1
|
Merchant SS. The Elements of Life, Photosynthesis and Genomics. J Mol Biol 2025; 437:169054. [PMID: 40024437 DOI: 10.1016/j.jmb.2025.169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
I am a Professor of Biochemistry, Biophysics and Structural Biology and Plant and Microbial Biology at the University of California in Berkeley. I was born and raised in India, emigrated to the United States to attend university, earning a B.S. in Molecular Biology and a Ph.D. in Biochemistry at the University of Wisconsin in Madison. Following post-doctoral studies with Lawrence Bogorad at Harvard University where I became interested in genetic control of trace element quotas, I joined the department of Chemistry and Biochemistry at UCLA. One of the first to appreciate essential trace metals as potential regulators of gene expression, I articulated the details of the nutritional Cu regulon in Chlamydomonas. In parallel, I used genetic approaches to discover the genes governing missing steps in tetrapyrrole metabolism, including the attachment of heme to apocytochromes in the thylakoid lumen and the factors catalyzing the formation of ring V in chlorophyll. After biochemistry and classical genetics, I embraced genomics, taking a leadership role on the Joint Genome Institute's efforts on the Chlamydomonas genome and more recently, contributing to high quality assemblies of several genomes in the green algal radiation, and large transcriptomic and proteomic datasets - focusing on the diel metabolic cycle in synchronized cultures and acclimation to key environmental and nutritional stressors - that are well-used and appreciated by the community. A new venture in Berkeley is the promotion of Auxenochlorella protothecoides as the true "green yeast" and as a platform for engineering algae to produce useful bioproducts.
Collapse
Affiliation(s)
- Sabeeha S Merchant
- Department of Molecular and Cell Biology, University of California - Berkeley, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California - Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California - Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Fang A, Zhang Z, Zhou A, Zitnik M. ATOMICA: Learning Universal Representations of Intermolecular Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646906. [PMID: 40291688 PMCID: PMC12026499 DOI: 10.1101/2025.04.02.646906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Molecular interactions underlie nearly all biological processes, but most machine learning models treat molecules in isolation or specialize in a single type of interaction, such as protein-ligand or protein-protein binding. This siloed approach prevents generalization across biomolecular classes and limits the ability to model interaction interfaces systematically. We introduce ATOMICA, a geometric deep learning model that learns atomic-scale representations of intermolecular interfaces across diverse biomolecular modalities, including small molecules, metal ions, amino acids, and nucleic acids. ATOMICA uses a self-supervised denoising and masking objective to train on 2,037,972 interaction complexes and generate hierarchical embeddings at the levels of atoms, chemical blocks, and molecular interfaces. The model generalizes across molecular classes and recovers shared physicochemical features without supervision. Its latent space captures compositional and chemical similarities across interaction types and follows scaling laws that improve representation quality with increasing biomolecular data modalities. We apply ATOMICA to construct five modality-specific interfaceome networks, termed ATOMICAN et s, which connect proteins based on interaction similarity with ions, small molecules, nucleic acids, lipids, and proteins. These networks identify disease pathways across 27 conditions and predict disease-associated proteins in autoimmune neuropathies and lymphoma. Finally, we use ATOMICA to annotate the dark proteome-proteins lacking known structure or function-by predicting 2,646 previously uncharacterized ligand-binding sites. These include putative zinc finger motifs and transmembrane cytochrome subunits, demonstrating that ATOMICA enables systematic annotation of molecular interactions across the proteome.
Collapse
|
3
|
Riché A, Dumas L, Malesinski S, Bossan G, Madigou C, Zito F, Alric J. The stromal side of the cytochrome b6f complex regulates state transitions. THE PLANT CELL 2024; 36:4234-4244. [PMID: 38963887 PMCID: PMC11448884 DOI: 10.1093/plcell/koae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
In oxygenic photosynthesis, state transitions distribute light energy between PSI and PSII. This regulation involves reduction of the plastoquinone pool, activation of the state transitions 7 (STT7) protein kinase by the cytochrome (cyt) b6f complex, and phosphorylation and migration of light harvesting complexes II (LHCII). In this study, we show that in Chlamydomonas reinhardtii, the C-terminus of the cyt b6 subunit PetB acts on phosphorylation of STT7 and state transitions. We used site-directed mutagenesis of the chloroplast petB gene to truncate (remove L215b6) or elongate (add G216b6) the cyt b6 subunit. Modified complexes are devoid of heme ci and degraded by FTSH protease, revealing that salt bridge formation between cyt b6 (PetB) and Subunit IV (PetD) is essential to the assembly of the complex. In double mutants where FTSH is inactivated, modified cyt b6f accumulated but the phosphorylation cascade was blocked. We also replaced the arginine interacting with heme ci propionate (R207Kb6). In this modified complex, heme ci is present but the kinetics of phosphorylation are slower. We show that highly phosphorylated forms of STT7 accumulated transiently after reduction of the PQ pool and represent the active forms of the protein kinase. The phosphorylation of the LHCII targets is favored at the expense of the protein kinase, and the migration of LHCII toward PSI is the limiting step for state transitions.
Collapse
Affiliation(s)
- Alexis Riché
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| | - Louis Dumas
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| | - Soazig Malesinski
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| | - Guillaume Bossan
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires Unité Mixte de Recherche 7099, Université Paris Cité, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Céline Madigou
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires Unité Mixte de Recherche 7099, Université Paris Cité, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Francesca Zito
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires Unité Mixte de Recherche 7099, Université Paris Cité, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Jean Alric
- Aix Marseille Univ, CEA, CNRS, BIAM, Photosynthesis and Environment, F-13115 Saint Paul-Lez-Durance, France
| |
Collapse
|
4
|
Carlström A, Ott M. Insights into conformational changes in cytochrome b during the early steps of its maturation. FEBS Lett 2024; 598:1438-1448. [PMID: 38664235 DOI: 10.1002/1873-3468.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024]
Abstract
Membrane proteins carrying redox cofactors are key subunits of respiratory chain complexes, yet the exact path of their folding and maturation remains poorly understood. Here, using cryo-EM and structure prediction via Alphafold2, we generated models of early assembly intermediates of cytochrome b (Cytb), a central subunit of complex III. The predicted structure of the first assembly intermediate suggests how the binding of Cytb to the assembly factor Cbp3-Cbp6 imposes an open configuration to facilitate the acquisition of its heme cofactors. Moreover, structure predictions of the second intermediate indicate how hemes get stabilized by binding of the assembly factor Cbp4, with a concomitant weakening of the contact between Cbp3-Cbp6 and Cytb, preparing for the release of the fully hemylated protein from the assembly factors.
