1
|
Roll JD, Reuther GW. ALK-activating homologous mutations in LTK induce cellular transformation. PLoS One 2012; 7:e31733. [PMID: 22347506 PMCID: PMC3276580 DOI: 10.1371/journal.pone.0031733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/12/2012] [Indexed: 11/18/2022] Open
Abstract
Leukocyte tyrosine kinase (LTK) is a receptor tyrosine kinase reported to be overexpressed in human leukemia. Though much regarding the function of LTK remains unknown, it shares a high degree of similarity with anaplastic lymphoma kinase (ALK), which is found mutated in human cancer. In order to determine if LTK has transforming potential, we created two LTK mutants, F568L and R669Q, that correspond to two well-characterized activating mutations of ALK (F1174L and R1275Q). LTK-F568L, but not wildtype LTK or LTK-R669Q, transformed hematopoietic cells to cytokine independence. LTK-F568L exhibited a stronger ability to induce loss of contact inhibition and anchorage-independent growth of epithelial cells compared to LTK-R669Q, while wildtype LTK was non-transforming in the same cells. Likewise, LTK-F568L induced greater neurite outgrowth of PC12 cells than R669Q, while wildtype LTK could not. Correlating with transforming activity, LTK-F568L displayed significantly enhanced tyrosine phosphorylation compared to wildtype LTK and LTK-R668Q and induced activation of various signaling proteins including Shc, ERK and the JAK/STAT pathway. Expression of wildtype LTK or LTK-R669Q generally led to weaker activation of signaling proteins than expression of LTK-F568L, or no activation at all. Thus, mutating LTK at residue F568, and to a lesser extent at R669, activates the receptor tyrosine kinase, inducing cell signaling that results in transforming properties. These studies suggest that aberrant activation of LTK may contribute to neoplastic cell growth.
Collapse
Affiliation(s)
- J. Devon Roll
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Gary W. Reuther
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
2
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
3
|
Schaffhausen BS, Roberts TM. Lessons from polyoma middle T antigen on signaling and transformation: A DNA tumor virus contribution to the war on cancer. Virology 2008; 384:304-16. [PMID: 19022468 DOI: 10.1016/j.virol.2008.09.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/30/2008] [Indexed: 01/16/2023]
Abstract
Middle T antigen (MT) is the principal oncogene of murine polyomavirus. Its study has led to the discovery of the roles of tyrosine kinase and phosphoinositide 3-kinase (PI3K) signaling in mammalian growth control and transformation. MT is necessary for viral transformation in tissue culture cells and tumorigenesis in animals. When expressed alone as a transgene, MT causes tumors in a wide variety of tissues. It has no known catalytic activity, but rather acts by assembling cellular signal transduction molecules. Protein phosphatase 2A, protein tyrosine kinases of the src family, PI3K, phospholipase Cgamma1 as well as the Shc/Grb2 adaptors are all assembled on MT. Their activation sets off a series of signaling cascades. Analyses of virus mutants as well as transgenic animals have demonstrated that the effects of a given signal depend not only tissue type, but on the genetic background of the host animal. There remain many opportunities as we seek a full molecular understanding of MT and apply some of its lessons to human cancer.
Collapse
Affiliation(s)
- Brian S Schaffhausen
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
4
|
Abstract
p66Shc was the first mammalian gene whose mutation was demonstrated to increase resistance to oxidative stress and to prolong life span. Many hypotheses have been formulated to explain the biochemical and molecular basis of mammalian aging. Among them the free radical theory of aging, which was first proposed half a century ago by Harman, has received much attention by biomedical scientists. This theory proposed that, because of their high reactivity, reactive oxygen species (ROS) would lead to unavoidable and potentially deleterious by-products, and such an increasingly damaging process could be responsible for degenerative diseases and aging. Recent reports suggest an important role of p66Shc protein in the regulation of cellular responses to oxidative stress, apoptosis, and aging. In this review we discuss what has been discovered about p66Shc in the past 10 years and we focus particularly on its role in ROS regulation, which appears to be extremely promising to define mammalian aging processes.
