1
|
Gutierrez-Perez C, Cramer RA. Targeting fungal lipid synthesis for antifungal drug development and potentiation of contemporary antifungals. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:27. [PMID: 40221522 PMCID: PMC11993586 DOI: 10.1038/s44259-025-00093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/10/2025] [Indexed: 04/14/2025]
Abstract
Two of the three most commonly used classes of antifungal drugs target the fungal membrane through perturbation of sterol biosynthesis or function. In addition to these triazole and polyene antifungals, recent research is identifying new antifungal molecules that perturb lipid biosynthesis and function. Here, we review fungal lipid biosynthesis pathways and their potential as targets for antifungal drug development. An emerging goal is discovering new molecules that potentiate contemporary antifungal drugs in part through perturbation of lipid form and function.
Collapse
Affiliation(s)
- Cecilia Gutierrez-Perez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Molecular Microbiology at Washington University School of Medicine, St. Louis, MO, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
2
|
Kang W, Siewe AD, Oluigbo CC, Arijesudade MO, Brailoiu E, Undieh AS. Dopamine internalization via Uptake 2 and stimulation of intracellular D 5-receptor-dependent calcium mobilization and CDP-diacylglycerol signaling. Front Pharmacol 2024; 15:1422998. [PMID: 39525629 PMCID: PMC11543475 DOI: 10.3389/fphar.2024.1422998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Dopamine stimulates CDP-diacylglycerol biosynthesis through D1-like receptors, particularly the D5 subtype most of which is intracellularly localized. CDP-diacylglycerol regulates phosphatidylinositol-4,5-bisphosphate-dependent signaling cascades by serving as obligatory substrate for phosphatidylinositol biosynthesis. Here, we used acute and organotypic brain tissues and cultured cells to explore the mechanism by which extracellular dopamine acts to modulate intracellular CDP-diacylglycerol. Dopamine stimulated CDP-diacylglycerol in organotypic and neural cells lacking the presynaptic dopamine transporter, and this action was selectively mimicked by D1-like receptor agonists SKF38393 and SKF83959. Dopaminergic CDP-diacylglycerol stimulation was blocked by decynium-22 which blocks Uptake2-like transporters and by anti-microtubule disrupters of cytoskeletal transport, suggesting transmembrane uptake and guided transport of the ligands to intracellular sites of CDP-diacylglycerol regulation. Fluorescent or radiolabeled dopamine was saturably transported into primary neurons or B35 neuroblastoma cells expressing the plasmamembrane monoamine transporter, PMAT. Microinjection of 10-nM final concentration of dopamine into human D5-receptor-transfected U2-OS cells rapidly and transiently increased cytosolic calcium concentrations by 316%, whereas non-D5-receptor-expressing U2-OS cells showed no response. Given that U2-OS cells natively express PMAT, bath application of 10 μM dopamine slowly increased cytosolic calcium in D5-expressing cells. These observations indicate that dopamine is actively transported by a PMAT-implicated Uptake2-like mechanism into postsynaptic-type dopaminoceptive cells where the monoamine stimulates its intracellular D5-type receptors to mobilize cytosolic calcium and promote CDP-diacylglycerol biosynthesis. This is probably the first demonstration of functional intracellular dopamine receptor coupling in neural tissue, thus challenging the conventional paradigm that postsynaptic dopamine uptake serves merely as a mechanism for deactivating spent or excessive synaptic transmitter.
Collapse
Affiliation(s)
- Wenfei Kang
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
| | - Arlette Deukam Siewe
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
| | - Chizurum C. Oluigbo
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
- Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| | - Mercy O. Arijesudade
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
| | - Eugen Brailoiu
- Department of Pharmacology, School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ashiwel S. Undieh
- Department of Biomedical Sciences, School of Medicine, City University of New York, New York, NY, United States
- Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
3
|
Saukko-Paavola AJ, Klemm RW. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett 2024; 598:1274-1291. [PMID: 38311340 DOI: 10.1002/1873-3468.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
Collapse
Affiliation(s)
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
4
|
Sokołowska B, Orłowska M, Okrasińska A, Piłsyk S, Pawłowska J, Muszewska A. What can be lost? Genomic perspective on the lipid metabolism of Mucoromycota. IMA Fungus 2023; 14:22. [PMID: 37932857 PMCID: PMC10629195 DOI: 10.1186/s43008-023-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Mucoromycota is a phylum of early diverging fungal (EDF) lineages, of mostly plant-associated terrestrial fungi. Some strains have been selected as promising biotechnological organisms due to their ability to produce polyunsaturated fatty acids and efficient conversion of nutrients into lipids. Others get their lipids from the host plant and are unable to produce even the essential ones on their own. Following the advancement in EDF genome sequencing, we carried out a systematic survey of lipid metabolism protein families across different EDF lineages. This enabled us to explore the genomic basis of the previously documented ability to produce several types of lipids within the fungal tree of life. The core lipid metabolism genes showed no significant diversity in distribution, however specialized lipid metabolic pathways differed in this regard among different fungal lineages. In total 165 out of 202 genes involved in lipid metabolism were present in all tested fungal lineages, while remaining 37 genes were found to be absent in some of fungal lineages. Duplications were observed for 69 genes. For the first time we demonstrate that ergosterol is not being produced by several independent groups of plant-associated fungi due to the losses of different ERG genes. Instead, they possess an ancestral pathway leading to the synthesis of cholesterol, which is absent in other fungal lineages. The lack of diacylglycerol kinase in both Mortierellomycotina and Blastocladiomycota opens the question on sterol equilibrium regulation in these organisms. Early diverging fungi retained most of beta oxidation components common with animals including Nudt7, Nudt12 and Nudt19 pointing at peroxisome divergence in Dikarya. Finally, Glomeromycotina and Mortierellomycotina representatives have a similar set of desaturases and elongases related to the synthesis of complex, polyunsaturated fatty acids pointing at an ancient expansion of fatty acid metabolism currently being explored by biotechnological studies.
