1
|
Liao M, Dong R, Li L, Liu X, Wang Y, Bai Y, Luo H, Yao B, Huang H, Tu T. High Production of Maltooligosaccharides in the Starch Liquefaction Process: A Study on the Hyperthermophilic Mechanism of α-Amylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6480-6489. [PMID: 36959740 DOI: 10.1021/acs.jafc.3c00665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The efficient production of high-value-added bioproducts from starchy substances requires α-amylases with hyperthermophilic properties for industrial starch liquefaction. In this study, two hyperthermophilic α-amylases with significant differences in thermostability, PfAmy and TeAmy, were comparatively studied through structural analysis, domain swapping, and site-directed mutagenesis, finding that three residues, His152, Cys166, and His168, located in domain B were the main contributors to hyperthermostability. The effects of these three residues were strongly synergistic, causing the optimum temperature for the mutant K152H/A166C/E168H of TeAmy to shift to 95-100 °C and stabilize at 90 °C without Ca2+. Compared to PfAmy and TeAmy, the mutant K152H/A166C/E168H, respectively, exhibited 1.7- and 2.5-times higher starch hydrolysis activity at 105 °C and pH 5.5 (10411 ± 70 U/mg) and released 1.1- and 1.7-times more maltooligosaccharides from 1% starch. This work has interpreted the hyperthermophilic mechanism of α-amylase and thereby providing a potential candidate for the efficient industrial conversion of starch to bioproducts.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruyue Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lanxue Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Ahmad A, Rahamtullah, Mishra R. Structural and functional adaptation in extremophilic microbial α-amylases. Biophys Rev 2022; 14:499-515. [PMID: 35528036 PMCID: PMC9043155 DOI: 10.1007/s12551-022-00931-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/12/2022] [Indexed: 01/26/2023] Open
Abstract
Maintaining stable native conformation of a protein under a given ecological condition is the prerequisite for survival of organisms. Extremophilic bacteria and archaea have evolved to adapt under extreme conditions of temperature, pH, salt, and pressure. Molecular adaptations of proteins under these conditions are essential for their survival. These organisms have the capability to maintain stable, native conformations of proteins under extreme conditions. The enzymes produced by the extremophiles are also known as extremozyme, which are used in several industries. Stability and functionality of extremozymes under varying temperature, pH, and solvent conditions are the most desirable requirement of industry. α-Amylase is one of the most important enzymes used in food, pharmaceutical, textile, and detergent industries. This enzyme is produced by diverse microorganisms including various extremophiles. Therefore, understanding its stability is important from fundamental as well as an applied point of view. Each class of extremophiles has a distinctive set of dominant non-covalent interactions which are important for their stability. Static information obtained by comparative analysis of amino acid sequence and atomic resolution structure provides information on the prevalence of particular amino acids or a group of non-covalent interactions. Protein folding studies give the information about thermodynamic and kinetic stability in order to understand dynamic aspect of molecular adaptations. In this review, we have summarized information on amino acid sequence, structure, stability, and adaptability of α-amylases from different classes of extremophiles.
Collapse
Affiliation(s)
- Aziz Ahmad
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rahamtullah
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| | - Rajesh Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110,067 India
| |
Collapse
|
3
|
Modulating Glycoside Hydrolase Activity between Hydrolysis and Transfer Reactions Using an Evolutionary Approach. Molecules 2021; 26:molecules26216586. [PMID: 34770995 PMCID: PMC8587830 DOI: 10.3390/molecules26216586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023] Open
Abstract
The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction specificity is key to modifying and designing enzymes with increased specificity towards individual reactions for further applications in industrial, chemical, or biomedical fields. This work proposes a computational approach for decoding the determinant structural composition defining the reaction specificity. This method is based on the conservation of coevolving residues in spatial contacts associated with reaction specificity. To evaluate the algorithm, mutants of α-amylase (TmAmyA) and glucanotransferase (TmGTase) from Thermotoga maritima were constructed to modify the reaction specificity. The K98P/D99A/H222Q variant from TmAmyA doubled the transglycosydation/hydrolysis (T/H) ratio while the M279N variant from TmGTase increased the hydrolysis/transglycosidation ratio five-fold. Molecular dynamic simulations of the variants indicated changes in flexibility that can account for the modified T/H ratio. An essential contribution of the presented computational approach is its capacity to identify residues outside of the active center that affect the reaction specificity.