Collapse
Affiliation(s)
- Enrica Migliaccio
- Experimental Oncology Department, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
5
|
Qiu TH, Chandramouli GVR, Hunter KW, Alkharouf NW, Green JE, Liu ET. Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 2004; 64:5973-81. [PMID: 15342376 DOI: 10.1158/0008-5472.can-04-0242] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FVB/N-Tg (MMTV-PyMT)(634Mul)-transgenic mice develop multifocal mammary tumors with a high incidence of pulmonary metastasis. We have demonstrated previously that mammary tumors derived from transgene-positive F1 progeny in particular inbred strains display altered latency, tumor growth rates, and metastatic rates when compared with the FVB/NJ homozygous parent. To identify genes with expression that might be critical in modifying the biological behavior of MMTV-PyMT tumors, we performed a detailed comparative analysis of expression profiles from mammary tumors arising in the parental FVB/NJ background and F1 progeny from crosses with I/LnJ, LP/J, MOLF/Ei, and NZB/B1NJ mice. Compared with normal mammary glands, gene expression profiles of tumors from all five strains exhibited up-regulation of genes involved in cell growth (e.g., Cks1 and CDC25C) and down-regulation of cell adhesion molecules, with many genes associated previously with human breast cancer such as STAT2, CD24 antigen, gelsolin, and lipocalin2. To identify genes with significant variation in expression between the five different genotypes, significance analysis of microarrays (SAM) and one-way ANOVA were used. Three definable groupings of tumors were identified: (a) tumors derived in the LP/J F1 and MOLF/Ei F1 strains in which tumor growth and dissemination are suppressed and latency prolonged; (b) the most aggressive tumors from the FVB/NJ parental strain and I/LnJ F1 genomic backgrounds; and (c) an intermediate virulence phenotype with tumors from NZB/B1NJ-F1 crosses. These array based assessments correlated well with a composite phenotype ranking using a "virulence" index. The gene expression signature that is associated with a high metastatic rate in the mouse contains the same 17 genes described recently as the signature gene set predictive of metastasis in human tumors (1) with 16 of the 17 genes exhibiting the same directional change in expression associated with human metastases. These results demonstrate that the genetic analysis of mouse models of tumorigenesis may be highly relevant to human cancer and that the metastatic phenotype of a tumor may be affected by the germline genetic configuration of the host.
Collapse
MESH Headings
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis
Collapse
Affiliation(s)
- Ting Hu Qiu
- Laboratory of Cell Regulation and Carcinogenesis, Cancer Research Center, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
6
|
Winnischofer SMB, de Oliveira MLS, Sogayar MC. Suppression of AP-1 constitutive activity interferes with polyomavirus MT antigen transformation ability. J Cell Biochem 2004; 90:253-66. [PMID: 14505342 DOI: 10.1002/jcb.10628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polyomavirus (Py) encodes a potent oncogene, the middle T antigen (MT), that induces cell transformation by binding to and activating several cytoplasmic proteins which take part in transduction of growth factors-induced mitogenic signal to the nucleus. We have previously reported that the AP-1 transcriptional complex is a target for MT during cell transformation although, its activation was not sufficient for establishment of the transformed phenotype. Here we show that expression of a dominant-negative cJun mutant in MT transformed cell lines inhibits its transformation ability, indicating that constitutive AP-1 activity is necessary for cell transformation mediated by MT. Evidences also suggest that proliferation of MT transformed cells in low serum concentrations and their ability to form colonies in agarose are controlled by distinct mechanisms.
Collapse
|
7
|
Jacob A, Cooney D, Pradhan M, Coggeshall KM. Convergence of signaling pathways on the activation of ERK in B cells. J Biol Chem 2002; 277:23420-6. [PMID: 11976336 DOI: 10.1074/jbc.m202485200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The B cell receptor (BCR) initiates three major signaling pathways: the Ras pathway, which leads to extracellular signal-regulated kinase (ERK) activation; the phospholipase C-gamma pathway, which causes calcium mobilization; and the phosphoinositide 3-kinase (PI 3-kinase) pathway. These combine to induce different biological responses depending on the context of the BCR signal. Both the Ras and PI 3-kinase pathways are important for B cell development and activation. Several model systems show evidence of cross-regulation between these pathways. Here we demonstrate through the use of PI 3-kinase inhibitors and a dominant-negative PI 3-kinase construct that the BCR-induced phosphorylation and activation of ERK is dependent on PI 3-kinase. PI 3-kinase feeds into the Ras signaling cascade at multiple points, both upstream and downstream of Ras. We also show that ERK activation is dependent on phospholipase C-gamma, in keeping with its dependence on calcium mobilization. Last, the activation of PI 3-kinase itself is completely dependent on Ras. We conclude that the PI 3-kinase and Ras signaling cascades are intimately connected in B cells and that the activation of ERK is a signal integration point, since it requires simultaneous input from all three major signaling pathways.
Collapse
Affiliation(s)
- Anand Jacob
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Program, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The polyoma virus region expressed early in the lytic cycle encodes three proteins, or T-antigens, that together cause the infected cell to enter the cell cycle and so provide a suitable cellular environment for replication of the viral genome. Under some circumstances infection does not kill the cell, but the T-antigens are still produced, resulting in the cell becoming transformed and tumorigenic. Most of this transforming action is exerted by the middle T-antigen, which has the ability to convert established cell lines to an oncogenic state. Middle T is a membrane bound polypeptide that interacts with a number of the proteins used by tyrosine kinase associated receptors to stimulate mitogenesis, so MT can be considered as a permanently active analogue of a receptor. Through a defined series of interactions, MT assembles a large multi-protein complex at the cell membrane, consisting of MT, the core dimer of protein phosphatase 2A, an src-family tyrosine kinase, and via phosphotyrosines, ShcA, phosphatidylinositol (3') kinase, and phospholipase Cgamma-1. Tyrosine phosphorylation stimulates PI3K and PLCgamma-1 enzymatic activity, and on ShcA creates binding sites for Grb2 with its associated Sos1 and Gab1. This activates p21(ras), and hence, the MAP kinase cascade. Consequently, MT can be used as a model for studying cell transformation and growth factor receptor signalling pathways.
