1
|
Shirbaghaee Z, Sorenson CM, Sheibani N. Pericytes and Diabetic Microangiopathies: Tissue Resident Mesenchymal Stem Cells with High Plasticity and Regenerative Capacity. Int J Mol Sci 2025; 26:5333. [PMID: 40508141 PMCID: PMC12154245 DOI: 10.3390/ijms26115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/27/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Pericytes (PCs), a heterogeneous population of perivascular supporting cells, are critical regulators of vascular stability, angiogenesis, and blood-tissue barrier integrity. Increasing evidence highlights their active role in the pathophysiology of diabetic microangiopathies, including those affecting the retina, kidney, brain, heart, and peripheral nerves. In diabetes, hyperglycemia-induced PC dysfunction is a major contributor to vascular degeneration, impaired tissue repair, and disease progression across multiple organs. Pericytes also share many characteristics with mesenchymal stem cells (MSCs). They exhibit regenerative capacity, immunomodulatory activities, and multipotent capacities. This review explores the emerging role of PCs as tissue resident MSCs, emphasizing their pathophysiological involvement in diabetes complications, and their potential for utilization in regenerative medicine. We also discuss advances in PC-based therapies, tissue engineering strategies, and clinical applications. Thus, PCs are positioned as promising targets for therapeutic intervention and vascular tissue regeneration.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
2
|
Balaji SK, Balasundarasekar B, Khuwaja WM, Dolan KM, Dong X. Antimicrobial Peptide Signaling in Skin Diseases. JID INNOVATIONS 2025; 5:100354. [PMID: 40104692 PMCID: PMC11914806 DOI: 10.1016/j.xjidi.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Antimicrobial peptides (AMPs) are important innate immune molecules at microbe-host interfaces. The biophysical properties of AMPs that facilitate direct killing of microbes have been extensively reviewed. In this article, we focus on how AMPs perform immunomodulatory functions through interaction with host receptors on epithelial, immune, and neuronal cell types. We summarize the current knowledge of known AMPs in the skin, the receptors that respond to AMPs, and the downstream intracellular signaling pathways. In the end, we discuss the roles of AMP signaling systems in skin diseases.
Collapse
Affiliation(s)
- Sharan Kumar Balaji
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Waris Muhammad Khuwaja
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Keean Michael Dolan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Xintong Dong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
3
|
Wang Z, Liu S, Zhang M, Liu M. Dual roles of methylglyoxal in cancer. Front Oncol 2025; 15:1557162. [PMID: 40352588 PMCID: PMC12061732 DOI: 10.3389/fonc.2025.1557162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Cancer treatment currently includes a variety of approaches. Chemotherapy, targeted therapy, and immunotherapy are combined based on cancer characteristics to develop personalized treatment plans. However, drug resistance can hinder the progress of treatment over time. Methylglyoxal (MG) is a metabolite with hormesis, exhibiting both pro-tumor and anti-tumor actions depending on its concentration during cancer progression. The MG-related metabolic pathway is being explored in the development of anti-cancer drugs, focusing on reducing MG stress or exploiting its cytotoxic effects to inhibit cancer progression. This article investigates the dual role of MG in cancer, emphasizing its effects on cell metabolism and tumor progression. It proposes MG capture therapy for the pre-cancerous stage and MG toxicity therapy for the cancer stage, contributing to the development of precise and individualized cancer treatments.
Collapse
Affiliation(s)
| | | | | | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| |
Collapse
|
4
|
Triposkiadis F, Briasoulis A, Starling RC, Magouliotis DE, Kourek C, Zakynthinos GE, Iliodromitis EK, Paraskevaidis I, Xanthopoulos A. Hereditary transthyretin amyloidosis (ATTRv). Curr Probl Cardiol 2025; 50:103019. [PMID: 39954876 DOI: 10.1016/j.cpcardiol.2025.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Hereditary transthyretin (TTR) amyloidosis (ATTRv amyloidosis) is a devastating disease characterized by broad range of clinical manifestations, including predominantly neurological, predominantly cardiac, and mixed phenotypes. This wide phenotypic variability hindered timely disease diagnosis and risk stratification in the past, especially in individuals with absent or uncharted family history. However, recent advances in noninvasive testing have led to greater awareness and earlier diagnosis. Further, medications have been discovered which proved effective in controlling the disease and improving outcomes including stabilizing TTR, silencing TTR variants, and removing TTR amyloid from affected tissues. Importantly, CRISPR gene editing, a groundbreaking technology, offers the unique potential to cure ATTRv amyloidosis, transforming lives and opening new doors in medical science. This review provides an update on ATTRv amyloidosis mechanisms, diagnosis, and management emphasizing the importance of early diagnosis as the steadfast underpinning for the capitalization of the advances in medical treatment to the benefit of the patients.
Collapse
Affiliation(s)
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Faculty of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Randall C Starling
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Dimitrios E Magouliotis
- Department of Cardiac Surgery Research, Lankenau Institute for Medical Research, Main Line Health, Wynnewood, PA, 19096, USA
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21, Athens, Greece
| | - George E Zakynthinos
- 3rd Department of Cardiology, "Sotiria" Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | | | - Andrew Xanthopoulos
- School of Medicine, European University Cyprus, 2404, Nicosia, Cyprus; Department of Cardiology, Faculty of Medicine, University Hospital of Larissa, 41110, Larissa, Greece
| |
Collapse
|
5
|
Hao X, Sista Kameshwar A, Chio C, Cao H, Jin Z, Pei Y, Qin W. Elucidating the downstream pathways triggered by H 2S signaling in Arabidopsis thaliana under drought stress via transcriptome analysis. PLANT SIGNALING & BEHAVIOR 2024; 19:2411911. [PMID: 39367657 PMCID: PMC11457601 DOI: 10.1080/15592324.2024.2411911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Hydrogen sulfide (H2S) is a crucial signaling molecule in plants. Recent studies have shown that H2S plays an equally important role as nitric oxide (NO) and hydrogen peroxide (H2O2) in plant signaling. Previous studies have demonstrated the involvement of H2S in regulating drought and other stressful environmental conditions, but the exact downstream molecular mechanisms activated by the H2S signaling molecule remain unclear. In this study, we conducted a comprehensive genome-wide transcriptomic analysis of both wild type (WT) and double mutant (lcd/des1). Arabidopsis thaliana plants were exposed to 40% polyethylene glycol (PEG) to induce drought stress and 20 µM sodium hydrosulfide (NaHS). The resulting transcriptome data were analyzed for differentially significant genes and their statistical enrichments in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results indicated significant upregulation of genes related to photosynthesis, carbon fixation, plant secondary metabolite biosynthesis, inositol and phosphatidylinositol signaling pathways, and stress-responsive pathways in mutant plants under drought stress. Mutant plants with impaired H2S signaling mechanisms displayed greater susceptibility to drought stress compared to wild-type plants. In summary, all findings highlight the pivotal role of H2S signaling in stimulating other drought-responsive signaling pathways.
Collapse
Affiliation(s)
- Xuefeng Hao
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| | | | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| | - Haiyan Cao
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong, China
| | - Zhuping Jin
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, China
| | - Yanxi Pei
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, Canada
| |
Collapse
|
6
|
Alka K, Oyeniyi JF, Mohammad G, Zhao Y, Marcus S, Chinnaiyan P. The RAGE Inhibitor TTP488 (Azeliragon) Demonstrates Anti-Tumor Activity and Enhances the Efficacy of Radiation Therapy in Pancreatic Cancer Cell Lines. Cancers (Basel) 2024; 17:17. [PMID: 39796649 PMCID: PMC11718873 DOI: 10.3390/cancers17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer. Human (Panc1) and murine (Pan02) pancreatic cancer cell lines exhibited elevated levels of RAGE and its ligands compared to normal pancreatic tissue. In vitro, Azeliragon inhibited RAGE-mediated NF-κB activation and ligand-mediated cell proliferation in pancreatic cancer cell lines. Target engagement of Azeliragon was confirmed in vivo, as determined by decreased NF-κB activation. Azeliragon demonstrated significant growth delay in mouse models of pancreatic cancer and additive effects when combined with RT. Additionally, Azeliragon modulated the immune suppressive tumor microenvironment in pancreatic cancer by reducing immunosuppressive cells, including M2 macrophages, regulatory T cells, and myeloid-derived suppressor cells, while enhancing CD8+ T cell infiltration. These findings suggest that Azeliragon, by inhibiting RAGE-mediated signaling and modulating immune response, may serve as an effective anti-cancer agent in pancreatic cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | - Jacob F. Oyeniyi
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | - Ghulam Mohammad
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | - Yi Zhao
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | | | - Prakash Chinnaiyan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
- Radiation Oncology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
7
|
Fewkes JJ, Dordevic AL, Murray M, Williamson G, Kellow NJ. Association between endothelial function and skin advanced glycation end-products (AGEs) accumulation in a sample of predominantly young and healthy adults. Cardiovasc Diabetol 2024; 23:332. [PMID: 39251982 PMCID: PMC11386354 DOI: 10.1186/s12933-024-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND In populations with chronic disease, skin autofluorescence (SAF), a measure of long-term fluorescent advanced glycation end-products (AGEs) accumulation in body tissues, has been associated with vascular endothelial function, measured using flow-mediated dilation (FMD). The primary aim of this study was to quantify the relationship between endothelial function and tissue accumulation of AGEs in adults from the general population to determine whether SAF could be used as a marker to predict early impairment of the endothelium. METHODS A cross-sectional study was conducted with 125 participants (median age: 28.5 y, IQR: 24.4-36.0; 54% women). Endothelial function was measured by fasting FMD. Skin AGEs were measured as SAF using an AGE Reader. Participant anthropometry, blood pressure, and blood biomarkers were also measured. Associations were evaluated using multivariable regression analysis and were adjusted for significant covariates. RESULTS FMD was inversely correlated with SAF (ρ = -0.50, P < 0.001) and chronological age (ρ = -0.51, P < 0.001). In the multivariable analysis, SAF, chronological age, and male sex were independently associated with reduced FMD (B [95% CI]; -2.60 [-4.40, -0.80]; -0.10 [-0.16, -0.03]; 1.40 [0.14, 2.67], respectively), with the multivariable model adjusted R2 = 0.31, P < 0.001. CONCLUSIONS Higher skin AGE levels, as measured by SAF, were associated with lower FMD values, in a predominantly young, healthy population. Additionally, older age and male participants exhibited significantly lower FMD values, corresponding with compromised endothelial function. These results suggest that SAF, a simple and inexpensive marker, could be used to predict endothelial impairment before the emergence of any structural artery pathophysiology or classic cardiovascular disease risk markers. TRIAL REGISTRATION The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12621000821897) and concurrently entered into the WHO International Clinical Trials Registry Platform under the same ID number.