Collapse
Affiliation(s)
- Blanka Sokołowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Alicja Okrasińska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Julia Pawłowska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Blunsom NJ, Cockcroft S. CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis. Front Cell Dev Biol 2020; 8:63. [PMID: 32117988 PMCID: PMC7018664 DOI: 10.3389/fcell.2020.00063] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.
Collapse
Affiliation(s)
| | - Shamshad Cockcroft
- Division of Biosciences, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Khan MSS, Basnet R, Islam SA, Shu Q. Mutational Analysis of OsPLDα1 Reveals Its Involvement in Phytic Acid Biosynthesis in Rice Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11436-11443. [PMID: 31553599 DOI: 10.1021/acs.jafc.9b05052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phospholipids and phytic acid are important phosphorus (P)-containing compounds in rice grains. Phytic acid is considered as a major antinutrient, because the negatively charged phytic acid chelates cations, including essential micronutrients, and decreases their bioavailability to human beings and monogastric animals. To gain an insight into the interplay of these two kinds of phosphorus-containing metabolites, we used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (OsPLDα1) and analyzed the mutational effect on metabolites, including phytic acid in rice grains. Metabolic profiling of two ospldα1 mutants revealed depletion in the phosphatidic acid production and lower accumulation of cytidine diphosphate diacylglycerol and phosphatidylinositol. The mutants also showed significantly reduced phytic acid content as compared to their wild-type parent, and the expression of the key genes involved in the phytic acid biosynthesis was altered in the mutants. These results demonstrate that OsPLDα1 not only plays an important role in phospholipid metabolism but also is involved in phytic acid biosynthesis, most probably through the lipid-dependent pathway, and thus revealed a potential new route to regulate phytic acid biosynthesis in rice.
Collapse
Affiliation(s)
- Muhammad Saad Shoaib Khan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Rasbin Basnet
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Shah Ashadul Islam
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
- Zhejiang Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou , China
| |
Collapse
|
7
|
NuA4 Lysine Acetyltransferase Complex Contributes to Phospholipid Homeostasis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2017; 7:1799-1809. [PMID: 28455416 PMCID: PMC5473759 DOI: 10.1534/g3.117.041053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Actively proliferating cells constantly monitor and readjust their metabolic pathways to ensure the replenishment of phospholipids necessary for membrane biogenesis and intracellular trafficking. In Saccharomyces cerevisiae, multiple studies have suggested that the lysine acetyltransferase complex NuA4 plays a role in phospholipid homeostasis. For one, NuA4 mutants induce the expression of the inositol-3-phosphate synthase gene, INO1, which leads to excessive accumulation of inositol, a key metabolite used for phospholipid biosynthesis. Additionally, NuA4 mutants also display negative genetic interactions with sec14-1ts, a mutant of a lipid-binding gene responsible for phospholipid remodeling of the Golgi. Here, using a combination of genetics and transcriptional profiling, we explore the connections between NuA4, inositol, and Sec14. Surprisingly, we found that NuA4 mutants did not suppress but rather exacerbated the growth defects of sec14-1ts under inositol-depleted conditions. Transcriptome studies reveal that while loss of the NuA4 subunit EAF1 in sec14-1ts does derepress INO1 expression, it does not derepress all inositol/choline-responsive phospholipid genes, suggesting that the impact of Eaf1 on phospholipid homeostasis extends beyond inositol biosynthesis. In fact, we find that NuA4 mutants have impaired lipid droplet levels and through genetic and chemical approaches, we determine that the genetic interaction between sec14-1ts and NuA4 mutants potentially reflects a role for NuA4 in fatty acid biosynthesis. Altogether, our work identifies a new role for NuA4 in phospholipid homeostasis.
Collapse
|
8
|
Tani M, Kuge O. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae. Yeast 2014; 31:145-58. [PMID: 24578286 DOI: 10.1002/yea.3004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/18/2014] [Accepted: 02/20/2014] [Indexed: 12/11/2022] Open
Abstract
Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.
Collapse
Affiliation(s)
- Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
9
|
The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids 2014; 180:23-43. [PMID: 24418527 DOI: 10.1016/j.chemphyslip.2013.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022]
Abstract
This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.
Collapse
|
10
|
Metabolism, function and mass spectrometric analysis of bis(monoacylglycero)phosphate and cardiolipin. Chem Phys Lipids 2011; 164:556-62. [DOI: 10.1016/j.chemphyslip.2011.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 11/20/2022]
|
11
|
Shastri S, Zeeman AM, Berry L, Verburgh RJ, Braun-Breton C, Thomas AW, Gannoun-Zaki L, Kocken CHM, Vial HJ. Plasmodium CDP-DAG synthase: an atypical gene with an essential N-terminal extension. Int J Parasitol 2010; 40:1257-68. [PMID: 20385136 DOI: 10.1016/j.ijpara.2010.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
Abstract
Cytidine diphosphate diacylglycerol synthase (CDS) diverts phosphatidic acid towards the biosynthesis of CDP-DAG, an obligatory liponucleotide intermediate in anionic phospholipid biosynthesis. The 78kDa predicted Plasmodium falciparum CDS (PfCDS) is recovered as a 50 kDa conserved C-terminal cytidylyltransferase domain (C-PfCDS) and a 28kDa fragment that corresponds to the unusually long hydrophilic asparagine-rich N-terminal extension (N-PfCDS). Here, we show that the two fragments of PfCDS are the processed forms of the 78 kDa pro-form that is encoded from a single transcript with no alternate translation start site for C-PfCDS. PfCDS, which shares 54% sequence identity with Plasmodium knowlesi CDS (PkCDS), could substitute for PkCDS in P. knowlesi. Experiments to disrupt either the full-length or the N-terminal extension of PkCDS indicate that not only the C-terminal cytidylyltransferase domain but also the N-terminal extension is essential to Plasmodium spp. PkCDS and PfCDS introduced in P. knowlesi were processed in the parasite, suggesting a conserved parasite-dependent mechanism. The N-PfCDS appears to be a peripheral membrane protein and is trafficked outside the parasite to the parasitophorous vacuole. Although the function of this unusual N-PfCDS remains enigmatic, the study here highlights features of this essential gene and its biological importance during the intra-erythrocytic cycle of the parasite.
