1
|
Yang MJ, Lee H, Kang D, Park CJ. Biophysical investigation of the molecular interaction between minichromosome maintenance protein 6 and Bloom syndrome helicase. FEBS J 2025. [PMID: 40007132 DOI: 10.1111/febs.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The minichromosome maintenance protein (MCM) complex and Bloom syndrome helicase (BLM) are crucial components in DNA replication and cell division. MCM, a hexameric helicase that unwinds double-stranded DNA, serves as an important diagnostic and prognostic biomarker for cancer cells and a target for anticancer drug development. BLM, associated with G-quadruplex structures, is another key helicase in maintaining genomic stability. In this study, we investigate the interaction between MCM6 and BLM at the atomic level, as their expression levels are highly correlated in various cancer types, with elevated levels indicating poor prognosis. To elucidate the molecular basis of MCM6/BLM interaction, we employed fluorescence polarization anisotropy analysis, NMR chemical shifts perturbation analysis (CSP), and paramagnetic relaxation enhancement (PRE) experiments. MCM6 binding domain (MBD) C and D exhibit similar binding affinities to MCM6 winged-helix domain (WHD). However, significant CSPs with MBD-D and PRE experiments suggested that MBD-D is closer to MCM6 WHD than MBD-C. Despite both proteins containing numerous negatively charged residues, hydrophobic interactions govern the association between MCM6 WHD and BLM MBD-D. This biophysical characterization of the MCM6/BLM interaction provides new insights into their functional relationship and challenges existing models. Our findings reveal that MCM6 binds BLM at a different site than its other known partner chromatin licensing and DNA replication factor. Understanding these protein-protein interactions at the molecular level may contribute to the development of novel anticancer therapies targeting the MCM6/BLM interaction.
Collapse
Affiliation(s)
- Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Haeun Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Donguk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
2
|
Papaioannou D, Urs AP, Buisson R, Petri A, Kulkarni R, Nicolet D, Woodward L, Goda C, Mrózek K, Behbehani GK, Kauppinen S, Eisfeld AK, Aifantis I, Singh G, Dorrance AM, Garzon R. circPCMTD1 : A protein-coding circular RNA that regulates DNA damage response in BCR/ABL -positive leukemias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601046. [PMID: 39005285 PMCID: PMC11244931 DOI: 10.1101/2024.06.27.601046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Circular RNAs are a novel class of RNA transcripts, which regulate important cellular functions in health and disease. Herein, we report on the functional relevance of the circPCMTD1 transcript in acute leukemias. In screening experiments, we found that circPCMTD1 depletion strongly inhibited the proliferative capacity of leukemic cells with BCR-ABL translocations. Mass cytometry experiments identified the aberrant activation of the DNA damage response as an early downstream event of circPCMTD1 depletion. In in vivo experiments, circPCMTD1 targeting prolonged the survival of mice engrafted with leukemic blasts harboring the Philadelphia chromosome. Mechanistically, we found that circPCMTD1 was enriched in the cytoplasm and associated with the ribosomes of the leukemic cells. We detected a cryptic open reading frame within the circPCMTD1 sequence and found that circPCMTD1 could generate a peptide product. The circPCMTD 1-derived peptide interacted with proteins of the BTR complex and enhanced BTR complex formation, thereby increasing tolerance to genotoxic stress.
Collapse
|
3
|
Jiang H, Zhang T, Kaur H, Shi T, Krishnan A, Kwon Y, Sung P, Greenberg RA. BLM helicase unwinds lagging strand substrates to assemble the ALT telomere damage response. Mol Cell 2024; 84:1684-1698.e9. [PMID: 38593805 PMCID: PMC11069441 DOI: 10.1016/j.molcel.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.
Collapse
Affiliation(s)
- Haoyang Jiang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Tianpeng Zhang
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Hardeep Kaur
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tao Shi
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Aravind Krishnan
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA.
| |
Collapse
|
4
|
Chen J, Wu M, Yang Y, Ruan C, Luo Y, Song L, Wu T, Huang J, Yang B, Liu T. TFIP11 promotes replication fork reversal to preserve genome stability. Nat Commun 2024; 15:1262. [PMID: 38341452 PMCID: PMC10858868 DOI: 10.1038/s41467-024-45684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.
Collapse
Affiliation(s)
- Junliang Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China
| | - Mingjie Wu
- The Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chunyan Ruan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lizhi Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
5
|
Loe TK, Lazzerini Denchi E, Tricola GM, Azeroglu B. ALTercations at telomeres: stress, recombination and extrachromosomal affairs. Biochem Soc Trans 2023; 51:1935-1946. [PMID: 37767563 DOI: 10.1042/bst20230265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Approximately 15% of human cancers depend on the alternative lengthening of telomeres (ALT) pathway to maintain telomeres and proliferate. Telomeres that are elongated using ALT display unique features raising the exciting prospect of tailored cancer therapies. ALT-mediated telomere elongation shares several features with recombination-based DNA repair. Strikingly, cells that use the ALT pathway display abnormal levels of replication stress at telomeres and accumulate abundant extrachromosomal telomeric DNA. In this review, we examine recent findings that shed light on the ALT mechanisms and the strategies currently available to suppress this telomere elongation mechanism.
Collapse
Affiliation(s)
- Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| |
Collapse
|
6
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
7
|
Huang M, Chen L, Guo Y, Ruan Y, Xu H. PARP1 negatively regulates transcription of BLM through its interaction with HSP90AB1 in prostate cancer. J Transl Med 2023; 21:445. [PMID: 37415147 PMCID: PMC10324254 DOI: 10.1186/s12967-023-04288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignant disease affecting a significant number of males globally. Elevated expression of the Bloom's syndrome protein (BLM) helicase has emerged as a promising cancer biomarker, being associated with the onset and progression of PCa. Nevertheless, the precise molecular mechanisms governing BLM regulation in PCa remain elusive. METHODS The expression of BLM in human specimens was analyzed using immnohistochemistry (IHC). A 5'-biotin-labeled DNA probe containing the promoter region of BLM was synthesized to pull down BLM promoter-binding proteins. Functional studies were conducted using a range of assays, including CCK-8, EdU incorporation, clone formation, wound scratch, transwell migration, alkaline comet assay, xenograft mouse model, and H&E staining. Mechanistic studies were carried out using various techniques, including streptavidin-agarose-mediated DNA pull-down, mass spectrometry (MS), immunofluorescence (IF), dual luciferase reporter assay system, RT-qPCR, ChIP-qPCR, co-immunoprecipitation (co-IP), and western blot. RESULTS The results revealed significant upregulation of BLM in human PCa tissues, and its overexpression was associated with an unfavorable prognosis in PCa patients. Increased BLM expression showed significant correlations with advanced clinical stage (P = 0.022) and Gleason grade (P = 0.006). In vitro experiments demonstrated that BLM knockdown exerted inhibitory effects on cell proliferation, clone formation, invasion, and migration. Furthermore, PARP1 (poly (ADP-ribose) polymerase 1) was identified as a BLM promoter-binding protein. Further investigations revealed that the downregulation of PARP1 led to increased BLM promoter activity and expression, while the overexpression of PARP1 exerted opposite effects. Through mechanistic studies, we elucidated that the interaction between PARP1 and HSP90AB1 (heat shock protein alpha family class B) enhanced the transcriptional regulation of BLM by counteracting the inhibitory influence of PARP1 on BLM. Furthermore, the combination treatment of olaparib with ML216 demonstrated enhanced inhibitory effects on cell proliferation, clone formation, invasion, and migration. It also induced more severe DNA damage in vitro and exhibited superior inhibitory effects on the proliferation of PC3 xenograft tumors in vivo. CONCLUSIONS The results of this study underscore the significance of BLM overexpression as a prognostic biomarker for PCa, while also demonstrating the negative regulatory impact of PARP1 on BLM transcription. The concurrent targeting of BLM and PARP1 emerges as a promising therapeutic approach for PCa treatment, holding potential clinical significance.