Collapse
Affiliation(s)
- Juanita J Fewkes
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
8
|
Gasparotto J, Somensi N, Girardi CS, Bittencourt RR, de Oliveira LM, Hoefel LP, Scheibel IM, Peixoto DO, Moreira JCF, Outeiro TF, Gelain DP. Is it all the RAGE? Defining the role of the receptor for advanced glycation end products in Parkinson's disease. J Neurochem 2024; 168:1608-1624. [PMID: 37381043 DOI: 10.1111/jnc.15890] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor that belongs to the immunoglobulin superfamily and is extensively associated with chronic inflammation in non-transmissible diseases. As chronic inflammation is consistently present in neurodegenerative diseases, it was largely assumed that RAGE could act as a critical modulator of neuroinflammation in Parkinson's disease (PD), similar to what was reported for Alzheimer's disease (AD), where RAGE is postulated to mediate pro-inflammatory signaling in microglia by binding to amyloid-β peptide. However, accumulating evidence from studies of RAGE in PD models suggests a less obvious scenario. Here, we review physiological aspects of RAGE and address the current questions about the potential involvement of this receptor in the cellular events that may be critical for the development and progression of PD, exploring possible mechanisms beyond the classical view of the microglial activation/neuroinflammation/neurodegeneration axis that is widely assumed to be the general mechanism of RAGE action in the adult brain.
Collapse
Affiliation(s)
- Juciano Gasparotto
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Nauana Somensi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Saibro Girardi
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Martinewski de Oliveira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Laura Piloneto Hoefel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Oppermann Peixoto
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Daniel Pens Gelain
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Shen CY, Lu CH, Cheng CF, Li KJ, Kuo YM, Wu CH, Liu CH, Hsieh SC, Tsai CY, Yu CL. Advanced Glycation End-Products Acting as Immunomodulators for Chronic Inflammation, Inflammaging and Carcinogenesis in Patients with Diabetes and Immune-Related Diseases. Biomedicines 2024; 12:1699. [PMID: 39200164 PMCID: PMC11352041 DOI: 10.3390/biomedicines12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Increased production of advanced glycation end products (AGEs) among reducing sugars (glucose, fructose, galactose, or ribose) and amino acids/proteins via non-enzymatic Maillard reaction can be found in lifestyle-related disease (LSRD), metabolic syndrome (MetS), and obesity and immune-related diseases. Increased serum levels of AGEs may induce aging, diabetic complications, cardiovascular diseases (CVD), neurodegenerative diseases (NDD), cancer, and inflamm-aging (inflammation with immunosenescence). The Maillard reaction can also occur among reducing sugars and lipoproteins or DNAs to alter their structure and induce immunogenicity/genotoxicity for carcinogenesis. AGEs, as danger-associated molecular pattern molecules (DAMPs), operate via binding to receptor for AGE (RAGE) or other scavenger receptors on cell surface to activate PI3K-Akt-, P38-MAPK-, ERK1/2-JNK-, and MyD88-induced NF-κB signaling pathways to mediate various pathological effects. Recently, the concept of "inflamm-aging" became more defined, and we have unveiled some interesting findings in relation to it. The purpose of the present review is to dissect the potential molecular basis of inflamm-aging in patients with diabetes and immune-mediated diseases caused by different AGEs.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chiao-Feng Cheng
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital-Hsinchu Branch, # 2, Section 1, Shengyi Road, Hsinchu County 302058, Taiwan;
| | - Chin-Hsiu Liu
- Department of Internal Medicine, National Taiwan University Hospital-Yunlin Branch, # 579, Section 2, Yunlin Road, Yunlin County 640203, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Chang-Youh Tsai
- Department of Internal Medicine, Fu-Jen Catholic University Hospital, College of Medicine, Fu-Jen Catholic University, # 69 Guizi Road, New Taipei City 24352, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| |
Collapse
|
10
|
Su NY, Ng MY, Liao HY, Liao YW, Wu M, Chao SC, Yu CC, Chang YC. Ganoderma Microsporum Immunomodulatory Protein Alleviates Inflammaging and Oxidative Stress in Diabetes-Associated Periodontitis via Nrf2 Signaling Activation: An In Vitro Study. Antioxidants (Basel) 2024; 13:817. [PMID: 39061886 PMCID: PMC11273761 DOI: 10.3390/antiox13070817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontitis, characterized by inflammation and loss of periodontal tissue, is a significant health complication for individuals with diabetes mellitus (DM). Buildup of advanced glycation end-products (AGEs) in DM poses an increased risk of periodontitis via inflammaging. Ganoderma immunomodulatory protein (GMI) shows promise in suppressing inflammaging by mitigating oxidative stress and inflammation via Nrf2 modulation. However, its specific protective effects are not fully understood. Thus, this study aimed to investigate GMI's anti-inflammaging properties and its underlying mechanism in diabetic-associated periodontitis (DP). We first simulated DP by culturing human gingival fibroblasts (HGFs) with AGEs and lipopolysaccharides from P. gingivalis (LPS). We then evaluated the impact of GMI on cell proliferation, migration and wound healing. Additionally, we assessed GMI's effects on the components of inflammaging such as reactive oxygen species (ROS) formation, cellular senescence expression, IL-6 and IL-8 secretions, and NF-κB phosphorylation. Next, we explored whether GMI's anti-inflammaging effects are mediated through the Nrf2 pathway by evaluating Nrf2 and HO-1, followed by the assessment of IL-6 and IL-8 post-Nrf2 knockdown. Our findings revealed that GMI treatment suppressed ROS production, cell senescence, IL-6 and IL-8 and NF-κB phosphorylation. Furthermore, GMI upregulated Nrf2/HO-1 expression and its protective effects were reversed when Nrf2 was knocked down. In conclusion, GMI exerts its anti-inflammaging effect via the modulation of the Nrf2/NF-κB signaling axis in DP in vitro, highlighting its potential as an effective adjunct treatment for diabetes-related periodontitis.
Collapse
Affiliation(s)
- Ni-Yu Su
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Heng-Yi Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Movina Wu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.L.)
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (N.-Y.S.); (M.Y.N.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
11
|
Wang L, Jiang Y, Zhao C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp Dermatol 2024; 33:e15065. [PMID: 38563644 DOI: 10.1111/exd.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.
Collapse
Affiliation(s)
- Lingyu Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| |
Collapse
|
12
|
Jbrael YJ, Hamad BK. Ameliorating impact of coenzyme Q10 on the profile of adipokines, cardiomyopathy, and hematological markers correlated with the glucotoxicity sequelae in diabetic rats. PLoS One 2024; 19:e0296775. [PMID: 38227584 PMCID: PMC10790996 DOI: 10.1371/journal.pone.0296775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND In diabetes, high blood glucose induces glucotoxicity, resulting in the further damage of pancreatic beta-cells and then precipitating diabetic complications. This study was aimed to investigate the relationship between glucotoxicity with the level of adipokines, diabetic cardiomyopathy, and hematological markers. Moreover, the study examined the potential modulatory effect of coenzyme Q10 (CoQ10) on the aforementioned markers associated with the sequelae of diabetes mellitus. MATERIAL AND METHODS Twenty-four male rats were randomly assigned to receive an injection of STZ to induce diabetes (n = 16) or to remain uninduced (n = 8). The hyperglycemic status was induced in fasting rats by single intraperitoneal injection of STZ (45 mg /kg b.w.) dissolved in citrate buffer (pH 4.5). Three days after STZ injection, rats were divided into three groups; Normal control group (A), Diabetic control group (B), and CoQ10- treated diabetic group (C). The group (C) was fed with the basal diet supplemented with 5 g of CoQ10 per kilogram of diet for three weeks after the diabetes induction. After 21 days, the blood and serum samples were taken to conduct biochemical analyses. Blood glucose was determined by Blood Glucose Monitoring System. Adipokines or cytokines were evaluated by ELISA from a serum sample. Cardiac myopathy biomarkers were estimated by UP-Converting Phosphor Immunoassay Analyzer, and hematological parameters were measured by automatic hematology analyzer. RESULTS In hyperglycemic rats, the level of fasting blood glucose, and serum level of resistin, omentin, TNF-α, and cardiomyopathy biomarkers significantly increased (P < 0.05). The treatment with CoQ10 significantly decreased the profile of adipokines and cardiomyopathy markers (cardiac enzymes and LPPLA2) in diabetic rats and also reduced glucose levels (P < 0.05). Lymphocyte percentages significantly decreased while significant increases were observed in granulocytes and MID percentages in hyperglycemic rats. CONCLUSION Diabetic rats had higher serum levels of adipokines and cardiomyopathy markers. Among the hematological markers, GRA% and MID% increased while LYM% decreased. The profile of adipokines and cardiomyopathy markers improved when CoQ10 was supplemented. The study suggests that CoQ10 may have a beneficial effect on improving diabetic complications.