Collapse
|
4
|
Suleiman M, Krüger A, Antranikian G. Biomass-degrading glycoside hydrolases of archaeal origin. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:153. [PMID: 32905355 PMCID: PMC7469102 DOI: 10.1186/s13068-020-01792-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
During the last decades, the impact of hyperthermophiles and their enzymes has been intensively investigated for implementation in various high-temperature biotechnological processes. Biocatalysts of hyperthermophiles have proven to show extremely high thermo-activities and thermo-stabilities and are identified as suitable candidates for numerous industrial processes with harsh conditions, including the process of an efficient plant biomass pretreatment and conversion. Already-characterized archaea-originated glycoside hydrolases (GHs) have shown highly impressive features and numerous enzyme characterizations indicated that these biocatalysts show maximum activities at a higher temperature range compared to bacterial ones. However, compared to bacterial biomass-degrading enzymes, the number of characterized archaeal ones remains low. To discover new promising archaeal GH candidates, it is necessary to study in detail the microbiology and enzymology of extremely high-temperature habitats, ranging from terrestrial to marine hydrothermal systems. State-of-the art technologies such as sequencing of genomes and metagenomes and automated binning of genomes out of metagenomes, combined with classical microbiological culture-dependent approaches, have been successfully performed to detect novel promising biomass-degrading hyperthermozymes. In this review, we will focus on the detection, characterization and similarities of archaeal GHs and their unique characteristics. The potential of hyperthermozymes and their impact on high-temperature industrial applications have not yet been exhausted.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Anna Krüger
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Najar IN, Thakur N. A systematic review of the genera Geobacillus and Parageobacillus: their evolution, current taxonomic status and major applications. MICROBIOLOGY-SGM 2020; 166:800-816. [PMID: 32744496 DOI: 10.1099/mic.0.000945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The genus Geobacillus, belonging to the phylum Firmicutes, is one of the most important genera and comprises thermophilic bacteria. The genus Geobacillus was erected with the taxonomic reclassification of various Bacillus species. Taxonomic studies of Geobacillus remain in progress. However, there is no comprehensive review of the characteristic features, taxonomic status and study of various applications of this interesting genus. The main aim of this review is to give a comprehensive account of the genus Geobacillus. At present the genus acomprises 25 taxa, 14 validly published (with correct name), nine validly published (with synonyms) and two not validly published species. We describe only validly published species of the genera Geobacillus and Parageobacillus. Vegetative cells of Geobacillus species are Gram-strain-positive or -variable, rod-shaped, motile, endospore-forming, aerobic or facultatively anaerobic, obligately thermophilic and chemo-organotrophic. Growth occurs in the pH range 6.08.5 and a temperature of 37-75 °C. The major cellular fatty acids are iso-C15:o, iso-C16:0 and iso-C17:o. The main menaquinone type is MK-7. The G-+C content of the DNA ranges between 48.2 and 58 mol%. The genus Geobacillus is widely distributed in nature, being mostly found in many extreme locations such as hot springs, hydrothermal vents, marine trenches, hay composts, etc. Geobacillus species have been widely exploited in various industrial and biotechnological applications, and thus are promising candidates for further studies in the future.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| |
Collapse
|
6
|
Heterologous expression of the novel α-helical hybrid peptide PR-FO in Bacillus subtilis. Bioprocess Biosyst Eng 2020; 43:1619-1627. [PMID: 32350599 DOI: 10.1007/s00449-020-02353-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/12/2020] [Indexed: 12/11/2022]
Abstract
PR-FO is a novel α-helical hybrid antimicrobial peptide (AMP) with strong antimicrobial activities and high stability, and the potential to develop into a new generation of antimicrobial agents. In this study, the encoded gene sequence of SMT3-PR-FO was designed and transformed into B. subtilis WB800N. Fusion proteins with concentrations of 16 mg L-1 (SPamyQ) and 23 mg L-1 (SPsacB) were obtained after purification by a Ni-NTA resin column. A total of 3 mg (SPamyQ) and 4 mg (SPsacB) of PR-FO with a purity of 90% was obtained from 1 L fermentation cultures. Recombinant PR-FO exhibited high inhibition activities against both gram-negative bacteria and gram-positive bacteria, and low haemolytic activity against human red blood cells. These results indicated that the rSMT3-PR-FO could be expressed under the guidance of SPamyQ and SPsacB, and the maltose-induced expression strategy might be a safe and efficient method for the soluble peptides production in B. subtilis.
Collapse
|
7
|
A new GH13 subfamily represented by the α-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 2019; 24:207-217. [PMID: 31734852 DOI: 10.1007/s00792-019-01147-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/05/2019] [Indexed: 01/16/2023]
Abstract
α-Amylase catalyzes the endohydrolysis of α-1,4-glucosidic linkages in starch and related α-glucans. In the CAZy database, most α-amylases have been classified into the family GH13 counting at present more than 80,000 sequences and ~ 30 different enzyme specificities. The family has already been divided into 42 subfamilies, but additional subfamilies are still emerging. The present bioinformatics study was undertaken in an effort to propose a novel GH13 subfamily around the experimentally characterized α-amylase from the halophilic archaeon Haloarcula hispanica, which until now has not been assigned to any GH13 subfamily. The in silico analysis resulted in collecting a convincing group of putative haloarchaeal α-amylase homologues sharing sequence similarities mainly in their conserved sequence regions (CSRs) and forming a cluster in the evolutionary tree, which is well separated from representatives of established GH13 subfamilies. One of the most exclusive sequence features of the novel GH13 subfamily is the tyrosine (Tyr79 in H. hispanica α-amylase numbering) succeeding the glycine at the beginning of the CSR-VI at the β2 strand of the catalytic TIM-barrel. Evolutionarily, the novel GH13 α-amylase subfamily was most closely related to two clusters of GH13 subfamilies with the specificity of α-amylase, i.e. subfamilies GH13_5, 6 and 7 as well as GH13_15, 24, 27 and 28.