Collapse
Affiliation(s)
- Mengqiu Huang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lin Chen
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yingchu Guo
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Houqiang Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
- Guizhou University school of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
8
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
9
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
10
|
Wang T, Hu J, Li Y, Bi L, Guo L, Jia X, Zhang X, Li D, Hou X, Modesti M, Xi X, Liu C, Sun B. Bloom Syndrome Helicase Compresses Single‐Stranded DNA into Phase‐Separated Condensates. Angew Chem Int Ed Engl 2022; 61:e202209463. [DOI: 10.1002/anie.202209463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Teng Wang
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 201210 China
| | - Yanan Li
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Lulu Bi
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Lijuan Guo
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Xinshuo Jia
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Xia Zhang
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Dan Li
- Bio-X Institutes Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education Shanghai Jiao Tong University Shanghai 200030 China
| | - Xi‐Miao Hou
- College of Life Sciences Northwest A&F University Yangling Shaanxi 712100 China
| | - Mauro Modesti
- Cancer Research Center of Marseille CNRS UMR7258 Inserm U1068 Institut Paoli-Calmettes Aix-Marseille Université 13273 Marseille France
| | - Xu‐Guang Xi
- College of Life Sciences Northwest A&F University Yangling Shaanxi 712100 China
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA) CNRS UMR8113 ENS Pairs-Saclay Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 201210 China
| | - Bo Sun
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
11
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
12
|
Wang T, Hu J, Li Y, Bi L, Guo L, Jia X, Zhang X, Li D, Hou XM, Modesti M, Xi XG, Liu C, SUN BO. Bloom Syndrome Helicase Compresses Single‐Stranded DNA into Phase‐Separated Condensates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Teng Wang
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Life Science and Technology CHINA
| | - Jiaojiao Hu
- Shanghai Institute of Organic Chemistry Interdisciplinary Research Center on Biology and Chemistry CHINA
| | - Yanan Li
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Life Science and Technology CHINA
| | - Lulu Bi
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Life Science and Technology CHINA
| | - Lijuan Guo
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Life Science and Technology CHINA
| | - Xinshuo Jia
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Life Science and Technology CHINA
| | - Xia Zhang
- ShanghaiTech University - Zhangjiang Campus: ShanghaiTech University School of Life Science and Technology CHINA
| | - Dan Li
- Shanghai Jiao Tong University Bio-X Institutes CHINA
| | - Xi-Miao Hou
- Northwest Agriculture University: Northwest Agriculture and Forestry University College of Life Sciences CHINA
| | - Mauro Modesti
- Aix-Marseille Universite Cancer Research Center of Marseille FRANCE
| | - Xu-Guang Xi
- Northwest A&F University: Northwest Agriculture and Forestry University College of Life Sciences CHINA
| | - Cong Liu
- Shanghai Institute of Organic Chemistry Interdisciplinary Research Center on Biology and Chemistry CHINA
| | - BO SUN
- ShanghaiTech University School of Life Science and Technology 393 Central Huaxia RoadPudong District 201210 Shanghai CHINA
| |
Collapse
|
13
|
Xue C, Salunkhe SJ, Tomimatsu N, Kawale AS, Kwon Y, Burma S, Sung P, Greene EC. Bloom helicase mediates formation of large single-stranded DNA loops during DNA end processing. Nat Commun 2022; 13:2248. [PMID: 35473934 PMCID: PMC9042962 DOI: 10.1038/s41467-022-29937-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Bloom syndrome (BS) is associated with a profoundly increased cancer risk and is caused by mutations in the Bloom helicase (BLM). BLM is involved in the nucleolytic processing of the ends of DNA double-strand breaks (DSBs), to yield long 3' ssDNA tails that serve as the substrate for break repair by homologous recombination (HR). Here, we use single-molecule imaging to demonstrate that BLM mediates formation of large ssDNA loops during DNA end processing. A BLM mutant lacking the N-terminal domain (NTD) retains vigorous in vitro end processing activity but fails to generate ssDNA loops. This same mutant supports DSB end processing in cells, however, these cells do not form RAD51 DNA repair foci and the processed DSBs are channeled into synthesis-dependent strand annealing (SSA) instead of HR-mediated repair, consistent with a defect in RAD51 filament formation. Together, our results provide insights into BLM functions during homologous recombination.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Sameer J Salunkhe
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Nozomi Tomimatsu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ajinkya S Kawale
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
14
|
Bloom syndrome helicase contributes to germ line development and longevity in zebrafish. Cell Death Dis 2022; 13:363. [PMID: 35436990 PMCID: PMC9016072 DOI: 10.1038/s41419-022-04815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/08/2022]
Abstract
RecQ helicases—also known as the “guardians of the genome”—play crucial roles in genome integrity maintenance through their involvement in various DNA metabolic pathways. Aside from being conserved from bacteria to vertebrates, their importance is also reflected in the fact that in humans impaired function of multiple RecQ helicase orthologs are known to cause severe sets of problems, including Bloom, Werner, or Rothmund-Thomson syndromes. Our aim was to create and characterize a zebrafish (Danio rerio) disease model for Bloom syndrome, a recessive autosomal disorder. In humans, this syndrome is characterized by short stature, skin rashes, reduced fertility, increased risk of carcinogenesis, and shortened life expectancy brought on by genomic instability. We show that zebrafish blm mutants recapitulate major hallmarks of the human disease, such as shortened lifespan and reduced fertility. Moreover, similarly to other factors involved in DNA repair, some functions of zebrafish Blm bear additional importance in germ line development, and consequently in sex differentiation. Unlike fanc genes and rad51, however, blm appears to affect its function independent of tp53. Therefore, our model will be a valuable tool for further understanding the developmental and molecular attributes of this rare disease, along with providing novel insights into the role of genome maintenance proteins in somatic DNA repair and fertility.
