1
|
Chatterjee S, Paul N, Das A, Bank S, Bankura B, Yadav RP, Sarkar K, Saha S, Malakar S, Choudhury S, Ghosh S, Das M. Molecular dynamics reveal potential effects of novel VHL variants on VHL-Elongin C binding in ccRCC patients from Eastern India. Sci Rep 2025; 15:13022. [PMID: 40234555 PMCID: PMC12000512 DOI: 10.1038/s41598-025-95875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
Renal cell carcinoma (RCC) is the one of the most fatal and frequent form of urological malignancy worldwide. The von Hippel-Lindau (VHL) tumour suppressor gene is a critical component of the VHL-Cullin2-ElonginB/C (VCB) complex that regulates the ubiquitin-mediated proteasomal degradation of proteins with mutations consistently associated with the development of clear cell renal cell carcinoma (ccRCC). Despite extensive investigations conducted worldwide, there is a notable lack of data concerning VHL mutations in sporadic ccRCC patients from India. Our study aimed to investigate the sporadic VHL mutations within the tumours of 210 ccRCC patients without a familial history of VHL disease. We extracted genomic DNA from tumour and adjacent normal tissues, PCR amplified and sequenced the VHL gene. In silico tools were used assess the damaging potential of missense variants on pVHL structure and stability. Protein-protein docking and protein flexibility molecular docking simulation study were employed to study the interaction between wild-type and mutated VHL models with Elongin C. Sequence analysis revealed seven novel missense mutations in patient tumour tissues p.(Val170Phe), p.(Arg69Cys), p.(Phe76Leu), p.(Glu173Asp), p.(Leu201Val), p.(His208Leu), p.(Arg205Pro). I-Mutant 2.0 indicated these mutations reduced pVHL stability (ΔΔG < -0.5 kcal/mol). Protein Flexibility-Molecular Dynamic (MD) Simulation study indicated that mutations weaken the interaction of VHL with Elongin C, with V170F showing the most significant reduction in binding quality and stability. In conclusion, this study introduces novel genetic data from an understudied population and highlights the impact of VHL mutations on its interaction with Elongin C. These findings contribute to our understanding of the molecular basis of VHL-related pathologies and may guide future therapeutic strategies targeting these interactions.
Collapse
Affiliation(s)
- Srilagna Chatterjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Biswabandhu Bankura
- Multidisciplinary Research Unit, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Ravi Prakash Yadav
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Soumen Saha
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Subhajit Malakar
- Department of Urology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sunirmal Choudhury
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 700006, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
2
|
Batavia AA, Rutishauser D, Sobottka B, Schraml P, Beerenwinkel N, Moch H. Biallelic ELOC-Inactivated Renal Cell Carcinoma: Molecular Features Supporting Classification as a Distinct Entity. Mod Pathol 2023; 36:100194. [PMID: 37088333 DOI: 10.1016/j.modpat.2023.100194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
Approximately 70% of clear cell renal cell carcinoma (ccRCC) is characterized by the biallelic inactivation of von Hippel-Lindau (VHL) on chromosome 3p. ELOC-mutated (Elongin C-mutated) renal cell carcinoma containing biallelic ELOC inactivations with chromosome 8q deletions is considered a novel subtype of renal cancer possessing a morphologic overlap with ccRCC, renal cell carcinoma (RCC) with fibromyomatous stroma exhibiting Tuberous Sclerosis Complex (TSC)/mammalian Target of Rapamycin (mTOR) mutations, and clear cell papillary tumor. However, the frequency and consequences of ELOC alterations in wild-type VHL and mutated VHL RCC are unclear. In this study, we characterize 123 renal tumors with clear cell morphology and known VHL mutation status to assess the morphologic and molecular consequences of ELOC inactivation. Using OncoScan and whole-exome sequencing, we identify 18 ELOC-deleted RCCs, 3 of which contain ELOC mutations resulting in the biallelic inactivation of ELOC. Biallelic ELOC and biallelic VHL aberrations were mutually exclusive; however, 2 ELOC-mutated RCCs showed monoallelic VHL alterations. Furthermore, no mutations in TSC1, TSC2, or mTOR were identified in ELOC-mutated RCC with biallelic ELOC inactivation. Using High Ambiguity Driven biomolecular DOCKing, we report a novel ELOC variant containing a duplication event disrupting ELOC-VHL interaction alongside the frequently seen Y79C alteration. Using hyper reaction monitoring mass spectrometry, we show RCCs with biallelic ELOC alterations have significantly reduced ELOC expression but similar carbonic anhydrase 9 and vascular endothelial growth factor A expression compared with classical ccRCC with biallelic VHL inactivation. The absence of biallelic VHL and TSC1, TSC2, or mTOR inactivation in RCC with biallelic ELOC inactivation (ELOC mutation in combination with ELOC deletions on chromosome 8q) supports the notion of a novel, molecularly defined tumor entity.