Collapse
Affiliation(s)
- Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
5
|
Wang F, Dischinger K, Westrich LD, Meindl I, Egidi F, Trösch R, Sommer F, Johnson X, Schroda M, Nickelsen J, Willmund F, Vallon O, Bohne AV. One-helix protein 2 is not required for the synthesis of photosystem II subunit D1 in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1612-1633. [PMID: 36649171 PMCID: PMC10022639 DOI: 10.1093/plphys/kiad015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In land plants and cyanobacteria, co-translational association of chlorophyll (Chl) to the nascent D1 polypeptide, a reaction center protein of photosystem II (PSII), requires a Chl binding complex consisting of a short-chain dehydrogenase (high chlorophyll fluorescence 244 [HCF244]/uncharacterized protein 39 [Ycf39]) and one-helix proteins (OHP1 and OHP2 in chloroplasts) of the light-harvesting antenna complex superfamily. Here, we show that an ohp2 mutant of the green alga Chlamydomonas (Chlamydomonas reinhardtii) fails to accumulate core PSII subunits, in particular D1 (encoded by the psbA mRNA). Extragenic suppressors arose at high frequency, suggesting the existence of another route for Chl association to PSII. The ohp2 mutant was complemented by the Arabidopsis (Arabidopsis thaliana) ortholog. In contrast to land plants, where psbA translation is prevented in the absence of OHP2, ribosome profiling experiments showed that the Chlamydomonas mutant translates the psbA transcript over its full length. Pulse labeling suggested that D1 is degraded during or immediately after translation. The translation of other PSII subunits was affected by assembly-controlled translational regulation. Proteomics showed that HCF244, a translation factor which associates with and is stabilized by OHP2 in land plants, still partly accumulates in the Chlamydomonas ohp2 mutant, explaining the persistence of psbA translation. Several Chl biosynthesis enzymes overaccumulate in the mutant membranes. Partial inactivation of a D1-degrading protease restored a low level of PSII activity in an ohp2 background, but not photoautotrophy. Taken together, our data suggest that OHP2 is not required for psbA translation in Chlamydomonas, but is necessary for D1 stabilization.
Collapse
Affiliation(s)
- Fei Wang
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | - Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Irene Meindl
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Egidi
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Xenie Johnson
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Joerg Nickelsen
- Molecular Plant Sciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Olivier Vallon
- UMR 7141, Centre National de la Recherche Scientifique/Sorbonne Université, Institut de Biologie Physico-Chimique, Paris 75005, France
| | | |
Collapse
|
6
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Grossman A, Sanz-Luque E, Yi H, Yang W. Building the GreenCut2 suite of proteins to unmask photosynthetic function and regulation. Microbiology (Reading) 2019; 165:697-718. [DOI: 10.1099/mic.0.000788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Emanuel Sanz-Luque
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Heng Yi
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany (CAS), Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
8
|
Ndi M, Marin-Buera L, Salvatori R, Singh AP, Ott M. Biogenesis of the bc 1 Complex of the Mitochondrial Respiratory Chain. J Mol Biol 2018; 430:3892-3905. [PMID: 29733856 DOI: 10.1016/j.jmb.2018.04.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/26/2022]
Abstract
The oxidative phosphorylation system contains four respiratory chain complexes that connect the transport of electrons to oxygen with the establishment of an electrochemical gradient over the inner membrane for ATP synthesis. Due to the dual genetic source of the respiratory chain subunits, its assembly requires a tight coordination between nuclear and mitochondrial gene expression machineries. In addition, dedicated assembly factors support the step-by-step addition of catalytic and accessory subunits as well as the acquisition of redox cofactors. Studies in yeast have revealed the basic principles underlying the assembly pathways. In this review, we summarize work on the biogenesis of the bc1 complex or complex III, a central component of the mitochondrial energy conversion system.
Collapse
Affiliation(s)
- Mama Ndi
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lorena Marin-Buera
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Roger Salvatori
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abeer Prakash Singh
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
9
|
The soluble loop BC region guides, but not dictates, the assembly of the transmembrane cytochrome b6. PLoS One 2017; 12:e0189532. [PMID: 29240839 PMCID: PMC5730185 DOI: 10.1371/journal.pone.0189532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 11/19/2022] Open
Abstract
Studying folding and assembly of naturally occurring α-helical transmembrane proteins can inspire the design of membrane proteins with defined functions. Thus far, most studies have focused on the role of membrane-integrated protein regions. However, to fully understand folding pathways and stabilization of α–helical membrane proteins, it is vital to also include the role of soluble loops. We have analyzed the impact of interhelical loops on folding, assembly and stability of the heme-containing four-helix bundle transmembrane protein cytochrome b6 that is involved in charge transfer across biomembranes. Cytochrome b6 consists of two transmembrane helical hairpins that sandwich two heme molecules. Our analyses strongly suggest that the loop connecting the helical hairpins is not crucial for positioning the two protein “halves” for proper folding and assembly of the holo-protein. Furthermore, proteolytic removal of any of the remaining two loops, which connect the two transmembrane helices of a hairpin structure, appears to also not crucially effect folding and assembly. Overall, the transmembrane four-helix bundle appears to be mainly stabilized via interhelical interactions in the transmembrane regions, while the soluble loop regions guide assembly and stabilize the holo-protein. The results of this study might steer future strategies aiming at designing heme-binding four-helix bundle structures, involved in transmembrane charge transfer reactions.
Collapse
|
10
|
Króliczewski J, Bartoszewski R, Króliczewska B. Chloroplast PetD protein: evidence for SRP/Alb3-dependent insertion into the thylakoid membrane. BMC PLANT BIOLOGY 2017; 17:213. [PMID: 29162052 PMCID: PMC5697057 DOI: 10.1186/s12870-017-1176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/13/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND In thylakoid membrane, each monomer of the dimeric complex of cytochrome b 6 f is comprised of eight subunits that are both nucleus- and plastid-encoded. Proper cytochrome b 6 f complex integration into the thylakoid membrane requires numerous regulatory factors for coordinated transport, insertion and assembly of the subunits. Although, the chloroplast-encoded cytochrome b 6 f subunit IV (PetD) consists of three transmembrane helices, the signal and the mechanism of protein integration into the thylakoid membrane have not been identified. RESULTS Here, we demonstrate that the native PetD subunit cannot incorporate into the thylakoid membranes spontaneously, but that proper integration occurs through the post-translational signal recognition particle (SRP) pathway. Furthermore, we show that PetD insertion into thylakoid membrane involves the coordinated action of cpFTSY, cpSRP54 and ALB3 insertase. CONCLUSIONS PetD subunit integration into the thylakoid membrane is a post-translational and an SRP-dependent process that requires the formation of the cpSRP-cpFtsY-ALB3-PetD complex. This data provides a new insight into the molecular mechanisms by which membrane proteins integration into the thylakoid membrane is accomplished and is not limited to PetD.
Collapse
Affiliation(s)
- Jarosław Króliczewski
- Faculty of Biotechnology, University of Wrocław, Fryderyka Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany Medical University of Gdańsk, Hallera 107, 80-416 Gdansk, Poland
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine Wroclaw University of Environmental and Life Sciences, C.K Norwida 31, 50-375 Wrocław, Poland
| |
Collapse
|
11
|
Wang F, Qi Y, Malnoë A, Choquet Y, Wollman FA, de Vitry C. The High Light Response and Redox Control of Thylakoid FtsH Protease in Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:99-114. [PMID: 27702692 DOI: 10.1016/j.molp.2016.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 05/23/2023]
Abstract
In Chlamydomonas reinhardtii, the major protease involved in the maintenance of photosynthetic machinery in thylakoid membranes, the FtsH protease, mostly forms large hetero-oligomers (∼1 MDa) comprising FtsH1 and FtsH2 subunits, whatever the light intensity for growth. Upon high light exposure, the FtsH subunits display a shorter half-life, which is counterbalanced by an increase in FTSH1/2 mRNA levels, resulting in the modest upregulation of FtsH1/2 proteins. Furthermore, we found that high light increases the protease activity through a hitherto unnoticed redox-controlled reduction of intermolecular disulfide bridges. We isolated a Chlamydomonas FTSH1 promoter-deficient mutant, ftsh1-3, resulting from the insertion of a TOC1 transposon, in which the high light-induced upregulation of FTSH1 gene expression is largely lost. In ftsh1-3, the abundance of FtsH1 and FtsH2 proteins are loosely coupled (decreased by 70% and 30%, respectively) with no formation of large and stable homo-oligomers. Using strains exhibiting different accumulation levels of the FtsH1 subunit after complementation of ftsh1-3, we demonstrate that high light tolerance is tightly correlated with the abundance of the FtsH protease. Thus, the response of Chlamydomonas to light stress involves higher levels of FtsH1/2 subunits associated into large complexes with increased proteolytic activity.