Collapse
Affiliation(s)
- N Ichaso
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
9
|
Nicholson PR, Empereur S, Glover HR, Dilworth SM. ShcA tyrosine phosphorylation sites can replace ShcA binding in signalling by middle T-antigen. EMBO J 2001; 20:6337-46. [PMID: 11707405 PMCID: PMC125738 DOI: 10.1093/emboj/20.22.6337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ShcA and Grb2 are crucial components in signalling by most tyrosine kinase-associated receptors. How ever, it is not clear whether Grb2 bound directly to the receptor is equivalent to Grb2 associated via ShcA. We have used signalling stimulated by the middle T-antigen (MT) of polyoma virus to address this question. The two known Grb2-binding sites from murine ShcA, 313Y and 239/240YY, could functionally replace the MT ShcA-interacting region in transformation assays using Rat2 fibroblasts. This demonstrates that signal output from membrane-bound ShcA requires only these two sequences and the ShcA-binding site in MT does not recruit other signalling molecules. Two standard Grb2-interacting sequences, either from the EGF receptor or the ShcA 313Y region, could not replace the requirement for ShcA binding to MT, indicating an enhanced role for the ShcA 239/240YY motif. Sos1 and the docking protein Gab1 are brought into the MT complex through Grb2 association and this may be more effective using the 239/240YY sequence.
Collapse
Affiliation(s)
| | | | | | - Stephen M. Dilworth
- Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
Corresponding author e-mail:
| |
Collapse
|
10
|
Ong SH, Dilworth S, Hauck-Schmalenberger I, Pawson T, Kiefer F. ShcA and Grb2 mediate polyoma middle T antigen-induced endothelial transformation and Gab1 tyrosine phosphorylation. EMBO J 2001; 20:6327-36. [PMID: 11707404 PMCID: PMC125714 DOI: 10.1093/emboj/20.22.6327] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Middle T antigen (PymT) is the principal transforming component of polyomavirus, and rapidly induces hemangiomas in neonatal mice. PymT, a membrane-associated scaffold, recruits and activates Src family tyrosine kinases, and, once tyrosine phosphorylated, binds proteins with PTB and SH2 domains such as ShcA, phosphatidylinositol 3-kinase (PI3K) and phospholipase Cgamma-1 (PLCgamma-1). To explore the pathways required for endothelial transformation in vivo, we introduced PymT mutant forms into mice. PymT variants unable to bind PI3K and PLCgamma-1 directly induced hemangiomas similarly to wild type, but a mutant unable to bind ShcA was transformation compromised. Requirement for a ShcA PTB domain- binding site was suppressed by replacing this motif in PymT with YXN sequences, which bind the Grb2 SH2 domain upon phosphorylation. Surprisingly, PymT recruitment of ShcA and Grb2 correlated with PI3K activation. PymT mimics activated receptor tyrosine kinases by forming a ShcA-Grb2-Gab1 complex, thus inducing Gab1 tyrosine phosphorylation, which itself is associated with PI3K. Therefore, PymT activation of ShcA-Grb2 signaling is critical for endothelial transformation, and PymT can stimulate Grb2 signaling to both the MAP kinase and PI3K pathways.
Collapse
Affiliation(s)
- Siew Hwa Ong
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada, Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK and Max-Planck-Institute for Physiological and Clinical Research, W.G.Kerckhoff-Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany Corresponding author e-mail:
| | - Stephen Dilworth
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada, Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK and Max-Planck-Institute for Physiological and Clinical Research, W.G.Kerckhoff-Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany Corresponding author e-mail:
| | - Ingrid Hauck-Schmalenberger
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada, Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK and Max-Planck-Institute for Physiological and Clinical Research, W.G.Kerckhoff-Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany Corresponding author e-mail:
| | - Tony Pawson
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada, Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK and Max-Planck-Institute for Physiological and Clinical Research, W.G.Kerckhoff-Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany Corresponding author e-mail:
| | - Friedemann Kiefer
- Programme in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5 and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada, Department of Metabolic Medicine, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK and Max-Planck-Institute for Physiological and Clinical Research, W.G.Kerckhoff-Institute, Parkstrasse 1, D-61231 Bad Nauheim, Germany Corresponding author e-mail:
| |
Collapse
|
11
|
Abstract
The adapter protein Shc was initially identified as an SH2 containing proto-oncogene involved in growth factor signaling. Since then a number of studies in multiple systems have implicated a role for Shc in signaling via many different types of receptors, such as growth factor receptors, antigen receptors, cytokine receptors, G-protein coupled receptors, hormone receptors and integrins. In addition to the ubiquitous ShcA, two other shc gene products, ShcB and ShcC, which are predominantly expressed in neuronal cells, have also been identified. ShcA knockout mice are embryonic lethal and have clearly suggested an important role for ShcA in vivo. Based on dominant negative studies and mouse embryos deficient in ShcA, a clear role for Shc in leading to mitogen activated protein kinase (MAPK) activation has been established. However MAPK activation may not be the sole function of Shc proteins. Although Shc has also been linked to other signaling events such as c-Myc activation and cell survival, the mechanistic understanding of these signaling events remains poorly characterized. Given the apparently central role that Shc plays signaling via many receptors, delineating the precise mechanism(s) of Shc-mediated signaling may be critical to our understanding of the effects mediated through these receptors.