Collapse
Affiliation(s)
- Aashil A Batavia
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dorothea Rutishauser
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Bhattacharya A, Shukla VK, Kachariya N, Preeti, Sehrawat P, Kumar A. Disorder in the Human Skp1 Structure is the Key to its Adaptability to Bind Many Different Proteins in the SCF Complex Assembly. J Mol Biol 2022; 434:167830. [PMID: 36116539 DOI: 10.1016/j.jmb.2022.167830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Skp1(S-phase kinase-associated protein 1 - Homo sapiens) is an adapter protein of the SCF(Skp1-Cullin1-Fbox) complex, which links the constant components (Cul1-RBX) and the variable receptor (F-box proteins) in Ubiquitin E3 ligase. It is intriguing how Skp1 can recognise and bind to a variety of structurally different F-box proteins. For practical reasons, previous efforts have used truncated Skp1, and thus it has not been possible to track the crucial aspects of the substrate recognition process. In this background, we report the solution structure of the full-length Skp1 protein determined by NMR spectroscopy for the first time and investigate the sequence-dependent dynamics in the protein. The solution structure reveals that Skp1 has an architecture: β1-β2-H1-H2-L1-H3-L2-H4-H5-H6-H7(partially formed) and a long tail-like disordered C-terminus. Structural analysis using DALI (Distance Matrix Alignment) reveals conserved domain structure across species for Skp1. Backbone dynamics investigated using NMR relaxation suggest substantial variation in the motional timescales along the length of the protein. The loops and the C-terminal residues are highly flexible, and the (R2/R1) data suggests μs-ms timescale motions in the helices as well. Further, the dependence of amide proton chemical shift on temperature and curved profiles of their residuals indicate that the residues undergo transitions between native state and excited state. The curved profiles for several residues across the length of the protein suggest that there are native-like low-lying excited states, particularly for several C-terminal residues. Our results provide a rationale for how the protein can adapt itself, bind, and get functionally associated with other proteins in the SCF complex by utilising its flexibility and conformational sub-states.
Collapse
Affiliation(s)
- Amrita Bhattacharya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vaibhav Kumar Shukla
- Biophysical Chemistry & Structural Biology Laboratory, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India. https://twitter.com/bhu_vaibhav
| | - Nitin Kachariya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Preeti
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Parveen Sehrawat
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
4
|
Cinque A, Minnei R, Floris M, Trevisani F. The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma? Cancers (Basel) 2022; 14:5352. [PMID: 36358771 PMCID: PMC9657498 DOI: 10.3390/cancers14215352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant inherited cancer syndrome caused by germline mutations in the VHL tumor suppressor gene, characterized by the susceptibility to a wide array of benign and malign neoplasms, including clear-cell renal cell carcinoma. Moreover, VHL somatic inactivation is a crucial molecular event also in sporadic ccRCCs tumorigenesis. While systemic biomarkers in the VHL syndrome do not currently play a role in clinical practice, a new promising class of predictive biomarkers, microRNAs, has been increasingly studied. Lots of pan-genomic studies have deeply investigated the possible biological role of microRNAs in the development and progression of sporadic ccRCC; however, few studies have investigated the miRNA profile in VHL patients. Our review summarize all the new insights related to clinical and molecular features in VHL renal cancers, with a particular focus on the overlap with sporadic ccRCC.