Collapse
|
15
|
Kim JH, Yang HJ, Lee HJ, Song YS. Enhanced Hypoxia-Associated Genes in Impaired Contractility From Bladder Outlet Obstruction. J Korean Med Sci 2022; 37:e84. [PMID: 35289143 PMCID: PMC8921211 DOI: 10.3346/jkms.2022.37.e84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Hypoxia damages the bladder wall and contributes to the initiation of bladder dysfunction. The change of hypoxia is not well known in impaired bladder contractility caused by long-term bladder outlet obstruction (BOO). We aimed to find out whether hypoxia of bladder tissue is present and what signaling mechanisms are involved in the decompensated bladder in BOO. METHODS Twenty 6-week-old female Sprague-Dawley rats were divided into 2 groups, 10 rats each: group 1, sham operation; group 2, BOO for 8 weeks. Eight weeks after the onset of BOO, we did cystometric evaluation and processed polymerase chain reaction (PCR) array for hypoxia pathway using bladder tissues. The PCR array consists of 84 genes known to be involved in the hypoxic response, cell differentiation, and metabolism. We did quantitative PCR (qPCR) and immunohistochemical staining of bladder tissue for hypoxia. RESULTS Eight genes were at least 2-fold upregulated and 3 genes were at least 2-fold downregulated in BOO group, compared with the sham operation group. The up-regulated genes (fold change) belonging to the hypoxia-inducible factor (HIF) 1 interactor included Cdkn2a (11.0), and the down-regulated genes belonging to HIF and co-transcription factors included Hif3a (-39.6) and Per1 (-5.1) by BOO. Genes influenced each other by means of TGFβ1, TNF, and TP53. CONCLUSION Hypoxia genes were increased in impaired contractility because of long-term BOO. The gene expression profiles could explain the molecular mechanisms of hypoxia in impaired contractility because of long-term BOO.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Hee Jo Yang
- Department of Urology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University School of Medicine, Cheonan, Korea
| | - Hong J Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Gönenc II, Elcioglu NH, Martinez Grijalva C, Aras S, Großmann N, Praulich I, Altmüller J, Kaulfuß S, Li Y, Nürnberg P, Burfeind P, Yigit G, Wollnik B. Phenotypic spectrum of BLM- and RMI1-related Bloom syndrome. Clin Genet 2022; 101:559-564. [PMID: 35218564 DOI: 10.1111/cge.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Bloom syndrome (BS) is an autosomal recessive disorder with characteristic clinical features of primary microcephaly, growth deficiency, cancer predisposition, and immunodeficiency. Here, we report the clinical and molecular findings of eight patients from six families diagnosed with BS. We identified causative pathogenic variants in all families including three different variants in BLM and one variant in RMI1. The homozygous c.581_582delTT;p.Phe194* and c.3164G>C;p.Cys1055Ser variants in BLM have already been reported in BS patients, while the c.572_573delGA;p.Arg191Lysfs*4 variant is novel. Additionally, we present the detailed clinical characteristics of two cases with BS in which we previously identified the biallelic loss-of-function variant c.1255_1259delAAGAA;p.Lys419Leufs*5 in RMI1. All BS patients had primary microcephaly, intrauterine growth delay, and short stature, presenting the phenotypic hallmarks of BS. However, skin lesions and upper airway infections were observed only in some of the patients. Overall, patients with pathogenic BLM variants had a more severe BS phenotype compared to patients carrying the pathogenic variants in RMI1, especially in terms of immunodeficiency which should be considered as one of the most important phenotypic characteristics of BS. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ipek Ilgin Gönenc
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey.,Eastern Mediterranean University School of Medicine, Cyprus, Mersin, Turkey
| | | | - Seda Aras
- Department of Pediatric Haematology and Oncology, Marmara University Medical School, Istanbul, Turkey
| | - Nadine Großmann
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Inka Praulich
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Peter Burfeind
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Hodson C, Low JKK, van Twest S, Jones SE, Swuec P, Murphy V, Tsukada K, Fawkes M, Bythell-Douglas R, Davies A, Holien JK, O'Rourke JJ, Parker BL, Glaser A, Parker MW, Mackay JP, Blackford AN, Costa A, Deans AJ. Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability. Proc Natl Acad Sci U S A 2022; 119:e2109093119. [PMID: 35115399 PMCID: PMC8832983 DOI: 10.1073/pnas.2109093119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
Collapse
Affiliation(s)
- Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Paolo Swuec
- Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Vincent Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| | | | - Jessica K Holien
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia;
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
18
|
Harami GM, Pálinkás J, Seol Y, Kovács ZJ, Gyimesi M, Harami-Papp H, Neuman KC, Kovács M. The toposiomerase IIIalpha-RMI1-RMI2 complex orients human Bloom's syndrome helicase for efficient disruption of D-loops. Nat Commun 2022; 13:654. [PMID: 35115525 PMCID: PMC8813930 DOI: 10.1038/s41467-022-28208-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/12/2022] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination (HR) is a ubiquitous and efficient process that serves the repair of severe forms of DNA damage and the generation of genetic diversity during meiosis. HR can proceed via multiple pathways with different outcomes that may aid or impair genome stability and faithful inheritance, underscoring the importance of HR quality control. Human Bloom's syndrome (BLM, RecQ family) helicase plays central roles in HR pathway selection and quality control via unexplored molecular mechanisms. Here we show that BLM's multi-domain structural architecture supports a balance between stabilization and disruption of displacement loops (D-loops), early HR intermediates that are key targets for HR regulation. We find that this balance is markedly shifted toward efficient D-loop disruption by the presence of BLM's interaction partners Topoisomerase IIIα-RMI1-RMI2, which have been shown to be involved in multiple steps of HR-based DNA repair. Our results point to a mechanism whereby BLM can differentially process D-loops and support HR control depending on cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - János Pálinkás
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Zoltán J Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Máté Gyimesi
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Hajnalka Harami-Papp
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.
| |
Collapse
|
19
|
RQC helical hairpin in Bloom's syndrome helicase regulates DNA unwinding by dynamically intercepting nascent nucleotides. iScience 2022; 25:103606. [PMID: 35005551 PMCID: PMC8718986 DOI: 10.1016/j.isci.2021.103606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
The RecQ family of helicases are important for maintenance of genomic integrity. Although functions of constructive subdomains of this family of helicases have been extensively studied, the helical hairpin (HH) in the RecQ-C-terminal domain (RQC) has been underappreciated and remains poorly understood. Here by using single-molecule fluorescence resonance energy transfer, we found that HH in the human BLM transiently intercepts different numbers of nucleotides when it is unwinding a double-stranded DNA. Single-site mutations in HH that disrupt hydrogen bonds and/or salt bridges between DNA and HH change the DNA binding conformations and the unwinding features significantly. Our results, together with recent clinical tests that correlate single-site mutations in HH of human BLM with the phenotype of cancer-predisposing syndrome or Bloom's syndrome, implicate pivotal roles of HH in BLM's DNA unwinding activity. Similar mechanisms might also apply to other RecQ family helicases, calling for more attention to the RQC helical hairpin.
Collapse
|
20
|
Detecting G4 unwinding. Methods Enzymol 2022; 672:261-281. [DOI: 10.1016/bs.mie.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Gönenc II, Wolff A, Schmidt J, Zibat A, Müller C, Cyganek L, Argyriou L, Räschle M, Yigit G, Wollnik B. OUP accepted manuscript. Hum Mol Genet 2022; 31:2185-2193. [PMID: 35099000 PMCID: PMC9262399 DOI: 10.1093/hmg/ddab373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 11/12/2022] Open
Abstract
Bloom syndrome (BS) is an autosomal recessive disease clinically characterized by primary microcephaly, growth deficiency, immunodeficiency and predisposition to cancer. It is mainly caused by biallelic loss-of-function mutations in the BLM gene, which encodes the BLM helicase, acting in DNA replication and repair processes. Here, we describe the gene expression profiles of three BS fibroblast cell lines harboring causative, biallelic truncating mutations obtained by single-cell (sc) transcriptome analysis. We compared the scRNA transcription profiles from three BS patient cell lines to two age-matched wild-type controls and observed specific deregulation of gene sets related to the molecular processes characteristically affected in BS, such as mitosis, chromosome segregation, cell cycle regulation and genomic instability. We also found specific upregulation of genes of the Fanconi anemia pathway, in particular FANCM, FANCD2 and FANCI, which encode known interaction partners of BLM. The significant deregulation of genes associated with inherited forms of primary microcephaly observed in our study might explain in part the molecular pathogenesis of microcephaly in BS, one of the main clinical characteristics in patients. Finally, our data provide first evidence of a novel link between BLM dysfunction and transcriptional changes in condensin complex I and II genes. Overall, our study provides novel insights into gene expression profiles in BS on an sc level, linking specific genes and pathways to BLM dysfunction.
Collapse
Affiliation(s)
| | | | - Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Arne Zibat
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Christian Müller
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus Räschle
- Department of Molecular Genetics, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Bernd Wollnik
- To whom correspondence should be addressed at: Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany. Tel: +49 5513960606; Fax: +49 5513969303;
| |
Collapse
|
22
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
23
|
Wu C, Chang Y, Chen J, Su Y, Li L, Chen Y, Li Y, Wu J, Huang J, Zhao F, Wang W, Yin H, Wang S, Jin M, Lou Z, Zhu WG, Luo K, Zhang J, Yuan J. USP37 regulates DNA damage response through stabilizing and deubiquitinating BLM. Nucleic Acids Res 2021; 49:11224-11240. [PMID: 34606619 PMCID: PMC8565321 DOI: 10.1093/nar/gkab842] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37-BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.
