1
|
Oluoch PO, Koh EI, Proulx MK, Reames CJ, Papavinasasundaram KG, Murphy KC, Zimmerman MD, Dartois V, Sassetti CM. Chemical genetic interactions elucidate pathways controlling tuberculosis antibiotic efficacy during infection. Proc Natl Acad Sci U S A 2025; 122:e2417525122. [PMID: 39993187 PMCID: PMC11892619 DOI: 10.1073/pnas.2417525122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025] Open
Abstract
Successful tuberculosis therapy requires treatment with an unwieldy multidrug combination for several months. Thus, there is a growing need to identify novel genetic vulnerabilities that can be leveraged to develop new, more effective antitubercular drugs. Consequently, recent efforts to optimize tuberculosis (TB) therapy have exploited Mycobacterium tuberculosis (Mtb) chemical genetics to identify pathways influencing antibiotic efficacy, novel mechanisms of antibiotic action, and new targets for TB drug discovery. However, the influence of the complex host environment on these interactions remains largely unknown, leaving the therapeutic potential of the identified targets unclear. In this study, we leveraged a library of conditional mutants targeting 467 essential Mtb genes to characterize the chemical-genetic interactions (CGIs) with TB drugs directly in the mouse infection model. We found that these in vivo CGIs differ significantly from those identified in vitro. Both drug-specific and drug-agnostic effects were identified, and many were preserved during treatment with a multidrug combination, suggesting numerous strategies for enhancing therapy. This work also elucidated the complex effects of pyrazinamide (PZA), a drug that relies on aspects of the infection environment for efficacy. Specifically, our work supports the importance of coenzyme A synthesis- inhibition during infection, as well as the antagonistic effect of iron limitation on PZA activity. In addition, we found that inhibition of thiamine and purine synthesis increases PZA efficacy, suggesting additional therapeutically exploitable metabolic dependencies. Our findings present a map of the unique in vivo CGIs, characterizing the mechanism of PZA activity in vivo and identifying potential targets for TB drug development.
Collapse
Affiliation(s)
- Peter O. Oluoch
- Department of Microbiology, University of Massachusetts Medical School, Worcester, MA01655
| | - Eun-Ik Koh
- Department of Microbiology, University of Massachusetts Medical School, Worcester, MA01655
| | - Megan K. Proulx
- Department of Microbiology, University of Massachusetts Medical School, Worcester, MA01655
| | - Charlotte J. Reames
- Department of Microbiology, University of Massachusetts Medical School, Worcester, MA01655
| | | | - Kenan C. Murphy
- Department of Microbiology, University of Massachusetts Medical School, Worcester, MA01655
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ07110
| | | |
Collapse
|
2
|
Oluoch PO, Koh EI, Proulx MK, Reames CJ, Papavinasasundaram KG, Murphy KC, Zimmerman MD, Dartois V, Sassetti CM. Chemical genetic interactions elucidate pathways controlling tuberculosis antibiotic efficacy during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.609063. [PMID: 39282290 PMCID: PMC11398305 DOI: 10.1101/2024.09.04.609063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Successful tuberculosis therapy requires treatment with an unwieldy multidrug combination for several months. Thus, there is a growing need to identify novel genetic vulnerabilities that can be leveraged to develop new, more effective antitubercular drugs. Consequently, recent efforts to optimize TB therapy have exploited Mtb chemical genetics to identify pathways influencing antibiotic efficacy, novel mechanisms of antibiotic action, and new targets for TB drug discovery. However, the influence of the complex host environment on these interactions remains largely unknown, leaving the therapeutic potential of the identified targets unclear. In this study, we leveraged a library of conditional mutants targeting 467 essential Mtb genes to characterize the chemical-genetic interactions (CGIs) with TB drugs directly in the mouse infection model. We found that these in vivo CGIs differ significantly from those identified in vitro . Both drug-specific and drug-agnostic effects were identified, and many were preserved during treatment with a multidrug combination, suggesting numerous strategies for enhancing therapy. This work also elucidated the complex effects of pyrazinamide (PZA), a drug that relies on aspects of the infection environment for efficacy. Specifically, our work supports the importance of coenzyme A synthesis inhibition during infection, as well as the antagonistic effect of iron limitation on PZA activity. In addition, we found that inhibition of thiamine and purine synthesis increases PZA efficacy, suggesting novel therapeutically exploitable metabolic dependencies. Our findings present a map of the unique in vivo CGIs, characterizing the mechanism of PZA activity in vivo and identifying novel targets for TB drug development. Significance The inevitable rise of multi-drug-resistant tuberculosis underscores the urgent need for new TB drugs and novel drug targets while prioritizing synergistic drug combinations. Chemical-genetic interaction (CGI) studies have delineated bacterial pathways influencing antibiotic efficacy and uncovered druggable pathways that synergize with TB drugs. However, most studies are conducted in vitro , limiting our understanding of how the host environment influences drug-mutant interactions. Using an inducible mutant library targeting essential Mtb genes to characterize CGIs during infection, this study reveals that CGIs are both drug-specific and drug-agnostic and differ significantly from those observed in vitro . Synergistic CGIs comprised distinct metabolic pathways mediating antibiotic efficacy, revealing novel drug mechanisms of action, and defining potential drug targets that would synergize with frontline antitubercular drugs.
