1
|
Sica V, Sato T, Tsialtas I, Hernandez S, Chen S, Baldi P, Cánoves PM, Sassone-Corsi P, Koronowski KB, Smith JG. The liver clock tunes transcriptional rhythms in skeletal muscle to regulate mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633623. [PMID: 39896530 PMCID: PMC11785164 DOI: 10.1101/2025.01.17.633623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Circadian clocks present throughout the brain and body coordinate diverse physiological processes to support daily homeostasis and respond to changing environmental conditions. The local dependencies within the mammalian clock network are not well defined. We previously demonstrated that the skeletal muscle clock controls transcript oscillations of genes involved in fatty acid metabolism in the liver, yet whether the liver clock also regulates the muscle was unknown. Here, we use hepatocyte-specific Bmal1 KO mice (Bmal1hep-/-) and reveal that approximately one third of transcriptional rhythms in skeletal muscle are regulated by the liver clock vivo. Treatment of myotubes with serum harvested from Bmal1 hep-/- mice inhibited expression of genes involved in metabolic pathways, including oxidative phosphorylation. Overall, the transcriptional changes induced by liver clock-driven endocrine-communication revealed from our in vitro system were small in magnitude, leading us to surmise that the liver clock acts to fine-tune metabolic gene expression in muscle. Strikingly, treatment of myotubes with serum from Bmal1 hep-/- mice inhibited mitochondrial ATP production compared to WT and this effect was only observed with serum harvested during the active phase. Overall, our results reveal communication between the liver clock and skeletal muscle-uncovering a bidirectional endocrine communication pathway dependent on clocks in these two key metabolic tissues. Targeting liver and muscle circadian clocks may represent a potential avenue for exploration for diseases associated with dysregulation of metabolism in these tissues.
Collapse
Affiliation(s)
- Valentina Sica
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
| | - Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Ioannis Tsialtas
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Sophia Hernandez
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Pura Muñoz Cánoves
- Universitat Pompeu Fabra (UPF), Department of Medicine and Life Sciences (MELIS), 08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
- Altos Labs Inc, San Diego Institute of Science, San Diego, CA 92121, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin B. Koronowski
- Department of Biochemistry & Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jacob G. Smith
- Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
2
|
de Klerk E, Xiao Y, Emfinger CH, Keller MP, Berrios DI, Loconte V, Ekman AA, White KL, Cardone RL, Kibbey RG, Attie AD, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023; 8:157572. [PMID: 37288664 PMCID: PMC10393241 DOI: 10.1172/jci.insight.157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Insulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived β cells (SC-β cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-β cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-β cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human β cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.
Collapse
Affiliation(s)
| | - Yini Xiao
- UCSF Diabetes Center, UCSF, San Francisco, California, USA
| | - Christopher H Emfinger
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | | - Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Axel A Ekman
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Alan D Attie
- Departments of Biochemistry, Chemistry, and Medicine, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | |
Collapse
|
3
|
Miao C, Du L, Zhang Y, Jia F, Shan L. Novel de novo ZNF148 truncating variant causing autism spectrum disorder, attention deficit hyperactivity disorder, and intellectual disability. Clin Genet 2023; 103:364-368. [PMID: 36444493 DOI: 10.1111/cge.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
ZNF148 gene is a Krüppel-type transcription factor that has transcriptional regulatory function. Heterozygous variant in ZNF148 gene causes an intellectual disability syndrome characterized by global developmental delay, absence, or hypoplasia of corpus callosum, wide intracerebral ventricles, and dysmorphic facial features, while its associations with ASD and ADHD have not been reported. We report a new patient with intellectual disability, autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). The patient had a novel heterozygous truncating variant c.1818dupC (p.Lys607Glnfs*11) in the ZNF148 gene. This variation produces a ZNF148 truncated protein with a deletion of the C-terminal activation domain and may destabilize the protein by affecting the transcriptional activation function. Brain MRI shows normal brain development. Here, we identify a novel ZNF148 heterozygous truncating variant in a patient with distinct phenotypes of ASD and ADHD, which expands the genotype-phenotype spectrum of ZNF148, and indicates ZNF148 is also a potential target gene for ASD.
Collapse
Affiliation(s)
- Chunyue Miao
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Lin Du
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Yu Zhang
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Ling Shan
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
4
|
Emfinger CH, de Klerk E, Schueler KL, Rabaglia ME, Stapleton DS, Simonett SP, Mitok KA, Wang Z, Liu X, Paulo JA, Yu Q, Cardone RL, Foster HR, Lewandowski SL, Perales JC, Kendziorski CM, Gygi SP, Kibbey RG, Keller MP, Hebrok M, Merrins MJ, Attie AD. β Cell-specific deletion of Zfp148 improves nutrient-stimulated β cell Ca2+ responses. JCI Insight 2022; 7:e154198. [PMID: 35603790 PMCID: PMC9220824 DOI: 10.1172/jci.insight.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/20/2022] [Indexed: 12/05/2022] Open
Abstract
Insulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice. Here, we performed Ca2+ imaging of islets from β‑Zfp148KO and control mice fed both a chow and a Western-style diet. β-Zfp148KO islets demonstrated improved sensitivity and sustained Ca2+ oscillations in response to elevated glucose levels. β-Zfp148KO islets also exhibited elevated sensitivity to amino acid-induced Ca2+ influx under low glucose conditions, suggesting enhanced mitochondrial phosphoenolpyruvate-dependent (PEP-dependent), ATP-sensitive K+ channel closure, independent of glycolysis. RNA-Seq and proteomics of β-Zfp148KO islets revealed altered levels of enzymes involved in amino acid metabolism (specifically, SLC3A2, SLC7A8, GLS, GLS2, PSPH, PHGDH, and PSAT1) and intermediary metabolism (namely, GOT1 and PCK2), consistent with altered PEP cycling. In agreement with this, β-Zfp148KO islets displayed enhanced insulin secretion in response to l-glutamine and activation of glutamate dehydrogenase. Understanding pathways controlled by ZFP148 may provide promising strategies for improving β cell function that are robust to the metabolic challenge imposed by a Western diet.
Collapse
Affiliation(s)
| | | | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziyue Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Hannah R. Foster
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sophie L. Lewandowski
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - José C. Perales
- Department of Physiological Sciences, School of Medicine, University of Barcelona, L’Hospitalet del Llobregat, Barcelona, Spain
| | - Christina M. Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard G. Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, USA
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Genomic profiling of the transcription factor Zfp148 and its impact on the p53 pathway. Sci Rep 2020; 10:14156. [PMID: 32843651 PMCID: PMC7447789 DOI: 10.1038/s41598-020-70824-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent data suggest that the transcription factor Zfp148 represses activation of the tumor suppressor p53 in mice and that therapeutic targeting of the human orthologue ZNF148 could activate the p53 pathway without causing detrimental side effects. We have previously shown that Zfp148 deficiency promotes p53-dependent proliferation arrest of mouse embryonic fibroblasts (MEFs), but the underlying mechanism is not clear. Here, we showed that Zfp148 deficiency downregulated cell cycle genes in MEFs in a p53-dependent manner. Proliferation arrest of Zfp148-deficient cells required increased expression of ARF, a potent activator of the p53 pathway. Chromatin immunoprecipitation showed that Zfp148 bound to the ARF promoter, suggesting that Zfp148 represses ARF transcription. However, Zfp148 preferentially bound to promoters of other transcription factors, indicating that deletion of Zfp148 may have pleiotropic effects that activate ARF and p53 indirectly. In line with this, we found no evidence of genetic interaction between TP53 and ZNF148 in CRISPR and siRNA screen data from hundreds of human cancer cell lines. We conclude that Zfp148 deficiency, by increasing ARF transcription, downregulates cell cycle genes and cell proliferation in a p53-dependent manner. However, the lack of genetic interaction between ZNF148 and TP53 in human cancer cells suggests that therapeutic targeting of ZNF148 may not increase p53 activity in humans.