Collapse
Affiliation(s)
- Shilpa Shastri
- CNRS UMR5235, University of Montpellier 2, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sugimoto H, Banchio C, Vance DE. Transcriptional regulation of phosphatidylcholine biosynthesis. Prog Lipid Res 2008; 47:204-20. [PMID: 18295604 DOI: 10.1016/j.plipres.2008.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphatidylcholine biosynthesis in animal cells is primarily regulated by the rapid translocation of CTP:phosphocholine cytidylyltransferase alpha between a soluble form that is inactive and a membrane-associated form that is activated. Until less than 10 years ago there was no information on the transcriptional regulation of phosphatidylcholine biosynthesis. Research has identified the transcription factors Sp1, Rb, TEF4, Ets-1 and E2F as enhancing the expression of the cytidylyltransferase and Net as a factor that represses cytidylyltransferase expression. Key transcription factors involved in cholesterol or fatty acid metabolism (SREBPs, LXRs, PPARs) do not have a major role in transcriptional regulation of the cytidylyltransferase. Rather than being linked to cholesterol or energy metabolism, regulation of the cytidylyltransferase is linked to the cell cycle, cell growth and differentiation. Transcriptional regulation of phospholipid biosynthesis is more elegantly understood in yeast and involves responses to inositol, choline and zinc in the culture medium.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| | | | | |
Collapse
|
13
|
Chang Q, Petrash JM. Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:237-45. [PMID: 17919749 PMCID: PMC2254213 DOI: 10.1016/j.bbamcr.2007.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 11/21/2022]
Abstract
A large family of aldo-keto reductases with similar kinetic and structural properties but unknown physiological roles is expressed in the yeast Saccharomyces cerevisiae. Strains with one or two AKR genes disrupted have apparently normal phenotypes, but disruption of at least three AKR genes results in a heat shock phenotype and slow growth in inositol-deficient culture medium (Ino(-)). The present study was carried out to identify metabolic or signaling defects that may underlie phenotypes that emerge in AKR deficient strains. Here we demonstrate that pretreatment of a pentuple AKR null mutant with the anti-oxidative agent N-acetyl-cysteine rescues the heat shock phenotype. This indicates that AKR gene disruption may be associated with defects in oxidative stress response. We observed additional markers of oxidative stress in AKR-deficient strains, including reduced glutathione levels, constitutive nuclear localization of the oxidation-sensitive transcription factor Yap1 and upregulation of a set of Yap1 target genes whose function as a group is primarily involved in response to oxidative stress and redox balance. Genetic analysis of the Ino(-) phenotype of the null mutants showed that defects in transcriptional regulation of the INO1, which encodes for inositol-1-phosphate synthase, can be rescued through ectopic expression of a functional INO1. Taken together, these results suggest potential roles for AKRs in oxidative defense and transcriptional regulation.
Collapse
Affiliation(s)
- Qing Chang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110-3018, USA
| | | |
Collapse
|
14
|
Souza CM, Pichler H. Lipid requirements for endocytosis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:442-54. [PMID: 16997624 DOI: 10.1016/j.bbalip.2006.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 01/19/2023]
Abstract
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.
Collapse
|
15
|
Iverson S, Sonnemann K, Reddick A, McDonough V. Expression of the Saccharomyces cerevisiae PIS1 gene is modulated by multiple ATGs in the promoter. Biochem Biophys Res Commun 2006; 350:91-6. [PMID: 16997274 DOI: 10.1016/j.bbrc.2006.08.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 08/31/2006] [Indexed: 12/20/2022]
Abstract
The PIS1 gene encodes a key branchpoint phospholipid biosynthetic enzyme, phosphatidylinositol synthase. The PIS1 promoter contains the unusual feature of three ATG codons (ATGs1, 2, and 3) in-frame with three stop codons, located just before the authentic start codon (ATG4). Using a PIS1(promoter)-lacZ reporter expression system and site-directed mutagenesis, we investigated the role the "upstream" ATG codons play in modulation of PIS1 expression. Of the single codon changes, mutation of the first ATG (ATG1) resulted in the largest increase of the reporter gene PIS1(promoter)-lacZ expression. All combinations of altered upstream ATG codons also resulted in greater reporter expression. Reverse transcription-PCR revealed that at least some PIS1 transcripts include all AUG codons, and their synthesis is probably directed by a second TATA box upstream of the putative TATA box. These results indicate that the multiple upstream AUG codons are present in at least some PIS1 transcripts and negatively impact PIS1 expression.
Collapse
Affiliation(s)
- Stephanie Iverson
- Department of Biology, Hope College P.O. Box 9000, Holland, MI 49422-9000, USA
| | | | | | | |
Collapse
|
16
|
Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F. Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 2006; 7:149. [PMID: 16772040 PMCID: PMC1539019 DOI: 10.1186/1471-2164-7-149] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022] Open
Abstract
Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals.