Collapse
|
8
|
Directed evolution of α-amylase from Bacillus licheniformis to enhance its acid-stable performance. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00262-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Salgaonkar BB, Sawant DT, Harinarayanan S, Bragança JM. Alpha-amylase Production by Extremely Halophilic ArchaeonHalococcusStrain GUVSC8. STARCH-STARKE 2019. [DOI: 10.1002/star.201800018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bhakti B. Salgaonkar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani; K K Birla, Goa Campus; NH-17B Zuarinagar 403 726 Goa India
- Department of Microbiology, Goa University; Taleigao Plateau; 403 206 Goa India
| | - Divya T. Sawant
- Department of Microbiology, Goa University; Taleigao Plateau; 403 206 Goa India
| | - Saranya Harinarayanan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani; K K Birla, Goa Campus; NH-17B Zuarinagar 403 726 Goa India
| | - Judith M. Bragança
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani; K K Birla, Goa Campus; NH-17B Zuarinagar 403 726 Goa India
| |
Collapse
|
10
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
11
|
Yin H, Zhang L, Yang Z, Li S, Nie X, Wang Y, Yang C. Contribution of domain B to the catalytic properties of a Flavobacteriaceae α-amylase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Ligaba-Osena A, Jones J, Donkor E, Chandrayan S, Pole F, Wu CH, Vieille C, Adams MWW, Hankoua BB. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase. FRONTIERS IN PLANT SCIENCE 2018; 9:192. [PMID: 29541080 PMCID: PMC5836596 DOI: 10.3389/fpls.2018.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/01/2018] [Indexed: 11/06/2023]
Abstract
To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta), which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC) from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Jenna Jones
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Emmanuel Donkor
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| | - Sanjeev Chandrayan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Farris Pole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Claire Vieille
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Bertrand B. Hankoua
- College of Agriculture and Related Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
13
|
Zhu H, Reynolds LB, Menassa R. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates. BMC Biotechnol 2017; 17:53. [PMID: 28629346 PMCID: PMC5477289 DOI: 10.1186/s12896-017-0372-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. RESULTS We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. CONCLUSIONS Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.
Collapse
Affiliation(s)
- Hong Zhu
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
| | - L. Bruce Reynolds
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario Canada
- Department of Biology, University of Western Ontario, London, Ontario Canada
| |
Collapse
|
14
|
Sarian FD, Janeček Š, Pijning T, Ihsanawati, Nurachman Z, Radjasa OK, Dijkhuizen L, Natalia D, van der Maarel MJEC. A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad. Sci Rep 2017; 7:44230. [PMID: 28287181 PMCID: PMC5347038 DOI: 10.1038/srep44230] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 11/09/2022] Open
Abstract
α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13.
Collapse
Affiliation(s)
- Fean D Sarian
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.,Aquatic Biotechnology and Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, SK-84551 Bratislava, Slovakia.,Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Mehtodius, Nam. J. Herdu 2, SK-91701 Trnava, Slovakia
| | - Tjaard Pijning
- X-Ray Crystallography, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ihsanawati
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Zeily Nurachman
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Ocky K Radjasa
- Department of Marine Science, Faculty of Fishery and Marine Science, Diponegoro University, Semarang 50275, Central Java, Indonesia
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dessy Natalia
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Marc J E C van der Maarel
- Aquatic Biotechnology and Bioproduct Engineering, Engineering and Technology institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
15
|
Kengen SWM. 'Pyrococcus furiosus, 30 years on'. Microb Biotechnol 2017; 10:1441-1444. [PMID: 28217936 PMCID: PMC5658583 DOI: 10.1111/1751-7915.12695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Pyrococcus furiosus has come of age. In 1986 the first publication on a remarkable microorganism, Pyrococcus furiosus, appeared. Now, 30 years later it is still “the fast and the furious“.
![]()
Collapse
Affiliation(s)
- Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
16
|
Allosteric properties of Geobacillus maltogenic amylase. Enzyme Microb Technol 2017; 96:36-41. [DOI: 10.1016/j.enzmictec.2016.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022]
|
17
|
Kim J, Kim SI, Hong E, Ryu Y. Strategies for increasing heterologous expression of a thermostable esterase from Archaeoglobus fulgidus in Escherichia coli. Protein Expr Purif 2016; 127:98-104. [DOI: 10.1016/j.pep.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
|
18
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
19
|
Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli. Cell Stress Chaperones 2016; 21:477-84. [PMID: 26862080 PMCID: PMC4837189 DOI: 10.1007/s12192-016-0675-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/14/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022] Open
Abstract
The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P. furiosus in the soluble expression of recombinant PFA in E. coli. The results indicate that co-expression of PFA with the molecular chaperone prefoldin alone significantly increased the soluble expression of PFA. Although, co-expression of other main chaperone components from P. furiosus, such as the small heat shock protein (sHSP) or chaperonin (HSP60), was also able to improve the soluble expression of PFA to a certain extent. Co-expression of chaperonin or sHSP in addition to prefoldin did not further increase the soluble expression of PFA. This finding emphasizes the biotechnological potentials of the molecular chaperone prefoldin from P. furiosus, which may facilitate the production of recombinant PFA.