Collapse
|
6
|
Feretzaki M, Renck Nunes P, Lingner J. Expression and differential regulation of human TERRA at several chromosome ends. RNA (NEW YORK, N.Y.) 2019; 25:1470-1480. [PMID: 31350341 PMCID: PMC6795134 DOI: 10.1261/rna.072322.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 05/07/2023]
Abstract
The telomeric long noncoding RNA TERRA has been implicated in regulating telomere maintenance by telomerase and homologous recombination, and in influencing telomeric protein composition during the cell cycle and the telomeric DNA damage response. TERRA transcription starts at subtelomeric regions resembling the CpG islands of eukaryotic genes extending toward chromosome ends. TERRA contains chromosome-specific subtelomeric sequences at its 5' end and long tracts of UUAGGG-repeats toward the 3' end. Conflicting studies have been published as to whether TERRA is expressed from one or several chromosome ends. Here, we quantify TERRA species by RT-qPCR in normal and several cancerous human cell lines. By using chromosome-specific subtelomeric DNA primers, we demonstrate that TERRA is expressed from a large number of telomeres. Deficiency in DNA methyltransferases leads to TERRA up-regulation only at the subset of chromosome ends that contain CpG-island sequences, revealing differential regulation of TERRA promoters by DNA methylation. However, independently of the differences in TERRA expression, short telomeres were uniformly present in a DNA methyltransferase deficient cell line, indicating that telomere length was not dictated by TERRA expression in cis Bioinformatic analyses indicated the presence of a large number of putative transcription factors binding sites at TERRA promoters, and we identified a subset of them that repress TERRA expression. Altogether, our study confirms that TERRA corresponds to a large gene family transcribed from multiple chromosome ends where we identified two types of TERRA promoters, only one of which is regulated by DNA methylation.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Patricia Renck Nunes
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Gebhardt F, Bürger H, Brandt B. Modulation of EGFR Gene Transcription by a Polymorphic Repetitive Sequence – a Link between Genetics and Epigenetics. Int J Biol Markers 2018; 15:105-10. [PMID: 10763151 DOI: 10.1177/172460080001500120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays a crucial role in growth, differentiation and motility of normal as well as tumor cells. The transduction of extracellular signals to the cytoplasm via the receptor not only depends on ligand binding, but is also determined by the receptor density on the cell surface. Therefore, with regard to cancer diagnosis and therapeutic approaches targeting EGFR it is important to know how the expression level of EGFR is controlled. We found that transcription activity declines with increasing numbers of CA dinucleotides of a highly polymorphic CA repeat in the first intron of the epidermal growth factor receptor gene. In vivo data from cultured cell lines support these findings, although other regulation mechanisms can compensate this effect. In addition, we showed that RNA elongation terminates at a site closely downstream of the simple sequence repeat (SSR) and that there are two separate major transcription start sites. Model calculations for the helical DNA conformation revealed a high bendability in the EGFR polymorphic region, especially if the CA stretch is extended. These data suggest that the CA-SSR can act like a joint, bringing the promoter in proximity to a putative repressor protein bound downstream of the CA-SSR. The data indicate that this polymorphism may be a marker for cancer, linking genetic and epigenetic risk factors. Furthermore, in breast cancer, heterozygous tumors with short CA-SSR showed an elevated EGFR-expression in contrast to tumours with longer CA-SSR. Tumours with loss of heterozygosity in intron 1 of egfr revealed an increased EGFR expression if the longer allele was lost. Moreover, decreased EGFR gene levels were significantly correlated with poor prognosis in breast cancer.
Collapse
Affiliation(s)
- F Gebhardt
- Institute for Clinical Chemistry, University of Münster, Germany
| | | | | |
Collapse
|
8
|
Bakke J, Wright WC, Zamora AE, Ong SS, Wang YM, Hoyer JD, Brewer CT, Thomas PG, Chen T. Transcription factor ZNF148 is a negative regulator of human muscle differentiation. Sci Rep 2017; 7:8138. [PMID: 28811660 PMCID: PMC5557752 DOI: 10.1038/s41598-017-08267-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/06/2017] [Indexed: 01/17/2023] Open
Abstract
Muscle differentiation is a complex process in which muscle progenitor cells undergo determination and eventually cellular fusion. This process is heavily regulated by such master transcription factors as MYOD and members of the MEF2 family. Here, we show that the transcription factor ZNF148 plays a direct role in human muscle cell differentiation. Downregulation of ZNF148 drives the formation of a muscle phenotype with rapid expression of myosin heavy chain, even in proliferative conditions. This phenotype was most likely mediated by the robust and swift upregulation of MYOD and MEF2C.
Collapse
Affiliation(s)
- Jesse Bakke
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Anthony E Zamora
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Su Sien Ong
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica D Hoyer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christopher T Brewer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA. .,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
9
|
Loss of One Copy of Zfp148 Reduces Lesional Macrophage Proliferation and Atherosclerosis in Mice by Activating p53. Circ Res 2014; 115:781-9. [DOI: 10.1161/circresaha.115.304992] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rationale:
Cell proliferation and cell cycle control mechanisms are thought to play central roles in the pathogenesis of atherosclerosis. The transcription factor Zinc finger protein 148 (Zfp148) was shown recently to maintain cell proliferation under oxidative conditions by suppressing p53, a checkpoint protein that arrests proliferation in response to various stressors. It is established that inactivation of p53 accelerates atherosclerosis, but whether increased p53 activation confers protection against the disease remains to be determined.
Objective:
We aimed to test the hypothesis that
Zfp148
deficiency reduces atherosclerosis by unleashing p53 activity.
Methods and Results:
Mice harboring a gene-trap mutation in the
Zfp148
locus (
Zfp148
gt/+
) were bred onto the apolipoprotein E (
Apoe
)
–/–
genetic background and fed a high-fat or chow diet. Loss of 1 copy of
Zfp148
markedly reduced atherosclerosis without affecting lipid metabolism. Bone marrow transplantation experiments revealed that the effector cell is of hematopoietic origin. Peritoneal macrophages and atherosclerotic lesions from
Zfp148
gt/+
Apoe
–/–
mice showed increased levels of phosphorylated p53 compared with controls, and atherosclerotic lesions contained fewer proliferating macrophages.
Zfp148
gt/+
Apoe
–/–
mice were further crossed with p53-null mice (
Trp53
–/–
[the gene encoding p53]). There was no difference in atherosclerosis between
Zfp148
gt/+
Apoe
–/–
mice and controls on a
Trp53
+/–
genetic background, and there was no difference in levels of phosphorylated p53 or cell proliferation.
Conclusions:
Zfp148
deficiency increases p53 activity and protects against atherosclerosis by causing proliferation arrest of lesional macrophages, suggesting that drugs targeting macrophage proliferation may be useful in the treatment of atherosclerosis.
Collapse
|
10
|
Mazuy C, Ploton M, Eeckhoute J, Berrabah W, Staels B, Lefebvre P, Helleboid-Chapman A. Palmitate increases Nur77 expression by modulating ZBP89 and Sp1 binding to the Nur77 proximal promoter in pancreatic β-cells. FEBS Lett 2013; 587:S0014-5793(13)00781-3. [PMID: 24512852 DOI: 10.1016/j.febslet.2013.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/18/2013] [Accepted: 10/15/2013] [Indexed: 11/23/2022]
Abstract
Nur77 is a stress sensor in pancreatic β-cells, which negatively regulates glucose-stimulated insulin secretion. We recently showed that a lipotoxic shock caused by exposure of β-cells to the saturated fatty acid palmitate strongly increases Nur77 expression. Here, using dual luciferase reporter assays and Nur77 promoter deletion constructs, we identified a regulatory cassette between -1534 and -1512 bp upstream from the translational start site mediating Nur77 promoter activation in response to palmitate exposure. Chromatin immunoprecipitation, transient transfection and siRNA-mediated knockdown assays revealed that palmitate induced Nur77 promoter activation involves Sp1 recruitment and ZBP89 release from the gene promoter.
Collapse
Affiliation(s)
- Claire Mazuy
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Maheul Ploton
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Jérôme Eeckhoute
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Wahiba Berrabah
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| | - Audrey Helleboid-Chapman
- European Genomic Institute for Diabetes (EGID), FR 3508, F-59000 Lille, France; UNIV LILLE 2, F-59000 Lille, France; Inserm UMR 1011, F-59000 Lille, France; IPL, F-59000 Lille, France
| |
Collapse
|
11
|
Zinc finger protein 148 is dispensable for primitive and definitive hematopoiesis in mice. PLoS One 2013; 8:e70022. [PMID: 23936136 PMCID: PMC3729454 DOI: 10.1371/journal.pone.0070022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022] Open
Abstract
Hematopoiesis is regulated by transcription factors that induce cell fate and differentiation in hematopoietic stem cells into fully differentiated hematopoietic cell types. The transcription factor zinc finger protein 148 (Zfp148) interacts with the hematopoietic transcription factor Gata1 and has been implicated to play an important role in primitive and definitive hematopoiesis in zebra fish and mouse chimeras. We have recently created a gene-trap knockout mouse model deficient for Zfp148, opening up for analyses of hematopoiesis in a conventional loss-of-function model in vivo. Here, we show that Zfp148-deficient neonatal and adult mice have normal or slightly increased levels of hemoglobin, hematocrit, platelets and white blood cells, compared to wild type controls. Hematopoietic lineages in bone marrow, thymus and spleen from Zfp148gt/gt mice were further investigated by flow cytometry. There were no differences in T-cells (CD4 and CD8 single positive cells, CD4 and CD8 double negative/positive cells) in either organ. However, the fraction of CD69- and B220-positive cells among lymphocytes in spleen was slightly lower at postnatal day 14 in Zfp148gt/gt mice compared to wild type mice. Our results demonstrate that Zfp148-deficient mice generate normal mature hematopoietic populations thus challenging earlier studies indicating that Zfp148 plays a critical role during hematopoietic development.