Collapse
Affiliation(s)
- Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Mahdi Belcaid
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - François Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Jean Danyluk
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Antonio F Monroy
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Ani Dryanova
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Patrick Gulick
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Anne Bergeron
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - André Laroche
- Agriculture et Agroalimentaire Canada, Centre de recherches de Lethbridge, 5403, 1st Avenue South, C.P. 3000, Lethbridge AB, T1J 4B1, Canada
| | - Matthew G Links
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Luke MacCarthy
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldson Building, 110 Science Place, Saskatoon SK, S7N 5C9, Canada
| | - William L Crosby
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Fathey Sarhan
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| |
Collapse
|
17
|
Chen M, Hancock LC, Lopes JM. Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:310-21. [PMID: 16854618 DOI: 10.1016/j.bbalip.2006.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 12/26/2022]
Abstract
The last several years have been witness to significant developments in understanding transcriptional regulation of the yeast phospholipid structural genes. The response of most phospholipid structural genes to inositol is now understood on a mechanistic level. The roles of specific activators and repressors are also well established. The knowledge of specific regulatory factors that bind the promoters of phospholipid structural genes serves as a foundation for understanding the role of chromatin modification complexes. Collectively, these findings present a complex picture for transcriptional regulation of the phospholipid biosynthetic genes. The INO1 gene is an ideal example of the complexity of transcriptional control and continues to serve as a model for studying transcription in general. Furthermore, transcription of the regulatory genes is also subject to complex and essential regulation. In addition, databases resulting from a plethora of genome-wide studies have identified regulatory signals that control one of the essential phospholipid biosynthetic genes, PIS1. These databases also provide significant clues for other regulatory signals that may affect phospholipid biosynthesis. Here, we have tried to present a complete summary of the transcription factors and mechanisms that regulate the phospholipid biosynthetic genes.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | |
Collapse
|
18
|
Abstract
The Saccharomyces cerevisiae cardiolipin (CL) synthase encoded by the CRD1 gene catalyses the synthesis of CL, which is localized to the inner mitochondrial membrane and plays an important role in mitochondrial function. To investigate how CRD1 expression is regulated, a lacZ reporter gene was placed under control of the CRD1 promoter and the 5'-untranslated region of its mRNA (P(CRD1)-lacZ). P(CRD1)-lacZ expression was 2.5 times higher in early stationary phase than in logarithmic phase for glucose grown cells. Non-fermentable growth resulted in a two-fold elevation in expression relative to glucose grown cells. A shift from glycerol to glucose rapidly repressed expression, whereas a shift from glucose to glycerol had the opposite effect. The derepression of P(CRD1)-lacZ expression by non-fermentable carbon sources was dependent on mitochondrial respiration. These results support a tight coordination between translation and transcription of the CRD1 gene, since similar effects by the above factors on CRD1 mRNA levels have been reported. In glucose-grown cells, P(CRD1)-lacZ expression was repressed 70% in a pgs1delta strain (lacks phosphatidylglycerol and CL) compared with wild-type and rho- cells and elevated 2.5-fold in crd1delta cells, which have increased phosphatidylglycerol levels, suggesting a role for phosphatidylglycerol in regulating CRD1 expression. Addition of inositol to the growth medium had no effect on expression. However, expression was elevated in an ino4delta mutant but not in ino2delta cells, suggesting multiple and separate functions for the inositol-responsive INO2/INO4 gene products, which normally function as a dimer in regulating gene function.
Collapse
Affiliation(s)
| | - William Dowhan
- Correspondence to: William Dowhan, Department of Biochemistry and Molecular Biology, University of Texas–Houston, Medical School, Houston, TX 77225, USA.,
| |
Collapse
|
19
|
Abstract
Most of the phospholipid biosynthetic genes of Saccharomyces cerevisiae are coordinately regulated in response to inositol and choline. Inositol affects the intracellular levels of phosphatidic acid (PA). Opi1p is a repressor of the phospholipid biosynthetic genes and specifically binds PA in the endoplasmic reticulum. In the presence of inositol, PA levels decrease, releasing Opi1p into the nucleus where it represses transcription. The opi1 mutant overproduces and excretes inositol into the growth medium in the absence of inositol and choline (Opi(-) phenotype). To better understand the mechanism of Opi1p repression, the viable yeast deletion set was screened to identify Opi(-) mutants. In total, 89 Opi(-) mutants were identified, of which 7 were previously known to have the Opi(-) phenotype. The Opi(-) mutant collection included genes with roles in phospholipid biosynthesis, transcription, protein processing/synthesis, and protein trafficking. Included in this set were all nonessential components of the NuA4 HAT complex and six proteins in the Rpd3p-Sin3p HDAC complex. It has previously been shown that defects in phosphatidylcholine synthesis (cho2 and opi3) yield the Opi(-) phenotype because of a buildup of PA. However, in this case the Opi(-) phenotype is conditional because PA can be shuttled through a salvage pathway (Kennedy pathway) by adding choline to the growth medium. Seven new mutants present in the Opi(-) collection (fun26, kex1, nup84, tps1, mrpl38, mrpl49, and opi10/yol032w) were also suppressed by choline, suggesting that these affect PC synthesis. Regulation in response to inositol is also coordinated with the unfolded protein response (UPR). Consistent with this, several Opi(-) mutants were found to affect the UPR (yhi9, ede1, and vps74).