Collapse
Affiliation(s)
- K S Ravichandran
- Beirne Carter Center for Immunology Research and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, VA 22908, USA.
| |
Collapse
|
12
|
O'Bryan JP. Determining involvement of Shc proteins in signaling pathways. Methods Enzymol 2001; 333:3-15. [PMID: 11400346 DOI: 10.1016/s0076-6879(01)33039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- J P O'Bryan
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
13
|
Csar XF, Wilson NJ, McMahon KA, Marks DC, Beecroft TL, Ward AC, Whitty GA, Kanangasundarum V, Hamilton JA. Proteomic analysis of macrophage differentiation. p46/52(Shc) Tyrosine phosphorylation is required for CSF-1-mediated macrophage differentiation. J Biol Chem 2001; 276:26211-7. [PMID: 11290743 DOI: 10.1074/jbc.m100213200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage colony stimulating factor (M-CSF or CSF-1) acts to regulate the development and function of cells of the macrophage lineage. Murine myeloid FDC-P1 cells transfected with the CSF-1 receptor (FD/WT) adopt a macrophage-like morphology when cultured in CSF-1. This process is abrogated in FDC-P1 cells transfected with the CSF-1 receptor with a tyrosine to phenyalanine substitution at position 807 (FD/807), suggesting that a molecular interaction critical to differentiation signaling is lost (Bourette, R. P., Myles, G. M., Carlberg, K., Chen, A. R., and Rohrschneider, L. R. (1995) Cell Growth Differ. 6, 631--645). A detailed examination of lysates of CSF-1-treated FD/807 cells by two-dimensional SDS-polyacrylamide gel electrophoresis (PAGE) revealed a number of proteins whose degree of tyrosine phosphorylation was modulated by the Y807F mutation. Included in this category were three phosphorylated proteins that co-migrated with p46/52(Shc). Immunoprecipitation, Western blotting, and in vitro binding studies suggest that they are indeed p46/52(Shc). A key regulator of differentiation in a number of cell systems, ERK was observed to exhibit an activity that correlated with the relative degree of differentiation induced by CSF-1 in the two cell types. Transfection of cells with a non-tyrosine-phosphorylatable form of p46/52(Shc) prevented the normally observed CSF-1-mediated macrophage differentiation as determined by adoption of macrophage-like morphology and expression of the monocyte/macrophage lineage cell surface marker, Mac-1. These results are the first to suggest that p46/52(Shc) may play a role in CSF-1-induced macrophage differentiation. Additionally, a number of proteins were identified by two-dimensional SDS-PAGE whose degree of tyrosine phosphorylation is also modulated by the Y807F substitution. This group of molecules may contain novel signaling molecules important in macrophage differentiation.
Collapse
Affiliation(s)
- X F Csar
- Arthritis and Inflammation Research Centre, University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia 3050.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gottlieb KA, Villarreal LP. Natural biology of polyomavirus middle T antigen. Microbiol Mol Biol Rev 2001; 65:288-318 ; second and third pages, table of contents. [PMID: 11381103 PMCID: PMC99028 DOI: 10.1128/mmbr.65.2.288-318.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented.
Collapse
Affiliation(s)
- K A Gottlieb
- Department of Molecular Biology and Biochemistry, Biological Sciences II, University of California-Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
15
|
Polyoma virus middle t-antigen: growth factor receptor mimic. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0168-7069(01)05004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
DiMaio D, Lai CC, Klein O. Virocrine transformation: the intersection between viral transforming proteins and cellular signal transduction pathways. Annu Rev Microbiol 2000; 52:397-421. [PMID: 9891803 DOI: 10.1146/annurev.micro.52.1.397] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes a mechanism of viral transformation involving activation of cellular signaling pathways. We focus on four viral oncoproteins: the E5 protein of bovine papillomavirus, which activates the platelet-derived growth factor beta receptor; gp55 of spleen focus forming virus, which activates the erythropoietin receptor; polyoma virus middle T antigen, which resembles an activated receptor tyrosine kinase; and LMP-1 of Epstein-Barr virus, which mimics an activated tumor necrosis factor receptor. These examples indicate that diverse viruses induce cell transformation by activating cellular signal transduction pathways. Study of this mechanism of viral transformation will provide new insights into viral tumorigenesis and cellular signal transduction.
Collapse
Affiliation(s)
- D DiMaio
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
17
|
Andrechek ER, Muller WJ. Tyrosine kinase signalling in breast cancer: tyrosine kinase-mediated signal transduction in transgenic mouse models of human breast cancer. Breast Cancer Res 2000; 2:211-6. [PMID: 11250712 PMCID: PMC138777 DOI: 10.1186/bcr56] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/1999] [Accepted: 02/21/2000] [Indexed: 11/10/2022] Open
Abstract
The ability of growth factors and their cognate receptors to induce mammary epithelial proliferation and differentiation is dependent on their ability to activate a number of specific signal transduction pathways. Aberrant expression of specific receptor tyrosine kinases (RTKs) has been implicated in the genesis of a significant proportion of sporadic human breast cancers. Indeed, mammary epithelial expression of activated RTKs such as ErbB2/neu in transgenic mice has resulted in the efficient induction of metastatic mammary tumours. Although it is clear from these studies that activation these growth factor receptor signalling cascades are directly involved in mammary tumour progression, the precise interaction of each of these signalling pathways in mammary tumourigenesis and metastasis remains to be elucidated. The present review focuses on the role of several specific signalling pathways that have been implicated as important components in RTK-mediated signal transduction. In particular, it focuses on two well characterized transgenic breast cancer models that carry the polyomavirus middle T(PyV mT) and neu oncogenes.