Collapse
Affiliation(s)
- Yousif Jameel Jbrael
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Badraldin Kareem Hamad
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- University of Kurdistan Hawler (UKH), School of Medicine, Erbil, Iraq
| |
Collapse
|
13
|
Endo H, Ogasawara M, Tega Y, Kubo Y, Hosoya KI, Akanuma SI. Upregulation of P-Glycoprotein and Breast Cancer Resistance Protein Activity in Newly Developed in Vitro Rat Blood-Brain Barrier Spheroids Using Advanced Glycation End-Products. Biol Pharm Bull 2024; 47:1893-1903. [PMID: 39551527 DOI: 10.1248/bpb.b24-00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface controlling the compound translocation between the blood and the brain, thereby maintaining neural homeostasis. There is cumulative evidence that BBB impairment during diabetes mellitus (DM) takes part in the progression of cognitive dementia. As tight junction proteins and ATP-binding cassette (ABC) transporters regulate substance exchange between the circulating blood and brain, the expression and function of these molecules under DM should be fully clarified. To understand the alteration of ABC transporter function in the BBB under DM, in vitro multicellular rat BBB spheroids consisting of conditionally immortalized rat brain capillary endothelial cells, astrocytes, and pericytes were newly developed. Immunostaining and permeability analysis of paracellular transport markers suggested the construction of tight junctions on the surface of the BBB spheroids. Transport analyses using fluorescence substrates of P-glycoprotein (P-gp), the breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4) indicate the functional expression of these transporters in the spheroids. After treatment with advanced glycation end-products (AGEs), involved in various signals during DM, the mRNA expression of tight junction molecules and ABC transporters in the BBB spheroids was upregulated. Furthermore, the functional changes in P-gp and BCRP in the BBB spheroids exposed to AGEs were canceled by the inhibitors of the receptor for AGEs (RAGE). These results suggest that AGE-RAGE interaction upregulates P-gp and BCRP function in the BBB.
Collapse
Affiliation(s)
- Hiroki Endo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Miki Ogasawara
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
14
|
Jiang S, Xia N, Buonfiglio F, Böhm EW, Tang Q, Pfeiffer N, Olinger D, Li H, Gericke A. High-fat diet causes endothelial dysfunction in the mouse ophthalmic artery. Exp Eye Res 2024; 238:109727. [PMID: 37972749 DOI: 10.1016/j.exer.2023.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.
Collapse
Affiliation(s)
- Subao Jiang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Elsa W Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Dominik Olinger
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
15
|
Molinuevo MS, Cortizo AM, Sedlinsky C. Effects of advanced glycation end-products, diabetes and metformin on the osteoblastic transdifferentiation capacity of vascular smooth muscle cells: In vivo and in vitro studies. J Diabetes Complications 2023; 37:108626. [PMID: 37839167 DOI: 10.1016/j.jdiacomp.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
AIMS Our objective was to study the vascular smooth muscle cells (VSMC) osteoblastic transdifferentiation in AGE exposed cells or those from diabetic animals, and its response to metformin treatment. METHODS VSMC were obtained from non-diabetic rats, grown with or without AGE; while VSMC of in vivo-ex vivo studies were obtained from non-diabetic control animals (C), diabetic (D), C treated with metformin (M) and D treated with metformin (D-M). We studied the osteoblastic differentiation by evaluating alkaline phosphatase (ALP), type I collagen (Col) and mineral deposit. RESULTS In vitro, AGE increased proliferation, migration, and osteoblastic differentiation of VSMC. Metformin cotreatment prevented the AGE induced proliferation and migration. Both AGE and metformin stimulated the expression of ALP and Col. AGE induced mineralization was prevented by metformin. VSMC from D expressed a higher production of Col and ALP. Those from D-M showed an ALP increase vs C and M, and a partial decrease vs D. Cultured in osteogenic medium, ALP, Col and mineralization increased in D vs C, remained unchanged in M, and were prevented in D-M animals. CONCLUSION Both AGE and DM favor VSMC differentiation towards the osteogenic phenotype and this effect can be prevented by metformin.
Collapse
Affiliation(s)
- María Silvina Molinuevo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina
| | - Ana María Cortizo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina.
| | - Claudia Sedlinsky
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
16
|
Wu X, Shi X, Chen X, Yin Z. Epigallocatechin gallate (EGCG) can epigenetically regulate the receptor of advanced glycation end products (RAGE) to ameliorate Osteoarthritis. J Funct Foods 2023; 107:105682. [DOI: 10.1016/j.jff.2023.105682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
17
|
Chang NP, DaPrano EM, Evans WR, Nissenbaum M, McCourt M, Alzate D, Lindman M, Chou TW, Atkins C, Kusnecov AW, Huda R, Daniels BP. Neuronal DAMPs exacerbate neurodegeneration via astrocytic RIPK3 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550097. [PMID: 37546744 PMCID: PMC10401942 DOI: 10.1101/2023.07.21.550097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Astrocyte activation is a common feature of neurodegenerative diseases. However, the ways in which dying neurons influence the activity of astrocytes is poorly understood. RIPK3 signaling has recently been described as a key regulator of neuroinflammation, but whether this kinase mediates astrocytic responsiveness to neuronal death has not yet been studied. Here, we used the MPTP model of Parkinson's disease to show that activation of astrocytic RIPK3 drives dopaminergic cell death and axon damage. Transcriptomic profiling revealed that astrocytic RIPK3 promoted gene expression associated with neuroinflammation and movement disorders, and this coincided with significant engagement of DAMP signaling. Using human cell culture systems, we show that factors released from dying neurons signal through RAGE to induce RIPK3-dependent astrocyte activation. These findings highlight a mechanism of neuron-glia crosstalk in which neuronal death perpetuates further neurodegeneration by engaging inflammatory astrocyte activation via RIPK3.
Collapse
Affiliation(s)
- Nydia P. Chang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Evan M. DaPrano
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Wesley R. Evans
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Micheal McCourt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Alzate
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Marissa Lindman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Tsui-Wen Chou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Colm Atkins
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Rafiq Huda
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Oda Y, Nishi H, Nangaku M. Role of Inflammation in Progression of Chronic Kidney Disease in Type 2 Diabetes Mellitus: Clinical Implications. Semin Nephrol 2023; 43:151431. [PMID: 37865982 DOI: 10.1016/j.semnephrol.2023.151431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Progression of chronic kidney disease in type 2 diabetes has been understood conventionally as a consequence of intraglomerular hemodynamic changes and aberrant metabolic pathways. However, an increasing body of experimental evidence has highlighted the role of inflammatory response in the progression of diabetic kidney disease. Macrophage polarization in response to specific microenvironmental stimuli affects the pathology of diabetic kidneys. The diabetic milieu also up-regulates inflammatory cytokines, chemokines, and adhesion molecules, and promotes inflammatory signal transduction pathways, including inflammasomes. Therefore, from a reverse translational perspective, modulation of the inflammatory response may be the driving force of the renoprotective effects of renin-angiotensin system inhibitors, sodium-glucose cotransporter-2 inhibitors, and mineralocorticoid receptor antagonists, all of which have been shown to slow disease progression. Currently, many agents that target the inflammation in the kidneys directly are evaluated in clinical trials. This article discusses recent clinical and experimental milestones in drug development for diabetic kidney disease with a perspective on inflammation in the kidneys. Such insights may enable a targeted approach to discovering novel drugs against chronic kidney disease in type 2 diabetes.
Collapse
Affiliation(s)
- Yasuhiro Oda
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Taguchi K, Fukami K. RAGE signaling regulates the progression of diabetic complications. Front Pharmacol 2023; 14:1128872. [PMID: 37007029 PMCID: PMC10060566 DOI: 10.3389/fphar.2023.1128872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes, the ninth leading cause of death globally, is expected to affect 642 million people by 2040. With the advancement of an aging society, the number of patients with diabetes having multiple underlying diseases, such as hypertension, obesity, and chronic inflammation, is increasing. Thus, the concept of diabetic kidney disease (DKD) has been accepted worldwide, and comprehensive treatment of patients with diabetes is required. Receptor for advanced glycation endproducts (RAGE), a multiligand receptor, belonging to the immunoglobulin superfamily is extensively expressed throughout the body. Various types of ligands, including advanced glycation endproducts (AGEs), high mobility group box 1, S100/calgranulins, and nucleic acids, bind to RAGE, and then induces signal transduction to amplify the inflammatory response and promote migration, invasion, and proliferation of cells. Furthermore, the expression level of RAGE is upregulated in patients with diabetes, hypertension, obesity, and chronic inflammation, suggesting that activation of RAGE is a common denominator in the context of DKD. Considering that ligand–and RAGE–targeting compounds have been developed, RAGE and its ligands can be potent therapeutic targets for inhibiting the progression of DKD and its complications. Here, we aimed to review recent literature on various signaling pathways mediated by RAGE in the pathogenesis of diabetic complications. Our findings highlight the possibility of using RAGE–or ligand–targeted therapy for treating DKD and its complications.