Collapse
|
12
|
Sayin VI, Nilton A, Ibrahim MX, Ågren P, Larsson E, Petit MM, Hultén LM, Ståhlman M, Johansson BR, Bergo MO, Lindahl P. Zfp148 deficiency causes lung maturation defects and lethality in newborn mice that are rescued by deletion of p53 or antioxidant treatment. PLoS One 2013; 8:e55720. [PMID: 23405202 PMCID: PMC3566028 DOI: 10.1371/journal.pone.0055720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/29/2012] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Zfp148 (Zbp-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53 and is implicated in cell cycle control, but the physiological role of Zfp148 remains unknown. Here we show that Zfp148 deficiency leads to respiratory distress and lethality in newborn mice. Zfp148 deficiency prevented structural maturation of the prenatal lung without affecting type II cell differentiation or surfactant production. BrdU analyses revealed that Zfp148 deficiency caused proliferation arrest of pulmonary cells at E18.5–19.5. Similarly, Zfp148-deficient fibroblasts exhibited proliferative arrest that was dependent on p53, raising the possibility that cell stress is part of the underlying mechanism. Indeed, Zfp148 deficiency lowered the threshold for activation of p53 under oxidative conditions. Moreover, both in vivo and cellular phenotypes were rescued on Trp53+/− or Trp53−/− backgrounds and by antioxidant treatment. Thus, Zfp148 prevents respiratory distress and lethality in newborn mice by attenuating oxidative stress–dependent p53-activity during the saccular stage of lung development. Our results establish Zfp148 as a novel player in mammalian lung maturation and demonstrate that Zfp148 is critical for cell cycle progression in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Apoptosis
- Blotting, Southern
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Lethal
- Immunoenzyme Techniques
- Lung/drug effects
- Lung/embryology
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oxidative Stress/drug effects
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Respiratory Tract Diseases/genetics
- Respiratory Tract Diseases/pathology
- Respiratory Tract Diseases/prevention & control
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/physiology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Volkan I. Sayin
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Nilton
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mohamed X. Ibrahim
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pia Ågren
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marleen M. Petit
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bengt R. Johansson
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergo
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
13
|
Woo AJ, Kim J, Xu J, Huang H, Cantor AB. Role of ZBP-89 in human globin gene regulation and erythroid differentiation. Blood 2011; 118:3684-93. [PMID: 21828133 PMCID: PMC3186340 DOI: 10.1182/blood-2011-03-341446] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/25/2011] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanisms underlying erythroid-specific gene regulation remain incompletely understood. Closely spaced binding sites for GATA, NF-E2/maf, and CACCC interacting transcription factors play functionally important roles in globin and other erythroid-specific gene expression. We and others recently identified the CACCC-binding transcription factor ZBP-89 as a novel GATA-1 and NF-E2/mafK interacting partner. Here, we examined the role of ZBP-89 in human globin gene regulation and erythroid maturation using a primary CD34(+) cell ex vivo differentiation system. We show that ZBP-89 protein levels rise dramatically during human erythroid differentiation and that ZBP-89 occupies key cis-regulatory elements within the globin and other erythroid gene loci. ZBP-89 binding correlates strongly with RNA Pol II occupancy, active histone marks, and high-level gene expression. ZBP-89 physically associates with the histone acetyltransferases p300 and Gcn5/Trrap, and occupies common sites with Gcn5 within the human globin loci. Lentiviral short hairpin RNAs knockdown of ZBP-89 results in reduced Gcn5 occupancy, decreased acetylated histone 3 levels, lower globin and erythroid-specific gene expression, and impaired erythroid maturation. Addition of the histone deacetylase inhibitor valproic acid partially reverses the reduced globin gene expression. These findings reveal an activating role for ZBP-89 in human globin gene regulation and erythroid differentiation.
Collapse
Affiliation(s)
- Andrew J Woo
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
14
|
Feng Y, Wang X, Xu L, Pan H, Zhu S, Liang Q, Huang B, Lu J. The transcription factor ZBP-89 suppresses p16 expression through a histone modification mechanism to affect cell senescence. FEBS J 2009; 276:4197-206. [PMID: 19583777 DOI: 10.1111/j.1742-4658.2009.07128.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcription factor ZBP-89 has been implicated in the induction of growth arrest and apoptosis. In this article, we demonstrate that ZBP-89 was able to restrain senescence in NCI-H460 human lung cancer cells, through epigenetically regulating p(16INK4a) expression. Specifically, our results indicate that knockdown of ZBP-89 by RNA interference stimulated cellular senescence in NCI-H460 cells, as judged by the senescence-associated beta-galactosidase activity assay and senescence-associated heterochromatin foci assay, and this process could be reversed by RNA interference-mediated p16(INK4a) silencing. We also show that histone deacetylase (HDAC) 3 and HDAC4 inhibited p16(INK4a) promoter activity in a dose-dependent manner. Furthermore, chromatin immunoprecipitation assays verified that HDAC3 was recruited to the p16(INK4a) promoter by ZBP-89 through an epigenetic mechanism involving histone acetylation modification. Moreover, immunofluorescence and coimmunoprecipitation assays revealed that ZBP-89 and HDAC3 formed a complex. These data suggest that ZBP-89 and HDAC3, but not HDAC4, can work coordinately to restrain cell senescence by downregulating p16(INK4a) expression through an epigenetic modification of histones.
Collapse
Affiliation(s)
- Yunpeng Feng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Peddireddi L, Cheng C, Ganta RR. Promoter analysis of macrophage- and tick cell-specific differentially expressed Ehrlichia chaffeensis p28-Omp genes. BMC Microbiol 2009; 9:99. [PMID: 19454021 PMCID: PMC2694197 DOI: 10.1186/1471-2180-9-99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 05/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ehrlichia chaffeensis is a rickettsial agent responsible for an emerging tick-borne illness, human monocytic ehrlichiosis. Recently, we reported that E. chaffeensis protein expression is influenced by macrophage and tick cell environments. We also demonstrated that host response differs considerably for macrophage and tick cell-derived bacteria with delayed clearance of the pathogen originating from tick cells. RESULTS In this study, we mapped differences in the promoter regions of two genes of p28-Omp locus, genes 14 and 19, whose expression is influenced by macrophage and tick cell environments. Primer extension and quantitative RT-PCR analysis were performed to map transcription start sites and to demonstrate that E. chaffeensis regulates transcription in a host cell-specific manner. Promoter regions of genes 14 and 19 were evaluated to map differences in gene expression and to locate RNA polymerase binding sites. CONCLUSION RNA analysis and promoter deletion analysis aided in identifying differences in transcription, DNA sequences that influenced promoter activity and RNA polymerase binding regions. This is the first description of a transcriptional machinery of E. chaffeensis. In the absence of available genetic manipulation systems, the promoter analysis described in this study can serve as a novel molecular tool for mapping the molecular basis for gene expression differences in E. chaffeensis and other related pathogens belonging to the Anaplasmataceae family.
Collapse
Affiliation(s)
- Lalitha Peddireddi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
16
|
Chen GG, Chan UPF, Bai LC, Fung KY, Tessier A, To AKY, Merchant JL, Lai PBS. ZBP-89 reduces the cell death threshold in hepatocellular carcinoma cells by increasing caspase-6 and S phase cell cycle arrest. Cancer Lett 2009; 283:52-8. [PMID: 19362768 DOI: 10.1016/j.canlet.2009.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/15/2009] [Accepted: 03/16/2009] [Indexed: 12/01/2022]
Abstract
ZBP-89 inhibits the some tumor cells but its role in HCC is unknown. We investigated effect of ZBP-89 on cell death of 5 HCC cell lines with different status of p53. We found that ZBP-89 significantly induced cell death of all HCC cells particularly those with wild-type p53. The inhibition was well correlated with the induction of caspase-6 activity. The inhibition of caspase-6 abolished the effect of ZBP-89. ZBP-89 reduced the cells in G2-M but increased them in S phase. With the changes in caspase-6 and cell cycle, ZBP-89 greatly enhanced the killing effectiveness of 5-fluorouracil or staurosporine in HCC cells.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
The transcriptional repressor ZBP-89 and the lack of Sp1/Sp3, c-Jun and Stat3 are important for the down-regulation of the vimentin gene during C2C12 myogenesis. Differentiation 2009; 77:492-504. [PMID: 19505630 DOI: 10.1016/j.diff.2008.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 12/08/2008] [Accepted: 12/23/2008] [Indexed: 11/20/2022]
Abstract
Currently, considerable information is available about how muscle-specific genes are activated during myogenesis, yet little is known about how non-muscle genes are down-regulated. The intermediate filament protein vimentin is known to be "turned off" during myogenesis to be replaced by desmin, the muscle-specific intermediate filament protein. Here, we demonstrate that vimentin down-regulation is the result of the combined effect of several transcription factors. Levels of the positive activators, Sp1/Sp3, which are essential for vimentin expression, decrease during myogenesis. In addition, c-Jun and Stat3, two additional positive-acting transcription factors for vimentin gene expression, are also down-regulated. Over-expression via adenoviral approaches demonstrates that the up-regulation of the repressor ZBP-89 is critical to vimentin down-regulation. Elimination of ZBP-89 via siRNA blocks the down-regulation of vimentin and Sp1/Sp3 expression. From these studies we conclude that the combinatorial effect of the down-regulation of positive-acting transcription factors such as Sp1/Sp3, c-Jun and Stat3 versus the up-regulation of the repressor ZBP-89 contributes to the "turning off" of the vimentin gene during myogenesis.