Collapse
Affiliation(s)
- Fei Wang
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yafei Qi
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Alizée Malnoë
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Yves Choquet
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Francis-André Wollman
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Paris 75005, France.
| |
Collapse
|
12
|
Króliczewski J, Piskozub M, Bartoszewski R, Króliczewska B. ALB3 Insertase Mediates Cytochrome b 6 Co-translational Import into the Thylakoid Membrane. Sci Rep 2016; 6:34557. [PMID: 27698412 PMCID: PMC5048292 DOI: 10.1038/srep34557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/15/2016] [Indexed: 01/10/2023] Open
Abstract
The cytochrome b6 f complex occupies an electrochemically central position in the electron-transport chain bridging the photosynthetic reaction center of PS I and PS II. In plants, the subunits of these thylakoid membrane protein complexes are both chloroplast and nuclear encoded. How the chloroplast-encoded subunits of multi-spanning cytochrome b6 are targeted and inserted into the thylakoid membrane is not fully understood. Experimental approaches to evaluate the cytochrome b6 import mechanism in vivo have been limited to bacterial membranes and were not a part of the chloroplast environment. To evaluate the mechanism governing cytochrome b6 integration in vivo, we performed a comparative analysis of both native and synthetic cytochrome b6 insertion into purified thylakoids. Using biophysical and biochemical methods, we show that cytochrome b6 insertion into the thylakoid membrane is a non-spontaneous co-translational process that involves ALB3 insertase. Furthermore, we provided evidence that CSP41 (chloroplast stem-loop-binding protein of 41 kDa) interacts with RNC-cytochrome b6 complexes, and may be involved in cytochrome b6 (petB) transcript stabilization or processing.
Collapse
Affiliation(s)
- Jarosław Króliczewski
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław Poland
| | - Małgorzata Piskozub
- Amplicon Sp. z o. o., Wrocław, Poland
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Bożena Króliczewska
- Department of Animal Physiology and Biostructure, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
13
|
Barupala DP, Dzul SP, Riggs-Gelasco PJ, Stemmler TL. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors. Arch Biochem Biophys 2016; 592:60-75. [PMID: 26785297 PMCID: PMC4784227 DOI: 10.1016/j.abb.2016.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/25/2022]
Abstract
In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways.
Collapse
Affiliation(s)
- Dulmini P Barupala
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Stephen P Dzul
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | - Timothy L Stemmler
- Departments of Biochemistry and Molecular Biology, and Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
14
|
Heme c i or c n of the Cytochrome b 6 f Complex, A Short Retrospective. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
15
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
16
|
Lefebvre-Legendre L, Choquet Y, Kuras R, Loubéry S, Douchi D, Goldschmidt-Clermont M. A nucleus-encoded chloroplast protein regulated by iron availability governs expression of the photosystem I subunit PsaA in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2015; 167:1527-40. [PMID: 25673777 PMCID: PMC4378161 DOI: 10.1104/pp.114.253906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The biogenesis of the photosynthetic electron transfer chain in the thylakoid membranes requires the concerted expression of genes in the chloroplast and the nucleus. Chloroplast gene expression is subjected to anterograde control by a battery of nucleus-encoded proteins that are imported in the chloroplast, where they mostly intervene at posttranscriptional steps. Using a new genetic screen, we identify a nuclear mutant that is required for expression of the PsaA subunit of photosystem I (PSI) in the chloroplast of Chlamydomonas reinhardtii. This mutant is affected in the stability and translation of psaA messenger RNA. The corresponding gene, TRANSLATION OF psaA1 (TAA1), encodes a large protein with two domains that are thought to mediate RNA binding: an array of octatricopeptide repeats (OPR) and an RNA-binding domain abundant in apicomplexans (RAP) domain. We show that as expected for its function, TAA1 is localized in the chloroplast. It was previously shown that when mixotrophic cultures of C. reinhardtii (which use both photosynthesis and mitochondrial respiration for growth) are shifted to conditions of iron limitation, there is a strong decrease in the accumulation of PSI and that this is rapidly reversed when iron is resupplied. Under these conditions, TAA1 protein is also down-regulated through a posttranscriptional mechanism and rapidly reaccumulates when iron is restored. These observations reveal a concerted regulation of PSI and of TAA1 in response to iron availability.
Collapse
Affiliation(s)
- Linnka Lefebvre-Legendre
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Yves Choquet
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Richard Kuras
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Sylvain Loubéry
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Damien Douchi
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| | - Michel Goldschmidt-Clermont
- Department of Botany and Plant Biology and Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland (L.L.-L., S.L., D.D., M.G.-C.); andUnité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France (Y.C., R.K.)
| |
Collapse
|
17
|
Belcher S, Williams-Carrier R, Stiffler N, Barkan A. Large-scale genetic analysis of chloroplast biogenesis in maize. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1004-16. [PMID: 25725436 DOI: 10.1016/j.bbabio.2015.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chloroplast biogenesis involves a collaboration between several thousand nuclear genes and ~100 genes in the chloroplast. Many of the nuclear genes are of cyanobacterial ancestry and continue to perform their ancestral function. However, many others evolved subsequently and comprise a diverse set of proteins found specifically in photosynthetic eucaryotes. Genetic approaches have been key to the discovery of nuclear genes that participate in chloroplast biogenesis, especially those lacking close homologs outside the plant kingdom. SCOPE OF REVIEW This article summarizes contributions from a genetic resource in maize, the Photosynthetic Mutant Library (PML). The PML collection consists of ~2000 non-photosynthetic mutants induced by Mu transposons. We include a summary of mutant phenotypes for 20 previously unstudied maize genes, including genes encoding chloroplast ribosomal proteins, a PPR protein, tRNA synthetases, proteins involved in plastid transcription, a putative ribosome assembly factor, a chaperonin 60 isoform, and a NifU-domain protein required for Photosystem I biogenesis. MAJOR CONCLUSIONS Insertions in 94 maize genes have been linked thus far to visible and molecular phenotypes with the PML collection. The spectrum of chloroplast biogenesis genes that have been genetically characterized in maize is discussed in the context of related efforts in other organisms. This comparison shows how distinct organismal attributes facilitate the discovery of different gene classes, and reveals examples of functional divergence between monocot and dicot plants. GENERAL SIGNIFICANCE These findings elucidate the biology of an organelle whose activities are fundamental to agriculture and the biosphere. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Susan Belcher
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Nicholas Stiffler
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
18
|
Abstract
In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism.