Collapse
|
20
|
The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases. Int J Mol Sci 2023; 24:ijms24032894. [PMID: 36769213 PMCID: PMC9918052 DOI: 10.3390/ijms24032894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Advanced glycation end products (AGEs) are a class of compounds formed by nonenzymatic interactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs can alter the protein structure and activate one of their receptors, specifically the receptor for advanced glycation end products (RAGE). These phenomena impair the functions of cells, extracellular matrix, and tissues. RAGE is expressed by a variety of cells and has been linked to chronic inflammatory autoimmune disorders such as rheumatoid arthritis, systemic lupus erythematosus, and Sjögren's syndrome. The soluble (s)RAGE cleavage product is a positively charged 48-kDa cleavage product that retains the ligand binding site but loses the transmembrane and signaling domains. By acting as a decoy, this soluble receptor inhibits the pro-inflammatory processes mediated by RAGE and its ligands. In the present review, we will give an overview of the role of AGEs, sRAGE, and RAGE polymorphisms in several rheumatic diseases. AGE overproduction may play a role in the pathogenesis and is linked to accelerated atherosclerosis. Low serum sRAGE concentrations are linked to an increased cardiovascular risk profile and a poor prognosis. Some RAGE polymorphisms may be associated with increased disease susceptibility. Finally, sRAGE levels can be used to track disease progression.
Collapse
|
21
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
22
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
23
|
Genova VM, Gambero A, de Souza Freitas Campos P, Macedo GA. Polyphenolic Compounds Mechanisms as Inhibitors of Advanced Glycation End Products and Their Relationship to Health and Disease. MOLECULAR MECHANISMS OF FUNCTIONAL FOOD 2022:1-27. [DOI: 10.1002/9781119804055.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Patel S, Khan H, Majumdar A. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metab Brain Dis 2022; 37:2181-2195. [PMID: 35616799 DOI: 10.1007/s11011-022-00956-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
About 50% of the diabetic patients worldwide suffer from Diabetic peripheral neuropathy (DPN) which is characterized by chronic pain and loss of sensation, frequent foot ulcerations, and risk for amputation. Numerous factors like hyperglycemia, oxidative stress (OS), impaired glucose signaling, inflammatory responses, neuronal cell death are known to be the various mechanisms underlying DACD and DPN. Development of tolerance, insufficient and inadequate relief and potential toxicity of classical antinociceptives still remains a challenge in the clinical setting. Therefore, there is an emerging need for novel treatments which are both without any potential side effects as well as which focus more on the pathophysiological mechanisms underlying the disease. Also, sirtuins are known to deacetylate Nrf2 and contribute to its action of reducing ROS by generation of anti-oxidant enzymes. Therefore, targeting sirtuins could be a favourable therapeutic strategy to treat diabetic neuropathy by reducing ROS and thereby alleviating OS in DPN. In the present review, we outline the potential use of SIRT1 activators as therapeutic alternatives in treating DPN. We have tried to highlight how sirtuins are interlinked with Nrf2 and NF-κB and put forth how SIRT activators could serve as potential therapy for DPN.
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Hasnat Khan
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India
| | - Anuradha Majumdar
- Department of Pharmacology, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
25
|
Long H, Zhang S, Zeng S, Tong Y, Liu J, Liu C, Li D. Interaction of RAGE with α-synuclein fibrils mediates inflammatory response of microglia. Cell Rep 2022; 40:111401. [PMID: 36130498 DOI: 10.1016/j.celrep.2022.111401] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022] Open
Abstract
Microglia-mediated neuroinflammation and α-synuclein (α-syn) aggregation, both as pathological hallmarks of Parkinson's disease (PD), crosstalk to exacerbate degeneration of dopaminergic neurons and PD progression. However, the mechanism underlying their interaction is poorly understood, which obstructs effective therapeutic inhibition of α-syn-induced neuroinflammation. Here, we initiate from structure-based interaction predictions and find that receptor for advanced glycation end products (RAGE) serves as a receptor of α-syn fibrils on microglia. Results of nuclear magnetic resonance (NMR) spectroscopy and mutagenesis validate that the V domain of RAGE that contains an alkaline surface can bind with acidic C-terminal residues of α-syn. Furthermore, the binding of α-syn fibrils with RAGE induces neuroinflammation, which is blocked by both genetic depletion of RAGE and inhibitor FPS-ZM1. Our work shows the important role, as well as the structural mechanism, of RAGE in mediating the inflammatory response of microglia to α-syn fibrils, which may help to establish effective therapeutic strategies to alleviate α-syn-induced neuroinflammation and neuronal damage.
Collapse
Affiliation(s)
- Houfang Long
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yilun Tong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; WLA Laboratories, World Laureates Association, Shanghai 201203, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
27
|
Marin-Oto M, Sanz-Rubio D, Santamaría-Martos F, Benitez I, Simon AL, Forner M, Cubero P, Gil A, Sanchez-de-laTorre M, Barbe F, Marin JM. Soluble RAGE in COPD, with or without coexisting obstructive sleep apnoea. Respir Res 2022; 23:163. [PMID: 35729539 PMCID: PMC9210762 DOI: 10.1186/s12931-022-02092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypoxia can reduce the levels of soluble receptor for advanced glycation end-products (sRAGE), a new anti-inflammatory biomarker of COPD. We assessed sRAGE in patients with hypoxia-related diseases such as COPD, OSA and OSA-COPD overlap. METHODS Plasma levels of sRAGE were measured in 317 subjects at baseline (57 heathy nonsmokers [HNS], 84 healthy smokers [HS], 79 OSA, 62 COPD and 35 OSA-COPD overlap patients) and in 294 subjects after one year of follow-up (50 HNS, 74 HS, 77 OSA, 60 COPD and 33 overlap). RESULTS After adjusting for age, sex, smoking status and body mass index, sRAGE levels showed a reduction in OSA (- 12.5%, p = 0.005), COPD (- 14.8%, p < 0.001) and OSA-COPD overlap (- 12.3%, p = 0.02) compared with HNS. There were no differences when comparing sRAGE plasma levels between overlap patients and those with OSA or COPD alone. At follow-up, sRAGE levels did not change significantly in healthy subjects, COPD and OSA or OSA-COPD overlap nontreated with continuous positive airway pressure (CPAP). Moreover, in patients with OSA and OSA-COPD overlap who were treated with CPAP, sRAGE increased significantly. CONCLUSIONS The levels of sRAGE are reduced in COPD and OSA. Treatment with CPAP appears to improve sRAGE levels in patients with OSA who also had COPD.
Collapse
Affiliation(s)
- Marta Marin-Oto
- Translational Research Unit, Aragón Health Research Institute, Zaragoza, Spain
| | - David Sanz-Rubio
- Translational Research Unit, Aragón Health Research Institute, Zaragoza, Spain
| | | | - Ivan Benitez
- Respiratory Department, Hospital Arnau de Vilanova, IRB-Lleida, Lleida, Spain
| | - Ana L Simon
- Translational Research Unit, Aragón Health Research Institute, Zaragoza, Spain
| | - Marta Forner
- Translational Research Unit, Aragón Health Research Institute, Zaragoza, Spain
| | - Pablo Cubero
- Translational Research Unit, Aragón Health Research Institute, Zaragoza, Spain
| | - Ana Gil
- Translational Research Unit, Aragón Health Research Institute, Zaragoza, Spain
| | - Manuel Sanchez-de-laTorre
- Respiratory Department, Hospital Arnau de Vilanova, IRB-Lleida, Lleida, Spain.,CIBER Enfermedades Respiratorias, Instituto Salud Carlos III, Madrid, Spain
| | - Ferran Barbe
- Respiratory Department, Hospital Arnau de Vilanova, IRB-Lleida, Lleida, Spain.,CIBER Enfermedades Respiratorias, Instituto Salud Carlos III, Madrid, Spain
| | - José M Marin
- Translational Research Unit, Aragón Health Research Institute, Zaragoza, Spain. .,CIBER Enfermedades Respiratorias, Instituto Salud Carlos III, Madrid, Spain. .,Respiratory Service, Hospital Universitario Miguel Servet and Department of Medicine, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
28
|
Hayashi K, Sato K, Ochi S, Kawano S, Munesue S, Harashima A, Oshima Y, Kimura K, Kyoi T, Yamamoto Y. Inhibitory Effects of Saururus chinensis Extract on Receptor for Advanced Glycation End-Products-Dependent Inflammation and Diabetes-Induced Dysregulation of Vasodilation. Int J Mol Sci 2022; 23:ijms23105757. [PMID: 35628567 PMCID: PMC9147798 DOI: 10.3390/ijms23105757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE) are implicated in inflammatory reactions and vascular complications in diabetes. Signaling pathways downstream of RAGE are involved in NF-κB activation. In this study, we examined whether ethanol extracts of Saururus chinensis (Lour.) Baill. (SE) could affect RAGE signaling and vascular relaxation in streptozotocin (STZ)-induced diabetic rats. Treatment with SE inhibited AGEs-modified bovine serum albumin (AGEs-BSA)-elicited activation of NF-κB and could compete with AGEs-BSA binding to RAGE in a dose-dependent manner. Tumor necrosis factor-α (TNF-α) secretion induced by lipopolysaccharide (LPS)-a RAGE ligand-was also reduced by SE treatment in wild-type Ager+/+ mice as well as in cultured peritoneal macrophages from Ager+/+ mice but not in Ager-/- mice. SE administration significantly ameliorated diabetes-related dysregulation of acetylcholine-mediated vascular relaxation in STZ-induced diabetic rats. These results suggest that SE would inhibit RAGE signaling and would be useful for the improvement of vascular endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Kenjiro Hayashi
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Koichi Sato
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Seishi Ochi
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Shuhei Kawano
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Kumi Kimura
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
| | - Takashi Kyoi
- Food Development Labs, Functional Food Division, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan; (K.H.); (K.S.); (S.O.); (S.K.); (T.K.)