Collapse
Affiliation(s)
- Alessandra Cinque
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Minnei
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Matteo Floris
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Francesco Trevisani
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
5
|
DiNatale RG, Gorelick AN, Makarov V, Blum KA, Silagy AW, Freeman B, Chowell D, Marcon J, Mano R, Sanchez A, Attalla K, Weng S, Voss M, Motzer RJ, Russo P, Coleman JA, Reuter VE, Chen YB, Chan TA, Reznik E, Tickoo SK, Hakimi AA. Putative Drivers of Aggressiveness in TCEB1-mutant Renal Cell Carcinoma: An Emerging Entity with Variable Clinical Course. Eur Urol Focus 2019; 7:381-389. [PMID: 31813809 DOI: 10.1016/j.euf.2019.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND TCEB1-mutant renal cell carcinoma (RCC) is a rare variant of RCC with clear-cell features. Owing to its unique morphological and molecular features it has recently been proposed as a separate entity. Initial series suggested an indolent, early-stage phenotype. Here we expand our clinical cohort and describe a more detailed genomic analysis looking for potential drivers of aggressiveness. DESIGN, SETTING, AND PARTICIPANTS We identified five new cases in our institutional sequencing cohort, four of whom were found to have high-stage disease (American Joint Committee on Cancer stage III/IV). Twelve previously reported cases were pooled for comparison purposes (Sato, The Cancer Genome Atlas, TRACERx Renal). OUTCOME MEASURES AND STATISTICAL ANALYSIS We used our previously validated pipeline to analyze somatic mutations and copy number alterations (CNAs) in seven tumor samples with available data and estimated the number of cancer cells bearing each somatic mutation. The oncogenic potential of mutations was assessed using OncoKB and two other algorithms. Mann-Whitney U tests were used to evaluate differences in genomic markers between stage groups. RESULTS AND LIMITATIONS All tumors showed biallelic inactivation of the TCEB1 gene according to a combination of somatic mutation and CNA analyses. Mutations were always found in residues involved in hydrophobic interactions with VHL. We found that high-stage tumors had additional oncogenic mutations (median 1, interquartile range [IQR] 1-1 vs 2, IQR 2-2; median difference 1, 95% confidence interval [CI] 1-1; p= 0.002) and showed whole-genome doubling events. They also seemed to have a higher burden of somatic CNAs (median fraction CNA genome 0.10, IQR 0.10-0.15 vs 0.63, IQR 0.58-0.68), however, this finding did not reach statistical significance (median difference 0.49, 95% CI 0.33-0.63; p=0.052). CONCLUSIONS TCEB1-mutant RCC can show variable behavior ranging from very indolent to aggressive. Specific molecular events leading to high genomic instability seem to be associated with aggressiveness. This study expands the clinical spectrum of TCEB1-mutant RCC. PATIENT SUMMARY We present four cases of aggressive TCEB1-mutant renal cell carcinoma, a rare type of kidney cancer. In-depth analysis of the genomes of these tumors revealed certain abnormalities that might explain this aggressive behavior.
Collapse
Affiliation(s)
- Renzo G DiNatale
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander N Gorelick
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vladimir Makarov
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle A Blum
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew W Silagy
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Freeman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diego Chowell
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julian Marcon
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roy Mano
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Sanchez
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyrollis Attalla
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stanley Weng
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin Voss
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan A Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor E Reuter
- Pathology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Pathology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satish K Tickoo
- Pathology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 2013; 45:860-7. [DOI: 10.1038/ng.2699] [Citation(s) in RCA: 785] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
|
7
|
Lim DL, Ko R, Pautler SE. Current understanding of the molecular mechanisms of kidney cancer: a primer for urologists. Can Urol Assoc J 2011; 1:S13-20. [PMID: 18542780 DOI: 10.5489/cuaj.63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC), the fifth leading malignant condition for men and tenth for women, accounts for 3% of all malignancies in Canada. It is a heterogeneous epithelial malignancy with different subtypes and varied tumour biology. Although most cases of RCC are sporadic, up to 4% of patients have an inherited predisposition for the disease. In this article, we review the current molecular genetics of the different subtypes in hereditary and sporadic RCC. Significant developments in understanding the underlying genetic basis of RCC over the last 2 decades are attributed to intensive research about rare inherited renal cancer syndromes and the identification of the genes responsible for them. Many of these genes are also found in sporadic RCC. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for this disease.
Collapse
Affiliation(s)
- Darwin L Lim
- Divisions of Urology and Surgical Oncology, University of Western Ontario, London, Ont
| | | | | |
Collapse
|
8
|
Blanchette P, Cheng CY, Yan Q, Ketner G, Ornelles DA, Dobner T, Conaway RC, Conaway JW, Branton PE. Both BC-box motifs of adenovirus protein E4orf6 are required to efficiently assemble an E3 ligase complex that degrades p53. Mol Cell Biol 2004; 24:9619-29. [PMID: 15485928 PMCID: PMC522240 DOI: 10.1128/mcb.24.21.9619-9629.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/15/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022] Open
Abstract
Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.