Collapse
Affiliation(s)
- Poul Erik Jensen
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, DK-1871 Frederiksberg CDenmark
| | - Dario Leister
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, DK-1871 Frederiksberg CDenmark
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-University MunichGroßhaderner Str. 2, D-82152 Planegg-MartinsriedGermany
| |
Collapse
|
19
|
Hildenbeutel M, Hegg EL, Stephan K, Gruschke S, Meunier B, Ott M. Assembly factors monitor sequential hemylation of cytochrome b to regulate mitochondrial translation. ACTA ACUST UNITED AC 2014; 205:511-24. [PMID: 24841564 PMCID: PMC4033779 DOI: 10.1083/jcb.201401009] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial respiratory chain complexes convert chemical energy into a membrane potential by connecting electron transport with charge separation. Electron transport relies on redox cofactors that occupy strategic positions in the complexes. How these redox cofactors are assembled into the complexes is not known. Cytochrome b, a central catalytic subunit of complex III, contains two heme bs. Here, we unravel the sequence of events in the mitochondrial inner membrane by which cytochrome b is hemylated. Heme incorporation occurs in a strict sequential process that involves interactions of the newly synthesized cytochrome b with assembly factors and structural complex III subunits. These interactions are functionally connected to cofactor acquisition that triggers the progression of cytochrome b through successive assembly intermediates. Failure to hemylate cytochrome b sequesters the Cbp3-Cbp6 complex in early assembly intermediates, thereby causing a reduction in cytochrome b synthesis via a feedback loop that senses hemylation of cytochrome b.
Collapse
Affiliation(s)
- Markus Hildenbeutel
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eric L Hegg
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Katharina Stephan
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Steffi Gruschke
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brigitte Meunier
- Centre de Génétique Moléculaire du Centre National de la Recherche Scientifique (CNRS), 91198 Gif-sur-Yvette, France
| | - Martin Ott
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Solomon LA, Kodali G, Moser CC, Dutton PL. Engineering the assembly of heme cofactors in man-made proteins. J Am Chem Soc 2014; 136:3192-9. [PMID: 24495285 PMCID: PMC3985801 DOI: 10.1021/ja411845f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Timely ligation of one or more chemical cofactors at preselected locations in proteins is a critical preamble for catalysis in many natural enzymes, including the oxidoreductases and allied transport and signaling proteins. Likewise, ligation strategies must be directly addressed when designing oxidoreductase and molecular transport functions in man-made, first-principle protein constructs intended to operate in vitro or in vivo. As one of the most common catalytic cofactors in biology, we have chosen heme B, along with its chemical analogues, to determine the kinetics and barriers to cofactor incorporation and bishistidine ligation in a range of 4-α-helix proteins. We compare five elementary synthetic designs (maquettes) and the natural cytochrome b562 that differ in oligomeric forms, apo- and holo-tertiary structural stability; qualities that we show can either assist or hinder assembly. The cofactor itself also imposes an assembly barrier if amphiphilicity ranges toward too hydrophobic or hydrophilic. With progressive removal of identified barriers, we achieve maquette assembly rates as fast as native cytochrome b562, paving the way to in vivo assembly of man-made hemoprotein maquettes and integration of artificial proteins into enzymatic pathways.
Collapse
Affiliation(s)
- Lee A Solomon
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
21
|
Malnoë A, Wang F, Girard-Bascou J, Wollman FA, de Vitry C. Thylakoid FtsH protease contributes to photosystem II and cytochrome b6f remodeling in Chlamydomonas reinhardtii under stress conditions. THE PLANT CELL 2014; 26:373-90. [PMID: 24449688 PMCID: PMC3963582 DOI: 10.1105/tpc.113.120113] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/28/2013] [Accepted: 12/18/2013] [Indexed: 05/18/2023]
Abstract
FtsH is the major thylakoid membrane protease found in organisms performing oxygenic photosynthesis. Here, we show that FtsH from Chlamydomonas reinhardtii forms heterooligomers comprising two subunits, FtsH1 and FtsH2. We characterized this protease using FtsH mutants that we identified through a genetic suppressor approach that restored phototrophic growth of mutants originally defective for cytochrome b6f accumulation. We thus extended the spectrum of FtsH substrates in the thylakoid membranes beyond photosystem II, showing the susceptibility of cytochrome b6f complexes (and proteins involved in the ci heme binding pathway to cytochrome b6) to FtsH. We then show how FtsH is involved in the response of C. reinhardtii to macronutrient stress. Upon phosphorus starvation, photosynthesis inactivation results from an FtsH-sensitive photoinhibition process. In contrast, we identified an FtsH-dependent loss of photosystem II and cytochrome b6f complexes in darkness upon sulfur deprivation. The D1 fragmentation pattern observed in the latter condition was similar to that observed in photoinhibitory conditions, which points to a similar degradation pathway in these two widely different environmental conditions. Our experiments thus provide extensive evidence that FtsH plays a major role in the quality control of thylakoid membrane proteins and in the response of C. reinhardtii to light and macronutrient stress.
Collapse
|
22
|
Tome L, Schaetzel C, Dreher C, Schneider D. Fe- but not Mg-protophorphyrin IX binds to a transmembrane b-type cytochrome. Mol Membr Biol 2013; 31:37-45. [DOI: 10.3109/09687688.2013.867079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Chi W, Ma J, Zhang L. Regulatory factors for the assembly of thylakoid membrane protein complexes. Philos Trans R Soc Lond B Biol Sci 2013; 367:3420-9. [PMID: 23148269 DOI: 10.1098/rstb.2012.0065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Major multi-protein photosynthetic complexes, located in thylakoid membranes, are responsible for the capture of light and its conversion into chemical energy in oxygenic photosynthetic organisms. Although the structures and functions of these photosynthetic complexes have been explored, the molecular mechanisms underlying their assembly remain elusive. In this review, we summarize current knowledge of the regulatory components involved in the assembly of thylakoid membrane protein complexes in photosynthetic organisms. Many of the known regulatory factors are conserved between prokaryotes and eukaryotes, whereas others appear to be newly evolved or to have expanded predominantly in eukaryotes. Their specific features and fundamental differences in cyanobacteria, green algae and land plants are discussed.