Collapse
Affiliation(s)
- Chenming Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Yiming Chang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Junliang Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yang Su
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yunhui Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhuan Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Anhui 233030, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shunli Wang
- Department of Pathology,Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Mingpeng Jin
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Zhang
- Correspondence may also be addressed to Jie Zhang. Tel: +86 21 13917090488;
| | - Jian Yuan
- To whom correspondence should be addressed. Tel: +86 21 13818233596;
| |
Collapse
|
24
|
Liu NN, Song ZY, Guo HL, Yin H, Chen WF, Dai YX, Xin BG, Ai X, Ji L, Wang QM, Hou XM, Dou SX, Rety S, Xi XG. Endogenous Bos taurus RECQL is predominantly monomeric and more active than oligomers. Cell Rep 2021; 36:109688. [PMID: 34496242 DOI: 10.1016/j.celrep.2021.109688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/11/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
There is broad consensus that RecQ family helicase is a high-order oligomer that dissociates into a dimer upon ATP binding. This conclusion is based mainly on studies of highly purified recombinant proteins, and the oligomeric states of RecQ helicases in living cells remain unknown. We show here that, in contrast to current models, monomeric RECQL helicase is more abundant than oligomer/dimer forms in living cells. Further characterization of endogenous BtRECQL and isolated monomeric BtRECQL using various approaches demonstrates that both endogenous and recombinant monomeric BtRECQL effectively function as monomers, displaying higher helicase and ATPase activities than dimers and oligomers. Furthermore, monomeric BtRECQL unfolds intramolecular G-quadruplex DNA as efficiently as human RECQL and BLM helicases. These discoveries have implications for understanding endogenous RECQL oligomeric structures and their regulation. It is worth revisiting oligomeric states of the other members of the RecQ family helicases in living cells.
Collapse
Affiliation(s)
- Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ze-Yu Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hu Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ben-Ge Xin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing-Man Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
25
|
Shastri VM, Subramanian V, Schmidt KH. A novel cell-cycle-regulated interaction of the Bloom syndrome helicase BLM with Mcm6 controls replication-linked processes. Nucleic Acids Res 2021; 49:8699-8713. [PMID: 34370039 PMCID: PMC8421143 DOI: 10.1093/nar/gkab663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Bloom syndrome DNA helicase BLM contributes to chromosome stability through its roles in double-strand break repair by homologous recombination and DNA replication fork restart during the replication stress response. Loss of BLM activity leads to Bloom syndrome, which is characterized by extraordinary cancer risk and small stature. Here, we have analyzed the composition of the BLM complex during unperturbed S-phase and identified a direct physical interaction with the Mcm6 subunit of the minichromosome maintenance (MCM) complex. Using distinct binding sites, BLM interacts with the N-terminal domain of Mcm6 in G1 phase and switches to the C-terminal Cdt1-binding domain of Mcm6 in S-phase, with a third site playing a role for Mcm6 binding after DNA damage. Disruption of Mcm6-binding to BLM in S-phase leads to supra-normal DNA replication speed in unperturbed cells, and the helicase activity of BLM is required for this increased replication speed. Upon disruption of BLM/Mcm6 interaction, repair of replication-dependent DNA double-strand breaks is delayed and cells become hypersensitive to DNA damage and replication stress. Our findings reveal that BLM not only plays a role in the response to DNA damage and replication stress, but that its physical interaction with Mcm6 is required in unperturbed cells, most notably in S-phase as a negative regulator of replication speed.
Collapse
Affiliation(s)
- Vivek M Shastri
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Veena Subramanian
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
26
|
Spratt AN, Gallazzi F, Quinn TP, Lorson CL, Sönnerborg A, Singh K. Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents. Expert Opin Ther Pat 2021; 31:339-350. [PMID: 33593200 PMCID: PMC8074651 DOI: 10.1080/13543776.2021.1884224] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction: Coronaviruses encode a helicase that is essential for viral replication and represents an excellent antiviral target. However, only a few coronavirus helicase inhibitors have been patented. These patents include drug-like compound SSYA10-001, aryl diketo acids (ADK), and dihydroxychromones. Additionally, adamantane-derived bananins, natural flavonoids, one acrylamide derivative [(E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide], a purine derivative (7-ethyl-8-mercapto-3-methyl-3,7-dihydro-1 H-purine-2,6-dione), and a few bismuth complexes. The IC50 of patented inhibitors ranges between 0.82 μM and 8.95 μM, depending upon the assays used. Considering the urgency of clinical interventions against Coronavirus Disease-19 (COVID-19), it is important to consider developing antiviral portfolios consisting of small molecules. Areas covered: This review examines coronavirus helicases as antiviral targets, and the potential of previously patented and experimental compounds to inhibit the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) helicase. Expert opinion: Small molecule coronavirus helicase inhibitors represent attractive pharmacological modalities for the treatment of coronaviruses such as SARS-CoV and SARS-CoV-2. Rightfully so, the current emphasis is focused upon the development of vaccines. However, vaccines may not work for everyone and broad-based adoption of vaccinations is an increasingly challenging societal endeavor. Therefore, it is important to develop additional pharmacological antivirals against the highly conserved coronavirus helicases to broadly protect against this and subsequent coronavirus epidemics.
Collapse
Affiliation(s)
- Austin N Spratt
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Fabio Gallazzi
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Thomas P Quinn
- cDepartment of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,dDepartment of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Anders Sönnerborg
- eDivision of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.,fDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.,gSanctum Therapeutics Corporation, Sunnyvale, CA, USA
| |
Collapse
|
27
|
Woo H, Pyo S, Jeong Y. Analysis of Nucleoside Triphosphate Hydrolysis by Middle East Respiratory Syndrome Coronavirus Helicase. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hye‐Min Woo
- School of Applied Chemistry, Kookmin University Seoul 02707 Republic of Korea
- Division of Emerging Infectious Disease and Vector Research Korea National Institute of Health Cheongju 28159 Republic of Korea
| | - So‐Hee Pyo
- School of Applied Chemistry, Kookmin University Seoul 02707 Republic of Korea
| | - Yong‐Joo Jeong
- School of Applied Chemistry, Kookmin University Seoul 02707 Republic of Korea
| |
Collapse
|
28
|
Zhu XH, Sun BF, Luo M, Yu J, Zhang YD, Xu HQ, Luo H. Bloom helicase explicitly unwinds 3'-tailed G4DNA structure in prostate cancer cells. Int J Biol Macromol 2021; 180:578-589. [PMID: 33727188 DOI: 10.1016/j.ijbiomac.2021.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/22/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
G-quadruplex DNA (G4DNA) structure, which widely exists in the chromosomal telomeric regions and oncogenic promoter regions, plays a pivotal role in extending telomeric DNA with the help of telomerase in human cells. Bloom (BLM) helicase, a crucial member of the family of genome surveillance proteins, plays an essential role in DNA metabolic and repair pathways, including DNA replication, repair, transcription, recombination during chromosome segregation, and assuring telomere stability. The unwinding of G4DNA requires the participation of DNA helicase, which is crucial for maintaining chromosomal stability in cancer cells. Using fluorescence polarization and the electrophoretic mobility shift assay (EMSA), this study aimed to investigate the DNA-binding and unwinding properties of BLM helicase, cloned and purified from prostate cancer cells, toward G4DNA. The results revealed that BLM helicase derived from prostate cancer cells could bind and unwind G4DNA. The molecular affinity of bond between G4DNA and the helicase was dependent on the single-stranded DNA (ssDNA) terminals in G4DNA; the helicase was effectively bound to the G4DNA when the helicase monomer sufficiently covered approximately 10 nucleotides at the 3' or 5' ssDNA tail of G4DNA. For the unwinding of G4DNA, there was an apparent requirement of a 3' ssDNA tail and ATP; a G4DNA with only a 3' ssDNA tail was identified to be the most suitable substrate to be unwound by BLM helicase and required 3' ssDNA tails of at least 10 nt in length for efficient unwinding. Besides, BLM helicase was loosely bound and partly unwound the blunt-ended G4DNA. Although further mechanistic studies are warranted, the experimental results presented in this study are beneficial to further our understanding of the functional implication of BLM helicase in prostate cancer cells.