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan; (S.M.); (A.H.); (Y.O.); (K.K.)
- Correspondence:
| |
Collapse
|
29
|
Steenbeke M, Speeckaert R, Desmedt S, Glorieux G, Delanghe JR, Speeckaert MM. The Role of Advanced Glycation End Products and Its Soluble Receptor in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23073439. [PMID: 35408796 PMCID: PMC8998875 DOI: 10.3390/ijms23073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) are more prone to oxidative stress and chronic inflammation, which may lead to an increase in the synthesis of advanced glycation end products (AGEs). Because AGEs are mostly removed by healthy kidneys, AGE accumulation is a result of both increased production and decreased kidney clearance. On the other hand, AGEs may potentially hasten decreasing kidney function in CKD patients, and are independently related to all-cause mortality. They are one of the non-traditional risk factors that play a significant role in the underlying processes that lead to excessive cardiovascular disease in CKD patients. When AGEs interact with their cell-bound receptor (RAGE), cell dysfunction is initiated by activating nuclear factor kappa-B (NF-κB), increasing the production and release of inflammatory cytokines. Alterations in the AGE-RAGE system have been related to the development of several chronic kidney diseases. Soluble RAGE (sRAGE) is a decoy receptor that suppresses membrane-bound RAGE activation and AGE-RAGE-related toxicity. sRAGE, and more specifically, the AGE/sRAGE ratio, may be promising tools for predicting the prognosis of kidney diseases. In the present review, we discuss the potential role of AGEs and sRAGE as biomarkers in different kidney pathologies.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Reinhart Speeckaert
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Stéphanie Desmedt
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Griet Glorieux
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Marijn M. Speeckaert
- Nephrology Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium; (M.S.); (S.D.); (G.G.)
- Research Foundation Flanders, 1000 Brussels, Belgium
- Correspondence:
| |
Collapse
|
30
|
Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int Immunopharmacol 2022; 107:108610. [PMID: 35219163 DOI: 10.1016/j.intimp.2022.108610] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diabetic nephropathy is one of the common complications of diabetes mellitus, which seriously affects the life quality and health of patients. In this study, we aimed to investigate the function of cardamonin (CAD) in diabetes-induced kidney damage in rats. METHODS The normal rat kidney tubular epithelial cells (NRK-52E) were pre-treated with different doses of CAD and then stimulated with methylglyoxal (MGO). Streptozotocin (STZ) induced diabetes rat model were received different doses of CAD treatment. MTT, EdU, Transwell, and flow cytometry was used to detect cell viability, proliferation, migration, and apoptosis. Western blot analysis was used to detect the expression of apoptosis related proteins, advanced glycation end-products (AGEs), receptor for AGEs (RAGE), epithelial mesenchymal transition (EMT) related proteins, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway related proteins, and janus kinas/signal transducer and activator of transcription 3 (JAK/STAT3) related proteins. ELISA assay was used to detect the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). The levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were detected using commercial kit. Hematoxylin and eosin staining was used to assess pathological changes in rat kidney. RESULTS Compared with control group, MGO reduced cell viability and proliferation, enhanced migration and apoptosis of NRK-52E cells, while CAD inhibited these effects induced by MGO in NRK-52E cells. Moreover, CAD increased Bcl-2 expression and decreased the expression of Bax and cleaved caspase-3 in MGO-treated NRK-52E cells. Compared with control group, MGO increased the AGEs formation, the expression of RAGE and p-p65, the levels of TNF-α, IL-6, IL-1β, MDA in NRK-52E cells and reduced the levels of GSH and SOD, while treatment of CAD dose-dependently prevented these results. In addition, CAD attenuated MGO-induced EMT of MGO-treated NRK-52E cells. Mechanically, we identified that CAD repressed PI3K/AKT and JAK/STAT3 signaling in NRK-52E cells. Importantly, the kidney injury of diabetes rats was attenuated by CAD. Besides, STZ-induced inflammatory response, oxidative stress, and phosphorylation levels of PI3K, AKT, JAK2, and STAT3 were reduced by CAD in the rats. CONCLUSION CAD protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats.
Collapse
|
31
|
Possible role of the HMGB1 and RAGE inflammatory pathway in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol 2022; 46:101791. [PMID: 34400366 DOI: 10.1016/j.clinre.2021.101791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Activation of the receptor for advanced glycation end products (RAGE) and its ligand High Mobility Group Box Protein 1 (HMGB1), a nuclear protein with proinflammatory properties, has been implicated in several inflammatory disorders. OBJECTIVE To analyse the influence of RAGE and HMGB1 signalling in patients with primary sclerosing cholangitis (PSC). METHODS Levels of HMGB1 and bile acid in serum and bile samples of 69 PSC patients and 32 controls were measured. Additionally, 640 patients with PSC and other liver diseases were analysed for the gain-of-function RAGE G82S SNP by PCR. Laboratory and clinical parameters were retrieved by chart review. RESULTS ELISA analysis showed significantly higher biliary HMGB1 concentrations in PSC patients (n=69, median 124,1 ng/ml) than in the control group (n=32, median 6,85 ng/ml, p<0,001). Median serum HMGB1 (n=22, median 2,4 ng/ml) was significantly lower than median biliary HMGB1 of the concomitant bile samples (n=22, median 151 ng/ml, p =0,001). There was no correlation of biliary HMGB1 levels with laboratory parameters or clinical end points. Analysis of the gain-of-function G82SSNP RAGE SNP in PSC patients showed 8 patients with heterozygote mutant alleles (8/324, 2,5%). Patients carrying the mutation developed more often dominant strictures of the large bile ducts (100.0% vs. 61.3%; p=0.04) and had reduced transplantation-free survival in the mutant allele group (p<0.001). CONCLUSIONS Biliary HMGB1 levels are elevated in PSC patients compared to controls and a gain-of-function SNP in RAGE is associated with development of dominant strictures and reduced survival in PSC patients.
Collapse
|
32
|
Merhi Z, Du XQ, Charron MJ. Postnatal weaning to different diets leads to different reproductive phenotypes in female offspring following perinatal exposure to high levels of dietary advanced glycation end products. F&S SCIENCE 2022; 3:95-105. [PMID: 35559999 DOI: 10.1016/j.xfss.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To examine, following perinatal exposure to a diet high in advanced glycation end products (AGEs), whether the use of standard AGE-free mouse chow during the postweaning period alters metabolism and reproduction differently than exposure to a diet low in AGEs. DESIGN Experimental animal study. SETTING University-based research laboratory. ANIMAL(S) Female CD1 mice. INTERVENTION(S) Seven-week-old mice were placed on a diet either low or high in AGEs perinatally, before mating and then during pregnancy and lactation. All offspring were weaned onto an AGE-free normal chow. MAIN OUTCOME MEASURE(S) Growth curve, liver and abdominal fat weight, insulin and glucose tolerance tests, vaginal opening, estrous cyclicity, and serum levels of antimüllerian hormone, leptin, and adiponectin were assessed. Ovarian histologic examination for follicular count and gene expression was also performed. RESULT(S) Compared with the mice exposed to a diet low in AGEs, the mice exposed to a diet high in AGEs showed lower body weight in pups, lower liver weight, delayed vaginal opening, higher serum antimüllerian hormone levels, lower primordial and secondary follicle pools, and higher ovarian Fshr messenger RNA levels. CONCLUSION(S) Following weaning, perinatal AGEs can target puberty onset and folliculogenesis differently to standard mouse chow.
Collapse
Affiliation(s)
- Zaher Merhi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, New York; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.
| | - Xiu Quan Du
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York; Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
33
|
Fimbristylis ovata and Artemisia vulgaris extracts inhibited AGE-mediated RAGE expression, ROS generation, and inflammation in THP-1 cells. Toxicol Res 2022; 38:331-343. [DOI: 10.1007/s43188-021-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/15/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022] Open
|
34
|
Pathak C, Vaidya FU, Waghela BN, Chhipa AS, Tiwari BS, Ranjan K. Advanced Glycation End Products-Mediated Oxidative Stress and Regulated Cell Death Signaling in Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: MECHANISTIC ASPECTS 2022:535-550. [DOI: 10.1007/978-981-15-9411-3_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Ali Kazem T, Zeylabi F, Filayih Hassan A, Paridar P, Pezeshki SP, Pezeshki SMS. Diabetes mellitus and COVID-19: review of a lethal interaction from the cellular and molecular level to the bedside. Expert Rev Endocrinol Metab 2022; 17:1-19. [PMID: 34781797 DOI: 10.1080/17446651.2022.2002145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION While the main mode of transmission of coronavirus disease 2019 (COVID-19) is close contact with other individuals, the presence of chronic underlying diseases such as Diabetes Mellitus (DM) increases the chance of hospitalization and mortality rate due to infection. AREAS COVERED To investigate the effects of COVID-19 infection in DM patients, we reviewed literature from Google Scholar search engine and PubMed database from '2013 to 2020' using the terms "COVID-19; SARS-CoV-2; Diabetes mellitus; obesity; Angiotensin-converting enzyme 2; ACE2; Insulin and Metformin. Evidence suggests that COVID-19 exacerbates the course of diabetes. Presence of pro-inflammatory conditions, increased expression of receptors, and more difficult control of glucose levels in diabetics COVID-19 patients are some of the problems that diabetic patients may face. Also, psychological problems caused by the COVID-19 epidemic in diabetic patients is one of the most important problems in these patients, which is less covered. EXPERT OPINION DM is a strong and independent risk factor with a poor prognosis, which increases the risk of COVID-19 infection, the need for emergency services, the rate of hospitalization in the intensive care unit and also increases the mortality rate of COVID-19 patients.