Collapse
Affiliation(s)
- Shuaiying Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhongmei Chu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Lu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Dongxiao Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Shengli Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
20
|
A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci Rep 2016; 6:22229. [PMID: 26916714 PMCID: PMC4768087 DOI: 10.1038/srep22229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Extracellular α-amylase from Pyrococcus furiosus (PFA) shows great starch-processing potential for industrial application due to its thermostability, long half-life and optimal activity at low pH; however, it is difficult to produce in large quantities. In contrast, α-amylase from Bacillus amyloliquefaciens (BAA) can be produced in larger quantities, but shows lower stability at high temperatures and low pH. Here, we describe a BAA protein expression pattern-mimicking strategy to express PFA in B. amyloliquefaciens using the expression and secretion elements of BAA, including the codon usage bias and mRNA structure of gene, promoter, signal peptide, host and cultivation conditions. This design was assessed to be successful by comparing the various genes (mpfa and opfa), promoters (PamyA and P43), and strains (F30, F31, F32 and F30-∆amyA). The final production of PFA yielded 2714 U/mL, about 3000- and 14-fold that reportedly produced in B. subtilis or E. coli, respectively. The recombinant PFA was optimally active at ~100 °C and pH 5 and did not require Ca2+ for activity or thermostability, and >80% of the enzyme activity was retained after treatment at 100 °C for 4 h.
Collapse
|
21
|
Saxena N, Pore S, Arora P, Kapse N, Engineer A, Ranade DR, Dhakephalkar PK. Cultivable bacterial flora of Indian oil reservoir: isolation, identification and characterization of the biotechnological potential. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Janeček Š, Svensson B, MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 2014; 71:1149-70. [PMID: 23807207 PMCID: PMC11114072 DOI: 10.1007/s00018-013-1388-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
Abstract
α-Amylase (EC 3.2.1.1) represents the best known amylolytic enzyme. It catalyzes the hydrolysis of α-1,4-glucosidic bonds in starch and related α-glucans. In general, the α-amylase is an enzyme with a broad substrate preference and product specificity. In the sequence-based classification system of all carbohydrate-active enzymes, it is one of the most frequently occurring glycoside hydrolases (GH). α-Amylase is the main representative of family GH13, but it is probably also present in the families GH57 and GH119, and possibly even in GH126. Family GH13, known generally as the main α-amylase family, forms clan GH-H together with families GH70 and GH77 that, however, contain no α-amylase. Within the family GH13, the α-amylase specificity is currently present in several subfamilies, such as GH13_1, 5, 6, 7, 15, 24, 27, 28, 36, 37, and, possibly in a few more that are not yet defined. The α-amylases classified in family GH13 employ a reaction mechanism giving retention of configuration, share 4-7 conserved sequence regions (CSRs) and catalytic machinery, and adopt the (β/α)8-barrel catalytic domain. Although the family GH57 α-amylases also employ the retaining reaction mechanism, they possess their own five CSRs and catalytic machinery, and adopt a (β/α)7-barrel fold. These family GH57 attributes are likely to be characteristic of α-amylases from the family GH119, too. With regard to family GH126, confirmation of the unambiguous presence of the α-amylase specificity may need more biochemical investigation because of an obvious, but unexpected, homology with inverting β-glucan-active hydrolases.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia,
| | | | | |
Collapse
|
23
|
Li C, Du M, Cheng B, Wang L, Liu X, Ma C, Yang C, Xu P. Close relationship of a novel Flavobacteriaceae α-amylase with archaeal α-amylases and good potentials for industrial applications. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:18. [PMID: 24485248 PMCID: PMC3922116 DOI: 10.1186/1754-6834-7-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Bioethanol production from various starchy materials has received much attention in recent years. α-Amylases are key enzymes in the bioconversion process of starchy biomass to biofuels, food or other products. The properties of thermostability, pH stability, and Ca-independency are important in the development of such fermentation process. RESULTS A novel Flavobacteriaceae Sinomicrobium α-amylase (FSA) was identified and characterized from genomic analysis of a novel Flavobacteriaceae species. It is closely related with archaeal α-amylases in the GH13_7 subfamily, but is evolutionary distant with other bacterial α-amylases. Based on the conserved sequence alignment and homology modeling, with minor variation, the Zn2+- and Ca2+-binding sites of FSA were predicated to be the same as those of the archaeal thermophilic α-amylases. The recombinant α-amylase was highly expressed and biochemically characterized. It showed optimum activity at pH 6.0, high enzyme stability at pH 6.0 to 11.0, but weak thermostability. A disulfide bond was introduced by site-directed mutagenesis in domain C and resulted in the apparent improvement of the enzyme activity at high temperature and broad pH range. Moreover, about 50% of the enzyme activity was detected under 100°C condition, whereas no activity was observed for the wild type enzyme. Its thermostability was also enhanced to some extent, with the half-life time increasing from 25 to 55 minutes at 50°C. In addition, after the introduction of the disulfide bond, the protein became a Ca-independent enzyme. CONCLUSIONS The improved stability of FSA suggested that the domain C contributes to the overall stability of the enzyme under extreme conditions. In addition, successfully directed modification and special evolutionary status of FSA imply its directional reconstruction potentials for bioethanol production, as well as for other industrial applications.