Collapse
Affiliation(s)
- E R Andrechek
- Institute for Molecular Biology and Biotechnology, Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
18
|
Rauh MJ, Blackmore V, Andrechek ER, Tortorice CG, Daly R, Lai VK, Pawson T, Cardiff RD, Siegel PM, Muller WJ. Accelerated mammary tumor development in mutant polyomavirus middle T transgenic mice expressing elevated levels of either the Shc or Grb2 adapter protein. Mol Cell Biol 1999; 19:8169-79. [PMID: 10567542 PMCID: PMC84901 DOI: 10.1128/mcb.19.12.8169] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Grb2 and Shc adapter proteins play critical roles in coupling activated growth factor receptors to several cellular signaling pathways. To assess the role of these molecules in mammary epithelial development and tumorigenesis, we have generated transgenic mice which individually express the Grb2 and Shc proteins in the mammary epithelium. Although mammary epithelial cell-specific expression of Grb2 or Shc accelerated ductal morphogenesis, mammary tumors were rarely observed in these strains. To explore the potential role of these adapter proteins in mammary tumorigenesis, mice coexpressing either Shc or Grb2 and a mutant form of polyomavirus middle T (PyV mT) antigen in the mammary epithelium were generated. Coexpression of either Shc or Grb2 with the mutant PyV mT antigen resulted in a dramatic acceleration of mammary tumorigenesis compared to parental mutant PyV mT strain. The increased rate of tumor formation observed in these mice was correlated with activation of the epidermal growth factor receptor family and mitogen-activated protein kinase pathway. These observations suggest that elevated levels of the Grb2 or Shc adapter protein can accelerate mammary tumor progression by sensitizing the mammary epithelial cell to growth factor receptor signaling.
Collapse
Affiliation(s)
- M J Rauh
- Institute for Molecular Biology and Biotechnology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Phosphotyrosine binding (PTB) domains have been identified in a large number of proteins. In proteins like Shc and IRS-1, the PTB domain binds in a phosphotyrosine-dependent fashion to peptides that form a b turn. In these proteins, PTB domains play an important role in signal transduction by growth factor receptors. However, in several other proteins, the PTB domains have been found to participate in phosphotyrosine-independent interactions. The X11 family of proteins contains a PTB domain that binds peptides in a phosphotyrosine-independent fashion. The homologue of X11 in C. elegans is the lin-10 gene, a gene crucial for receptor targeting to the basolateral surface of body wall epithelia. The X11/Lin-10 proteins are found in a complex with two other proteins, Lin-2 and Lin-7, which have also been implicated in basolateral targeting in worm epithelia. This protein complex is also likely to be important in the targeting of cell surface proteins in mammalian neurons and epithelia. The ability of the PTB domain to bind peptides in a phosphotyrosine-dependent and -independent fashion allows this domain to be involved in diverse cellular functions.
Collapse
Affiliation(s)
- B Margolis
- Department of Internal Medicine and Biological Chemistry, Howard HughesMedical Institute, University of Michigan Medical School, Ann Arbor 48109-0650, USA.
| | | | | | | |
Collapse
|
20
|
Glover HR, Brewster CE, Dilworth SM. Association between src-kinases and the polyoma virus oncogene middle T-antigen requires PP2A and a specific sequence motif. Oncogene 1999; 18:4364-70. [PMID: 10439044 DOI: 10.1038/sj.onc.1202816] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polymoma virus encodes a potent oncogene, the middle T-antigen (MT), that induces cell transformation by copying the actions of tyrosine kinase associated growth factor receptors. A crucial component of MT transformation is its ability to bind and stimulate the activity of src-family kinases. However, the mechanism by which this is achieved remains unclear. Tyrosine phosphorylation of MT by src-kinases then provides binding sites for SH2 and PTB domain containing molecules in a paradigm of receptor action. We present evidence here that the MT/src complex contains equi-molar amounts of PP2A, and that phosphatase activity may be required for the interaction of MT with both PP2A and the src-family. PP2A, then, is a necessary component of the MT-src complex. We also show that two motifs in the 185 to 210 region of MT, each consisting of a basic area followed by a serine or threonine, are essential for interaction with src-kinases, but not PP2A. The spacing between the serine or threonine and the basic sequence also appears to be important. Substituting a cysteine residue in place of Thr203 in MT has no affect on the binding of pp60c-src, showing that these sites interact with src-kinases by a novel mechanism that does not require phosphorylation.