Collapse
|
18
|
Salmon M, Owens GK, Zehner ZE. Over-expression of the transcription factor, ZBP-89, leads to enhancement of the C2C12 myogenic program. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1144-55. [PMID: 19232372 DOI: 10.1016/j.bbamcr.2009.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 11/18/2022]
Abstract
Myogenesis involves the complex interplay between the down-regulation of non-muscle genes and the up-regulation of muscle-specific genes. This interplay is controlled by the myogenic regulatory factors Myf5, MRF4, MyoD and myogenin. To trigger the up-regulation of these muscle-specific factors, certain environmental cues, such as the removal of serum, signal C2C12 myoblast cells to withdraw from cell cycle, fuse and activate muscle-specific genes. Here, the level of ZBP-89 (zfp148), a Krüppel-like transcription factor, has been shown to increase during myogenesis. Over-expression of ZBP-89, via adenoviral infection, led to the enhancement of the myogenic program without requiring the removal of serum. Quantitative real-time PCR and ChIP assays documented that ZBP-89 promoted the down-regulation of Pax7 coupled with the up-regulation of MRF4 and MyoD to regulate C2C12 differentiation in vitro. In addition, ZBP-89 over-expression up-regulated p21 and Rb while promoting the down-regulation of cyclinA and cyclinD1. In converse, the diminution of ZBP-89 by siRNA promoted the retention of myogenic and cell cycle regulators at myoblast levels resulting in a concomitant delay of the myogenic program. From these studies we conclude that the transcription factor ZBP-89 plays an important role in the timing of the myogenic program.
Collapse
Affiliation(s)
- Morgan Salmon
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0614, USA
| | | | | |
Collapse
|
19
|
Peltzer J, Colman L, Cebrian J, Musa H, Peckham M, Keller A. Novel murine clonal cell lines either express slow or mixed (fast and slow) muscle markers following differentiation in vitro. Dev Dyn 2008; 237:1412-23. [DOI: 10.1002/dvdy.21543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Perconti G, Ferro A, Amato F, Rubino P, Randazzo D, Wolff T, Feo S, Giallongo A. The Kelch protein NS1-BP interacts with alpha-enolase/MBP-1 and is involved in c-Myc gene transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1774-85. [DOI: 10.1016/j.bbamcr.2007.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 11/30/2022]
|
21
|
Chupreta S, Brevig H, Bai L, Merchant JL, Iñiguez-Lluhí JA. Sumoylation-dependent control of homotypic and heterotypic synergy by the Kruppel-type zinc finger protein ZBP-89. J Biol Chem 2007; 282:36155-66. [PMID: 17940278 DOI: 10.1074/jbc.m708130200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Krüppel-like transcription factor ZBP-89 is a sequence-specific regulator that plays key roles in cellular growth and differentiation especially in endodermal and germ cell lineages. ZBP-89 shares with other members of the Sp-like family an overlapping sequence specificity for GC-rich sequences in the regulatory regions of multiple genes. Defining the mechanisms that govern the intrinsic function of ZBP-89 as well as its competitive and non-competitive functional interactions with other regulators is central to understand how ZBP-89 exerts its biological functions. We now describe that post-translational modification of ZBP-89 by multiple small ubiquitin-like modifier (SUMO) isoforms occurs at two conserved synergy control motifs flanking the DNA binding domain. Functionally sumoylation did not directly alter the ability of ZBP-89 to compete with other Sp-like factors from individual sites. At promoters bearing multiple response elements, however, this modification inhibited the functional cooperation between ZBP-89 and Sp1. Analysis of the properties of ZBP-89 in cellular contexts devoid of competing factors indicated that although on its own it behaves as a modest activator it potently synergizes with heterologous activators such as the glucocorticoid receptor. Notably we found that when conjugated to ZBP-89, SUMO exerts a strong inhibitory effect on such synergistic interactions through a critical conserved functional surface. By regulating higher order functional interactions, sumoylation provides a reversible post-translational mechanism to control the activity of ZBP-89.
Collapse
Affiliation(s)
- Sergey Chupreta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | | | |
Collapse
|
22
|
Wu Y, Zhang X, Salmon M, Zehner ZE. The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression. Genes Cells 2007; 12:905-18. [PMID: 17663720 DOI: 10.1111/j.1365-2443.2007.01104.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vimentin, a member of the intermediate filament (IF) protein family, exhibits a complex pattern of tissue- and developmental-specific expression. Although vimentin is widely expressed in the embryo, its expression becomes restricted during terminal differentiation. Moreover, it is often expressed in tissue culture cells despite their embryological origin and is a marker for the metastatic tumor cell. Previously, the vimentin promoter has been shown to contain several positive- and negative-acting cis-elements. The negative elements bind the transcription factor ZBP-89. Interestingly, ZBP-89 can be either an activator or a repressor of gene expression. For instance, ZBP-89 has been shown to activate p21(waf1/cip1) expression by recruiting p300 to the p21 promoter. Here, we have investigated the mechanism of ZBP-89 repression. The histone deacetylase (HDAC) inhibitor TSA enhances vimentin gene expression requiring the proximal promoter region including GC-box 1, a known Sp1/Sp3 binding site. Chromatin immunoprecipitation (ChIP) assays document an increase in the acetylation status of histone H3 on the endogenous vimentin gene concomitant with TSA treatment. However, EMSAs, DNA precipitation, co-immunoprecipitation and ChIP data show that it is not Sp1, but rather ZBP-89, which recruits HDAC1. From these studies we conclude that ZBP-89 functions as a repressor by recruiting HDAC1 to the vimentin promoter.
Collapse
Affiliation(s)
- Yongzhong Wu
- The Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | |
Collapse
|
23
|
Wu Y, Zhang X, Salmon M, Lin X, Zehner ZE. TGFbeta1 regulation of vimentin gene expression during differentiation of the C2C12 skeletal myogenic cell line requires Smads, AP-1 and Sp1 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:427-39. [PMID: 17270292 PMCID: PMC1855268 DOI: 10.1016/j.bbamcr.2006.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Vimentin exhibits a complex pattern of developmental and tissue-specific expression regulated by such growth factors as TGFbeta1, PDGF, FGF, EGF and cytokines. Vimentin is expressed in the more migratory, mesenchymal cell and its expression is often down-regulated to make way for tissue-specific intermediate filaments proteins such as desmin in muscle. Here, we suggest a mechanism to explain how TGFbeta1 contributes to the up-regulation of vimentin expression while blocking myogenesis. TGFbeta1 binds to serine/threonine kinase receptors resulting in the phosphorylation of Smad2 and Smad3, followed by formation of a heteromeric complex with Smad4. The translocation of this complex to the nucleus modulates transcription of selected genes such as vimentin. However, the vimentin gene lacks a consensus TGFbeta1 response element. By transient transfection analysis of vimentin's various promoter elements fused to the CAT reporter gene, we have determined that tandem AP-1 sites surrounded by GC-boxes are required for TGFbeta1 induction. Mutations within this region eliminated the ability of Smad3 to induce reporter gene expression. DNA precipitation and ChIP assays suggest that c-Jun, c-Fos, Smad3 and Sp1/Sp3 interact over this region, but this interaction changes during myogenesis with TGFbeta1 induction.
Collapse
Affiliation(s)
- Yongzhong Wu
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| | - Xueping Zhang
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| | - Morgan Salmon
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| | - Xia Lin
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030
| | - Zendra E. Zehner
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond VA 23298-0614
| |
Collapse
|
24
|
Thimmarayappa J, Sun J, Schultz LE, Dejkhamron P, Lu C, Giallongo A, Merchant JL, Menon RK. Inhibition of Growth Hormone Receptor Gene Expression by Saturated Fatty Acids: Role of Krüppel-Like Zinc Finger Factor, ZBP-89. Mol Endocrinol 2006; 20:2747-60. [PMID: 16825291 DOI: 10.1210/me.2006-0128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbstractThe expression and function of the GH receptor is critical for the actions of pituitary GH in the intact animal. The role of systemic factors in the reduced expression of the GH receptor and consequent GH insensitivity in pathological states such as sepsis, malnutrition, and poorly controlled diabetes mellitus is unclear. In the current study, we demonstrate that saturated (palmitic and myristic; 50 μm) fatty acids (FA) inhibit activity of the promoter of the major (L2) transcript of the GH receptor gene; unsaturated (oleic and linoleic) FA (200 μm) do not alter activity of the promoter. Comparable effects with palmitic acid and the nonmetabolizable analog bromo-palmitic acid, and failure of triacsin C to abrogate palmitic acids effects on GH receptor expression indicate that this effect is due to direct action(s) of FA. Palmitic acid, but not the unsaturated FA linoleic acid, decreased steady-state levels of endogenous L2 mRNA and GHR protein in 3T3-L1 preadipocytes. The effect of FA was localized to two cis elements located approximately 600 bp apart on the L2 promoter. EMSA and chromatin immunoprecipitation assays established that both these cis elements bind the Krüppel-type zinc finger transcription factor, ZBP-89. Ectopic expression of ZBP-89 amplified the inhibitory effect of FA on L2 promoter activity and on steady-state levels of endogenous L2 mRNA in 3T3-L1 preadipocytes. Mutational analyses of the two ZBP-89 binding sites revealed that both the sites are essential for palmitic acid’s inhibitory effect on the L2 promoter and for the enhancing effect of ZBP-89 on palmitic acid-induced inhibition of the L2 promoter. Our results establish a molecular basis for FA-induced inhibition of GH receptor gene expression in the pathogenesis of acquired GH insensitivity in pathological states such as poorly controlled diabetes mellitus and small for gestational age.