Collapse
Affiliation(s)
- Leandria C Hancock
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
20
|
Su X, Dowhan W. Translational regulation of nuclear gene COX4 expression by mitochondrial content of phosphatidylglycerol and cardiolipin in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:743-53. [PMID: 16428432 PMCID: PMC1347020 DOI: 10.1128/mcb.26.3.743-753.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous results indicated that translation of four mitochondrion-encoded genes and one nucleus-encoded gene (COX4) is repressed in mutants (pgs1Delta) of Saccharomyces cerevisiae lacking phosphatidylglycerol and cardiolipin. COX4 translation was studied here using a mitochondrially targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5' and 3' untranslated regions (UTRs). Lack of mtGFP expression independent of carbon source and strain background was established to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but was rather caused directly by the lack of phosphatidylglycerol and cardiolipin in mitochondrial membranes. Reintroduction of a functional PGS1 gene under control of the ADH1 promoter restored phosphatidylglycerol synthesis and expression of mtGFP. Deletion analysis of the 5' UTR(COX4) revealed the presence of a 50-nucleotide fragment with two stem-loops as a cis-element inhibiting COX4 translation. Binding of a protein factor(s) specifically to this sequence was observed with cytoplasm from pgs1Delta but not PGS1 cells. Using HIS3 and lacZ as reporters, extragenic spontaneous recessive mutations that allowed expression of His3p and beta-galactosidase were isolated, which appeared to be loss-of-function mutations, suggesting that the genes mutated may encode the trans factors that bind to the cis element in pgs1Delta cells.
Collapse
Affiliation(s)
- Xuefeng Su
- Department of Biochemistry and Molecular Biology, 6431 Fannin St., Suite 6.200, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | | |
Collapse
|
21
|
Affiliation(s)
- Lilia R Nunez
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
22
|
Jesch SA, Zhao X, Wells MT, Henry SA. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J Biol Chem 2004; 280:9106-18. [PMID: 15611057 PMCID: PMC1352320 DOI: 10.1074/jbc.m411770200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.
Collapse
Affiliation(s)
| | - Xin Zhao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853
| | - Martin T. Wells
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853
| | - Susan A. Henry
- Department of Molecular Biology and Genetics
- *To whom all correspondence should be addressed: Susan A. Henry, Ph.D. College of Agriculture and Life Sciences, Cornell University, 260 Roberts Hall, Ithaca, NY 14853, 607-255-2241 (TEL), 607-255-3803 (FAX), E-mail:
| |
Collapse
|
23
|
Santiago TC, Mamoun CB. Genome expression analysis in yeast reveals novel transcriptional regulation by inositol and choline and new regulatory functions for Opi1p, Ino2p, and Ino4p. J Biol Chem 2003; 278:38723-30. [PMID: 12871953 DOI: 10.1074/jbc.m303008200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, genes encoding phospholipid-synthesizing enzymes are regulated by inositol and choline (IC). The current model suggests that when these precursors become limiting, the transcriptional complex Ino2p-Ino4p activates the expression of these genes, whereas repression requires Opi1p and occurs when IC are available. In this study, microarray-based expression analysis was performed to assess the global transcriptional response to IC in a wild-type strain and in the opi1delta, ino2delta, and ino4delta null mutant strains. Fifty genes were either activated or repressed by IC in the wild-type strain, including three already known IC-repressed genes. We demonstrated that the IC response was not limited to genes involved in membrane biogenesis, but encompassed various metabolic pathways such as biotin synthesis, one-carbon compound metabolism, nitrogen-containing compound transport and degradation, cell wall organization and biogenesis, and acetyl-CoA metabolism. The expression of a large number of IC-regulated genes did not change in the opi1delta, ino2delta, and ino4delta strains, thus implicating new regulatory elements in the IC response. Our studies revealed that Opi1p, Ino2p, and Ino4p have dual regulatory activities, acting in both positive and negative transcriptional regulation of a large number of genes, most of which are not regulated by IC and only a subset of which is involved in membrane biogenesis. These data provide the first global response profile of yeast to IC and reveal novel regulatory mechanisms by these precursors.
Collapse
Affiliation(s)
- Teresa C Santiago
- Center for Microbial Pathogenesis and the Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3710, USA
| | | |
Collapse
|
24
|
Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. J Mol Biol 2003; 326:639-57. [PMID: 12581629 DOI: 10.1016/s0022-2836(02)01440-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.
Collapse
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
25
|
Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J Biol Chem 2002; 277:39035-44. [PMID: 12167660 DOI: 10.1074/jbc.m207753200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we demonstrate that the GAT1 and GAT2 genes encode the major glycerol-3-phosphate acyltransferase activities in Saccharomyces cerevisiae. Genetic inactivation of either GAT1 or GAT2 did not alter cell growth but inactivation of both resulted in growth cessation. Metabolic analyses of gat1 and gat2 yeast detected that the major differences were: (i) a 50% increase in the rate of triacylglycerol synthesis in gat1 yeast and a corresponding 50% decrease in gat2 yeast, and (ii) a 5-fold increase in glycerophosphocholine production through deacylation of phosphatidylcholine synthesized through the CDP-choline pathway in gat1 yeast, whereas gat2 yeast displayed a 10-fold decrease. To address why we observed alterations in phospholipid turnover specific to phosphatidylcholine produced through the CDP-choline pathway in gat1 and gat2 yeast we tested their sensitivity to various cytotoxic lysolipids and observed that gat2 cells were more sensitive to lysophosphatidylcholine, but not other lysolipids. To pursue the mechanism we analyzed their sensitivity to choline-containing lysolipids or drugs that could not be deacylated and/or reacylated. Our data showed that gat1 and gat2 yeast were resistant and sensitive to lysoplatelet activating factor, platelet activating factor, and the anti-tumor lipid edelfosine, respectively, indicating that their sensitivity to these compounds was not because of differences in rates of phosphatidylcholine deacylation. As growth of gat2 cells was impaired in the presence of ethanol, a phospholipase D (Spo14p) inhibitor, we inferred that phospholipase D may play important biologic and metabolic roles in phenotypes observed in gat yeast. Genetic inactivation of the SPO14 gene resulted in increased susceptibility, whereas expression of Escherichia coli diacylglycerol kinase relieved growth inhibition, to choline-containing lysolipids and drugs. Our results are consistent with a model whereby phosphatidic acid generated from phosphatidylcholine hydrolysis by Spo14p regulates susceptibility to choline-containing lysolipid analogs and drugs.