Collapse
Affiliation(s)
- Xu-Hui Zhu
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Beijing ChaoYang Hospital, Capital Medical University, Beijing 100016, PR China
| | - Bao-Fei Sun
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
| | - Mei Luo
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, PR China
| | - Jia Yu
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, PR China
| | | | - Hou-Qiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| | - Heng Luo
- State Key Laboratory of Functions And Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Science, Guiyang 550014, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
29
|
Zhang JM, Genois MM, Ouyang J, Lan L, Zou L. Alternative lengthening of telomeres is a self-perpetuating process in ALT-associated PML bodies. Mol Cell 2021; 81:1027-1042.e4. [PMID: 33453166 PMCID: PMC8245000 DOI: 10.1016/j.molcel.2020.12.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 01/16/2023]
Abstract
Alternative lengthening of telomeres (ALT) is mediated by break-induced replication (BIR), but how BIR is regulated at telomeres is poorly understood. Here, we show that telomeric BIR is a self-perpetuating process. By tethering PML-IV to telomeres, we induced telomere clustering in ALT-associated PML bodies (APBs) and a POLD3-dependent ATR response at telomeres, showing that BIR generates replication stress. Ablation of BLM helicase activity in APBs abolishes telomere synthesis but causes multiple chromosome bridges between telomeres, revealing a function of BLM in processing inter-telomere BIR intermediates. Interestingly, the accumulation of BLM in APBs requires its own helicase activity and POLD3, suggesting that BIR triggers a feedforward loop to further recruit BLM. Enhancing BIR induces PIAS4-mediated TRF2 SUMOylation, and PIAS4 loss deprives APBs of repair proteins and compromises ALT telomere synthesis. Thus, a BLM-driven and PIAS4-mediated feedforward loop operates in APBs to perpetuate BIR, providing a critical mechanism to extend ALT telomeres.
Collapse
Affiliation(s)
- Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marie-Michelle Genois
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Lejault P, Mitteaux J, Sperti FR, Monchaud D. How to untie G-quadruplex knots and why? Cell Chem Biol 2021; 28:436-455. [PMID: 33596431 DOI: 10.1016/j.chembiol.2021.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
For over two decades, the prime objective of the chemical biology community studying G-quadruplexes (G4s) has been to use chemicals to interact with and stabilize G4s in cells to obtain mechanistic interpretations. This strategy has been undoubtedly successful, as demonstrated by recent advances. However, these insights have also led to a fundamental rethinking of G4-targeting strategies: due to the prevalence of G4s in the human genome, transcriptome, and ncRNAome (collectively referred to as the G4ome), and their involvement in human diseases, should we continue developing G4-stabilizing ligands or should we invest in designing molecular tools to unfold G4s? Here, we first focus on how, when, and where G4s fold in cells; then, we describe the enzymatic systems that have evolved to counteract G4 folding and how they have been used as tools to manipulate G4s in cells; finally, we present strategies currently being implemented to devise new molecular G4 unwinding agents.
Collapse
Affiliation(s)
- Pauline Lejault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Jérémie Mitteaux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Francesco Rota Sperti
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - David Monchaud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB CNRS UMR 6302, UBFC Dijon, France.
| |
Collapse
|
31
|
Bythell-Douglas R, Deans AJ. A Structural Guide to the Bloom Syndrome Complex. Structure 2020; 29:99-113. [PMID: 33357470 DOI: 10.1016/j.str.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The Bloom syndrome complex is a DNA damage repair machine. It consists of several protein components which are functional in isolation, but interdependent in cells for the maintenance of accurate homologous recombination. Mutations to any of the genes encoding these proteins cause numerous physical and developmental markers as well as phenotypes of genome instability, infertility, and cancer predisposition. Here we review the published structural and biochemical data on each of the components of the complex: the helicase BLM, the type IA topoisomerase TOP3A, and the OB-fold-containing RMI and RPA subunits. We describe how each component contributes to function, interacts with each other, and the DNA that it manipulates/repairs.
Collapse
Affiliation(s)
- Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia.
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3056, Australia.
| |
Collapse
|
32
|
Liu NN, Ji L, Guo Q, Dai YX, Wu WQ, Guo HL, Lu KY, Li XM, Xi XG. Quantitative and real-time measurement of helicase-mediated intra-stranded G4 unfolding in bulk fluorescence stopped-flow assays. Anal Bioanal Chem 2020; 412:7395-7404. [PMID: 32851458 DOI: 10.1007/s00216-020-02875-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/26/2023]
Abstract
G-Quadruplexes (G4s) are thermodynamically stable, compact, and poorly hydrated structures that pose a potent obstacle for chromosome replication and gene expression, and requiring resolution by helicases in a cell. Bulk stopped-flow fluorescence assays have provided many mechanistic insights into helicase-mediated duplex DNA unwinding. However, to date, detailed studies on intramolecular G-quadruplexes similar or comparable with those used for studying duplex DNA are still lacking. Here, we describe a method for the direct and quantitative measurement of helicase-mediated intramolecular G-quadruplex unfolding in real time. We designed a series of site-specific fluorescently double-labeled intramolecular G4s and screened appropriate substrates to characterize the helicase-mediated G4 unfolding. With the developed method, we determined, for the first time to our best knowledge, the unfolding and refolding constant of G4 (≈ 5 s-1), and other relative parameters under single-turnover experimental conditions in the presence of G4 traps. Our approach not only provides a new paradigm for characterizing helicase-mediated intramolecular G4 unfolding using stopped-flow assays but also offers a way to screen for inhibitors of G4 unfolding helicases as therapeutic drug targets. Graphical abstract.
Collapse
Affiliation(s)
- Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Ji
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai-Lei Guo
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiao-Mei Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Université Paris-Saclay, 61 Avenue du Président Wilson, 94235, Cachan, France.
| |
Collapse
|
33
|
Trizuljak J, Petruchová T, Blaháková I, Vrzalová Z, Hořínová V, Doubková M, Michalka J, Mayer J, Pospíšilová Š, Doubek M. Diagnosis of Bloom Syndrome in a Patient with Short Stature, Recurrence of Malignant Lymphoma, and Consanguineous Origin. Mol Syndromol 2020; 11:73-82. [PMID: 32655338 DOI: 10.1159/000507006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Bloom syndrome is an autosomal recessive disorder characterized by prenatal and postnatal growth deficiency, photosensitive skin changes, immune deficiency, insulin resistance, and a greatly increased risk of early-onset cancer and development of multiple malignancies. Loss-of-function variants of the BLM gene, which codes for a RecQ helicase, cause Bloom syndrome. We report a consanguineous family, with 2 siblings showing clinical signs of suspected chromosome breakage disorder. One of them developed recurrent malignant lymphoma during lifetime. We performed next-generation sequencing analysis, focusing on cancer predisposition syndromes. We identified a homozygous pathogenic nonsense variant c.1642C>T (p.Gln548*) in the BLM gene in the proband, associated with Bloom syndrome. Sanger sequencing validated the presence of a homozygous pathogenic variant in the proband and also in the brother with short stature. In this article, we will focus on the clinical presentation of the syndrome in this particular family as well as the characteristics of malignancies found in the proband.