Collapse
Affiliation(s)
- Jamuna Thimmarayappa
- University of Michigan Medical School, 1205 Medical Professional Building, Box 0718, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109-0718, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li X, Xiong JW, Shelley CS, Park H, Arnaout MA. The transcription factor ZBP-89 controls generation of the hematopoietic lineage in zebrafish and mouse embryonic stem cells. Development 2006; 133:3641-50. [PMID: 16914492 DOI: 10.1242/dev.02540] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hematopoietic development is closely linked to that of blood vessels and the two processes are regulated in large part by transcription factors that control cell fate decisions and cellular differentiation. Both blood and blood vessels derive from a common progenitor, termed the hemangioblast, but the factor(s) specifying the development and differentiation of this stem cell population into the hematopoietic and vascular lineages remain ill defined. Here, we report that knockdown of the Krüppel-like transcription factor ZBP-89 in zebrafish embryos results in a bloodless phenotype, caused by disruption of both primitive and definitive hematopoiesis, while leaving primary blood vessel formation intact. Injection of ZBP-89 mRNA into cloche zebrafish embryos, which lack both the hematopoietic and endothelial lineages, rescues hematopoiesis but not vasculogenesis. Injection of mRNA for Stem Cell Leukemia (SCL), a transcription factor that directs hemangioblast development into blood cell precursors, rescues the bloodless phenotype in ZBP-89 zebrafish morphants. Forced expression of ZBP-89 induces the expansion of hematopoietic progenitors in wild-type zebrafish and in mouse embryonic stem cell cultures but inhibits angiogenesis in vivo and in vitro. These findings establish a unique regulatory role for ZBP-89, positioned at the interface between early blood and blood vessel development.
Collapse
Affiliation(s)
- Xiangen Li
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
26
|
Xu Q, Springer L, Merchant JL, Jiang H. Identification of zinc finger binding protein 89 (ZBP-89) as a transcriptional activator for a major bovine growth hormone receptor promoter. Mol Cell Endocrinol 2006; 251:88-95. [PMID: 16621236 DOI: 10.1016/j.mce.2006.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 11/30/2022]
Abstract
The objective of this study was to identify the transcription factors that regulate the expression of growth hormone receptor (GHR) 1A mRNA, a major GHR mRNA variant in the bovine liver. A deoxyribonuclease I footprint analysis revealed that the GHR1A promoter region -69 to -30 (relative to the transcription start site for GHR1A mRNA) contained binding sites for bovine liver nuclear proteins. Using a yeast one-hybrid analysis, zinc finger binding protein 89 (ZBP-89) was identified as a binding protein to this promoter region. Binding of ZBP-89 to the GHR1A promoter region -69 to -30 was further confirmed by an electrophoretic mobility shift assay. In cotransfection analyses, overexpression of ZBP-89 enhanced (P<0.01) the activity of the GHR1A promoter and this enhancement was dependent on the putative ZBP-89 binding site in the promoter. These results together indicate that ZBP-89 is a transcription factor that regulates the expression of GHR1A mRNA.
Collapse
Affiliation(s)
- Qingfu Xu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061-0306, USA
| | | | | | | |
Collapse
|
27
|
De Bustos C, Smits A, Strömberg B, Collins VP, Nistér M, Afink G. A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas. J Med Genet 2006; 42:31-7. [PMID: 15635072 PMCID: PMC1735903 DOI: 10.1136/jmg.2004.024034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet derived growth factor receptor alpha (PDGFRalpha) expression is typical for a variety of brain tumours, while in normal adult brain PDGFRalpha expression is limited to a small number of neural progenitor cells. The molecular mechanisms responsible for the PDGFRalpha expression in tumours are not known, but in the absence of amplification, changes in transcriptional regulation might be an important factor in this process. METHODS AND RESULTS We have investigated the link between single nucleotide polymorphisms (SNPs) within the PDGFRalpha gene promoter and the occurrence of brain tumours (medulloblastomas, supratentorial primitive neuroectodermal tumours (PNETs), ependymal tumours, astrocytomas, oligodendrogliomas, and mixed gliomas). These SNPs give rise to five different promoter haplotypes named H1 and H2alpha-delta. It is apparent from the haplotype frequency distribution that both PNET (10-fold) and ependymoma (6.5-fold) patient groups display a significant over-representation of the H2delta haplotype. The precise functional role in PDGFRalpha gene transcription for the H2delta haplotype is not known yet, but we can show that the H2delta haplotype specifically disrupts binding of the transcription factor ZNF148 as compared to the other promoter haplotypes. CONCLUSIONS The specific over-representation of the H2delta haplotype in both patients with PNETs and ependymomas suggests a functional role for the ZNF148/PDGFRalpha pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- C De Bustos
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Holley-Guthrie EA, Seaman WT, Bhende P, Merchant JL, Kenney SC. The Epstein-Barr virus protein BMRF1 activates gastrin transcription. J Virol 2005; 79:745-55. [PMID: 15613302 PMCID: PMC538557 DOI: 10.1128/jvi.79.2.745-755.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BMRF1 gene encodes an early lytic protein that functions not only as the viral DNA polymerase processivity factor but also as a transcriptional activator. BMRF1 has been previously shown to activate transcription of an EBV early promoter, BHLF1, though a GC-rich motif which binds to SP1 and ZBP-89, although the exact mechanism for this effect is not known (D. J. Law, S. A. Tarle, and J. L. Merchant, Mamm. Genome 9:165-167, 1998). Here we demonstrate that BMRF1 activates transcription of the cellular gastrin gene in telomerase-immortalized keratinocytes. Furthermore, BMRF1 activated a reporter gene construct driven by the gastrin promoter in a variety of cell types, and this effect was mediated by two SP1/ZBP-89 binding sites in the gastrin promoter. ZBP-89 has been previously shown to negatively regulate the gastrin promoter. However, ZBP-89 can function as either a negative or positive regulator of transcription, depending upon the promoter and perhaps other, as-yet-unidentified factors. BMRF1 increased the binding of ZBP-89 to the gastrin promoter, and a ZBP-89-GAL4 fusion protein was converted into a positive transcriptional regulator by cotransfection with BMRF1. BMRF1 also enhanced the transcriptional activity of an SP1-GAL4 fusion protein. These results suggest that BMRF1 activates target promoters through its effect on both the SP1 and ZBP-89 transcription factors. Furthermore, as the EBV genome is present in up to 10% of gastric cancers, and the different forms of gastrin are growth factors for gastrointestinal epithelium, our results suggest a mechanism by which lytic EBV infection could promote the growth of gastric cells.
Collapse
Affiliation(s)
- Elizabeth A Holley-Guthrie
- Lineberger Comprehensive Cancer Center, CB # 7295, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
29
|
Boopathi E, Lenka N, Prabu SK, Fang JK, Wilkinson F, Atchison M, Giallongo A, Avadhani NG. Regulation of murine cytochrome c oxidase Vb gene expression during myogenesis: YY-1 and heterogeneous nuclear ribonucleoprotein D-like protein (JKTBP1) reciprocally regulate transcription activity by physical interaction with the BERF-1/ZBP-89 factor. J Biol Chem 2004; 279:35242-54. [PMID: 15190078 DOI: 10.1074/jbc.m403160200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transcription suppressor element (sequence -481 to -320) containing a G-rich motif (designated GTG) and a newly identified CAT-rich motif (designated CATR) was previously shown to modulate expression of the mouse cytochrome c oxidase Vb gene during myogenesis. Here, we show that the GTG element is critical for transcription activation in both undifferentiated and differentiated myocytes. Mutations of the CATR motif abolished transcription repression in myoblasts while limiting transcription activation in differentiated myotubes, suggesting contrasting functional attributes of this DNA motif at different stages of myogenesis. Results show that the activity of the transcription suppressor motif is modulated by an orchestrated interplay between ubiquitous transcription factors: ZBP-89, YY-1, and a member of the heterogeneous nuclear ribonucleoprotein D-like protein (also known as JKTBP1) family. In undifferentiated muscle cells, GTG motif-bound ZBP-89 physically and functionally interacted with CATR motif-bound YY-1 to mediate transcription repression. In differentiated myotubes, heterogeneous nuclear ribonucleoprotein D-like protein/JKTBP1 bound to the CATR motif exclusive of YY-1 and interacted with ZBP-89 in attenuating repressor activity, leading to transcription activation. Our results show a novel mechanism of protein factor switching in transcription regulation of the cytochrome c oxidase Vb gene during myogenesis.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Borghaei RC, Rawlings PL, Javadi M, Woloshin J. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun 2004; 316:182-8. [PMID: 15003528 DOI: 10.1016/j.bbrc.2004.02.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Indexed: 12/13/2022]
Abstract
A 5T/6T polymorphic site in the matrix metalloproteinase-3 (MMP-3) promoter has been identified as a repressor element involved in inhibiting induction of MMP-3 transcription by interleukin 1; and the 6T allele has been associated with decreased expression of MMP-3 as compared to the 5T allele. Zinc-binding protein-89 (ZBP-89) was cloned from a yeast one-hybrid assay via its ability to interact with this site, but when the protein was over-expressed, it resulted in activation of the MMP-3 promoter rather than repression. Here we show that in nuclear extracts isolated from human gingival fibroblasts stimulated with IL-1, this site is bound by p50 and p65 components of NF-kappaB in addition to ZBP-89, and that recombinant p50 binds preferentially to the 6T binding site. These results are consistent with a role for NF-kappaB in limiting the cytokine induced expression of MMP-3.