Collapse
Affiliation(s)
| | - Fatemeh Zeylabi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Pouria Paridar
- Islamic Azad University, North-Tehran Branch, Tehran, Iran
| | - Seyedeh Pardis Pezeshki
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
36
|
Hansen L, Joseph G, Valdivia A, Taylor WR. Satellite Cell Expression of RAGE (Receptor for Advanced Glycation end Products) Is Important for Collateral Vessel Formation. J Am Heart Assoc 2021; 10:e022127. [PMID: 34689598 PMCID: PMC8751830 DOI: 10.1161/jaha.120.022127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The growth and remodeling of vascular networks is an important component of the prognosis for patients with peripheral artery disease. One protein that has been previously implicated to play a role in this process is RAGE (receptor for advanced glycation end products). This study sought to determine the cellular source of RAGE in the ischemic hind limb and the role of RAGE signaling in this cell type. Methods and Results Using a hind limb ischemia model of vascular growth, this study found skeletal muscle satellite cells to be a novel major cellular source of RAGE in ischemic tissue by both staining and cellular sorting. Although wild-type satellite cells increased tumor necrosis factor-α and monocyte chemoattractant protein-1 production in response to ischemia in vivo and a RAGE ligand in vitro, satellite cells from RAGE knockout mice lacked the increase in cytokine production both in vivo in response to ischemia and in vitro after stimuli with the RAGE ligand high-mobility group box 1. Furthermore, encapsulated wild-type satellite cells improved perfusion after hind limb ischemia surgery by both perfusion staining and vessel quantification, but RAGE knockout satellite cells provided no improvement over empty capsules. Conclusions Thus, RAGE expression and signaling in satellite cells is crucial for their response to stimuli and angiogenic and arteriogenic functions.
Collapse
Affiliation(s)
- Laura Hansen
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA
| | - Giji Joseph
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - Alejandra Valdivia
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - W Robert Taylor
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA.,The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA
| |
Collapse
|
37
|
Zhang X, Liu J, Zhang Q, Lu A, Du Y, Ye X. Elevated serum pentosidine is independently associated with the high prevalence of sarcopenia in Chinese middle-aged and elderly men with type 2 diabetes mellitus. J Diabetes Investig 2021; 12:2054-2061. [PMID: 34002934 PMCID: PMC8565416 DOI: 10.1111/jdi.13581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS/INTRODUCTION Sarcopenia has recently been recognized as another complication associated with diabetes, but its early screening still lacks clinical markers. Here, we aimed to investigate the relationship between serum levels of pentosidine, which is an advanced glycation end-product, and sarcopenia in Chinese middle-aged and elderly men with type 2 diabetes mellitus and evaluate whether pentosidine could be used as a kind of screening maker. MATERIALS AND METHODS A total of 182 male type 2 diabetes mellitus patients aged ≥50 years were selected in the cross-sectional study for whole-body dual-energy X-ray measurement and calculating the appendicular skeletal muscle mass index. At the same time, handgrip strength and gait speed were assessed. According to the updated consensus on Asian sarcopenia in 2019, the patients were divided into the sarcopenia group (n = 83) and non-sarcopenia group (n = 99). Serum pentosidine levels in the two groups were detected using enzyme-linked immunosorbent assay. RESULTS Serum pentosidine was significantly higher in the sarcopenia group (191.27 pmol/mL) than in the non-sarcopenia group (34.93 pmol/mL). Serum pentosidine was negatively correlated with appendicular skeletal muscle mass index and handgrip strength (r = -0.30 and -0.25, respectively; P < 0.05), but not gait speed. The prevalence of sarcopenia increased as the quartile of serum pentosidine increased (P < 0.05). The association between pentosidine and the prevalence of sarcopenia was still significant after additional adjustments (odds ratio 1.01, P < 0.05). CONCLUSIONS Pentosidine is an independent risk factor for sarcopenia in Chinese middle-aged and elderly men with type 2 diabetes mellitus. The detection of serum pentosidine levels in clinics might be helpful for the monitoring of type 2 diabetes mellitus complicated with sarcopenia.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Department of EndocrinologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Juan Liu
- Department of EndocrinologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Qing Zhang
- Department of EndocrinologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Aijiao Lu
- Department of EndocrinologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Yunfeng Du
- Department of EndocrinologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Xinhua Ye
- Department of EndocrinologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| |
Collapse
|
38
|
In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related Advanced Glycation End Products and Related 1,2-Dicarbonyls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912240. [PMID: 34422213 PMCID: PMC8371648 DOI: 10.1155/2021/9912240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
During food processing and storage, and in tissues and fluids under physiological conditions, the Maillard reaction occurs. During this reaction, reactive 1,2-dicarbonyl compounds arise as intermediates that undergo further reactions to form advanced glycation end products (AGEs). Diet is the primary source of exogenous AGEs. Endogenously formed AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, or chronic disease. AGEs may differently contribute to the diet-related exacerbation of oxidative stress, inflammation, and protein modifications. Here, to understand the contribution of each compound, we tested individually, for the first time, the effect of five 1,2-dicarbonyl compounds 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal (GO), and methylglyoxal (MGO) and four different glycated amino acids N-ε-(carboxyethyl)lysine (CEL), N-ε-(carboxymethyl)lysine (CML), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pyrraline (Pyrr) in a cell line of human keratinocytes (HaCaT). We found that most of the glycated amino acids, i.e., CEL, CML, and MG-H1, did not show any cytotoxicity. At the same time, 1,2-dicarbonyl compounds 3-DGal, 3,4-DGE, GO, and MGO increased the production of reactive oxygen species and induced cell death. MGO induced cell death by apoptosis, whereas 3-DGal and 3,4-DGE induced nuclear translocation of the proinflammatory NF-κB transcription pathway, and the activation of the pyroptosis-related NLRP3 inflammasome cascade. Overall, these results demonstrate the higher toxic impact of 1,2-dicarbonyl compounds on mucosal epithelial cells when compared to glycated amino acids and the selective activation of intracellular signaling pathways involved in the crosstalk mechanisms linking oxidative stress to excessive inflammation.
Collapse
|
39
|
Chen Y, Guo TL. Dietary advanced glycation end-products elicit toxicological effects by disrupting gut microbiome and immune homeostasis. J Immunotoxicol 2021; 18:93-104. [PMID: 34436982 PMCID: PMC9885815 DOI: 10.1080/1547691x.2021.1959677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aging immune system is characterized by a low-grade chronic systemic inflammatory state ("inflammaging") marked by elevated serum levels of inflammatory molecules such as interleukin (IL)-6 and C-reactive protein (CRP). These inflammatory markers were also reported to be strong predictors for the development/severity of Type 2 diabetes, obesity, and COVID-19. The levels of these markers have been positively associated with those of advanced glycation end-products (AGEs) generated via non-enzymatic glycation and oxidation of proteins and lipids during normal aging and metabolism. Based on the above observations, it is clinically important to elucidate how dietary AGEs modulate inflammation and might thus increase the risk for aging-exacerbated diseases. The present narrative review discusses the potential pro-inflammatory properties of dietary AGEs with a focus on the inflammatory mediators CRP, IL-6 and ferritin, and their relations to aging in general and Type 2 diabetes in particular. In addition, underlying mechanisms - including those related to gut microbiota and the receptors for AGEs, and the roles AGEs might play in affecting physiologies of the healthy elderly, obese individuals, and diabetics are discussed in regard to any greater susceptibility to COVID-19.
Collapse
Affiliation(s)
- Yingjia Chen
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L. Guo
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
40
|
Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021; 22:ijms22136904. [PMID: 34199060 PMCID: PMC8268101 DOI: 10.3390/ijms22136904] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin superfamily. RAGE binds and mediates cellular responses to a range of DAMPs (damage-associated molecular pattern molecules), such as AGEs, HMGB1, and S100/calgranulins, and as an innate immune sensor, can recognize microbial PAMPs (pathogen-associated molecular pattern molecules), including bacterial LPS, bacterial DNA, and viral and parasitic proteins. RAGE and its ligands stimulate the activations of diverse pathways, such as p38MAPK, ERK1/2, Cdc42/Rac, and JNK, and trigger cascades of diverse signaling events that are involved in a wide spectrum of diseases, including diabetes mellitus, inflammatory, vascular and neurodegenerative diseases, atherothrombosis, and cancer. Thus, the targeted inhibition of RAGE or its ligands is considered an important strategy for the treatment of cancer and chronic inflammatory diseases.