Collapse
Affiliation(s)
- Jakub Trizuljak
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Ivona Blaháková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Vrzalová
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Věra Hořínová
- Outpatient Ward for Genetics, Hospital Jihlava, Jihlava, Czech Republic
| | - Martina Doubková
- Department of Pulmonary Diseases and Tuberculosis, University Hospital, Brno, Czech Republic
| | - Jozef Michalka
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jiří Mayer
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
34
|
Daley JM, Tomimatsu N, Hooks G, Wang W, Miller AS, Xue X, Nguyen KA, Kaur H, Williamson E, Mukherjee B, Hromas R, Burma S, Sung P. Specificity of end resection pathways for double-strand break regions containing ribonucleotides and base lesions. Nat Commun 2020; 11:3088. [PMID: 32555206 PMCID: PMC7303207 DOI: 10.1038/s41467-020-16903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
DNA double-strand break repair by homologous recombination begins with nucleolytic resection of the 5’ DNA strand at the break ends. Long-range resection is catalyzed by EXO1 and BLM-DNA2, which likely have to navigate through ribonucleotides and damaged bases. Here, we show that a short stretch of ribonucleotides at the 5’ terminus stimulates resection by EXO1. Ribonucleotides within a 5’ flap are resistant to cleavage by DNA2, and extended RNA:DNA hybrids inhibit both strand separation by BLM and resection by EXO1. Moreover, 8-oxo-guanine impedes EXO1 but enhances resection by BLM-DNA2, and an apurinic/apyrimidinic site stimulates resection by BLM-DNA2 and DNA strand unwinding by BLM. Accordingly, depletion of OGG1 or APE1 leads to greater dependence of DNA resection on DNA2. Importantly, RNase H2A deficiency impairs resection overall, which we attribute to the accumulation of long RNA:DNA hybrids at DNA ends. Our results help explain why eukaryotic cells possess multiple resection nucleases. DNA double-strand break repair by homologous recombination initiates with nucleolytic resection of the 5’ DNA strand at the break ends. Here, the authors reveal that the lesion context influences the action and efficiency of the long range resection factors EXO1 and BLM-DNA2.
Collapse
Affiliation(s)
- James M Daley
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Nozomi Tomimatsu
- Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Grace Hooks
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Biochemistry, Duke University, Durham, NC, 27710, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Regeneron, Rensselaer, NY, 12144, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Kevin A Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hardeep Kaur
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Elizabeth Williamson
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Bipasha Mukherjee
- Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA. .,Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, 06510, USA. .,Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
35
|
Jain CK, Mukhopadhyay S, Ganguly A. RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy. Anticancer Agents Med Chem 2020; 20:1311-1326. [PMID: 32418530 DOI: 10.2174/1871520620666200518082433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Replication fork reversal and restart has gained immense interest as a central response mechanism to replication stress following DNA damage. Although the exact mechanism of fork reversal has not been elucidated precisely, the involvement of diverse pathways and different factors has been demonstrated, which are central to this phenomenon. RecQ helicases known for their vital role in DNA repair and maintaining genome stability has recently been implicated in the restart of regressed replication forks. Through interaction with vital proteins like Poly (ADP) ribose polymerase 1 (PARP1), these helicases participate in the replication fork reversal and restart phenomenon. Most therapeutic agents used for cancer chemotherapy act by causing DNA damage in replicating cells and subsequent cell death. These DNA damages can be repaired by mechanisms involving fork reversal as the key phenomenon eventually reducing the efficacy of the therapeutic agent. Hence the factors contributing to this repair process can be good selective targets for developing more efficient chemotherapeutic agents. In this review, we have discussed in detail the role of various proteins in replication fork reversal and restart with special emphasis on RecQ helicases. Involvement of other proteins like PARP1, recombinase rad51, SWI/SNF complex has also been discussed. Since RecQ helicases play a central role in the DNA damage response following chemotherapeutic treatment, we propose that targeting these helicases can emerge as an alternative to available intervention strategies. We have also summarized the current research status of available RecQ inhibitors and siRNA based therapeutic approaches that targets RecQ helicases. In summary, our review gives an overview of the DNA damage responses involving replication fork reversal and provides new directions for the development of more efficient and sustainable chemotherapeutic approaches.
Collapse
Affiliation(s)
- Chetan K Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Swagata Mukhopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
36
|
Maleki P, Mustafa G, Gyawali P, Budhathoki JB, Ma Y, Nagasawa K, Balci H. Quantifying the impact of small molecule ligands on G-quadruplex stability against Bloom helicase. Nucleic Acids Res 2020; 47:10744-10753. [PMID: 31544934 PMCID: PMC6847008 DOI: 10.1093/nar/gkz803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 01/28/2023] Open
Abstract
G-quadruplex (GQ) stabilizing small molecule (SM) ligands have been used to stabilize human telomeric GQ (hGQ) to inhibit telomerase activity, or non-telomeric GQs to manipulate gene expression at transcription or translation level. GQs are known to inhibit DNA replication unless destabilized by helicases, such as Bloom helicase (BLM). Even though the impact of SM ligands on thermal stability of GQs is commonly used to characterize their efficacy, how these ligands influence helicase-mediated GQ unfolding is not well understood. Three prominent SM ligands (an oxazole telomestatin derivative, pyridostatin, and PhenDC3), which thermally stabilize hGQ at different levels, were utilized in this study. How these ligands influence BLM-mediated hGQ unfolding was investigated using two independent single-molecule approaches. While the frequency of dynamic hGQ unfolding events was used as the metric in the first approach, the second approach was based on quantifying the cumulative unfolding activity as a function of time. All three SM ligands inhibited BLM activity at similar levels, 2–3 fold, in both approaches. Our observations suggest that the impact of SM ligands on GQ thermal stability is not an ideal predictor for their inhibition of helicase-mediated unfolding, which is physiologically more relevant.
Collapse
Affiliation(s)
- Parastoo Maleki
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Golam Mustafa
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | - Prabesh Gyawali
- Department of Physics, Kent State University, Kent, OH 44242, USA
| | | | - Yue Ma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hamza Balci
- Department of Physics, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
37
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|
38
|
Qin Z, Bi L, Hou XM, Zhang S, Zhang X, Lu Y, Li M, Modesti M, Xi XG, Sun B. Human RPA activates BLM's bidirectional DNA unwinding from a nick. eLife 2020; 9:54098. [PMID: 32101168 PMCID: PMC7065910 DOI: 10.7554/elife.54098] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
BLM is a multifunctional helicase that plays critical roles in maintaining genome stability. It processes distinct DNA substrates, but not nicked DNA, during many steps in DNA replication and repair. However, how BLM prepares itself for diverse functions remains elusive. Here, using a combined single-molecule approach, we find that a high abundance of BLMs can indeed unidirectionally unwind dsDNA from a nick when an external destabilizing force is applied. Strikingly, human replication protein A (hRPA) not only ensures that limited quantities of BLMs processively unwind nicked dsDNA under a reduced force but also permits the translocation of BLMs on both intact and nicked ssDNAs, resulting in a bidirectional unwinding mode. This activation necessitates BLM targeting on the nick and the presence of free hRPAs in solution whereas direct interactions between them are dispensable. Our findings present novel DNA unwinding activities of BLM that potentially facilitate its function switching in DNA repair.