Collapse
Affiliation(s)
- Chunfang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Miaofen Du
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Bin Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Xinqiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
24
|
Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2600-5. [DOI: 10.1016/j.bbapap.2013.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/13/2013] [Accepted: 09/14/2013] [Indexed: 11/17/2022]
|
25
|
Malik B, Rashid N, Ahmad N, Akhtar M. Escherichia coli signal peptidase recognizes and cleaves the signal sequence of α-amylase originating from Bacillus licheniformis. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:958-62. [PMID: 24228886 DOI: 10.1134/s0006297913080142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The gene encoding the α-amylase from Bacillus licheniformis was cloned, with and without the native signal sequence, and expressed in Escherichia coli, resulting in the production of the recombinant protein in the cytoplasm as insoluble but enzymatically active aggregates. Expression with a low concentration of the inducer at low temperature resulted in the production of the recombinant protein in soluble form in a significantly higher amount. The protein produced with signal sequence was exported to the extracellular medium, whereas there was no export of the protein produced from the gene without the signal sequence. Similarly, the α-amylase activity in the culture medium increased with time after induction in case of the protein produced with signal sequence. Molecular mass determinations by MALDI-TOF mass spectrometry and N-terminal amino acid sequencing of the purified recombinant α-amylase from the extracellular medium revealed that the native signal peptide was cleaved by E. coli signal peptidase between Ala28 and Ala29. It seems possible that the signal peptide of α-amylase from B. licheniformis can be used for the secretion of other recombinant proteins produced using the E. coli expression system.
Collapse
Affiliation(s)
- B Malik
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | | | | | | |
Collapse
|
26
|
Arakawa T, Tokunaga H, Ishibashi M, Tokunaga M. Halophilic Properties and their Manipulation and Application. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 2012; 16:497-506. [PMID: 22527043 DOI: 10.1007/s00792-012-0449-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
The glycoside hydrolase family 57 (GH57) contains five well-established enzyme specificities: α-amylase, amylopullulanase, branching enzyme, 4-α-glucanotransferase and α-galactosidase. Around 700 GH57 members originate from Bacteria and Archaea, a substantial number being produced by thermophiles. An intriguing feature of family GH57 is that only slightly more than 2 % of its members (i.e., less than 20 enzymes) have already been biochemically characterized. The main goal of the present bioinformatics study was to retrieve from databases, and analyze in detail, sequences having clear features of the five GH57 enzyme specificities mentioned above. Of the 367 GH57 sequences, 56 were evaluated as α-amylases, 99 as amylopullulanases, 158 as branching enzymes, 46 as 4-α-glucanotransferases and 8 as α-galactosidases. Based on the analysis of collected sequences, sequence logos were created for each specificity and unique sequence features were identified within the logos. These features were proposed to define the so-called sequence fingerprints of GH57 enzyme specificities. Domain arrangements characteristic of the individual enzyme specificities as well as evolutionary relationships within the family GH57 are also discussed. The results of this study could find use in rational protein design of family GH57 amylolytic enzymes and also in the possibility of assigning a GH57 specificity to a hypothetical GH57 member prior to its biochemical characterization.
Collapse
|
28
|
Effective solubilization and single-step purification of Bacillus licheniformis alpha-amylase from insoluble aggregates. Folia Microbiol (Praha) 2010; 55:133-6. [PMID: 20490755 DOI: 10.1007/s12223-010-0020-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/22/2009] [Indexed: 10/19/2022]
Abstract
A high level expression of thermostable alpha-amylase gene from Bacillus licheniformis in Escherichia coli was obtained. The recombinant enzyme was mainly produced in the form of insoluble aggregates. The enzyme was solubilized without using denaturing agents and purified to homogeneity in a single step by ion exchange chromatography. The enzyme was purified 138-fold with a final yield of 349 %; the specific activity of the purified enzyme was 1343 U/mg.