Collapse
|
41
|
Sutthasupha P, Lungkaphin A. The potential roles of chitosan oligosaccharide in prevention of kidney injury in obese and diabetic conditions. Food Funct 2021; 11:7371-7388. [PMID: 32839793 DOI: 10.1039/d0fo00302f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity is closely associated with insulin resistance (IR). The most likely links between the two are obesity-mediated systemic low-grade chronic inflammation, endoplasmic reticulum stress and mitochondrial dysfunction, which are all known to contribute to the development of type 2 diabetes (T2DM) and eventually diabetic nephropathy (DN). Chitosan oligosaccharide (COS) is an oligomer of chitosan prepared by the deacetylation of chitin commonly found in exoskeletons of crustaceans such as shrimp and crab as well as the cell walls of fungi. COS has various biological effects including lipid lowering, anti-inflammation, anti-diabetes, and anti-oxidant effects. Therefore, COS is a potential new therapeutic agent for treatment of the obesity-induced DN condition. It is an abundant natural polymer and therefore freely available. This review includes information regarding the relationship between obesity, IR, T2DM, and DN as well as the potential usefulness of COS in controlling lipid and cholesterol metabolism, T2DM and kidney injury models in both in vivo and in vitro studies. However, evidence is limited regarding the effect of COS on the DN model. Further studies, especially in obesity-induced DN, are needed to support the mechanisms proposed in this review.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. and Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
42
|
Inhibition of the Receptor for Advanced Glycation End Products Enhances the Cytotoxic Effect of Gemcitabine in Murine Pancreatic Tumors. Biomolecules 2021; 11:biom11040526. [PMID: 33915939 PMCID: PMC8067004 DOI: 10.3390/biom11040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a very difficult cancer to treat. Recent in vitro and in vivo studies suggest that the activation of the receptor for advanced glycation end products (RAGE) by its ligands stimulates pancreatic cancer cell proliferation and tumor growth. Additional studies show that, in the RAGE ligand, the high mobility group box 1 (HMGB1) protein plays an important role in chemoresistance against the cytotoxic agent gemcitabine by promoting cell survival through increased autophagy. We hypothesized that blocking the RAGE/HMGB1 interaction would enhance the cytotoxic effect of gemcitabine by reducing cell survival and autophagy. Using a preclinical mouse model of PDAC and a monoclonal antibody (IgG 2A11) as a RAGE inhibitor, we demonstrate that RAGE inhibition concurrent with gemcitabine treatment enhanced the cytotoxic effect of gemcitabine. The combination of IgG 2A11 and gemcitabine resulted in decreased autophagy compared to treatment with gemcitabine combined with control antibodies. Notably, we also observed that RAGE inhibition protected against excessive weight loss during treatment with gemcitabine. Our data suggest that the combination of gemcitabine with a RAGE inhibitor could be a promising therapeutic approach for the treatment of pancreatic cancer and needs to be further investigated.
Collapse
|
43
|
Burr SD, Stewart JA. Rap1a Overlaps the AGE/RAGE Signaling Cascade to Alter Expression of α-SMA, p-NF-κB, and p-PKC-ζ in Cardiac Fibroblasts Isolated from Type 2 Diabetic Mice. Cells 2021; 10:cells10030557. [PMID: 33806572 PMCID: PMC8000763 DOI: 10.3390/cells10030557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease, specifically heart failure, is a common complication for individuals with type 2 diabetes mellitus. Heart failure can arise with stiffening of the left ventricle, which can be caused by “active” cardiac fibroblasts (i.e., myofibroblasts) remodeling the extracellular matrix (ECM). Differentiation of fibroblasts to myofibroblasts has been demonstrated to be an outcome of AGE/RAGE signaling. Hyperglycemia causes advanced glycated end products (AGEs) to accumulate within the body, and this process is greatly accelerated under chronic diabetic conditions. AGEs can bind and activate their receptor (RAGE) to trigger multiple downstream outcomes, such as altering ECM remodeling, inflammation, and oxidative stress. Previously, our lab has identified a small GTPase, Rap1a, that possibly overlaps the AGE/RAGE signaling cascade to affect the downstream outcomes. Rap1a acts as a molecular switch connecting extracellular signals to intracellular responses. Therefore, we hypothesized that Rap1a crosses the AGE/RAGE cascade to alter the expression of AGE/RAGE associated signaling proteins in cardiac fibroblasts in type 2 diabetic mice. To delineate this cascade, we used genetically different cardiac fibroblasts from non-diabetic, diabetic, non-diabetic RAGE knockout, diabetic RAGE knockout, and Rap1a knockout mice and treated them with pharmacological modifiers (exogenous AGEs, EPAC, Rap1a siRNA, and pseudosubstrate PKC-ζ). We examined changes in expression of proteins implicated as markers for myofibroblasts (α-SMA) and inflammation/oxidative stress (NF-κB and SOD-1). In addition, oxidative stress was also assessed by measuring hydrogen peroxide concentration. Our results indicated that Rap1a connects to the AGE/RAGE cascade to promote and maintain α-SMA expression in cardiac fibroblasts. Moreover, Rap1a, in conjunction with activation of the AGE/RAGE cascade, increased NF-κB expression as well as hydrogen peroxide concentration, indicating a possible oxidative stress response. Additionally, knocking down Rap1a expression resulted in an increase in SOD-1 expression suggesting that Rap1a can affect oxidative stress markers independently of the AGE/RAGE signaling cascade. These results demonstrated that Rap1a contributes to the myofibroblast population within the heart via AGE/RAGE signaling as well as promotes possible oxidative stress. This study offers a new potential therapeutic target that could possibly reduce the risk for developing diabetic cardiovascular complications attributed to AGE/RAGE signaling.
Collapse
|
44
|
Zhang X, Xu L, Chen W, Yu X, Shen L, Huang Y. Pyridoxamine alleviates mechanical allodynia by suppressing the spinal receptor for advanced glycation end product-nuclear factor- κB/extracellular signal-regulated kinase signaling pathway in diabetic rats. Mol Pain 2021; 16:1744806920917251. [PMID: 32252594 PMCID: PMC7139183 DOI: 10.1177/1744806920917251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diabetic neuropathic pain is a common complication of diabetes mellitus and
requires a substantial amount of societal resources. Pyridoxamine is an
inhibitor of advanced glycation and lipoxidation end products. Several animal
and clinical studies have confirmed that pyridoxamine can inhibit a range of
pathological changes in diabetes-induced organ injury and alleviate certain
kinds of neuropathic pain. However, no studies have attempted to explore the
effects of pyridoxamine on diabetic neuropathic pain. We conducted animal
experiments to examine whether pyridoxamine could alleviate diabetic neuropathic
pain and to explore the mechanism underlying these effects. Adult male Sprague
Dawley rats were randomly assigned to the normal + sterile water group,
diabetic + sterile water group, diabetic + pyridoxamine100 group,
diabetic +pyridoxamine200 group,
diabetic + pyridoxamine400 group, or normal + pyridoxamine group.
The rats in the diabetic +pyridoxamine100,
diabetic + pyridoxamine200,
diabetic + pyridoxamine400, and normal + pyridoxamine groups received
pyridoxamine at dosages of 100 mg/kg/day, 200 mg/kg/day, 400 mg/kg/day, and
400 mg/kg/day, respectively, via intragastric administration. The rats in the
other groups received water daily. Pyridoxamine alleviated diabetic neuropathic
pain at least partially by suppressing the activity of the spinal receptor for
advanced glycation end products-nuclear factor-κB/extracellular signal-regulated
kinase signaling pathway; additionally, pyridoxamine decreased advanced
glycation end product-modified low-density lipoprotein, oxidized low-density
lipoprotein, and interleukin-1β levels in the serum. The immunofluorescence
staining results revealed that most phosphorylated nuclear factor-κB was
localized to neuronal cells and not to microglia or astrocytes; this pattern may
be associated with the upregulated expression of pain-related proteins. The
abovementioned results indicate that pyridoxamine is a promising choice for the
clinical treatment of diabetic neuropathic pain. Further investigations need to
be carried out to confirm the benefits of pyridoxamine.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China.,Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Weiyun Chen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Xuerong Yu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Le Shen
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, China
| |
Collapse
|
45
|
Attenuation of methylglyoxal-induced glycation and cellular dysfunction in wound healing by Centella cordifolia. Saudi J Biol Sci 2021; 28:813-824. [PMID: 33424371 DOI: 10.1016/j.sjbs.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 01/13/2023] Open
Abstract
Current pre-clinical evidences of Centella focus on its pharmacological effects on normal wound healing but there are limited studies on the bioactivity of Centella in cellular dysfunction associated with diabetic wounds. Hence we planned to examine the potential of Centella cordifolia in inhibiting methylglyoxal (MGO)-induced extracellular matrix (ECM) glycation and promoting the related cellular functions. A Cell-ECM adhesion assay examined the ECM glycation induced by MGO. Different cell types that contribute to the healing process (fibroblasts, keratinocytes and endothelial cells) were evaluated for their ability to adhere to the glycated ECM. Methanolic extract of Centella species was prepared and partitioned to yield different solvent fractions which were further analysed by high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) method. Based on the antioxidant [2,2-diphenyl-1-picrylhydrazyl (DPPH) assay] screening, anti-glycation activity and total phenolic content (TPC) of the different Centella species and fractions, the ethyl acetate fraction of C. cordifolia was selected for further investigating its ability to inhibit MGO-induced ECM glycation and promote cellular distribution and adhesion. Out of the three Centella species (C. asiatica, C. cordifolia and C. erecta), the methanolic extract of C. cordifolia showed maximum inhibition of Advanced glycation end products (AGE) fluorescence (20.20 ± 4.69 %, 25.00 ± 3.58 % and 16.18 ± 1.40 %, respectively). Its ethyl acetate fraction was enriched with phenolic compounds (3.91 ± 0.12 mg CAE/μg fraction) and showed strong antioxidant (59.95 ± 7.18 μM TE/μg fraction) and antiglycation activities. Improvement of cells spreading and adhesion of endothelial cells, fibroblasts and keratinocytes was observed for ethyl acetate treated MGO-glycated extracellular matrix. Significant reduction in attachment capacity of EA.hy926 cells seeded on MGO-glycated fibronectin (41.2%) and attachment reduction of NIH3t3 and HaCaT cells seeded on MGO-glycated collagen (33.7% and 24.1%, respectively) were observed. Our findings demonstrate that ethyl acetate fraction of C. cordifolia was effective in attenuating MGO-induced glycation and cellular dysfunction in the in-vitro wound healing models suggesting that C. cordifolia could be a potential candidate for diabetic wound healing. It could be subjected for further isolation of new phytoconstituents having potential diabetic wound healing properties.