Collapse
Affiliation(s)
- Ruth C Borghaei
- Department of Biochemistry and Molecular Biology, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA.
| | | | | | | |
Collapse
|
31
|
Wu Y, Diab I, Zhang X, Izmailova ES, Zehner ZE. Stat3 enhances vimentin gene expression by binding to the antisilencer element and interacting with the repressor protein, ZBP-89. Oncogene 2004; 23:168-78. [PMID: 14712222 DOI: 10.1038/sj.onc.1207003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vimentin exhibits a complex pattern of developmental- and tissue-specific expression and is aberrantly expressed in most metastatic tumors. The human vimentin promoter contains multiple DNA elements, some of which enhance gene expression and one that inhibits. A silencer element (at -319) binds the repressor ZBP-89. Further upstream (at -757) is an element, which acts positively in the presence of the silencer element and, thus, is referred to as an antisilencer (ASE). Previously, we showed that Stat1alpha binds to this element upon induction by IFN-gamma. However, substantial binding and reporter gene activity was still present in nontreated cells. Here, we have found that Stat3 binds to the ASE element in vitro. Transfection experiments in COS-1 cells with various vimentin promoter--reporter constructs show that gene activity is dependent upon the cotransfection and activation of Stat3. Moreover, activated Stat3 can overcome ZBP-89 repression. Coimmunoprecipitation studies demonstrate that Stat3 and ZBP-89 can interact and confocal microscopy detects these factors to be colocalized in the nucleus. Moreover, a correlation exists between the presence of activated Stat3 and vimentin expression in MDA-MB-231 cells, which is lacking in MCF7 cells where vimentin is not expressed. In the light of these results, we propose that the interaction of Stat3 and ZBP-89 may be crucial for overcoming the effects of the repressor ZBP-89, which suggests a novel mode for Stat3 gene activation.
Collapse
Affiliation(s)
- Yongzhong Wu
- Department of Biochemistry, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(Waf1) transcription is mediated through its proximal GC-rich sites. Prior studies have shown that Sp1, Sp3 and the histone acetyltransferase coactivator p300 are components of the complexes that bind to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. Zinc-finger binding protein-89 (ZBP-89, also known as BFCOL1, BERF-1 and ZNF-148) is a Krüppel-type zinc-finger transcription factor that binds to the same GC-rich sequences as Sp1. We sought to determine whether ZBP-89 is a target of p300 during butyrate induction of p21(Waf1). This review summarizes the evidence that supports a crucial role for ZBP-89 in butyrate regulation of p21(Waf1). Adenovirus-mediated expression of ZBP-89 in HT-29 cells reveals that ZBP-89 potentiates butyrate induction of endogenous p21(Waf1) gene expression. DNA-protein interaction assays demonstrate that Sp1, Sp3 and ZBP-89 bind the p21(Waf1) promoter at -245 to -215. Coprecipitation assays reveal that p300 preferentially binds to the N-terminus of ZBP-89. ZBP-89 also induces p21(Waf1) through stabilization of p53. Although ZBP-89 binds mutant and wild-type p53, only wild-type p53 is stabilized. Moreover, mutant p53 shifts the subnuclear location of ZBP-89 to the nuclear periphery, which is a domain rich in heterochromatin. This finding led to the conclusion that mutant p53 exerts a dominant negative effect on ZBP-89. We propose that gene silencing by mutant p53 might be mediated by sequestering ZBP-89 within heterochromatin regions at the nuclear periphery. Overall, ZBP-89 is a butyrate-regulated coactivator of p53 and is able to induce p21(Waf1) gene expression through both p53-dependent and -independent mechanisms to inhibit cell growth.
Collapse
Affiliation(s)
- Juanita L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
33
|
Zhang X, Diab IH, Zehner ZE. ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucleic Acids Res 2003; 31:2900-14. [PMID: 12771217 PMCID: PMC156715 DOI: 10.1093/nar/gkg380] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Vimentin, a member of the intermediate filament protein family, is regulated both developmentally and tissue specifically. It is also a marker of the metastatic potential of many tumor cells. Pre viously, the human vimentin promoter has been shown to contain multiple elements for the binding of both positive- and negative-acting regulatory factors. Transient transfection analysis of various vimentin 5'-end promoter sequences and mutants thereof fused to a reporter gene further defined two regulatory elements, a positive element that binds Sp1 and a negative element that binds the protein ZBP-89. ZBP-89 has been shown to be either a repressor or an activator of gene expression, depending on the promoter. Here, we show that for vimentin, both ZBP-89 and ZBP-99 repress reporter gene expression in Schneider (S2) cells. Deletion constructs confirm that the glutamine-rich region of Sp1 is required to enhance vimentin transcription, whereas the N-terminus of ZBP-89 is required to interact with Sp1 and repress gene expression. The overexpression of hTAF(II)130 can alleviate ZBP-89 repression in S2 cells, suggesting how ZBP-89 might serve to block gene expression.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry and the Massey Cancer Center, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0614, USA
| | | | | |
Collapse
|
34
|
Park H, Shelley CS, Arnaout MA. The zinc finger transcription factor ZBP-89 is a repressor of the human beta 2-integrin CD11b gene. Blood 2003; 101:894-902. [PMID: 12393719 DOI: 10.1182/blood-2002-03-0680] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin CD11b is a differentiation marker of the myelomonocytic lineage and an important mediator of inflammation. Expression of the CD11b gene is transcriptionally induced as myeloid precursors differentiate into mature cells, then drops as monocytes further differentiate into macrophages. Previous studies have identified elements and factors involved in the transcriptional activation of the CD11b gene during myeloid differentiation, but no data exist regarding potential down-regulatory factors, especially in the later stages of differentiation. Using 2 copies of a GC-rich element (-141 to -110) in the CD11b promoter, we probed a cDNA expression library for interacting proteins. Three clones were identified among 9.1 million screened, all encoding the DNA-binding domain of the zinc finger factor ZBP-89. Overexpression of ZBP-89 in the monocyte precursor cell line U937 reduced CD11b promoter-driven luciferase activity when U937 cells were induced to differentiate into monocytelike cells using phorbol esters. To identify the differentiation stage at which ZBP-89 repression of the CD11b gene is exerted, the protein level of ZBP-89 was correlated with that of CD11b mRNA in differentiating U937 as well as in normal human monocytes undergoing in vitro differentiation into macrophages. A clear inverse relationship was observed in the latter but not the former state, suggesting that ZBP-89 represses CD11b gene expression during the further differentiation of monocytes into macrophages.
Collapse
Affiliation(s)
- Heiyoung Park
- Leukocyte Biology and Inflammation Program, Renal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
35
|
Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, Doebber TW, Berger J, Elbrecht A, Moller DE, Zhang BB. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology 2002; 143:2106-18. [PMID: 12021175 DOI: 10.1210/endo.143.6.8842] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PPAR gamma is an adipocyte-specific nuclear hormone receptor. Agonists of PPAR gamma, such as thiazolidinediones (TZDs), promote adipocyte differentiation and have insulin-sensitizing effects in animals and diabetic patients. Affymetrix oligonucleotide arrays representing 6347 genes were employed to profile the gene expression responses of mature 3T3-L1 adipocytes and differentiating preadipocytes to a TZD PPAR gamma agonist in vitro. The expression of 579 genes was significantly up- or down-regulated by more than 1.5-fold during differentiation and/or by treatment with TZD, and these genes were organized into 32 clusters that demonstrated concerted changes in expression of genes controlling cell growth or lipid metabolism. Quantitative PCR was employed to further characterize gene expression and led to the identification of beta-catenin as a new PPAR gamma target gene. Both mRNA and protein levels for beta-catenin were down-regulated in 3T3-L1 adipocytes compared with fibroblasts and were further decreased by treatment of adipocytes with PPAR gamma agonists. Treatment of db/db mice with a PPAR gamma agonist also resulted in reduction of beta-catenin mRNA levels in adipose tissue. These results suggest that beta-catenin plays an important role in the regulation of adipogenesis. Thus, the transcriptional patterns revealed in this study further the understanding of adipogenesis process and the function of PPAR gamma activation.
Collapse
Affiliation(s)
- David L Gerhold
- Department of Pharmacology, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tanoue Y, Yasunami M, Suzuki K, Ohkubo H. Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene. Biochem Biophys Res Commun 2001; 289:1010-8. [PMID: 11741291 DOI: 10.1006/bbrc.2001.6104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.