Collapse
|
29
|
Morozkina EV, Slutskaya ES, Fedorova TV, Tugay TI, Golubeva LI, Koroleva OV. Extremophilic microorganisms: Biochemical adaptation and biotechnological application (review). APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810010011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2009; 160:2401-14. [PMID: 19763902 DOI: 10.1007/s12010-009-8735-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, alpha-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.
Collapse
|
31
|
|
32
|
van Lieshout JF, Verhees CH, Ettema TJ, van der Sar S, Imamura H, Matsuzawa H, van der Oost J, de Vos WM. Identification and Molecular Characterization of a Novel Type of α-galactosidase fromPyrococcus furiosus. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420310001614342] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Role of the phenylalanine 260 residue in defining product profile and alcoholytic activity of the α-amylase AmyA from Thermotoga maritima. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Unsworth LD, van der Oost J, Koutsopoulos S. Hyperthermophilic enzymes − stability, activity and implementation strategies for high temperature applications. FEBS J 2007; 274:4044-56. [PMID: 17683334 DOI: 10.1111/j.1742-4658.2007.05954.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current theories agree that there appears to be no unique feature responsible for the remarkable heat stability properties of hyperthermostable proteins. A concerted action of structural, dynamic and other physicochemical attributes are utilized to ensure the delicate balance between stability and functionality of proteins at high temperatures. We have thoroughly screened the literature for hyperthermostable enzymes with optimal temperatures exceeding 100 degrees C that can potentially be employed in multiple biotechnological and industrial applications and to substitute traditionally used, high-cost engineered mesophilic/thermophilic enzymes that operate at lower temperatures. Furthermore, we discuss general methods of enzyme immobilization and suggest specific strategies to improve thermal stability, activity and durability of hyperthermophilic enzymes.
Collapse
Affiliation(s)
- Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
35
|
. MMB, . NAS, . YRAF. Production, Partial Characterization and Cloning of Thermostable α-amylase of a Thermophile Geobacillus thermoleovorans YN. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/biotech.2007.175.183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
A sterilisation Time–Temperature Integrator based on amylase from the hyperthermophilic organism Pyrococcus furiosus. INNOV FOOD SCI EMERG 2007. [DOI: 10.1016/j.ifset.2006.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Wang L, Zhou Q, Chen H, Chu Z, Lu J, Zhang Y, Yang S. Efficient solubilization, purification of recombinant extracellular α-amylase from pyrococcus furiosus expressed as inclusion bodies in Escherichia coli. J Ind Microbiol Biotechnol 2006; 34:187-92. [PMID: 17119903 DOI: 10.1007/s10295-006-0185-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 10/25/2006] [Indexed: 11/30/2022]
Abstract
The gene encoding the Pyrococcus furiosus extracellular alpha-amylase (PFA) was amplified by PCR from P. furiosus genomic DNA and was highly expressed in Escherichia coli BL21-Codon Plus (DE3)-RIL. The recombinant alpha-amylase was mainly expressed in the form of insoluble inclusion bodies. An improved purification method was established in this paper. The solubilization of the inclusion bodies was achieved by 90 degrees C treatment for 3 min in Britton-Robinson buffer at pH 10.5. The solubilized PFA was then diluted and subsequently purified by Phenyl Sepharose chromatography. The overall yield of the new purification method was about 58,000 U/g wet cells, which is higher than previously reported.
Collapse
Affiliation(s)
- Lisa Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Science, 500 Caobao Road, 200233 Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Cloning, expression, partial characterization and structural modeling of a novel esterase from Pyrococcus furiosus. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Kuroita T, Kanno T, Kawai A, Kawakami B, Oka M, Endo Y, Tozawa Y. Functional similarities of a thermostable protein-disulfide oxidoreductase identified in the archaeon Pyrococcus horikoshii to bacterial DsbA enzymes. Extremophiles 2006; 11:85-94. [PMID: 16896527 DOI: 10.1007/s00792-006-0015-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/30/2006] [Indexed: 11/29/2022]
Abstract
We have isolated and characterized a gene for a putative protein-disulfide oxidoreductase (phdsb) in the archaeon Pyrococcus horikoshii. The open reading frame of phdsb encodes a protein of 170 amino acids with an NH(2)-terminal extension similar to the bacterial signal peptides. The putative mature region of PhDsb includes a sequence motif, Cys-Pro-His-Cys (CPHC), that is conserved in members of the bacterial DsbA family, but otherwise the archaeal and bacterial sequences do not show substantial similarity. A recombinant protein corresponding to the predicted mature form of PhDsb behaved as a monomer and manifested oxidoreductase activities in vitro similar to those of DsbA of Escherichia coli. The catalytic activity of PhDsb was thermostable and was shown by mutation analysis to depend on the NH(2)-terminal cysteine residue of the CPHC motif. Thus, in spite of their low overall sequence similarities, DsbA-like proteins of archaea and bacteria appear to be highly similar in terms of function.