Collapse
Affiliation(s)
- Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | |
Collapse
|
24
|
Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1295-308. [PMID: 23507619 DOI: 10.1016/j.bbabio.2013.03.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 12/30/2022]
Abstract
Structure-function properties of the cytochrome b6f complex are sufficiently unique compared to those of the cytochrome bc1 complex that b6f should not be considered a trivially modified bc1 complex. A unique property of the dimeric b6f complex is its involvement in transmembrane signaling associated with the p-side oxidation of plastoquinol. Structure analysis of lipid binding sites in the cyanobacterial b6f complex prepared by hydrophobic chromatography shows that the space occupied by the H transmembrane helix in the cytochrome b subunit of the bc1 complex is mostly filled by a lipid in the b6f crystal structure. It is suggested that this space can be filled by the domain of a transmembrane signaling protein. The identification of lipid sites and likely function defines the intra-membrane conserved central core of the b6f complex, consisting of the seven trans-membrane helices of the cytochrome b and subunit IV polypeptides. The other six TM helices, contributed by cytochrome f, the iron-sulfur protein, and the four peripheral single span subunits, define a peripheral less conserved domain of the complex. The distribution of conserved and non-conserved domains of each monomer of the complex, and the position and inferred function of a number of the lipids, suggests a model for the sequential assembly in the membrane of the eight subunits of the b6f complex, in which the assembly is initiated by formation of the cytochrome b6-subunit IV core sub-complex in a monomer unit. Two conformations of the unique lipidic chlorophyll a, defined in crystal structures, are described, and functions of the outlying β-carotene, a possible 'latch' in supercomplex formation, are discussed. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
|
25
|
Xiao J, Li J, Ouyang M, Yun T, He B, Ji D, Ma J, Chi W, Lu C, Zhang L. DAC is involved in the accumulation of the cytochrome b6/f complex in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1911-22. [PMID: 23043079 PMCID: PMC3510120 DOI: 10.1104/pp.112.204891] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biogenesis and assembly of photosynthetic multisubunit protein complexes is assisted by a series of nucleus-encoded auxiliary protein factors. In this study, we characterize the dac mutant of Arabidopsis (Arabidopsis thaliana), which shows a severe defect in the accumulation of the cytochrome b(6)/f complex, and provide evidence suggesting that the efficiency of cytochrome b(6)/f complex assembly is affected in the mutant. DAC is a thylakoid membrane protein with two predicted transmembrane domains that is conserved from cyanobacteria to vascular plants. Yeast (Saccharomyces cerevisiae) two-hybrid and coimmunoprecipitation analyses revealed a specific interaction between DAC and PetD, a subunit of the cytochrome b(6)/f complex. However, DAC was found not to be an intrinsic component of the cytochrome b(6)/f complex. In vivo chloroplast protein labeling experiments showed that the labeling rates of the PetD and cytochrome f proteins were greatly reduced, whereas that of the cytochrome b(6) protein remained normal in the dac mutant. DAC appears to be a novel factor involved in the assembly/stabilization of the cytochrome b(6)/f complex, possibly through interaction with the PetD protein.
Collapse
|
26
|
Lactococcus lactis HemW (HemN) is a haem-binding protein with a putative role in haem trafficking. Biochem J 2012; 442:335-43. [DOI: 10.1042/bj20111618] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactococcus lactis cannot synthesize haem, but when supplied with haem, expresses a cytochrome bd oxidase. Apart from the cydAB structural genes for this oxidase, L. lactis features two additional genes, hemH and hemW (hemN), with conjectured functions in haem metabolism. While it appears clear that hemH encodes a ferrochelatase, no function is known for hemW. HemW-like proteins occur in bacteria, plants and animals, and are usually annotated as CPDHs (coproporphyrinogen III dehydrogenases). However, such a function has never been demonstrated for a HemW-like protein. We here studied HemW of L. lactis and showed that it is devoid of CPDH activity in vivo and in vitro. Recombinantly produced, purified HemW contained an Fe–S (iron–sulfur) cluster and was dimeric; upon loss of the iron, the protein became monomeric. Both forms of the protein covalently bound haem b in vitro, with a stoichiometry of one haem per monomer and a KD of 8 μM. In vivo, HemW occurred as a haem-free cytosolic form, as well as a haem-containing membrane-associated form. Addition of L. lactis membranes to haem-containing HemW triggered the release of haem from HemW in vitro. On the basis of these findings, we propose a role of HemW in haem trafficking. HemW-like proteins form a distinct phylogenetic clade that has not previously been recognized.
Collapse
|
27
|
Kallas T. Cytochrome b 6 f Complex at the Heart of Energy Transduction and Redox Signaling. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Abstract
Central in respiration or photosynthesis, the cytochrome bc1 and b6f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc1 have failed. The rapid proteolytic degradation of b6f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b6f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis. The Q-cycle is thought to be an essential energetic component of the photosynthetic electron-transfer chain. Here, Chlamydomonas mutants with an inactive Q-cycle but normal levels of b6f complexes are shown to display photosynthetic growth, demonstrating the dispensability of the Q-cycle in the oxygenic photosynthetic chain.
Collapse
|
29
|
de Vitry C. Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV. FEBS J 2011; 278:4189-97. [DOI: 10.1111/j.1742-4658.2011.08373.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
A novel component of the disulfide-reducing pathway required for cytochrome c assembly in plastids. Genetics 2011; 187:793-802. [PMID: 21220358 DOI: 10.1534/genetics.110.125369] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plastids, the conversion of energy in the form of light to ATP requires key electron shuttles, the c-type cytochromes, which are defined by the covalent attachment of heme to a CXXCH motif. Plastid c-type cytochrome biogenesis occurs in the thylakoid lumen and requires a system for transmembrane transfer of reductants. Previously, CCDA and CCS5/HCF164, found in all plastid-containing organisms, have been proposed as two components of the disulfide-reducing pathway. In this work, we identify a small novel protein, CCS4, as a third component in this pathway. CCS4 was genetically identified in the green alga Chlamydomonas reinhardtii on the basis of the rescue of the ccs4 mutant, which is blocked in the synthesis of holoforms of plastid c-type cytochromes, namely cytochromes f and c(6). Although CCS4 does not display sequence motifs suggestive of redox or heme-binding function, biochemical and genetic complementation experiments suggest a role in the disulfide-reducing pathway required for heme attachment to apoforms of cytochromes c. Exogenous thiols partially rescue the growth phenotype of the ccs4 mutant concomitant with recovery of holocytochrome f accumulation, as does expression of an ectopic copy of the CCDA gene, encoding a trans-thylakoid transporter of reducing equivalents. We suggest that CCS4 might function to stabilize CCDA or regulate its activity.
Collapse
|
31
|
Gabilly ST, Dreyfuss BW, Karamoko M, Corvest V, Kropat J, Page MD, Merchant SS, Hamel PP. CCS5, a thioredoxin-like protein involved in the assembly of plastid c-type cytochromes. J Biol Chem 2010; 285:29738-49. [PMID: 20628047 DOI: 10.1074/jbc.m109.099069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-type cytochromes are metalloproteins with a heme molecule covalently linked to the sulfhydryls of a CXXCH heme-binding site. In plastids, at least six assembly factors are required for heme attachment to the apo-forms of cytochrome f and cytochrome c(6) in the thylakoid lumen. CCS5, controlling plastid cytochrome c assembly, was identified through insertional mutagenesis in the unicellular green alga Chlamydomonas reinhardtii. The complementing gene encodes a protein with similarity to Arabidopsis thaliana HCF164, which is a thylakoid membrane-anchored protein with a lumen-facing thioredoxin-like domain. HCF164 is required for cytochrome b(6)f biogenesis, but its activity and site of action in the assembly process has so far remained undeciphered. We show that CCS5 is a component of a trans-thylakoid redox pathway and operates by reducing the CXXCH heme-binding site of apocytochrome c prior to the heme ligation reaction. The proposal is based on the following findings: 1) the ccs5 mutant is rescued by exogenous thiols; 2) CCS5 interacts with apocytochrome f and c(6) in a yeast two-hybrid assay; and 3) recombinant CCS5 is able to reduce a disulfide in the CXXCH heme-binding site of apocytochrome f.
