/2022]
Abstract
Gaucher disease (GD), the most common lysosomal storage disease, results from a deficiency of the lysosomal enzyme glucocerebrosidase. GD has been classified into 3 types, of which type 2 (the acute neuronopathic form) is the most severe, presenting pre- or perinatally, or in the first few months of life. Traditionally, type 2 GD was considered to have the most uniform clinical phenotype when compared to other GD subtypes. However, case studies over time have demonstrated that type 2 GD, like types 1 and 3, manifests with a spectrum of phenotypes. This review includes case reports that illustrate the broad range of clinical presentations encountered in type 2 GD, as well as a discussion of associated manifestations, pathological findings, diagnostic techniques, and a review of current therapies. While type 2 GD is generally associated with severe mutations in the glucocerebrosidase gene, there is also significant genotypic heterogeneity.
Collapse
Affiliation(s)
- N Gupta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3708, USA
| | | | | | | | | |
Collapse
|
47
|
Minor modifications and major adaptations: the evolution of molecular machines driving mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:947-54. [PMID: 20659421 DOI: 10.1016/j.bbamem.2010.07.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
Abstract
Bacterial endosymbionts gave rise to mitochondria in a process that depended on the acquisition of protein import pathways. Modification and in some cases major re-tooling of the endosymbiont's cellular machinery produced these pathways, establishing mitochondria as organelles common to all eukaryotic cells. The legacy of this evolutionary tinkering can be seen in the homologies and structural similarities between mitochondrial protein import machinery and modern day bacterial proteins. Comparative analysis of these systems is revealing both possible routes for the evolution of the mitochondrial membrane translocases and a greater understanding of the mechanisms behind mitochondrial protein import. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
|
48
|
Ono K, Wang X, Kim SO, Armstrong LC, Bornstein P, Han J. Metaxin deficiency alters mitochondrial membrane permeability and leads to resistance to TNF-induced cell killing. Protein Cell 2010; 1:161-73. [PMID: 21088703 PMCID: PMC2982194 DOI: 10.1007/s13238-010-0017-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/10/2009] [Indexed: 10/19/2022] Open
Abstract
Metaxin, a mitochondrial outer membrane protein, is critical for TNF-induced cell death in L929 cells. Its deficiency, caused by retroviral insertion-mediated mutagenesis, renders L929 cells resistance to TNF killing. In this study, we further characterized metaxin deficiency-caused TNF resistance in parallel with Bcl-X(L) overexpression-mediated death resistance. We did not find obvious change in mitochondria membrane potential in metaxin-deficient (Met(mut)) and Bcl-X(L)-overexpressing cells, but we did find an increase in the release rate of the mitochondrial membrane potential probe rhodamine 123 (Rh123) that was preloaded into mitochondria. In addition, overexpression of a function-interfering mutant of metaxin (MetaΔTM/C) or Bcl-X(L) in MCF-7.3.28 cells also resulted in an acquired resistance to TNF killing and a faster rate of Rh123 release, indicating a close correlation between TNF resistance and higher rates of the dye release from the mitochondria. The release of Rh123 can be controlled by the mitochondrial membrane permeability transition (PT) pore, as targeting an inner membrane component of the PT pore by cyclosporin A (CsA) inhibited Rh123 release. However, metaxin deficiency and Bcl-X(L) overexpression apparently affect Rh123 release from a site(s) different from that of CsA, as CsA can overcome their effect. Though both metaxin and Bcl-X(L) appear to function on the outer mitochondrial membrane, they do not interact with each other. They may use different mechanisms to increase the permeability of Rh123, since previous studies have suggested that metaxin may influence certain outer membrane porins while Bcl-X(L) may form pores on the outer membrane. The alteration of the mitochondrial outer membrane properties by metaxin deficiency and Bcl-X(L) overexpression, as indicated by a quicker Rh123 release, may be helpful in maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Koh Ono
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Xiaofei Wang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sung Ouk Kim
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Lucas C. Armstrong
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350 USA
| | - Paul Bornstein
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350 USA
| | - Jiahuai Han
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 USA
| |
Collapse
|
49
|
Kozjak-Pavlovic V, Dian-Lothrop EA, Meinecke M, Kepp O, Ross K, Rajalingam K, Harsman A, Hauf E, Brinkmann V, Günther D, Herrmann I, Hurwitz R, Rassow J, Wagner R, Rudel T. Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis. PLoS Pathog 2009; 5:e1000629. [PMID: 19851451 PMCID: PMC2759283 DOI: 10.1371/journal.ppat.1000629] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/24/2009] [Indexed: 11/28/2022] Open
Abstract
The bacterial PorB porin, an ATP-binding β-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (ΔΨm). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of β-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of ΔΨm. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce ΔΨm loss and apoptosis, demonstrating that dissipation of ΔΨm is a requirement for cell death caused by neisserial infection. PorB is a bacterial porin that plays an important role in the pathogenicity of Neisseria gonorrhoeae. Upon infection with these bacteria, PorB is transported into mitochondria of infected cells, causing the loss of mitochondrial membrane potential and eventually leading to apoptotic cell death. Here, we show that PorB enters mitochondria through the TOM complex, similar to other mitochondria-targeted proteins, but then bypasses the SAM complex machinery that assembles all other porin-like proteins into the outer mitochondrial membrane. This leads to the accumulation of PorB in the intermembrane space and the integration of a fraction of PorB into the inner mitochondrial membrane (IMM). In the IMM, ATP-regulated pores are formed, leading to dissipation of membrane potential and the loss of cristae structure in affected mitochondria, the necessary first steps in induction of apoptosis. Our work offers, for the first time, a detailed analysis of the mechanism by which PorB targets and damages host cell mitochondria.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Michael Meinecke
- Department of Biology/Chemistry, Division of Biophysics, University of Osnabrück, Osnabrück, Germany
| | - Oliver Kepp
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Katharina Ross
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Krishnaraj Rajalingam
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anke Harsman
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Eva Hauf
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Dirk Günther
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ines Herrmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Joachim Rassow
- Institute for Physiological Chemistry, Ruhr-University Bochum, Bochum, Germany
| | - Richard Wagner
- Department of Biology/Chemistry, Division of Biophysics, University of Osnabrück, Osnabrück, Germany
| | - Thomas Rudel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
50
|
Walther DM, Rapaport D, Tommassen J. Biogenesis of beta-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence. Cell Mol Life Sci 2009; 66:2789-804. [PMID: 19399587 PMCID: PMC2724633 DOI: 10.1007/s00018-009-0029-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/26/2009] [Accepted: 04/01/2009] [Indexed: 01/01/2023]
Abstract
Membrane-embedded beta-barrel proteins span the membrane via multiple amphipathic beta-strands arranged in a cylindrical shape. These proteins are found in the outer membranes of Gram-negative bacteria, mitochondria and chloroplasts. This situation is thought to reflect the evolutionary origin of mitochondria and chloroplasts from Gram-negative bacterial endosymbionts. beta-barrel proteins fulfil a variety of functions; among them are pore-forming proteins that allow the flux of metabolites across the membrane by passive diffusion, active transporters of siderophores, enzymes, structural proteins, and proteins that mediate protein translocation across or insertion into membranes. The biogenesis process of these proteins combines evolutionary conservation of the central elements with some noticeable differences in signals and machineries. This review summarizes our current knowledge of the functions and biogenesis of this special family of proteins.
Collapse
Affiliation(s)
- Dirk M. Walther
- Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany
| | - Doron Rapaport
- Interfaculty Institute for Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Jan Tommassen
- Department of Molecular Microbiology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|