Collapse
Affiliation(s)
- H R Glover
- Department of Metabolic Medicine, Imperial College School of Medicine, London, UK
| | | | | |
Collapse
|
21
|
Fournier E, Blaikie P, Rosnet O, Margolis B, Birnbaum D, Borg JP. Role of tyrosine residues and protein interaction domains of SHC adaptor in VEGF receptor 3 signaling. Oncogene 1999; 18:507-14. [PMID: 9927207 DOI: 10.1038/sj.onc.1202315] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The VEGFR3/FLT4 receptor, which is involved in vasculogenesis and angiogenesis, binds and phosphorylates SHC proteins on tyrosine residues. SHC contains two phosphotyrosine interaction domains: a PTB (Phosphotyrosine Binding) and a SH2 (Src Homology 2) domain. Previous studies have shown that SHC proteins are phosphorylated on Y239/Y240 and Y313 (Y317 in humans) by tyrosine kinases such as the EGF and IL3 receptors. We have investigated which of the SHC tyrosine residues are targeted by the VEGFR3/ FLT4 kinase and the role of the SHC PTB and SH2 domains in this process. Our results show that Y239/ Y240 and Y313 are simultaneously phosphorylated by the kinase, creating GRB2 binding sites. Mutation of SHC PTB, but not SH2, domain interferes with the SHC phosphorylation by VEGFR3/FLT4. Soft agar assay experiments revealed that the VEGFR3/FLT4 transforming capacity is increased by the mutation of Y239/Y240 to phenylalanines in SHC, suggesting that these two residues mediate an inhibitory signal for cell growth. Mutation of the two phosphorylation sites increases this effect, suggesting that they have a synergistic role.
Collapse
Affiliation(s)
- E Fournier
- Molecular Oncology Laboratory, INSERM U.119, Marseille, France
| | | | | | | | | | | |
Collapse
|
22
|
Kim B, Cheng HL, Margolis B, Feldman EL. Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J Biol Chem 1998; 273:34543-50. [PMID: 9852124 DOI: 10.1074/jbc.273.51.34543] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major substrates for the type I insulin-like growth factor (IGF-I) receptor are Shc and insulin receptor substrate (IRS) proteins. In the current study, we report that IGF-I induces a sustained tyrosine phosphorylation of Shc and its association with Grb2 in SH-SY5Y human neuroblastoma cells. The time course of Shc tyrosine phosphorylation parallels the time course of IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK). Transfection of SH-SY5Y cells with a p52 Shc mutant decreases Shc tyrosine phosphorylation and Shc-Grb2 association. This results in the inhibition of IGF-I-mediated ERK tyrosine phosphorylation and neurite outgrowth. In contrast, IGF-I induces a transient tyrosine phosphorylation of IRS-2 and an association of IRS-2 with Grb2. The time course of IRS-2 tyrosine phosphorylation and IRS-2-Grb2 and IRS-2-p85 association closely resembles the time course of IGF-I-mediated membrane ruffling. Treating cells with the phosphatidylinositol 3'-kinase inhibitors wortmannin and LY294002 blocks IGF-I-induced membrane ruffling. The ERK kinase inhibitor PD98059, as well as transfection with the p52 Shc mutant, has no effect on IGF-I-mediated membrane ruffling. Immunolocalization studies show IRS-2 and Grb2, but not Shc, concentrated at the tip of the extending growth cone where membrane ruffling is most active. Collectively, these results suggest that the association of Shc with Grb2 is essential for IGF-I-mediated neurite outgrowth, whereas the IRS-2-Grb2-phosphatidylinositol 3'-kinase complex may regulate growth cone extension and membrane ruffling.
Collapse
Affiliation(s)
- B Kim
- Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
23
|
Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W, Tortorice CG, Cardiff RD, Cross JC, Muller WJ, Pawson T. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 1998; 95:793-803. [PMID: 9865697 DOI: 10.1016/s0092-8674(00)81702-x] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteins with SH2 and SH3 domains link tyrosine kinases to intracellular pathways. To investigate the biological functions of a mammalian SH2/SH3 adaptor, we have introduced a null mutation into the mouse gene for Grb2. Analysis of mutant embryonic stem cells, embryos, and chimeras reveals that Grb2 is required during embyrogenesis for the differentiation of endodermal cells and formation of the epiblast. Grb2 acts physiologically as an adaptor, since replacing the C terminus of the Ras activator Sos1 with the Grb2 SH2 domain yields a fusion protein that largely rescues the defects caused by the Grb2 mutation. Furthermore, Grb2 is rate limiting for mammary carcinomas induced by polyomavirus middle T antigen. These data provide genetic evidence for a mammalian Grb2-Ras signaling pathway, mediated by SH2/SH3 domain interactions, that has multiple functions in embryogenesis and cancer.