Collapse
Affiliation(s)
- Stéphane T Gabilly
- From the Department of Molecular Genetics and Department of Molecular Cellular Biochemistry and
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Williams-Carrier R, Stiffler N, Belcher S, Kroeger T, Stern DB, Monde RA, Coalter R, Barkan A. Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:167-77. [PMID: 20409008 DOI: 10.1111/j.1365-313x.2010.04231.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
High-copy transposons have been effectively exploited as mutagens in a variety of organisms. However, their utility for phenotype-driven forward genetics has been hampered by the difficulty of identifying the specific insertions responsible for phenotypes of interest. We describe a new method that can substantially increase the throughput of linking a disrupted gene to a known phenotype in high-copy Mutator (Mu) transposon lines in maize. The approach uses the Illumina platform to obtain sequences flanking Mu elements in pooled, bar-coded DNA samples. Insertion sites are compared among individuals of suitable genotype to identify those that are linked to the mutation of interest. DNA is prepared for sequencing by mechanical shearing, adapter ligation, and selection of DNA fragments harboring Mu flanking sequences by hybridization to a biotinylated oligonucleotide corresponding to the Mu terminal inverted repeat. This method yields dense clusters of sequence reads that tile approximately 400 bp flanking each side of each heritable insertion. The utility of the approach is demonstrated by identifying the causal insertions in four genes whose disruption blocks chloroplast biogenesis at various steps: thylakoid protein targeting (cpSecE), chloroplast gene expression (polynucleotide phosphorylase and PTAC12), and prosthetic group attachment (HCF208/CCB2). This method adds to the tools available for phenotype-driven Mu tagging in maize, and could be adapted for use with other high-copy transposons. A by-product of the approach is the identification of numerous heritable insertions that are unrelated to the targeted phenotype, which can contribute to community insertion resources.
Collapse
|
33
|
Lechardeur D, Fernandez A, Robert B, Gaudu P, Trieu-Cuot P, Lamberet G, Gruss A. The 2-Cys peroxiredoxin alkyl hydroperoxide reductase c binds heme and participates in its intracellular availability in Streptococcus agalactiae. J Biol Chem 2010; 285:16032-41. [PMID: 20332091 PMCID: PMC2871472 DOI: 10.1074/jbc.m109.024505] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 03/12/2010] [Indexed: 11/06/2022] Open
Abstract
Heme is a redox-reactive molecule with vital and complex roles in bacterial metabolism, survival, and virulence. However, few intracellular heme partners were identified to date and are not well conserved in bacteria. The opportunistic pathogen Streptococcus agalactiae (group B Streptococcus) is a heme auxotroph, which acquires exogenous heme to activate an aerobic respiratory chain. We identified the alkyl hydroperoxide reductase AhpC, a member of the highly conserved thiol-dependent 2-Cys peroxiredoxins, as a heme-binding protein. AhpC binds hemin with a K(d) of 0.5 microm and a 1:1 stoichiometry. Mutagenesis of cysteines revealed that hemin binding is dissociable from catalytic activity and multimerization. AhpC reductase activity was unchanged upon interaction with heme in vitro and in vivo. A group B Streptococcus ahpC mutant displayed attenuation of two heme-dependent functions, respiration and activity of a heterologous catalase, suggesting a role for AhpC in heme intracellular fate. In support of this hypothesis, AhpC-bound hemin was protected from chemical degradation in vitro. Our results reveal for the first time a role for AhpC as a heme-binding protein.
Collapse
Affiliation(s)
- Delphine Lechardeur
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Annabelle Fernandez
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Bruno Robert
- the Commissariat à l'Energie Atomique, Institut de Biologie et de Technologie de Saclay, CNRS, URA 2096, 91400 Gif sur Yvette, and
| | - Philippe Gaudu
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Patrick Trieu-Cuot
- the Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS, URA 2172, 75015 Paris, France
| | - Gilles Lamberet
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| | - Alexandra Gruss
- From the Institut National de la Recherche Agronomique, Institut Micalis, UMR 1319, 78352 Jouy-en-Josas
| |
Collapse
|
34
|
Characterization of two cytochrome b 6 proteins from the cyanobacterium Gloeobacter violaceus PCC 7421. J Bioenerg Biomembr 2010; 42:517-26. [DOI: 10.1007/s10863-010-9279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 01/22/2010] [Indexed: 11/29/2022]
|
35
|
Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 2009; 73:510-28, Table of Contents. [PMID: 19721088 DOI: 10.1128/mmbr.00001-09] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heme is the prosthetic group for cytochromes, which are directly involved in oxidation/reduction reactions inside and outside the cell. Many cytochromes contain heme with covalent additions at one or both vinyl groups. These include farnesylation at one vinyl in hemes o and a and thioether linkages to each vinyl in cytochrome c (at CXXCH of the protein). Here we review the mechanisms for these covalent attachments, with emphasis on the three unique cytochrome c assembly pathways called systems I, II, and III. All proteins in system I (called Ccm proteins) and system II (Ccs proteins) are integral membrane proteins. Recent biochemical analyses suggest mechanisms for heme channeling to the outside, heme-iron redox control, and attachment to the CXXCH. For system II, the CcsB and CcsA proteins form a cytochrome c synthetase complex which specifically channels heme to an external heme binding domain; in this conserved tryptophan-rich "WWD domain" (in CcsA), the heme is maintained in the reduced state by two external histidines and then ligated to the CXXCH motif. In system I, a two-step process is described. Step 1 is the CcmABCD-mediated synthesis and release of oxidized holoCcmE (heme in the Fe(+3) state). We describe how external histidines in CcmC are involved in heme attachment to CcmE, and the chemical mechanism to form oxidized holoCcmE is discussed. Step 2 includes the CcmFH-mediated reduction (to Fe(+2)) of holoCcmE and ligation of the heme to CXXCH. The evolutionary and ecological advantages for each system are discussed with respect to iron limitation and oxidizing environments.
Collapse
|
36
|
Saint-Marcoux D, Wollman FA, de Vitry C. Biogenesis of cytochrome b6 in photosynthetic membranes. ACTA ACUST UNITED AC 2009; 185:1195-207. [PMID: 19564403 PMCID: PMC2712960 DOI: 10.1083/jcb.200812025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In chloroplasts, binding of a c′-heme to cytochrome b6 on the stromal side of the thylakoid membranes requires a specific mechanism distinct from the one at work for c-heme binding to cytochromes f and c6 on the lumenal side of membranes. Here, we show that the major protein components of this pathway, the CCBs, are bona fide transmembrane proteins. We demonstrate their association in a series of hetero-oligomeric complexes, some of which interact transiently with cytochrome b6 in the process of heme delivery to the apoprotein. In addition, we provide preliminary evidence for functional assembly of cytochrome b6f complexes even in the absence of c′-heme binding to cytochrome b6. Finally, we present a sequential model for apo- to holo-cytochrome b6 maturation integrated within the assembly pathway of b6f complexes in the thylakoid membranes.