Collapse
Affiliation(s)
- Vanina Zaremberg
- Atlantic Research Centre, Department of Pediatrics, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
26
|
Howe AG, McMaster CR. Regulation of vesicle trafficking, transcription, and meiosis: lessons learned from yeast regarding the disparate biologies of phosphatidylcholine. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1534:65-77. [PMID: 11786293 DOI: 10.1016/s1388-1981(01)00181-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatidylcholine (PtdCho) is the major phospholipid present in eukaryotic cell membranes generally comprising 50% of the phospholipid mass of most cells and their requisite organelles. PtdCho has a major structural role in maintaining cell and organelle integrity, and thus its synthesis must be tightly monitored to ensure appropriate PtdCho levels are present to allow for its coordination with cell growth regulatory mechanisms. One would also expect that there needs to be coordinated regulation of PtdCho synthesis with its transport from its site of synthesis to cellular organelles to ensure organellar structures and functions are maintained. Each of these processes need to be intimately coordinated with cellular growth decision making processes. To this end, it has recently been revealed that ongoing PtdCho synthesis is required for global transcriptional regulation of phospholipid synthesis. PtdCho is also a major component of intracellular transport vesicles and the synthesis of PtdCho is intimately involved in the regulation of vesicle transport from the Golgi apparatus to the cell surface and the vacuole (yeast equivalent of the mammalian lysosome). This review details some of the more recent advances in our knowledge concerning the role of PtdCho in the regulation of global lipid homeostasis through (i) its restriction of the trafficking of intracellular vesicles that distribute lipids and proteins from their sites of synthesis to their ultimate cellular destinations, (ii) its regulation of specific transcriptional processes that coordinate lipid biosynthetic pathways, and (iii) the role of PtdCho catabolism in the regulation of meiosis. Combined, these regulatory roles for PtdCho ensure vesicular, organellar, and cellular membrane biogenesis occur in a coordinated manner.
Collapse
Affiliation(s)
- A G Howe
- Departments of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, IWK Health Centre, Dalhousie University, 5849 University Avenue, Halifax, NS B3H 4H7, Canada
| | | |
Collapse
|
27
|
Grauslund M, Lopes JM, Rønnow B. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 1999; 27:4391-8. [PMID: 10536147 PMCID: PMC148721 DOI: 10.1093/nar/27.22.4391] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae glycerol utilization is mediated by two enzymes, glycerol kinase (Gut1p) and mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p). The carbon source regulation of GUT1 was studied using promoter-reporter gene fusions. The promoter activity was lowest during growth on glucose and highest on the non-fermentable carbon sources, glycerol, ethanol, lactate, acetate and oleic acid. Mutational analysis of the GUT1 promoter region showed that two upstream activation sequences, UAS(INO) and UAS(ADR1), are responsible for approximately 90% of the expression during growth on glycerol. UAS(ADR1) is a presumed binding site for the zinc finger transcription factor Adr1p and UAS(INO) is a presumed binding site for the basic helix-loop-helix transcription factors Ino2p and Ino4p. In vitro experiments showed Adr1 and Ino2/Ino4 protein-dependent binding to UAS(ADR1) and UAS(INO). The negative regulator Opi1p mediates repression of the GUT1 promoter, whereas the effects of the glucose repressors Mig1p and Mig2p are minor. Together, the experiments show that GUT1 is carbon source regulated by different activation and repression systems.
Collapse
Affiliation(s)
- M Grauslund
- Danisco Biotechnology, Danisco A/S, Langebrogade 1, DK-1001 Copenhagen K, Denmark
| | | | | |
Collapse
|
28
|
Carman GM, Henry SA. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res 1999; 38:361-99. [PMID: 10793889 DOI: 10.1016/s0163-7827(99)00010-7] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this review, we have discussed recent progress in the study of the regulation that controls phospholipid metabolism in S. cerevisiae. This regulation occurs on multiple levels and is tightly integrated with a large number of other cellular processes and related metabolic and signal transduction pathways. Progress in deciphering this complex regulation has been very rapid in the last few years, aided by the availability of the sequence of the entire Saccharomyces genome. The assignment of functions to the remaining unassigned open reading frames, as well as ascertainment of remaining gene-enzyme relationships in phospholipid biosynthesis in yeast, promises to provide detailed understanding of the genetic regulation of a crucial area of metabolism in a key eukaryotic model system. Since the processes of lipid metabolism, secretion, and signal transduction show fundamental similarities in all eukaryotes, the dissection of this regulation in yeast promises to have wide application to our understanding of metabolic control in all eukaryotes.
Collapse
Affiliation(s)
- G M Carman
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick 08901, USA.
| | | |
Collapse
|
29
|
|
30
|
Abstract
The yeast Saccharomyces cerevisiae is a powerful experimental system to study biochemical, cell biological and molecular biological aspects of lipid synthesis. Most but not all genes encoding enzymes involved in fatty acid, phospholipid, sterol or sphingolipid biosynthesis of this unicellular eukaryote have been cloned, and many gene products have been functionally characterized. Less information is available about genes and gene products governing the transport of lipids between organelles and within membranes, turnover and degradation of complex lipids, regulation of lipid biosynthesis, and linkage of lipid metabolism to other cellular processes. Here we summarize current knowledge about lipid biosynthetic pathways in S. cerevisiae and describe the characteristic features of the gene products involved. We focus on recent discoveries in these fields and address questions on the regulation of lipid synthesis, subcellular localization of lipid biosynthetic steps, cross-talk between organelles during lipid synthesis and subcellular distribution of lipids. Finally, we discuss distinct functions of certain key lipids and their possible roles in cellular processes.