Collapse
Affiliation(s)
- A M Cheng
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ishihara H, Sasaoka T, Wada T, Ishiki M, Haruta T, Usui I, Iwata M, Takano A, Uno T, Ueno E, Kobayashi M. Relative involvement of Shc tyrosine 239/240 and tyrosine 317 on insulin induced mitogenic signaling in rat1 fibroblasts expressing insulin receptors. Biochem Biophys Res Commun 1998; 252:139-44. [PMID: 9813159 DOI: 10.1006/bbrc.1998.9621] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Shc is phosphorylated on Tyr-239/240 and/or Tyr-317, which serves as a docking site for Grb2. To clarify the relative involvement of Shc Tyr-239/240 and Tyr-317 in insulin-induced mitogenesis, we generated expression vectors for Y317F (1F)-Shc, Y239/240F (2F)-Shc, and Y239/240/317F (3F)-Shc, and stably transfected them into Rat1 fibroblasts expressing insulin receptors (HIRc). Insulin-induced Shc phosphorylation and subsequent association with Grb2 was enhanced in wild-type (WT)-Shc cell. In contrast, insulin-stimulated Shc phosphorylation and Shc.Grb2 association were significantly decreased in 1F-Shc and 3F-Shc cells, while these were only slightly affected and almost comparable in 2F cells compared with those in parental HIRc cells. The kinetics of MAP kinase activation closely paralleled the kinetics of Shc phosphorylation and Shc.Grb2 association. Thus, insulin stimulation of MAP kinase activation occurred more rapidly in WT-Shc cells, and the activation was delayed in 1F-Shc and 3F-Shc cells, while it was comparable in 2F-Shc cells compared with that in HIRc cells. Furthermore, WT-Shc cells displayed enhanced sensitivity to insulin stimulation of thymidine incorporation. Importantly, the sensitivity was significantly decreased in 1F-Shc and 3F-Shc cells, while it was almost comparable in 2F-Shc cells compared with that in HIRc cells. These results indicate that Shc Tyr-317 is more predominant insulin-induced phosphorylation site than Tyr-239/240 for coupling with Grb2 leading to MAP kinase activation and mitogenesis in Rat1 fibroblasts.
Collapse
Affiliation(s)
- H Ishihara
- Toyama Medical & Pharmaceutical University, Toyama, 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sato K, Otsuki T, Kimoto M, Kakumoto M, Tokmakov AA, Watanabe Y, Fukami Y. c-Src and phosphatidylinositol 3-kinase are involved in NGF-dependent tyrosine phosphorylation of Shc in PC12 cells. Biochem Biophys Res Commun 1998; 250:223-8. [PMID: 9753611 DOI: 10.1006/bbrc.1998.9293] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptor protein Shc exists in three isoforms; p46, p52, and p66, and is a key regulator of a variety of biological processes. Our previous studies have shown that the tyrosine kinase c-Src phosphorylates Shc in a phosphatidylinositol (PtdIns) 4,5-bisphosphate-dependent manner. Here we demonstrate that PtdIns 3,4,5-trisphosphate stimulates phosphorylation of Shc by c-Src. The phosphorylation is blocked by a glutathione S-transferase fusion protein containing Shc phosphotyrosine binding (PTB) domain or a phosphotyrosine-containing Shc PTB domain-binding peptide. In rat pheochromocytoma cell line PC12, nerve growth factor (NGF) stimulates tyrosine phosphorylation of both Triton-soluble and -insoluble Shc which was maximal at 2-5 min after NGF treatment. We find that pretreatment of PC12 cells with the PtdIns 3-kinase inhibitor wortmannin or LY294002 results in almost half inhibition of the NGF-dependent tyrosine phosphorylation of only Triton-insoluble Shc. Similar inhibitory effect is observed with tyrosine kinase inhibitors genistein and PP1. Upon NGF stimulation, c-Src also becomes tyrosine-phosphorylated and accumulates in the Triton-insoluble fraction. The c-Src events are insensitive to wortmannin but sensitive to genistein. These results suggest that coordinate action of PtdIns 3-kinase and/or PtdIns 3,4,5-trisphosphate and c-Src can function as positive regulator in tyrosine phosphorylation of Shc in vitro and in vivo.
Collapse
Affiliation(s)
- K Sato
- Laboratory of Molecular Biology, Kobe University, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kennedy AP, Sekulić A, Irvin BJ, Nilson AE, Dilworth SM, Abraham RT. Polyomavirus middle T antigen as a probe for T cell antigen receptor-coupled signaling pathways. J Biol Chem 1998; 273:11505-13. [PMID: 9565564 DOI: 10.1074/jbc.273.19.11505] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of the T cell antigen receptor (TCR) triggers a complex series of signaling events that culminate in T cell activation and proliferation. The complex structure of the TCR has hindered efforts to link specific signaling events induced by TCR cross-linkage to downstream activation responses, such as interleukin-2 (IL-2) gene transcription. Previous studies have shown that the polyomavirus-derived oncoprotein, middle T antigen (mT), transforms rodent fibroblasts by interacting with and activating several cytoplasmic signaling proteins (Src kinases, phospholipase C (PLC)-gamma1, Shc, and phosphoinositide 3-kinase (PI3-K) implicated in cell growth control. In this study, we demonstrate that expression of mT activates Jurkat T cells, as measured by increases in IL-2 promoter- and NFAT (nuclear factor of activated T cells)-dependent reporter gene transcription. The transcriptional response provoked by mT was blocked by the immunosuppressive drug FK506, a potent inhibitor of TCR-mediated IL-2 gene expression. Mutations that disrupted the binding of mT to Src kinases or PLC-gamma1 abrogated the ability of mT to deliver the signals needed for IL-2 promoter activation. In contrast, a mT mutant that failed to bind PI3-K induced a markedly elevated transcriptional response in Jurkat cells, whereas mutation of the Shc binding site in mT had little effect on the transactivating potential of this viral oncoprotein. Additional studies demonstrated that the association of mT with PLC-gamma1 was necessary and sufficient to activate both Ca2+- and Ras-dependent signaling cascades in Jurkat cells. These results indicate that PLC-gamma1 activation plays pivotal and pleiotropic roles in the stimulation of IL-2 gene expression, whereas activation of PI3-K negatively modulates this response in Jurkat T cells.