Collapse
Affiliation(s)
- Zhenheng Qin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lulu Bi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Siqi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Lu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- University of Chinese Academy of Sciences, Beijing, China.,Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Xu-Guang Xi
- The LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, Gif-sur-Yvette, France
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
39
|
Prediction of Compound Cytotoxicity Based on Compound Structures and Cell Line Molecular Characteristics. JOURNAL OF COMPUTER AIDED CHEMISTRY 2020. [DOI: 10.2751/jcac.21.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Xue C, Daley JM, Xue X, Steinfeld J, Kwon Y, Sung P, Greene EC. Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res 2019; 47:11225-11237. [PMID: 31544923 PMCID: PMC6868385 DOI: 10.1093/nar/gkz810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/12/2022] Open
Abstract
Bloom helicase (BLM) and its orthologs are essential for the maintenance of genome integrity. BLM defects represent the underlying cause of Bloom Syndrome, a rare genetic disorder that is marked by strong cancer predisposition. BLM deficient cells accumulate extensive chromosomal aberrations stemming from dysfunctions in homologous recombination (HR). BLM participates in several HR stages and helps dismantle potentially harmful HR intermediates. However, much remains to be learned about the molecular mechanisms of these BLM-mediated regulatory effects. Here, we use DNA curtains to directly visualize the activity of BLM helicase on single molecules of DNA. Our data show that BLM is a robust helicase capable of rapidly (∼70-80 base pairs per second) unwinding extensive tracts (∼8-10 kilobases) of double-stranded DNA (dsDNA). Importantly, we find no evidence for BLM activity on single-stranded DNA (ssDNA) that is bound by replication protein A (RPA). Likewise, our results show that BLM can neither associate with nor translocate on ssDNA that is bound by the recombinase protein RAD51. Moreover, our data reveal that the presence of RAD51 also blocks BLM translocation on dsDNA substrates. We discuss our findings within the context of potential regulator roles for BLM helicase during DNA replication and repair.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - James M Daley
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Justin Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
41
|
Lansdorp P, van Wietmarschen N. Helicases FANCJ, RTEL1 and BLM Act on Guanine Quadruplex DNA in Vivo. Genes (Basel) 2019; 10:genes10110870. [PMID: 31683575 PMCID: PMC6896191 DOI: 10.3390/genes10110870] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/03/2023] Open
Abstract
Guanine quadruplex (G4) structures are among the most stable secondary DNA structures that can form in vitro, and evidence for their existence in vivo has been steadily accumulating. Originally described mainly for their deleterious effects on genome stability, more recent research has focused on (potential) functions of G4 structures in telomere maintenance, gene expression, and other cellular processes. The combined research on G4 structures has revealed that properly regulating G4 DNA structures in cells is important to prevent genome instability and disruption of normal cell function. In this short review we provide some background and historical context of our work resulting in the identification of FANCJ, RTEL1 and BLM as helicases that act on G4 structures in vivo. Taken together these studies highlight important roles of different G4 DNA structures and specific G4 helicases at selected genomic locations and telomeres in regulating gene expression and maintaining genome stability.
Collapse
Affiliation(s)
- Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Niek van Wietmarschen
- European Research Institute for the Biology of Ageing, University of Groningen, 9713 AV Groningen, The Netherlands.
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Zhang W, Yang S, Liu J, Bao L, Lu H, Li H, Pan W, Jiao Y, He Z, Liu J. Screening antiproliferative drug for breast cancer from bisbenzylisoquinoline alkaloid tetrandrine and fangchinoline derivatives by targeting BLM helicase. BMC Cancer 2019; 19:1009. [PMID: 31660888 PMCID: PMC6819594 DOI: 10.1186/s12885-019-6146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The high expression of BLM (Bloom syndrome) helicase in tumors involves its strong association with cell expansion. Bisbenzylisoquinoline alkaloids own an antitumor property and have developed as candidates for anticancer drugs. This paper aimed to screen potential antiproliferative small molecules from 12 small molecules (the derivatives of bisbenzylisoquinoline alkaloids tetrandrine and fangchinoline) by targeting BLM642-1290 helicase. Then we explore the inhibitory mechanism of those small molecules on proliferation of MDA-MB-435 breast cancer cells. METHODS Fluorescence polarization technique was used to screen small molecules which inhibited the DNA binding and unwinding of BLM642-1290 helicase. The effects of positive small molecules on the ATPase and conformation of BLM642-1290 helicase were studied by the malachite green-phosphate ammonium molybdate colorimetry and ultraviolet spectral scanning, respectively. The effects of positive small molecules on growth of MDA-MB-435 cells were studied by MTT method, colony formation and cell counting method. The mRNA and protein levels of BLM helicase in the MDA-MB-435 cells after positive small molecule treatments were examined by RT-PCR and ELISA, respectively. RESULTS The compound HJNO (a tetrandrine derivative) was screened out which inhibited the DNA binding, unwinding and ATPase of BLM642-1290 helicase. That HJNO could bind BLM642-1290helicase to change its conformationcontribute to inhibiting the DNA binding, ATPase and DNA unwinding of BLM642-1290 helicase. In addition, HJNO showed its inhibiting the growth of MDA-MB-435 cells. The values of IC50 after drug treatments for 24 h, 48 h and 72 h were 19.9 μmol/L, 4.1 μmol/L and 10.9 μmol/L, respectively. The mRNA and protein levels of BLM helicase in MDA-MB-435 cells increased after HJNO treatment. Those showed a significant difference (P < 0.05) compared with negative control when the concentrations of HJNO were 5 μmol/L and 10 μmol/L, which might contribute to HJNO inhibiting the DNA binding, ATPase and DNA unwinding of BLM helicase. CONCLUSION The small molecule HJNO was screened out by targeting BLM642-1290 helicase. And it showed an inhibition on MDA-MB-435 breast cancer cells expansion.
Collapse
Affiliation(s)
- Wangming Zhang
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, 550001 People’s Republic of China
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004 People’s Republic of China
| | - Shuang Yang
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004 People’s Republic of China
| | - Jinhe Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004 People’s Republic of China
- Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang, 550004 People’s Republic of China
| | - Linchun Bao
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004 People’s Republic of China
| | - He Lu
- INSERM UMR-S 1165/Paris Diderot 7, Paris, France
| | - Hong Li
- INSERM UMR 1234/Faculté de Médecine et de Pharmacie, Université de Rouen, Rouen, France
| | - Weidong Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 3491 Baijin Road, Guiyang, 550014 People’s Republic of China
| | - Yanchao Jiao
- Guizhou Entry-exit inspection and quarantine bureau, Guiyang, 550004 People’s Republic of China
| | - Zhixu He
- Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang, 550004 People’s Republic of China
| | - Jielin Liu
- Department of Immunology, Basic Medical College, Guizhou Medical University, 9 Beijing Road, Guiyang, 550004 People’s Republic of China
- Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang, 550004 People’s Republic of China
| |
Collapse
|
43
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
44
|
Addis Jones O, Tiwari A, Olukoga T, Herbert A, Chan KL. PLK1 facilitates chromosome biorientation by suppressing centromere disintegration driven by BLM-mediated unwinding and spindle pulling. Nat Commun 2019; 10:2861. [PMID: 31253795 PMCID: PMC6599003 DOI: 10.1038/s41467-019-10938-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
Centromeres provide a pivotal function for faithful chromosome segregation. They serve as a foundation for the assembly of the kinetochore complex and spindle connection, which is essential for chromosome biorientation. Cells lacking Polo-like kinase 1 (PLK1) activity suffer severe chromosome alignment defects, which is believed primarily due to unstable kinetochore-microtubule attachment. Here, we reveal a previously undescribed mechanism named 'centromere disintegration' that drives chromosome misalignment in PLK1-inactivated cells. We find that PLK1 inhibition does not necessarily compromise metaphase establishment, but instead its maintenance. We demonstrate that this is caused by unlawful unwinding of DNA by BLM helicase at a specific centromere domain underneath kinetochores. Under bipolar spindle pulling, the distorted centromeres are promptly decompacted into DNA threadlike molecules, leading to centromere rupture and whole-chromosome arm splitting. Consequently, chromosome alignment collapses. Our study unveils an unexpected role of PLK1 as a chromosome guardian to maintain centromere integrity for chromosome biorientation.
Collapse
Affiliation(s)
- Owen Addis Jones
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Ankana Tiwari
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Tomisin Olukoga
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Alex Herbert
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK
| | - Kok-Lung Chan
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 7BG, UK.
| |
Collapse
|
45
|
Lu R, O'Rourke JJ, Sobinoff AP, Allen JAM, Nelson CB, Tomlinson CG, Lee M, Reddel RR, Deans AJ, Pickett HA. The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT). Nat Commun 2019; 10:2252. [PMID: 31138797 PMCID: PMC6538672 DOI: 10.1038/s41467-019-10180-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The collapse of stalled replication forks is a major driver of genomic instability. Several committed mechanisms exist to resolve replication stress. These pathways are particularly pertinent at telomeres. Cancer cells that use Alternative Lengthening of Telomeres (ALT) display heightened levels of telomere-specific replication stress, and co-opt stalled replication forks as substrates for break-induced telomere synthesis. FANCM is a DNA translocase that can form independent functional interactions with the BLM-TOP3A-RMI (BTR) complex and the Fanconi anemia (FA) core complex. Here, we demonstrate that FANCM depletion provokes ALT activity, evident by increased break-induced telomere synthesis, and the induction of ALT biomarkers. FANCM-mediated attenuation of ALT requires its inherent DNA translocase activity and interaction with the BTR complex, but does not require the FA core complex, indicative of FANCM functioning to restrain excessive ALT activity by ameliorating replication stress at telomeres. Synthetic inhibition of FANCM-BTR complex formation is selectively toxic to ALT cancer cells.