Collapse
Affiliation(s)
- G Daum
- Institut für Biochemie und Lebensmittelchemie, Technische Universität, Petersgasse, Graz, Austria.
| | | | | | | |
Collapse
|
31
|
Jiranek V, Graves JA, Henry SA. Pleiotropic effects of the opi1 regulatory mutation of yeast: its effects on growth and on phospholipid and inositol metabolism. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2739-2748. [PMID: 9802015 DOI: 10.1099/00221287-144-10-2739] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Key factors which impact on the biosynthesis and subsequent fate of the phospholipid precursor inositol were studied as a function of growth phase in the yeast Saccharomyces cerevisiae. Both wild-type and strains disrupted for the OPI1 gene, the principal negative regulator of the phospholipid biosynthetic genes, were examined. Overexpression of the INO1 gene and overproduction of both inositol and the major inositol-containing phospholipid, phosphatidylinositol, varied as a function of growth phase. In opi1 cells, INO1 expression was constitutive at a high level throughout growth, although the level of transcript was reduced at stationary phase when the cells were grown in defined medium. In the wild-type strain, INO1 expression was limited to a peak in the exponential phase of growth in cells grown in the absence of inositol. Interestingly, the pattern of OPI1 expression in the wild-type strain resembled that of its putative target, INO1. Intracellular inositol contents of the opi1 strain were higher than those of the wild-type strain, with peak levels occurring in the stationary phase. Membrane phosphatidylinositol content paralleled intracellular inositol content, with opi1 strains having a higher phosphatidylinositol content in stationary phase. The proportion of the predominant phospholipid, phosphatidylcholine, exhibited a profile that was the inverse of the phosphatidylinositol content: phosphatidylcholine content was lowest in opi1 cells in stationary phase. The opi1 mutation was also found to have effects beyond phospholipid biosynthesis. opi1 cells were smaller, and opi1 cultures achieved a cell density twice as high as comparable wild-type cultures. opi1 cells were also more salt tolerant than wild-type cells: they were partly resistant to shrinking, more rapidly resumed growth, and attained a higher culture density after upshift to medium supplemented with 8% NaCl.
Collapse
Affiliation(s)
- Vladimir Jiranek
- Department of Horticulture, Viticulture and Oenology, University of AdelaideWaite Campus, PMB 1, Glen Osmond, SA 5064AustraIia
| | - J Anthony Graves
- Department of Biological Sciences, Carnegie Mellon University4400 Fifth Avenue, Pittsburgh, PA 15213USA
| | - Susan A Henry
- Department of Biological Sciences, Carnegie Mellon University4400 Fifth Avenue, Pittsburgh, PA 15213USA
| |
Collapse
|
32
|
Henry SA, Patton-Vogt JL. Genetic regulation of phospholipid metabolism: yeast as a model eukaryote. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 61:133-79. [PMID: 9752720 DOI: 10.1016/s0079-6603(08)60826-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Baker's yeast, Saccharomyces cerevisiae, is an excellent and an increasingly important model for the study of fundamental questions in eukaryotic cell biology and genetic regulation. The fission yeast, Schizosaccharomyces pombe, although not as intensively studied as S. cerevisiae, also has many advantages as a model system. In this review, we discuss progress over the past several decades in biochemical and molecular genetic studies of the regulation of phospholipid metabolism in these two organisms and higher eukaryotes. In S. cerevisiae, following the recent completion of the yeast genome project, a very high percentage of the gene-enzyme relationships in phospholipid metabolism have been assigned and the remaining assignments are expected to be completed rapidly. Complex transcriptional regulation, sensitive to the availability of phospholipid precusors, as well as growth phase, coordinates the expression of the structural genes encoding these enzymes in S. cerevisiae. In this article, this regulation is described, the mechanism by which the cell senses the ongoing metabolic activity in the pathways for phospholipid biosynthesis is discussed, and a model is presented. Recent information relating to the role of phosphatidylcholine turnover in S. cerevisiae and its relationship to the secretory pathway, as well as to the regulation of phospholipid metabolism, is also presented. Similarities in the role of phospholipase D-mediated phosphatidylcholine turnover in the secretory process in yeast and mammals lend further credence to yeast as a model system.
Collapse
Affiliation(s)
- S A Henry
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
33
|
Ostrander DB, O'Brien DJ, Gorman JA, Carman GM. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 1998; 273:18992-9001. [PMID: 9668079 DOI: 10.1074/jbc.273.30.18992] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) activity in Saccharomyces cerevisiae is allosterically regulated by CTP product inhibition. Amino acid residue Glu161 in the URA7-encoded and URA8-encoded CTP synthetases was identified as being involved in the regulation of these enzymes by CTP product inhibition. The specific activities of the URA7-encoded and URA8-encoded enzymes with a Glu161 --> Lys (E161K) mutation were 2-fold greater when compared with the wild-type enzymes. The E161K mutant URA7-encoded and URA8-encoded CTP synthetases were less sensitive to CTP product inhibition with inhibitor constants for CTP of 8.4- and 5-fold greater, respectively, than those of their wild-type counterparts. Cells expressing the E161K mutant enzymes on a multicopy plasmid exhibited an increase in resistance to the pyrimidine poison and cancer therapeutic drug cyclopentenylcytosine and accumulated elevated (6-15-fold) levels of CTP when compared with cells expressing the wild-type enzymes. Cells expressing the E161K mutation in the URA7-encoded CTP synthetase exhibited an increase (1.5-fold) in the utilization of the Kennedy pathway for phosphatidylcholine synthesis when compared with control cells. Cells bearing the mutation also exhibited an increase in the synthesis of phosphatidylcholine (1.5-fold), phosphatidylethanolamine (1.3-fold), and phosphatidate (2-fold) and a decrease in the synthesis of phosphatidylserine (1.7-fold). These alterations were accompanied by an inositol excretion phenotype due to the misregulation of the INO1 gene. Moreover, cells bearing the E161K mutation exhibited an increase (1.6-fold) in the ratio of total neutral lipids to phospholipids, an increase in triacylglycerol (1.4-fold), free fatty acids (1.7-fold), and ergosterol ester (1.8-fold), and a decrease in diacylglycerol (1. 3-fold) when compared with control cells. These data indicated that the regulation of CTP synthetase activity by CTP plays an important role in the regulation of phospholipid synthesis.