Collapse
Affiliation(s)
- Toshihiro Kuroita
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Tang SY, Le QT, Shim JH, Yang SJ, Auh JH, Park C, Park KH. Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS J 2006; 273:3335-45. [PMID: 16857016 DOI: 10.1111/j.1742-4658.2006.05337.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA shuffling was used to improve the thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2. Two highly thermostable mutants, III-1 and III-2, were generated after three rounds of shuffling and recombination of mutations. Their optimal reaction temperatures were all 80 degrees C, which was 10 degrees C higher than that of the wild-type. The mutant enzyme III-1 carried seven mutations: N147D, F195L, N263S, D311G, A344V, F397S, and N508D. The half-life of III-1 was about 20 times greater than that of the wild-type at 78 degrees C. The mutant enzyme III-2 carried M375T in addition to the mutations in III-1, which was responsible for the decrease in specific activity. The half-life of III-2 was 568 min while that of the wild-type was < 1 min at 80 degrees C. The melting temperatures of III-1 and III-2, as determined by differential scanning calorimetry, increased by 6.1 degrees C and 11.4 degrees C, respectively. Hydrogen bonding, hydrophobic interaction, electrostatic interaction, proper packing, and deamidation were predicted as the mechanisms for the enhancement of thermostability in the enzymes with the mutations.
Collapse
Affiliation(s)
- Shuang-Yan Tang
- Center for Agricultural Biomaterials, and Department of Food Science and Biotechnology, School of Agricultural Biotechnology, Seoul National University, South Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI, Johnson MR, Chou CJ, Bridger SL, Wigner N, Brehm SD, Jenney FE, Comfort DA, Kelly RM, Adams MWW. Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 2006; 188:2115-25. [PMID: 16513741 PMCID: PMC1428126 DOI: 10.1128/jb.188.6.2115-2125.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these alpha-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-II [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF1935*), 4-alpha-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of alpha-glucan substrates by P. furiosus.
Collapse
Affiliation(s)
- Han-Seung Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cacciapuoti G, Moretti MA, Forte S, Brio A, Camardella L, Zappia V, Porcelli M. Methylthioadenosine phosphorylase from the archaeon Pyrococcus furiosus. Mechanism of the reaction and assignment of disulfide bonds. ACTA ACUST UNITED AC 2005; 271:4834-44. [PMID: 15606771 DOI: 10.1111/j.1432-1033.2004.04449.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extremely heat-stable 5'-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus was cloned, expressed to high levels in Escherichia coli, and purified to homogeneity by heat precipitation and affinity chromatography. The recombinant enzyme was subjected to a kinetic analysis including initial velocity and product inhibition studies. The reaction follows an ordered Bi-Bi mechanism and phosphate binding precedes nucleoside binding in the phosphorolytic direction. 5'-Methylthioadenosine phosphorylase from Pyrococcus furiosus is a hexameric protein with five cysteine residues per subunit. Analysis of the fragments obtained after digestion of the protein alkylated without previous reduction identified two intrasubunit disulfide bridges. The enzyme is very resistant to chemical denaturation and the transition midpoint for guanidinium chloride-induced unfolding was determined to be 3.0 M after 22 h incubation. This value decreases to 2.0 M in the presence of 30 mM dithiothreitol, furnishing evidence that disulfide bonds are needed for protein stability. The guanidinium chloride-induced unfolding is completely reversible as demonstrated by the analysis of the refolding process by activity assays, fluorescence measurements and SDS/PAGE. The finding of multiple disulfide bridges in 5'-methylthioadenosine phosphorylase from Pyrococcus furiosus argues strongly that disulfide bond formation may be a significant molecular strategy for stabilizing intracellular hyperthermophilic proteins.
Collapse
Affiliation(s)
- Giovanna Cacciapuoti
- Dipartimento di Biochimica e Biofisica F. Cedrangolo, Seconda Università di Napoli, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Koning SM, Konings WN, Driessen AJ. Biochemical evidence for the presence of two alpha-glucoside ABC-transport systems in the hyperthermophilic archaeon Pyrococcus furiosus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:19-25. [PMID: 15803655 PMCID: PMC2685544 DOI: 10.1155/2002/529610] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hyperthermophilic archaeon Pyrococcus furiosus can utilize different carbohydrates, such as starch, maltose and trehalose. Uptake of alpha-glucosides is mediated by two different, binding protein-dependent, ATP-binding cassette (ABC)-type transport systems. The maltose transporter also transports trehalose, whereas the maltodextrin transport system mediates the uptake of maltotriose and higher malto-oligosaccharides, but not maltose. Both transport systems are induced during growth on their respective substrates.