Collapse
Affiliation(s)
- Denis Saint-Marcoux
- Centre National de la Recherche Scientifique, UMR 7141, Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | | | | |
Collapse
|
37
|
de Lacroix de Lavalette A, Barucq L, Alric J, Rappaport F, Zito F. Is the redox state of the ci heme of the cytochrome b6f complex dependent on the occupation and structure of the Qi site and vice versa? J Biol Chem 2009; 284:20822-9. [PMID: 19478086 DOI: 10.1074/jbc.m109.016709] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oxidoreductases of the cytochrome bc(1)/b(6)f family transfer electrons from a liposoluble quinol to a soluble acceptor protein and contribute to the formation of a transmembrane electrochemical potential. The crystal structure of cyt b(6)f has revealed the presence in the Q(i) site of an atypical c-type heme, heme c(i). Surprisingly, the protein does not provide any axial ligand to the iron of this heme, and its surrounding structure suggests it can be accessed by exogenous ligand. In this work we describe a mutagenesis approach aimed at characterizing the c(i) heme and its interaction with the Q(i) site environment. We engineered a mutant of Chlamydomonas reinhardtii in which Phe(40) from subunit IV was substituted by a tyrosine. This results in a dramatic slowing down of the reoxidation of the b hemes under single flash excitation, suggesting hindered accessibility of the heme to its quinone substrate. This modified accessibility likely originates from the ligation of the heme iron by the phenol(ate) side chain introduced by the mutation. Indeed, it also results in a marked downshift of the c(i) heme midpoint potential (from +100 mV to -200 mV at pH 7). Yet the overall turnover rate of the mutant cytochrome b(6)f complex under continuous illumination was found similar to the wild type one, both in vitro and in vivo. We propose that, in the mutant, a change in the ligation state of the heme upon its reduction could act as a redox switch that would control the accessibility of the substrate to the heme and trigger the catalysis.
Collapse
|
38
|
Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA. Structure-function of the cytochrome b6f complex. Photochem Photobiol 2009; 84:1349-58. [PMID: 19067956 DOI: 10.1111/j.1751-1097.2008.00444.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The structure and function of the cytochrome b6f complex is considered in the context of recent crystal structures of the complex as an eight subunit, 220 kDa symmetric dimeric complex obtained from the thermophilic cyanobacterium, Mastigocladus laminosus, and the green alga, Chlamydomonas reinhardtii. A major problem confronted in crystallization of the cyanobacterial complex, proteolysis of three of the subunits, is discussed along with initial efforts to identify the protease. The evolution of these cytochrome complexes is illustrated by conservation of the hydrophobic heme-binding transmembrane domain of the cyt b polypeptide between b6f and bc1 complexes, and the rubredoxin-like membrane proximal domain of the Rieske [2Fe-2S] protein. Pathways of coupled electron and proton transfer are discussed in the framework of a modified Q cycle, in which the heme c(n), not found in the bc1 complex, but electronically tightly coupled to the heme b(n) of the b6f complex, is included. Crystal structures of the cyanobacterial complex with the quinone analogue inhibitors, NQNO or tridecyl-stigmatellin, show the latter to be ligands of heme c(n), implicating heme c(n) as an n-side plastoquinone reductase. Existing questions include (a) the details of the shuttle of: (i) the [2Fe-2S] protein between the membrane-bound PQH2 electron/H+ donor and the cytochrome f acceptor to complete the p-side electron transfer circuit; (ii) PQ/PQH2 between n- and p-sides of the complex across the intermonomer quinone exchange cavity, through the narrow portal connecting the cavity with the p-side [2Fe-2S] niche; (b) the role of the n-side of the b6f complex and heme c(n) in regulation of the relative rates of noncyclic and cyclic electron transfer. The likely presence of cyclic electron transport in the b6f complex, and of heme c(n) in the firmicute bc complex suggests the concept that hemes b(n)-c(n) define a branch point in bc complexes that can support electron transport pathways that differ in detail from the Q cycle supported by the bc1 complex.
Collapse
Affiliation(s)
- D Baniulis
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
39
|
Hamel P, Corvest V, Giegé P, Bonnard G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:125-38. [DOI: 10.1016/j.bbamcr.2008.06.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|
40
|
Dreher C, Prodöhl A, Hielscher R, Hellwig P, Schneider D. Multiple Step Assembly Of The Transmembrane Cytochrome b6. J Mol Biol 2008; 382:1057-65. [DOI: 10.1016/j.jmb.2008.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
|
41
|
Lezhneva L, Kuras R, Ephritikhine G, de Vitry C. A novel pathway of cytochrome c biogenesis is involved in the assembly of the cytochrome b6f complex in arabidopsis chloroplasts. J Biol Chem 2008; 283:24608-16. [PMID: 18593701 PMCID: PMC3259826 DOI: 10.1074/jbc.m803869200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/30/2008] [Indexed: 11/06/2022] Open
Abstract
We recently characterized a novel heme biogenesis pathway required for heme c(i)' covalent binding to cytochrome b6 in Chlamydomonas named system IV or CCB (cofactor assembly, complex C (b6f), subunit B (PetB)). To find out whether this CCB pathway also operates in higher plants and extend the knowledge of the c-type cytochrome biogenesis, we studied Arabidopsis insertion mutants in the orthologs of the CCB genes. The ccb1, ccb2, and ccb4 mutants show a phenotype characterized by a deficiency in the accumulation of the subunits of the cytochrome b6f complex and lack covalent heme binding to cytochrome b6. These mutants were functionally complemented with the corresponding wild type cDNAs. Using fluorescent protein reporters, we demonstrated that the CCB1, CCB2, CCB3, and CCB4 proteins are targeted to the chloroplast compartment of Arabidopsis. We have extended our study to the YGGT family, to which CCB3 belongs, by studying insertion mutants of two additional members of this family for which no mutants were previously characterized, and we showed that they are not functionally involved in the CCB system. Thus, we demonstrate the ubiquity of the CCB proteins in chloroplast heme c(i)' binding.
Collapse
Affiliation(s)
- Lina Lezhneva
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | - Richard Kuras
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | - Geneviève Ephritikhine
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | - Catherine de Vitry
- CNRS, UMR 7141, Laboratoire de
Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de
Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France,
the UPMC Université de Paris 06, UMR
7141, F-75005, Paris, France, the CNRS, UPR
2355, Institut des Sciences du Végétal, 1 Avenue de la Terrasse,
91198 Gif-sur-Yvette Cedex, France, and the
Université Paris-Diderot, UFR Sciences du
Vivant, 2 Place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
42
|
Liu W, Rogge CE, da Silva GFZ, Shinkarev VP, Tsai AL, Kamensky Y, Palmer G, Kulmacz RJ. His92 and His110 selectively affect different heme centers of adrenal cytochrome b(561). BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1218-28. [PMID: 18501187 PMCID: PMC2578830 DOI: 10.1016/j.bbabio.2008.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/14/2008] [Accepted: 04/16/2008] [Indexed: 11/26/2022]
Abstract
Adrenal cytochrome b(561) (cyt b(561)), a transmembrane protein that shuttles reducing equivalents derived from ascorbate, has two heme centers with distinct spectroscopic signals and reactivity towards ascorbate. The His54/His122 and His88/His161 pairs furnish axial ligands for the hemes, but additional amino acid residues contributing to the heme centers have not been identified. A computational model of human cyt b(561) (Bashtovyy, D., Berczi, A., Asard, H., and Pali, T. (2003) Protoplasma 221, 31-40) predicts that His92 is near the His88/His161 heme and that His110 abuts the His54/His122 heme. We tested these predictions by analyzing the effects of mutations at His92 or His110 on the spectroscopic and functional properties. Wild type cytochrome and mutants with substitutions in other histidine residues or in Asn78 were used for comparison. The largest lineshape changes in the optical absorbance spectrum of the high-potential (b(H)) peak were seen with mutation of His92; the largest changes in the low-potential (b(L)) peak lineshape were observed with mutation of His110. In the EPR spectra, mutation of His92 shifted the position of the g=3.1 signal (b(H)) but not the g=3.7 signal (b(L)). In reductive titrations with ascorbate, mutations in His92 produced the largest increase in the midpoint for the b(H) transition; mutations in His110 produced the largest decreases in DeltaA(561) for the b(L) transition. These results indicate that His92 can be considered part of the b(H) heme center, and His110 part of the b(L) heme center, in adrenal cyt b(561).