Collapse
Affiliation(s)
- Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher G Tomlinson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Michael Lee
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia.
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia.
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia.
| |
Collapse
|
46
|
Behnfeldt JH, Acharya S, Tangeman L, Gocha AS, Keirsey J, Groden J. A tri-serine cluster within the topoisomerase IIα-interaction domain of the BLM helicase is required for regulating chromosome breakage in human cells. Hum Mol Genet 2019; 27:1241-1251. [PMID: 29385443 DOI: 10.1093/hmg/ddy038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 01/31/2023] Open
Abstract
The recQ-like helicase BLM interacts directly with topoisomerase IIα to regulate chromosome breakage in human cells. We demonstrate that a phosphosite tri-serine cluster (S577/S579/S580) within the BLM topoisomerase IIα-interaction region is required for this function. Enzymatic activities of BLM and topoisomerase IIα are reciprocally stimulated in vitro by ten-fold for topoisomerase IIα decatenation/relaxation activity and three-fold for BLM unwinding of forked DNA duplex substrates. A BLM transgene encoding alanine substitutions of the tri-serine cluster in BLM-/- transfected cells increases micronuclei, DNA double strand breaks and anaphase ultra-fine bridges (UFBs), and decreases cellular co-localization of BLM with topoisomerase IIα. In vitro, these substitutions significantly reduce the topoisomerase IIα-mediated stimulation of BLM unwinding of forked DNA duplexes. Substitution of the tri-serine cluster with aspartic acids to mimic serine phosphorylation reverses these effects in vitro and in vivo. Our findings implicate the modification of this BLM tri-serine cluster in regulating chromosomal stability.
Collapse
Affiliation(s)
- Julia Harris Behnfeldt
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Samir Acharya
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Larissa Tangeman
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - April Sandy Gocha
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeremy Keirsey
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joanna Groden
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
47
|
Abstract
DNA double-strand breaks (DSBs) are a potentially lethal DNA lesions that disrupt both the physical and genetic continuity of the DNA duplex. Homologous recombination (HR) is a universally conserved genome maintenance pathway that initiates via nucleolytic processing of the broken DNA ends (resection). Eukaryotic DNA resection is catalyzed by the resectosome-a multicomponent molecular machine consisting of the nucleases DNA2 or Exonuclease 1 (EXO1), Bloom's helicase (BLM), the MRE11-RAD50-NBS1 (MRN) complex, and additional regulatory factors. Here, we describe methods for purification and single-molecule imaging and analysis of EXO1, DNA2, and BLM. We also describe how to adapt resection assays to the high-throughput single-molecule DNA curtain assay. By organizing hundreds of individual molecules on the surface of a microfluidic flowcell, DNA curtains visualize protein complexes with the required spatial and temporal resolution to resolve the molecular choreography during critical DNA-processing reactions.
Collapse
|
48
|
Wang H, Li S, Zhang H, Wang Y, Hao S, Wu X. BLM prevents instability of structure-forming DNA sequences at common fragile sites. PLoS Genet 2018; 14:e1007816. [PMID: 30496191 PMCID: PMC6289451 DOI: 10.1371/journal.pgen.1007816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Genome instability often arises at common fragile sites (CFSs) leading to cancer-associated chromosomal rearrangements. However, the underlying mechanisms of how CFS protection is achieved is not well understood. We demonstrate that BLM plays an important role in the maintenance of genome stability of structure-forming AT-rich sequences derived from CFSs (CFS-AT). BLM deficiency leads to increased DSB formation and hyper mitotic recombination at CFS-AT and induces instability of the plasmids containing CFS-AT. We further showed that BLM is required for suppression of CFS breakage upon oncogene expression. Both helicase activity and ATR-mediated phosphorylation of BLM are important for preventing genetic instability at CFS-AT sequences. Furthermore, the role of BLM in protecting CFS-AT is not epistatic to that of FANCM, a translocase that is involved in preserving CFS stability. Loss of BLM helicase activity leads to drastic decrease of cell viability in FANCM deficient cells. We propose that BLM and FANCM utilize different mechanisms to remove DNA secondary structures forming at CFS-AT on replication forks, thereby preventing DSB formation and maintaining CFS stability. Common fragile sites (CFSs) are large chromosomal regions which are more prone to breakage than other places in the genome. They are a part of normal chromosome structure and are present in all human beings, but are also hotspots for chromosomal rearrangement during oncogenesis. Understanding how CFSs are protected to prevent genome instability is thus extremely important for revealing the mechanism underlying cancer development. We found that Bloom syndrome protein BLM is involved in resolving DNA secondary structures that arise at AT-rich sequences in CFSs, suggesting a critical function of BLM in protecting CFSs. We also found that this BLM function is distinct from the role of Fanconi anemia protein FANCM in protecting CFSs, and loss of both BLM and FANCM activities leads to cell death. These studies reveal important mechanisms of the maintenance of CFS stability in mammalian cells.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Huimin Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
Timely recruitment of DNA damage response proteins to sites of genomic structural lesions is very important for signaling mechanisms to activate appropriate cell cycle checkpoints but also repair the altered DNA sequence to suppress mutagenesis. The eukaryotic cell is characterized by a complex cadre of players and pathways to ensure genomic stability in the face of replication stress or outright genomic insult by endogenous metabolites or environmental agents. Among the key performers are molecular motor DNA unwinding enzymes known as helicases that sense genomic perturbations and separate structured DNA strands so that replacement of a damaged base or sugar-phosphate backbone lesion can occur efficiently. Mutations in the BLM gene encoding the DNA helicase BLM leads to a rare chromosomal instability disorder known as Bloom's syndrome. In a recent paper by the Sengupta lab, BLM's role in the correction of double-strand breaks (DSB), a particularly dangerous form of DNA damage, was investigated. Adding to the complexity, BLM appears to be a key ringmaster of DSB repair as it acts both positively and negatively to regulate correction pathways of high or low fidelity. The FANCJ DNA helicase, mutated in another chromosomal instability disorder known as Fanconi Anemia, is an important player that likely coordinates with BLM in the balancing act. Further studies to dissect the roles of DNA helicases like FANCJ and BLM in DSB repair are warranted.
Collapse
Affiliation(s)
- Srijita Dhar
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , NIH Biomedical Research Center , Baltimore , MD , USA
| |
Collapse
|
50
|
Reconstitution of anaphase DNA bridge recognition and disjunction. Nat Struct Mol Biol 2018; 25:868-876. [PMID: 30177760 DOI: 10.1038/s41594-018-0123-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022]
Abstract
Faithful chromosome segregation requires that the sister chromatids be disjoined completely. Defective disjunction can lead to the persistence of histone-free threads of DNA known as ultra-fine bridges (UFBs) that connect the separating sister DNA molecules during anaphase. UFBs arise at specific genomic loci and can only be visualized by detection of associated proteins such as PICH, BLM, topoisomerase IIIα, and RPA. However, it remains unknown how these proteins work together to promote UFB processing. We used a combination of ensemble biochemistry and new single-molecule assays to reconstitute key steps of UFB recognition and processing by these human proteins in vitro. We discovered characteristic patterns of hierarchical recruitment and coordinated biochemical activities that were specific for DNA structures modeling UFBs arising at either centromeres or common fragile sites. Our results describe a mechanistic model for how unresolved DNA replication structures are processed by DNA-structure-specific binding factors in mitosis to prevent pathological chromosome nondisjunction.
Collapse
|