Collapse
Affiliation(s)
- D B Ostrander
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
34
|
Toke DA, Bennett WL, Oshiro J, Wu WI, Voelker DR, Carman GM. Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+-independent phosphatidate phosphatase. J Biol Chem 1998; 273:14331-8. [PMID: 9603941 DOI: 10.1074/jbc.273.23.14331] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DPP1-encoded diacylglycerol pyrophosphate (DGPP) phosphatase enzyme accounts for half of the Mg2+-independent phosphatidate (PA) phosphatase activity in Saccharomyces cerevisiae. The LPP1 (lipid phosphate phosphatase) gene encodes a protein that contains a novel phosphatase sequence motif found in DGPP phosphatase and in the mouse Mg2+-independent PA phosphatase. A genomic copy of the S. cerevisiae LPP1 gene was isolated and was used to construct lpp1Delta and lpp1Delta dpp1Delta mutants. A multicopy plasmid containing the LPP1 gene directed a 12.9-fold overexpression of Mg2+-independent PA phosphatase activity in the S. cerevisiae lpp1Delta dpp1Delta double mutant. The heterologous expression of the S. cerevisiae LPP1 gene in Sf-9 insect cells resulted in a 715-fold overexpression of Mg2+-independent PA phosphatase activity relative to control insect cells. The Mg2+-independent PA phosphatase activity encoded by the LPP1 gene was associated with the membrane fraction of the cell. The LPP1 gene product also exhibited lyso-PA phosphatase and DGPP phosphatase activities. The order of substrate preference was PA > lyso-PA > DGPP. Like the dpp1Delta mutant, the lpp1Delta mutant and the lpp1Delta dpp1Delta double mutant were viable and did not exhibit obvious growth defects. Biochemical analyses of lpp1Delta, dpp1Delta, and lpp1Delta dpp1Delta mutants showed that the LPP1 and DPP1 gene products encoded nearly all of the Mg2+-independent PA phosphatase and lyso-PA phosphatase activities and all of the DGPP phosphatase activity in S. cerevisiae. Moreover, the analyses of the mutants showed that the LPP1 and DPP1 gene products played a role in the regulation of phospholipid metabolism and the cellular levels of phosphatidylinositol and PA.
Collapse
Affiliation(s)
- D A Toke
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08903, USA
| | | | | | | | | | | |
Collapse
|
35
|
Shen H, Dowhan W. Regulation of phosphatidylglycerophosphate synthase levels in Saccharomyces cerevisiae. J Biol Chem 1998; 273:11638-42. [PMID: 9565583 DOI: 10.1074/jbc.273.19.11638] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PGS1 gene of Saccharomyces cerevisiae encodes phosphatidylglycerophosphate (PG-P) synthase. PG-P synthase activity is regulated by factors affecting mitochondrial development and through cross-pathway control by inositol. The molecular mechanism of this regulation was examined by using a reporter gene under control of the PGS1 gene promoter (PPGS1-lacZ). Gene expression subject to carbon source regulation was monitored both at steady-state level and during the switch between different carbon sources. Cells grown in a non-fermentable carbon source had beta-galactosidase levels 3-fold higher than those grown in glucose. A shift from glucose to lactate rapidly raised the level of gene expression, whereas a shift back to glucose had the opposite effect. In either a pgs1 null mutant or a rho mutant grown in glucose, PPGS1-lacZ expression was 30-50% of the level in wild type cells. Addition of inositol to the growth medium resulted in a 2-3-fold reduction in gene expression in wild type cells. In ino2 and ino4 mutants, gene expression was greatly reduced and was not subject to inositol regulation consistent with inositol repression being dependent on the INO2 and INO4 regulatory genes. PPGS1-lacZ expression was elevated in a cds1 null mutant in the presence or absence of inositol, indicating that the capacity to synthesize CDP-diacylglycerol affects gene expression. Lack of cardiolipin synthesis (cls1 null mutant) had no effect on reporter gene expression.
Collapse
Affiliation(s)
- H Shen
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77225, USA
| | | |
Collapse
|
36
|
Abstract
The synthesis and utilization of CDP-diacylglycerol in mammalian cells was demonstrated over 35 years ago when initial studies were carried out. However, CDP-diacylglycerol synthases and the genes encoding these enzymes have been studied in the greatest detail in Escherichia coli and Saccharomyces cerevisiae. The involvement of CDP-diacylglycerol in regulation of phospholipid metabolism has recently been demonstrated in Saccharomyces cerevisiae, and evidence now exists from studies in Drosophila that this liponucleotide may be important in regulation of lipid-dependent signal transduction processes. The vast amount of biochemical and genetic information on the synthases from microorganisms has led to the cloning of genes that encode CDP-diacylglycerol synthases from somatic cells. The combination of information on these synthases from all organisms will lead to a clearer understanding of the role CDP-diacylglycerol plays in cellular processes.
Collapse
Affiliation(s)
- W Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, 77225, USA.
| |
Collapse
|