Collapse
Affiliation(s)
- Wen Liu
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Corina E. Rogge
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Giordano F. Z. da Silva
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Vladimir P. Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Ah-Lim Tsai
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Yury Kamensky
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas
| | - Graham Palmer
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas
| | - Richard J. Kulmacz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
43
|
Why is it so difficult to construct Qi site mutants in Chlamydomonas reinhardtii? C R Biol 2008; 331:510-7. [DOI: 10.1016/j.crvi.2008.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
|
44
|
Lyska D, Paradies S, Meierhoff K, Westhoff P. HCF208, a Homolog of Chlamydomonas CCB2, is Required for Accumulation of Native Cytochrome b6 in Arabidopsis thaliana. ACTA ACUST UNITED AC 2007; 48:1737-46. [DOI: 10.1093/pcp/pcm146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Abstract
Cells require metal ions as cofactors for the assembly of metalloproteins. Principally one has to distinguish between metal ions that are directly incorporated into their cognate sites on proteins and those metal ions that have to become part of prosthetic groups, cofactors or complexes prior to insertion of theses moieties into target proteins. Molybdenum is only active as part of the molybdenum cofactor, iron can be part of diverse Fe-S clusters or of the heme group, while copper ions are directly delivered to their targets. We will focus in greater detail on molybdenum metabolism because molybdenum metabolism is a good example for demonstrating the role and the network of metals in metabolism: each of the three steps in the pathway of molybdenum cofactor formation depends on a different metal (iron, copper, molybdenum) and also the enzymes finally harbouring the molybdenum cofactor need additional metal-containing groups to function (iron sulfur-clusters, heme-iron).
Collapse
Affiliation(s)
- Ralf R Mendel
- Department of Plant Biology, Technical University of Braunschweig, 38106, Braunschweig, Germany.
| | | | | | | |
Collapse
|
46
|
Kuras R, Saint-Marcoux D, Wollman FA, de Vitry C. A specific c-type cytochrome maturation system is required for oxygenic photosynthesis. Proc Natl Acad Sci U S A 2007; 104:9906-10. [PMID: 17535914 PMCID: PMC1887560 DOI: 10.1073/pnas.0702340104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygenic photosynthesis is an important bioenergetic process that maintains the Earth's atmosphere and allows carbon fixation. A critical enzyme in this process, the cytochrome b(6)f complex, differs from other protein complexes of the same family by an unusual covalently attached cofactor chemically defined as a c' heme. We have identified a set of pioneer proteins that carry the biogenesis of this c' heme and started their characterization. They are encoded by the genomes of all organisms performing oxygenic photosynthesis, whatever their phylogenetic distances. These proteins are thus among the few that distinguish photosynthetic cells evolving oxygen from other types of living cells.
Collapse
Affiliation(s)
- Richard Kuras
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Denis Saint-Marcoux
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Francis-André Wollman
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Catherine de Vitry
- Physiologie Membranaire et Moléculaire du Chloroplaste, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique–Université Paris 6, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Abstract
Crystal structures and their implications for function are described for the energy transducing hetero-oligomeric dimeric cytochrome b6f complex of oxygenic photosynthesis from the thermophilic cyanobacterium, Mastigocladus laminosus, and the green alga, Chlamydomonas reinhardtii. The complex has a cytochrome b core and a central quinone exchange cavity, defined by the two monomers that are very similar to those in the respiratory cytochrome bc1 complex. The pathway of quinol/quinone (Q/QH2) transfer emphasizes the labyrinthine internal structure of the complex, including an 11x12 A portal through which Q/QH2, containing a 45-carbon isoprenoid chain, must pass. Three prosthetic groups are present in the b6f complex that are not found in the related bc1 complex: a chlorophyll (Chl) a, a beta-carotene, and a structurally unique covalently bound heme that does not possess amino acid side chains as axial ligands. It is hypothesized that this heme, exposed to the cavity and a neighboring plastoquinone and close to the positive surface potential of the complex, can function in cyclic electron transport via anionic ferredoxin.
Collapse
Affiliation(s)
- William A Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Kulajta C, Thumfart JO, Haid S, Daldal F, Koch HG. Multi-step Assembly Pathway of the cbb3-type Cytochrome c Oxidase Complex. J Mol Biol 2006; 355:989-1004. [PMID: 16343536 DOI: 10.1016/j.jmb.2005.11.039] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 11/02/2005] [Accepted: 11/12/2005] [Indexed: 01/23/2023]
Abstract
The cbb3-type cytochrome c oxidases as members of the heme-copper oxidase superfamily are involved in microaerobic respiration in both pathogenic and non-pathogenic proteobacteria. The biogenesis of these multisubunit enzymes, encoded by the ccoNOQP operon, depends on the ccoGHIS gene products, which are proposed to be specifically required for co-factor insertion and maturation of cbb3-type cytochrome c oxidases. Here, the assembly of the cbb3-type cytochrome c oxidase from the facultative photosynthetic model organism Rhodobacter capsulatus was investigated using blue-native polyacrylamide gel electrophoresis. This process involves the formation of a stable but inactive 210 kDa sub-complex consisting of the subunits CcoNOQ and the assembly proteins CcoH and CcoS. By recruiting monomeric CcoP, this sub-complex is converted into an active 230 kDa CcoNOQP complex. Formation of these complexes and the stability of the monomeric CcoP are impaired drastically upon deletion of ccoGHIS. In a ccoI deletion strain, the 230 kDa complex was absent, although monomeric CcoP was still detectable. In contrast, neither of the complexes nor the monomeric CcoP was found in a ccoH deletion strain. In the absence of CcoS, the 230 kDa complex was assembled. However, it exhibited no enzymatic activity, suggesting that CcoS might be involved in a late step of biogenesis. Based on these data, we propose that CcoN, CcoO and CcoQ assemble first into an inactive 210 kDa sub-complex, which is stabilized via its interactions with CcoH and CcoS. Binding of CcoP, and probably subsequent dissociation of CcoH and CcoS, then generates the active 230 kDa complex. The insertion of the heme cofactors into the c-type cytochromes CcoP and CcoO precedes sub-complex formation, while the cofactor insertion into CcoN could occur either before or after the 210 kDa sub-complex formation during the assembly of the cbb3-type cytochrome c oxidase.
Collapse
Affiliation(s)
- Carmen Kulajta
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Allen JWA, Ginger ML, Ferguson SJ. Complexity and diversity in c-type cytochrome biogenesis systems. Biochem Soc Trans 2005; 33:145-6. [PMID: 15667288 DOI: 10.1042/bst0330145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
c-Type cytochromes contain haem covalently attached to protein by thioether bonds formed post-translationally and requiring a dedicated biogenesis apparatus. Three biogenesis systems, found in different cell types, are well known. Here we discuss emerging evidence for at least one additional system, for unanticipated diversity in the location of the systems and for the co-existence of multiple systems in some cells.
Collapse
Affiliation(s)
- J W A Allen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|