Collapse
Affiliation(s)
- Paola Blanchette
- McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Protein degradation is deployed to modulate the steady-state abundance of proteins and to switch cellular regulatory circuits from one state to another by abrupt elimination of control proteins. In eukaryotes, the bulk of the protein degradation that occurs in the cytoplasm and nucleus is carried out by the 26S proteasome. In turn, most proteins are thought to be targeted to the 26S proteasome by covalent attachment of a multiubiquitin chain. Ubiquitination of proteins requires a multienzyme system. A key component of ubiquitination pathways, the ubiquitin ligase, controls both the specificity and timing of substrate ubiquitination. This review is focused on a conserved ubiquitin ligase complex known as SCF that plays a key role in marking a variety of regulatory proteins for destruction by the 26S proteasome.
Collapse
Affiliation(s)
- R J Deshaies
- Department of Biology, California Institute of Technology, Pasadena 91125, USA.
| |
Collapse
|
10
|
Kroll SL, Paulding WR, Schnell PO, Barton MC, Conaway JW, Conaway RC, Czyzyk-Krzeska MF. von Hippel-Lindau protein induces hypoxia-regulated arrest of tyrosine hydroxylase transcript elongation in pheochromocytoma cells. J Biol Chem 1999; 274:30109-14. [PMID: 10514498 DOI: 10.1074/jbc.274.42.30109] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat pheochromocytoma (PC12) cells were stably transfected with either wild type or mutated human von Hippel-Lindau tumor suppressor protein (hpVHL). These proteins have opposing effects on regulating expression of the gene encoding tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. Whereas wild type hpVHL represses levels of TH mRNA and protein 5-fold, a truncated pVHL mutant, pVHL(1-115), induces accumulation of TH mRNA and protein 3-fold. hpVHL-induced inhibition of TH gene expression does not involve either a decrease in TH mRNA stability or repression of TH promoter activity. However, repression results from inhibition of RNA elongation at a downstream region of the TH gene. This elongation pause is accompanied by hpVHL sequestration in the nuclear extracts of elongins B and C, regulatory components of the transcription elongation heterotrimer SIII (elongin A/B/C). Hypoxia, a physiological stimulus for TH gene expression, alleviates the elongation block. A truncated pVHL mutant, pVHL(1-115), stimulates TH gene expression by increasing the efficiency of TH transcript elongation. This is the first report showing pVHL-dependent regulation of specific transcript elongation in vivo, as well as dominant negative activity of pVHL mutants in pheochromocytoma cells.
Collapse
Affiliation(s)
- S L Kroll
- Department of Molecular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0576, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Pause A, Peterson B, Schaffar G, Stearman R, Klausner RD. Studying interactions of four proteins in the yeast two-hybrid system: structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc Natl Acad Sci U S A 1999; 96:9533-8. [PMID: 10449727 PMCID: PMC22243 DOI: 10.1073/pnas.96.17.9533] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The yeast two-hybrid system is a powerful technique that detects interactions between two proteins and has been useful in identifying new binding partners. However, the system fails to detect protein-protein interactions that require the presence of additional components of a multisubunit complex. Here we demonstrate that the vector YIpDCE1 can be used to express elongins B and C in yeast, and that these proteins form a stable complex that interacts with the von Hippel-Lindau tumor-suppressor gene product (pVHL). Only when pVHL and elongins B and C (VBC) are present does an interaction with the cullin family member, hCUL-2, occur, forming the heterotetrameric pVHL/elongin BC/hCUL-2 complex. This system was then used to map the binding region of hCUL-2 for the VBC complex. The first amino-terminal 108 aa of hCUL-2 are necessary for interaction with the VBC complex. The elongin BC dimer acts as a bridge between pVHL and hCUL-2 because pVHL and hCUL-2 can form distinct complexes with elongins B and C. These results reveal a striking structural resemblance of pVHL/elongin BC/hCUL-2 complex with the E3-like ubiquitin ligase complex SKP1/Cullin/F-box protein with respect to protein composition and sites of interactions. Thus, it seems possible that pVHL/elongin BC/hCUL-2 complex will possess ubiquitin ligase activity targeting specific proteins for degradation by the proteasome.