Collapse
Key Words
- AGA, minoguanidine hydrochloride
- AGEs, Advanced glycation end products
- AlCl3, Aluminum chloride
- Antiglycation
- BSA, Bovine serum albumin
- Centella
- DMEM, Dulbecco's Modified Eagle Medium
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- Diabetic complications
- EA, Ethyl acetate fraction
- ECM, Extracellular matrix
- FN, Fibronectin
- HEPES, Hydroxyethyl piperazineethanesulfonic acid
- HPLC-PDA
- HPLC-PDA, High performance liquid chromatography equipped with photodiode array detector
- HbA1c, Hemoglobin A1c
- MGO, Methylglyoxal
- Methylglyoxal
- NaNO2, Sodium nitrite
- NaOH, Sodium hydroxide
- PBS, Phosphate buffered saline
- RAGE, Receptor for advanced glycation endproducts
- ROS, Reactive oxygen species
- SDS-PAGE, Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- TLC, Thin-layer chromatography
- TNBSA, 2,4,6-trinitrobenzene sulfonic acid
- TNBSA, Trinitrobenzene sulfonic acid
- TPC, Total phenolic content
- Trolox, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
- Wounds
Collapse
|
46
|
Wang X, Li Q, Han X, Gong M, Yu Z, Xu B. Electroacupuncture Alleviates Diabetic Peripheral Neuropathy by Regulating Glycolipid-Related GLO/AGEs/RAGE Axis. Front Endocrinol (Lausanne) 2021; 12:655591. [PMID: 34295304 PMCID: PMC8290521 DOI: 10.3389/fendo.2021.655591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes mellitus (DM) and affects over one-third of all patients. Neuropathic pain and nerve dysfunction induced by DM is related to the increase of advanced glycation end products (AGEs) produced by reactive dicarbonyl compounds in a hyperglycemia environment. AGEs induce the expression of pro-inflammatory cytokines via the main receptor (RAGE), which has been documented to play a crucial role in the pathogenesis of diabetic peripheral neuropathy. Electroacupuncture (EA) has been reported to have a positive effect on paralgesia caused by various diseases, but the mechanism is unclear. In this study, we used high-fat-fed low-dose streptozotocin-induced rats as a model of type 2 diabetes (T2DM). Persistent metabolic disorder led to mechanical and thermal hyperalgesia, as well as intraepidermal nerve fiber density reduction and nerve demyelination. EA improved neurological hyperalgesia, decreased the pro-inflammatory cytokines, reduced the generation of AGEs and RAGE, and regulated the glyoxalase system in the EA group. Taken together, our study suggested that EA plays a role in the treatment of T2DM-induced DPN, and is probably related to the regulation of metabolism and the secondary influence on the GLO/AGE/RAGE axis.
Collapse
Affiliation(s)
| | | | | | | | - Zhi Yu
- *Correspondence: Zhi Yu, ; Bin Xu,
| | - Bin Xu
- *Correspondence: Zhi Yu, ; Bin Xu,
| |
Collapse
|
47
|
Babel RA, Dandekar MP. A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications. Curr Diabetes Rev 2021; 17:457-473. [PMID: 33143626 DOI: 10.2174/1573399816666201103143818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
Modern lifestyle, changing eating habits and reduced physical work have been known to culminate into making diabetes a global pandemic. Hyperglycemia during the course of diabetes is an important causative factor for the development of both microvascular (retinopathy, nephropathy and neuropathy) and macrovascular (coronary artery disease, stroke and peripheral artery disease) complications. In this article, we summarize several mechanisms accountable for the development of both microvascular and macrovascular complications of diabetes. Several metabolic and cellular events are linked to the augmentation of oxidative stress like the activation of advanced glycation end products (AGE) pathway, polyol pathway, Protein Kinase C (PKC) pathway, Poly-ADP Ribose Polymerase (PARP) and hexosamine pathway. Oxidative stress also leads to the production of reactive oxygen species (ROS) like hydroxyl radical, superoxide anion and peroxides. Enhanced levels of ROS rescind the anti-oxidant defence mechanisms associated with superoxide dismutase, glutathione and ascorbic acid. Moreover, ROS triggers oxidative damages at the level of DNA, protein and lipids, which eventually cause cell necrosis or apoptosis. These physiological insults may be related to the microvascular complications of diabetes by negatively impacting the eyes, kidneys and the brain. While underlying pathomechanism of the macrovascular complications is quite complex, hyperglycemia associated atherosclerotic abnormalities like changes in the coagulation system, thrombin formation, fibrinolysis, platelet and endothelial function and vascular smooth muscle are well proven. Since hyperglycemia also modulates the vascular inflammation, cytokines, macrophage activation and gene expression of growth factors, elevated blood glucose level may play a central role in the development of macrovascular complications of diabetes. Taken collectively, chronic hyperglycemia and increased production of ROS are the miscreants for the development of microvascular and macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Rishabh A Babel
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| |
Collapse
|
48
|
Kobori T, Ganesh D, Kumano-Kuramochi M, Torigoe K, Machida S. Assay for advanced glycation end products generating intracellular oxidative stress through binding to its receptor. Anal Biochem 2020; 611:114018. [PMID: 33186591 DOI: 10.1016/j.ab.2020.114018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Abstract
Advanced glycation end products (AGEs) are a heterogenous group of glycation adducts on amino acids produced with sugars or dicarbonyls. Intracellular inflammation triggered by binding of AGEs to receptor for AGEs (RAGE) is linked to some chronic diseases. Here, we established a competitive assay format to comprehensively quantify AGEs which bound to RAGE. RAGE-binding activities of sugar- and dicarbonyl-derived AGEs were correlated with oxidative stress in cultured cells generated by the respective AGEs, suggesting that this would be a promising method for evaluating AGEs which could affect cellular functions despite limited information on individual glycation adducts.
Collapse
Affiliation(s)
- Toshiro Kobori
- Food Research Institute, National Food and Agriculture Research Organization, 2-1-12 Kan-nondai, Tsukuba, 305-8642, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Deepak Ganesh
- Food Research Institute, National Food and Agriculture Research Organization, 2-1-12 Kan-nondai, Tsukuba, 305-8642, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Miyuki Kumano-Kuramochi
- Food Research Institute, National Food and Agriculture Research Organization, 2-1-12 Kan-nondai, Tsukuba, 305-8642, Japan
| | - Kyoko Torigoe
- Food Research Institute, National Food and Agriculture Research Organization, 2-1-12 Kan-nondai, Tsukuba, 305-8642, Japan
| | - Sachiko Machida
- Food Research Institute, National Food and Agriculture Research Organization, 2-1-12 Kan-nondai, Tsukuba, 305-8642, Japan
| |
Collapse
|
49
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
50
|
Gupta S, Dwarakanath BS. Modulation of Immuno-biome during Radio-sensitization of Tumors by Glycolytic Inhibitors. Curr Med Chem 2020; 27:4002-4015. [PMID: 29852858 DOI: 10.2174/0929867325666180601101145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
The Tumor Microenvironment (TME) comprising stromal cells, fibroblasts and various components of the immune system forms a pro-tumorigenic cocoon around the tumor cells with the reprogramming of the metabolism in the form of Warburg phenotype (enhanced aerobic glycolysis) in tumor as well as non-tumor cells. This reprogramming plays a significant role in suppressing the immune response leading to the survival and proliferation of tumor cells and resistance to therapies. Therefore, there is a considerable interest in developing strategies involving metabolic modifiers to improve the therapeutic efficacy that restores immune competence, besides enhancing the direct effects on tumor cells. Inhibitors of glycolysis like 2-deoxy-D-glucose (2-DG; a hexokinase inhibitor), dichloroacetate and small molecule inhibitors of lactate transport (MCT-1) are some of the metabolic modifiers investigated for their therapeutic as well as adjuvant potential. Among these, 2-DG has been widely investigated and established as an ideal adjuvant in the radio- and chemotherapy of tumors. Modulation of the immuno-biome in the form of cytokine shifts, differential transcriptional regulation, abrogation of immunosuppressive network and reduced accumulation of lactate are some of the contributing factors for immune stimulation linked to the radio- and chemosensitization by glycolytic inhibitors.
Collapse
Affiliation(s)
- Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, United States
| | | |
Collapse
|