Collapse
Affiliation(s)
- A P Kennedy
- Division of Oncology Research and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schlaepfer DD, Jones KC, Hunter T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK2/mitogen-activated protein kinase: summation of both c-Src- and focal adhesion kinase-initiated tyrosine phosphorylation events. Mol Cell Biol 1998; 18:2571-85. [PMID: 9566877 PMCID: PMC110637 DOI: 10.1128/mcb.18.5.2571] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/1997] [Accepted: 02/05/1998] [Indexed: 02/07/2023] Open
Abstract
Fibronectin receptor integrin-mediated cell adhesion triggers intracellular signaling events such as the activation of the Ras/mitogen-activated protein (MAP) kinase cascade. In this study, we show that the nonreceptor protein-tyrosine kinases (PTKs) c-Src and focal adhesion kinase (FAK) can be independently activated after fibronectin (FN) stimulation and that their combined activity promotes signaling to extracellular signal-regulated kinase 2 (ERK2)/MAP kinase through multiple pathways upstream of Ras. FN stimulation of NIH 3T3 fibroblasts promotes c-Src and FAK association in the Triton-insoluble cell fraction, and the time course of FN-stimulated ERK2 activation paralleled that of Grb2 binding to FAK at Tyr-925 and Grb2 binding to Shc. Cytochalasin D treatment of fibroblasts inhibited FN-induced FAK in vitro kinase activity and signaling to ERK2, but it only partially inhibited c-Src activation. Treatment of fibroblasts with protein kinase C inhibitors or with the PTK inhibitor herbimycin A or PP1 resulted in reduced Src PTK activity, no Grb2 binding to FAK, and lowered levels of ERK2 activation. FN-stimulated FAK PTK activity was not significantly affected by herbimycin A treatment and, under these conditions, FAK autophosphorylation promoted Shc binding to FAK. In vitro, FAK directly phosphorylated Shc Tyr-317 to promote Grb2 binding, and in vivo Grb2 binding to Shc was observed in herbimycin A-treated fibroblasts after FN stimulation. Interestingly, c-Src in vitro phosphorylation of Shc promoted Grb2 binding to both wild-type and Phe-317 Shc. In vivo, Phe-317 Shc was tyrosine phosphorylated after FN stimulation of human 293T cells and its expression did not inhibit signaling to ERK2. Surprisingly, expression of Phe-925 FAK with Phe-317 Shc also did not block signaling to ERK2, whereas FN-stimulated signaling to ERK2 was inhibited by coexpression of an SH3 domain-inactivated mutant of Grb2. Our studies show that FN receptor integrin signaling upstream of Ras and ERK2 does not follow a linear pathway but that, instead, multiple Grb2-mediated interactions with Shc, FAK, and perhaps other yet-to-be-determined phosphorylated targets represent parallel signaling pathways that cooperate to promote maximal ERK2 activation.
Collapse
Affiliation(s)
- D D Schlaepfer
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
28
|
Yaich L, Ooi J, Park M, Borg JP, Landry C, Bodmer R, Margolis B. Functional analysis of the Numb phosphotyrosine-binding domain using site-directed mutagenesis. J Biol Chem 1998; 273:10381-8. [PMID: 9553095 DOI: 10.1074/jbc.273.17.10381] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Numb protein is involved in cell fate determination during Drosophila neural development. Numb has a protein domain homologous to the phosphotyrosine-binding domain (PTB) in the adaptor protein Shc. In Shc, this domain interacts with specific phosphotyrosine containing motifs on receptor tyrosine kinases and other signaling molecules. Residues N-terminal to the phosphotyrosine are also crucial for phosphopeptide binding to the Shc PTB domain. Several amino acid residues in Shc have been implicated by site-directed mutagenesis to be critical for Shc binding to receptor tyrosine kinases. We have generated homologous mutations in Numb to test whether, in vivo, these changes affect Numb function during Drosophila sensory organ development. Two independent amino acid changes that interfere with Shc binding to phosphotyrosine residues do not affect Numb activity in vivo. In contrast, a mutation shown to abrogate the ability of the Shc PTB domain to bind residues upstream of the phosphotyrosine virtually eliminates Numb function. Similar results were observed in vitro by examining the binding of the Numb PTB domain to proteins from Schneider S2 cells. Our data confirm the importance of the PTB domain for Numb function but strongly suggest that the Numb PTB domain is not involved in phosphotyrosine-dependent interactions.
Collapse
Affiliation(s)
- L Yaich
- Department of Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|