Collapse
Affiliation(s)
- Y Tanoue
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto, 862-0976, Japan
| | | | | | | |
Collapse
|
37
|
Yamada A, Takaki S, Hayashi F, Georgopoulos K, Perlmutter RM, Takatsu K. Identification and characterization of a transcriptional regulator for the lck proximal promoter. J Biol Chem 2001; 276:18082-9. [PMID: 11278409 DOI: 10.1074/jbc.m008387200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lck gene encodes a protein-tyrosine kinase that plays a key role in signaling mediated through T cell receptor (TCR) and pre-TCR complexes. Transcription of the lck gene is regulated by two independent promoter elements: the proximal and distal promoters. Previous studies employing transgenic mice demonstrated that the sequence between -584 and -240 from the transcription start site in the mouse lck proximal promoter is required for its tissue-specific expression in the thymus. In this study, we demonstrate that a Krüppel-like zinc finger protein, mtbeta (BFCOL1, BERF-1, ZBP-89, ZNF148), previously cloned as a protein that binds to the CD3delta gene enhancer, binds to the -365 to -328 region of the lck proximal promoter. mtbeta is ubiquitously expressed in various cell lines and mouse tissues. Overexpressed mtbeta is more active in T-lineage cells than B-lineage cells for transactivating an artificial promoter consisting of the mtbeta binding site and a TATA box. Activity of the lck proximal promoter was significantly impaired by mutating the mtbeta binding site or by reducing mtbeta protein expression level by using antisense mRNA. Our results indicate that mtbeta activity is regulated in a tissue-specific manner and that mtbeta is a critical transactivator for the lck proximal promoter.
Collapse
Affiliation(s)
- A Yamada
- Division of Immunology, Department of Microbiology and Immunology, the Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Feo S, Antona V, Cammarata G, Cavaleri F, Passantino R, Rubino P, Giallongo A. Conserved structure and promoter sequence similarity in the mouse and human genes encoding the zinc finger factor BERF-1/BFCOL1/ZBP-89. Biochem Biophys Res Commun 2001; 283:209-18. [PMID: 11322790 DOI: 10.1006/bbrc.2001.4753] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have characterized the genomic structure of the mouse Zfp148 gene encoding Beta-Enolase Repressor Factor-1 (BERF-1), a Kruppel-like zinc finger protein involved in the transcriptional regulation of several genes, which is also termed ZBP-89, BFCOL1. The cloned Zfp148 gene spans 110 kb of genomic DNA encompassing the 5'-end region, 9 exons, 8 introns, and the 3'-untranslated region. The promoter region displays the typical features of a housekeeping gene: a high G+C content and the absence of canonical TATA and CAAT boxes consistent with the multiple transcription initiation sites determined by primary extension analysis. Computer-assisted search in the human genome database allowed us to determine that the same genomic structure with identical intron-exon organization is conserved in the human homologue ZNF 148. Functional analysis of the 5'-flanking sequence of the mouse gene indicated that the region from nucleotide -205 to +144, relative to the major transcription start site, contains cis-regulatory elements that promote basal expression. Such sequences and the overall promoter architecture are highly conserved in the human gene. Furthermore, we show that the complex transcription pattern of the Zfp148 gene might be due to a combination of alternative splicing and differential polyadenylation sites utilization.
Collapse
Affiliation(s)
- S Feo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Centro di Oncobiologia Sperimentale, Viale delle Scienze, Palermo, 90128, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Uchida S, Tanaka Y, Ito H, Saitoh-Ohara F, Inazawa J, Yokoyama KK, Sasaki S, Marumo F. Transcriptional regulation of the CLC-K1 promoter by myc-associated zinc finger protein and kidney-enriched Krüppel-like factor, a novel zinc finger repressor. Mol Cell Biol 2000; 20:7319-31. [PMID: 10982849 PMCID: PMC86286 DOI: 10.1128/mcb.20.19.7319-7331.2000] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of CLC-K1 and CLC-K2, two kidney-specific CLC chloride channels, is transcriptionally regulated on a tissue-specific basis. Previous studies have shown that a GA element near their transcriptional start sites is important for basal and cell-specific activities of the CLC-K1 and CLC-K2 gene promoters. To identify the GA-binding proteins, the human kidney cDNA library was screened by a yeast one-hybrid system. A novel member of the Cys2-His2 zinc finger gene designated KKLF (for "kidney-enriched Krüppel-like factor") and the previously isolated MAZ (for "myc-associated zinc finger protein") were cloned. KKLF was found to be abundantly expressed in the liver, kidneys, heart, and skeletal muscle, and immunohistochemistry revealed the nuclear localization of KKLF protein in interstitial cells in heart and skeletal muscle, stellate cells, and fibroblasts in the liver. In the kidneys, KKLF protein was localized in interstitial cells, mesangial cells, and nephron segments, where CLC-K1 and CLC-K2 were not expressed. A gel mobility shift assay revealed sequence-specific binding of recombinant KKLF and MAZ proteins to the CLC-K1 GA element, and the fine-mutation assay clarified that the consensus sequence for the KKLF binding site was GGGGNGGNG. In a transient-transfection experiment, MAZ had a strong activating effect on transcription of the CLC-K1-luciferase reporter gene. On the other hand, KKLF coexpression with MAZ appeared to block the activating effect of MAZ. These results suggest that a novel set of zinc finger proteins may help regulate the strict tissue- and nephron segment-specific expression of the CLC-K1 and CLC-K2 channel genes through their GA cis element.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anion Transport Proteins
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Chloride Channels/genetics
- Chloride Channels/metabolism
- Cloning, Molecular
- Collagen/biosynthesis
- Collagen/genetics
- DNA, Complementary/genetics
- DNA-Binding Proteins
- Disease Models, Animal
- Electrophoresis, Polyacrylamide Gel
- Fibroblasts/metabolism
- Gene Expression Regulation
- Genes
- Genes, Reporter
- Humans
- Kruppel-Like Transcription Factors
- Membrane Proteins
- Mice
- Mice, Mutant Strains
- Molecular Sequence Data
- Nephritis, Interstitial/metabolism
- Nephrons/metabolism
- Nuclear Proteins
- Organ Specificity
- Promoter Regions, Genetic
- Protein Binding
- Rats
- Recombinant Fusion Proteins/physiology
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Zinc Fingers/physiology
Collapse
Affiliation(s)
- S Uchida
- Second Department of Internal Medicine, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bai L, Merchant JL. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J Biol Chem 2000; 275:30725-33. [PMID: 10899165 DOI: 10.1074/jbc.m004249200] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible p53-independent regulation of the cyclin-dependent kinase inhibitor p21(waf1) transcription is mediated through proximal GC-rich sites. Prior studies have shown that Sp1, Sp3, and the histone acetylase co-activator p300 are components of the complexes binding to these sites. Although Sp1 and Sp3 collaborate with p300, a direct interaction between Sp1 and p300 does not occur. This study sought to determine whether ZBP-89 rather than Sp1 is the direct target of p300 during butyrate induction of p21(waf1). ZBP-89 (BFCOL1, BERF-1, ZNF 148) is a Krüppel-type zinc finger transcription factor that binds to GC-rich elements and represses or activates known target genes. Adenoviral-mediated expression of ZBP-89 in HT-29 cells revealed that ZBP-89 potentiates butyrate induction of endogenous p21(waf1) gene expression. Further, cotransfection of a ZBP-89 expression vector with a 2.3-kilobase p21(waf1) reporter recapitulated the potentiation by butyrate. DNase I footprinting analysis of the human p21(waf1) promoter with recombinant ZBP-89 identified a binding site at -245 to -215. Electrophoretic mobility shift assays confirmed that both recombinant and endogenous ZBP-89 and Sp1 bind to this element. The potentiation was abolished in the presence of adenoviral protein E1A. Deletion of the N-terminal domain of ZBP-89 abolished the potentiation mediated by butyrate treatment. This same deletion mutant abolished the ZBP-89 interaction with p300. Cotransfection of p300 with ZBP-89 stimulated the p21(waf1) promoter in the absence of butyrate. p300 co-precipitated with ZBP-89 but not with Sp1, whereas ZBP-89 co-precipitated with Sp1. Together, these findings demonstrate that ZBP-89 also plays a critical role in butyrate activation of the p21(waf1) promoter and reveals preferential cooperation of this four-zinc finger transcription factor with p300.
Collapse
Affiliation(s)
- L Bai
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Physiology, University of Michigan, Ann Arbor, Mighican 48109, USA
| | | |
Collapse
|
41
|
Antona V, Cammarata G, De Gregorio L, Dragani TA, Giallongo A, Feo S. The gene encoding the transcriptional repressor BERF-1 maps to a region of conserved synteny on mouse chromosome 16 and human chromosome 3 and a related pseudogene maps to mouse chromosome 8. CYTOGENETICS AND CELL GENETICS 2000; 83:90-2. [PMID: 9925940 DOI: 10.1159/000015138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently identified and characterized a Kruppel-like zinc finger protein (BERF-1), that functions as a repressor of beta enolase gene transcription. By interspecific backcross analysis the gene encoding BERF-1 was localized 4.7 cM proximal to the Mtv6 locus on mouse chromosome 16, and an isolated pseudogene was localized to mouse chromosome 8, about 5.3 cM distal to the D8Mit4 marker. Nucleotide sequence identity and chomosome location indicate that the gene encoding BERF-1 is the mouse homologue (Zfp148) of ZNF148 localized to human chromosome 3q21, a common translocation site in acute myeloid leukemia patients.