Collapse
Affiliation(s)
- Sonja M. Koning
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P. O. Box 14, 9750 AA Haren, The Netherlands
| | - Wil N. Konings
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P. O. Box 14, 9750 AA Haren, The Netherlands
| | - Arnold J.M. Driessen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P. O. Box 14, 9750 AA Haren, The Netherlands
- Corresponding author ()
| |
Collapse
|
45
|
A Ca-independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.11.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Hagihara H. An Oxidation Stable and Chelator-resistant, Calcium-free .ALPHA.-Amylase from the Alkaliphilic Bacillus Isolate KSM-K38. J Appl Glycosci (1999) 2005. [DOI: 10.5458/jag.52.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
47
|
Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 2004; 8:475-88. [PMID: 15252724 DOI: 10.1007/s00792-004-0409-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The diversity of culturable bacteria associated with sea ice from four permanently cold fjords of Spitzbergen, Arctic Ocean, was investigated. A total of 116 psychrophilic and psychrotolerant strains were isolated under aerobic conditions at 4 degrees C. The isolates were grouped using amplified rDNA restriction analysis fingerprinting and identified by partial sequencing of 16S rRNA gene. The bacterial isolates fell in five phylogenetic groups: subclasses alpha and gamma of Proteobacteria, the Bacillus-Clostridium group, the order Actinomycetales, and the Cytophaga-Flexibacter-Bacteroides (CFB) phylum. Over 70% of the isolates were affiliated with the Proteobacteria gamma subclass. Based on phylogenetic analysis (<98% sequence similarity), over 40% of Arctic isolates represent potentially novel species or genera. Most of the isolates were psychrotolerant and grew optimally between 20 and 25 degrees C. Only a few strains were psychrophilic, with an optimal growth at 10-15 degrees C. The majority of the bacterial strains were able to secrete a broad range of cold-active hydrolytic enzymes into the medium at a cultivation temperature of 4 degrees C. The isolates that are able to degrade proteins (skim milk, casein), lipids (olive oil), and polysaccharides (starch, pectin) account for, respectively, 56, 31, and 21% of sea-ice and seawater strains. The temperature dependences for enzyme production during growth and enzymatic activity were determined for two selected enzymes, alpha-amylase and beta-galactosidase. Interestingly, high levels of enzyme productions were measured at growth temperatures between 4 and 10 degrees C, and almost no production was detected at higher temperatures (20-30 degrees C). Catalytic activity was detected even below the freezing point of water (at -5 degrees C), demonstrating the unique properties of these enzymes.
Collapse
Affiliation(s)
- Tatiana Groudieva
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstr 12, 21073 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
There are currently 35 available nonredundant molecular structures of class-13 alpha-amylases (EC 3.2.1.1), mostly from microbial organisms living under a wide range of environmental conditions. One of the most recent additions has been the first alpha-amylase structure of a hyperthermophilic archaeon [Linden et al., J. Biol. Chem. 2003, 278, 9875-9884]. The structure has been used for comparative analyses with a representative set of three alpha-amylases from thermophilic, mesophilic and psychrophilic sources to identify molecular parameters for environmental adaptation. Our analysis supports generally observed trends such as an increase in structural compactness as well as an increase in salt bridges in order to cope with high-temperature conditions. The two representative thermophilic structures used in this comparative study have independently evolved di-metal centres--not present in the mesophilic and psychrophilic structures--in the vicinity of the active site. These observations may provide impetus for the design of alpha-amylases with improved molecular properties to enhance their utility in biotechnological processes.
Collapse
Affiliation(s)
- Anni Linden
- EMBL-Hamburg c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | |
Collapse
|
49
|
Abstract
Archaea have developed a variety of molecular strategies to survive the often harsh environments in which they exist. Although the rules that allow archaeal enzymes to fulfill their catalytic functions under extremes of salinity, temperature or pressure are not completely understood, the stability of these extremophilic enzymes, or extremozymes, in the face of adverse conditions has led to their use in a variety of biotechnological applications in which such tolerances are advantageous. In the following, examples of commercially important archaeal extremozymes are presented, potentially useful archaeal extremozyme sources are identified and solutions to obstacles currently hindering wider use of archaeal extremozymes are discussed.
Collapse
Affiliation(s)
- J Eichler
- Department of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| |
Collapse
|
50
|
Shahhoseini M, Ziaee AA, Ghaemi N. Expression and secretion of an alpha-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J Appl Microbiol 2003; 95:1250-4. [PMID: 14632998 DOI: 10.1046/j.1365-2672.2003.02082.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding a hyperthermostable alpha-amylase from a Bacillus licheniformis native strain was cloned in pET24d transcription vector containing T7 promoter, and expressed in Escherichia coli BL21(DE3) cells. Having confirmed the alpha-amylase activity through activity staining method on SDS-PAGE gel, the yields of production were determined in two separated intra and inter-cellular phases and compared using enzymatic assay methods. Extracellular production of the active recombinant enzyme implies the recognition of the putative signal peptide of this Bacillus sp. by E. coli secretory system. This may be because of the amino acid sequence of this signal peptide which covers all the structural parameters of a standard signal peptide processed by Lep B, the major signal peptidase in E. coli secretory system. This study recommends the use of this signal peptide for extracellular production of other foreign proteins in E. coli.
Collapse
Affiliation(s)
- M Shahhoseini
- Institute of Biochemistry and Biophysics, Faculty of Sciences, University of Tehran, Tehran, Islamic Republic of Iran.
| | | | | |
Collapse
|