Collapse
Affiliation(s)
- A Pause
- Molecular Oncology Group, Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
12
|
Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 1999; 13:1822-33. [PMID: 10421634 PMCID: PMC316884 DOI: 10.1101/gad.13.14.1822] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
pVHL, the product of the VHL tumor suppressor gene, plays an important role in the regulation of cell growth and differentiation of human kidney cells, and inactivation of the VHL gene is the most frequent genetic event in human kidney cancer. The biochemical function of pVHL is unknown. Here we report that pVHL exists in vivo in a complex that displays ubiquitination-promoting activity in conjunction with the universally required components E1, E2, and ubiquitin. pVHL-associated ubiquitination activity requires, at a minimum, pVHL to bind elongin C and Cul-2, relatives of core components of SCF (Skp1-Cdc53/Cul-1-F-box protein) E3 ligase complexes. Notably, certain tumor-derived mutants of pVHL demonstrate loss of associated ubiquitination promoting activity. These results identify pVHL as a component of a potential SCF-like E3 ubiquitin-protein ligase complex and suggest a direct link between pVHL tumor suppressor and the process of ubiquitination.
Collapse
Affiliation(s)
- J Lisztwan
- Friedrich Miescher Institut, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Stebbins CE, Kaelin WG, Pavletich NP. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 1999; 284:455-61. [PMID: 10205047 DOI: 10.1126/science.284.5413.455] [Citation(s) in RCA: 640] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutation of the VHL tumor suppressor is associated with the inherited von Hippel-Lindau (VHL) cancer syndrome and the majority of kidney cancers. VHL binds the ElonginC-ElonginB complex and regulates levels of hypoxia-inducible proteins. The structure of the ternary complex at 2.7 angstrom resolution shows two interfaces, one between VHL and ElonginC and another between ElonginC and ElonginB. Tumorigenic mutations frequently occur in a 35-residue domain of VHL responsible for ElonginC binding. A mutational patch on a separate domain of VHL indicates a second macromolecular binding site. The structure extends the similarities to the SCF (Skp1-Cul1-F-box protein) complex that targets proteins for degradation, supporting the hypothesis that VHL may function in an analogous pathway.
Collapse
Affiliation(s)
- C E Stebbins
- Department of Biochemistry and Structural Biology, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
14
|
Kamura T, Sato S, Haque D, Liu L, Kaelin WG, Conaway RC, Conaway JW. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998; 12:3872-81. [PMID: 9869640 PMCID: PMC317264 DOI: 10.1101/gad.12.24.3872] [Citation(s) in RCA: 472] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 11/06/1998] [Indexed: 11/25/2022]
Abstract
The Elongin BC complex was identified initially as a positive regulator of RNA polymerase II (Pol II) elongation factor Elongin A and subsequently as a component of the multiprotein von Hippel-Lindau (VHL) tumor suppressor complex, in which it participates in both tumor suppression and negative regulation of hypoxia-inducible genes. Elongin B is a ubiquitin-like protein, and Elongin C is a Skp1-like protein that binds to a BC-box motif that is present in both Elongin A and VHL and is distinct from the conserved F-box motif recognized by Skp1. In this report, we demonstrate that the Elongin BC complex also binds to a functional BC box present in the SOCS box, a sequence motif identified recently in the suppressor of cytokine signaling-1 (SOCS-1) protein, as well as in a collection of additional proteins belonging to the SOCS, ras, WD-40 repeat, SPRY domain, and ankyrin repeat families. In addition, we present evidence (1) that the Elongin BC complex is a component of a multiprotein SOCS-1 complex that attenuates Jak/STAT signaling by binding to Jak2 and inhibiting Jak2 kinase, and (2) that by interacting with the SOCS box, the Elongin BC complex can increase expression of the SOCS-1 protein by inhibiting its degradation. These results suggest that Elongin BC is a multifunctional regulatory complex capable of controlling multiple pathways in the cell through interaction with a short degenerate sequence motif found in many different proteins.
Collapse
Affiliation(s)
- T Kamura
- Howard Hughes Medical Institute (HHMI), Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104 USA
| | | | | | | | | | | | | |
Collapse
|