Collapse
Affiliation(s)
- V Antona
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università di Palermo, Palermo (Italy)
| | | | | | | | | | | |
Collapse
|
42
|
Mitchell-Felton H, Hunter RB, Stevenson EJ, Kandarian SC. Identification of weight-bearing-responsive elements in the skeletal muscle sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA1) gene. J Biol Chem 2000; 275:23005-11. [PMID: 10811813 DOI: 10.1074/jbc.m003678200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The skeletal muscle sarco(endo)plasmic reticulum calcium ATPase (SERCA1) gene is transactivated as early as 2 days after the removal of weight-bearing (Peters, D. G., Mitchell-Felton, H., and Kandarian, S. C. (1999) Am. J. Physiol. 276, C1218-C1225), but the transcriptional mechanisms are elusive. Here, the rat SERCA1 5' flank and promoter region (-3636 to +172 base pairs) was comprehensively examined using in vivo somatic gene transfer into rat soleus muscles (n = 804) to identify region(s) that are both necessary and sufficient for sensitivity to weight-bearing. In all, 40 different SERCA1 reporter plasmids were constructed and tested. Several different regions of the SERCA1 5' flank were sufficient to confer a transcriptional response to 7 days of muscle unloading when placed upstream of a heterologous promoter. Two of these regions were analyzed further because they were necessary for the unloading response of -3636 to +172, as demonstrated using internal deletion constructs. Deletion analysis of these regions (-1373 to -1158 and -330 to +172) suggested that unloading responsiveness corresponded to CACC sites and E-boxes. Mutagenesis of cis-elements in the first region showed that a specific CACC box (-1262) was involved in SERCA1 transactivation and a nearby E-box (-1248) was also implicated. Constructs containing trimerized CACC sites and E-boxes showed that the presence of both elements is required to activate transcription. This is the first identification of specific cis-elements required for the regulation of a Ca(2+) handling gene by changes in muscle loading condition.
Collapse
Affiliation(s)
- H Mitchell-Felton
- Department of Health Sciences, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
43
|
Cheng PY, Kagawa N, Takahashi Y, Waterman MR. Three zinc finger nuclear proteins, Sp1, Sp3, and a ZBP-89 homologue, bind to the cyclic adenosine monophosphate-responsive sequence of the bovine adrenodoxin gene and regulate transcription. Biochemistry 2000; 39:4347-57. [PMID: 10757983 DOI: 10.1021/bi992298f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adrenocorticotropin acting through cyclic adenosine monophosphate (cAMP) regulates transcription of the bovine adrenodoxin (Adx) gene in the adrenal cortex. The bovine Adx cAMP-responsive transcription sequence (CRS) has previously been found to contain two consensus GC boxes. By use of nuclear extracts from adrenocortical cells, Sp1 and Sp3 are shown here to bind to CRS. Mutations designed to enhance the identification of additional CRS binding proteins by reducing Sp protein binding showed the presence of an additional DNA-binding protein (Adx factor). Adx factor binding is inhibited by the zinc-chelating agent, 1,10-o-phenanthroline, suggesting it might be a zinc finger protein. By a fractionation/renaturation technique the Adx factor in mouse Y1 adrenocortical cells was found to be in the size range of 106-115 kDa by gel mobility shift assay. On the basis of size, the CRS sequence to which it binds, and its tentative identification as a zinc finger protein, Adx factor has been identified as a Krüppel-like zinc finger protein (a mouse ZBP-89 homologue). Further mutagenesis of CRS demonstrates that it can further be divided into two similar cAMP-responsive elements, and elimination of ZBP-89 binding does not affect cAMP responsiveness of either. Expression of these three nuclear proteins in Drosophila SL2 cells has been used to decipher the role of Adx CRS binding proteins in regulating transcription. Sp1 and Sp3 confer basal transcriptional activities, yet only Sp1 confers cAMP-responsive activity. ZBP-89 represses basal transcriptional activity.
Collapse
Affiliation(s)
- P Y Cheng
- Department of Biochemistry, Medical School, Vanderbilt University, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
44
|
Cellular transcription factors recruit viral replication proteins to activate the Epstein–Barr virus origin of lytic DNA replication, oriLyt. EMBO J 2000. [DOI: 10.1038/sj.emboj.7592140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Lisowsky T, Polosa PL, Sagliano A, Roberti M, Gadaleta MN, Cantatore P. Identification of human GC-box-binding zinc finger protein, a new Krüppel-like zinc finger protein, by the yeast one-hybrid screening with a GC-rich target sequence. FEBS Lett 1999; 453:369-74. [PMID: 10405178 DOI: 10.1016/s0014-5793(99)00754-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new human zinc finger DNA-binding protein was identified by using a yeast one-hybrid selection system. Two versions of the cDNA, encoding the same protein, were detected that differ for a 584 bp extension at the 5' region. Sequence analysis showed that the longer clone is a full length version containing part of the 5' untranslated region. The smaller version was fused in frame with the yeast GAL4 activation domain whereas the 5' region of the longer clone displayed a stop codon interrupting the fusion with the GAL4 domain. Nevertheless, this clone activated the yeast HIS3 reporter gene with the same efficiency as the smaller version. Sequence comparison of the derived protein with the database showed that it belongs to a family of zinc finger DNA-binding proteins which regulate the expression of genes involved in cell proliferation. Expression of the protein in an in vitro system, DNA-binding studies and genetic experiments identify this factor as a new zinc finger DNA-binding protein which binds GC-rich sequences and contains a domain probably functioning as a transcriptional activator. The new human protein identified in this study was therefore named GC-box-binding zinc finger protein).
Collapse
Affiliation(s)
- T Lisowsky
- Botanisches Institut, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Reizis B, Leder P. Expression of the mouse pre-T cell receptor alpha gene is controlled by an upstream region containing a transcriptional enhancer. J Exp Med 1999; 189:1669-78. [PMID: 10330446 PMCID: PMC2193641 DOI: 10.1084/jem.189.10.1669] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1999] [Indexed: 11/23/2022] Open
Abstract
The pre-T cell receptor alpha (pTalpha) protein is a critical component of the pre-T cell receptor complex in early thymocytes. The expression of the pTalpha gene is one of the earliest markers of the T cell lineage and occurs exclusively in pre-T cells. To investigate the molecular basis of thymocyte-specific gene expression, we searched for the genomic elements regulating transcription of the mouse pTalpha gene. We now report that expression of the pTalpha gene is primarily controlled by an upstream genomic region, which can drive thymocyte-specific expression of a marker gene in transgenic mice. Within this region, we have identified two specific DNase-hypersensitive sites corresponding to a proximal promoter and an upstream transcriptional enhancer. The pTalpha enhancer appears to function preferentially in pre-T cell lines and binds multiple nuclear factors, including YY1. The enhancer also contains two G-rich stretches homologous to a critical region of the thymocyte-specific lck proximal promoter. Here we show that these sites bind a common nuclear factor and identify it as the zinc finger protein ZBP-89. Our data establish a novel experimental model for thymocyte-specific gene expression and suggest an important role for ZBP-89 in T cell development.
Collapse
Affiliation(s)
- B Reizis
- Department of Genetics and the Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
47
|
Musarò A, Rosenthal N. Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I. Mol Cell Biol 1999; 19:3115-24. [PMID: 10082578 PMCID: PMC84105 DOI: 10.1128/mcb.19.4.3115] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms underlying myogenic induction by insulin-like growth factor I (IGF-I) are distinct from its proliferative effects on myoblasts. To determine the postmitotic role of IGF-I on muscle cell differentiation, we derived L6E9 muscle cell lines carrying a stably transfected rat IGF-I gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC-IGF-I exclusively in differentiated L6E9 myotubes, which express the embryonic form of myosin heavy chain (MyHC) and no endogenous IGF-I, resulted in pronounced myotube hypertrophy, accompanied by activation of the neonatal MyHC isoform. The hypertrophic myotubes dramatically increased expression of myogenin, muscle creatine kinase, beta-enolase, and IGF binding protein 5 and activated the myocyte enhancer factor 2C gene which is normally silent in this cell line. MLC-IGF-I induction in differentiated L6E9 cells also increased the expression of a transiently transfected LacZ reporter driven by the myogenin promoter, demonstrating activation of the differentiation program at the transcriptional level. Nuclear reorganization, accumulation of skeletal actin protein, and an increased expression of beta1D integrin were also observed. Inhibition of the phosphatidyl inositol (PI) 3-kinase intermediate in IGF-I-mediated signal transduction confirmed that the PI 3-kinase pathway is required only at early stages for IGF-I-mediated hypertrophy and neonatal MyHC induction in these cells. Expression of IGF-I in postmitotic muscle may therefore play an important role in the maturation of the myogenic program.
Collapse
Affiliation(s)
- A Musarò
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|