Collapse
|
3
|
Wang Q, Jiang W, Cai Y, Tišma M, Baganz F, Shi J, Lye GJ, Xiang W, Hao J. 2-Hydroxyisovalerate production by Klebsiella pneumoniae. Enzyme Microb Technol 2024; 172:110330. [PMID: 37866134 DOI: 10.1016/j.enzmictec.2023.110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
2-Hydroxyisovalerate is a valuable chemical that can be used in the production of biodegradable polyesters. In nature, it was only produced at a very low level by Lactococcus lactis. 2-Ketoisovalerate is an intermediate metabolite of the branched-chain amino acid biosynthesis pathway, and Klebsiella pneumoniae ΔbudAΔldhA (Kp ΔbudAΔldhA) was a 2-ketoisovalerate producing strain. In this research, 2-hydroxyisovalerate was identified as a metabolite of Kp ΔbudAΔldhA, and its synthesis pathway was revealed. It was found that 2-ketoisovalerate and 2-hydroxyisovalerate were produced by Kp ΔbudA and Kp ΔbudAΔldhA, but not by Kp ΔbudAΔldhAΔilvD in which the 2-ketoisovalerate synthesis was blocked. budA, ldhA, and ilvD encode α-acetolactate decarboxylase, lactate dehydrogenase, and dihydroxy acid dehydratase, respectively. Thus, it was deduced that 2-hydroxyisovalerate was synthesized from 2-ketoisovalerate. Isoenzymes of ketopantoate reductase PanE, PanE2, and IlvC were suspected of being responsible for this reaction. Kinetic parameters of these enzymes were detected, and they all hold the 2-ketoisovalerate reductase activities. PanE and PanE2 use both NADH and NADPH as co-factors. While IlvC only uses NADH as a co-factor. Over-expression of panE, panE2, or ilvC in Kp ΔbudAΔldhA all enhanced the production of 2-hydroxyisovalerate. Accordingly, 2-hydroxyisovalerate levels were reduced by knocking out panE or panE2. In fed-batch fermentation, 14.41 g/L of 2-hydroxyisovalerate was produced by Kp ΔbudAΔldhA-panE, with a substrate conversion ratio of 0.13 g/g glucose.
Collapse
Affiliation(s)
- Qinghui Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaoyu Cai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, People's Republic of China
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, People's Republic of China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
4
|
Khanppnavar B, Chatterjee R, Choudhury GB, Datta S. Genome-wide survey and crystallographic analysis suggests a role for both horizontal gene transfer and duplication in pantothenate biosynthesis pathways. Biochim Biophys Acta Gen Subj 2019; 1863:1547-1559. [DOI: 10.1016/j.bbagen.2019.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023]
|
5
|
Ernst DC, Borchert AJ, Downs DM. Perturbation of the metabolic network in Salmonella enterica reveals cross-talk between coenzyme A and thiamine pathways. PLoS One 2018; 13:e0197703. [PMID: 29791499 PMCID: PMC5965847 DOI: 10.1371/journal.pone.0197703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/07/2018] [Indexed: 11/19/2022] Open
Abstract
Microorganisms respond to a variety of metabolic perturbations by repurposing or recruiting pathways to reroute metabolic flux and overcome the perturbation. Elimination of the 2-dehydropantoate 2-reductase, PanE, both reduces total coenzyme A (CoA) levels and causes a conditional HMP-P auxotrophy in Salmonella enterica. CoA or acetyl-CoA has no demonstrable effect on the HMP-P synthase, ThiC, in vitro. Suppressors aimed at probing the connection between the biosynthesis of thiamine and CoA contained mutations in the gene encoding the ilvC transcriptional regulator, ilvY. These mutations may help inform the structure and mechanism of action for the effector-binding domain, as they represent the first sequenced substitutions in the effector-binding domain of IlvY that cause constitutive expression of ilvC. Since IlvC moonlights as a 2-dehydropantoate 2-reductase, the resultant increase in ilvC transcription increased synthesis of CoA. This study failed to identify mutations overcoming the need for CoA for thiamine synthesis in S. enterica panE mutants, suggesting that a more integrated approach may be necessary to uncover the mechanism connecting CoA and ThiC activity in vivo.
Collapse
Affiliation(s)
- Dustin C. Ernst
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Andrew J. Borchert
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Diana M. Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Biosynthesis of antibiotic chuangxinmycin from Actinoplanes tsinanensis. Acta Pharm Sin B 2018; 8:283-294. [PMID: 29719789 PMCID: PMC5925218 DOI: 10.1016/j.apsb.2017.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Chuangxinmycin is an antibiotic isolated from Actinoplanes tsinanensis CPCC 200056 in the 1970s with a novel indole-dihydrothiopyran heterocyclic skeleton. Chuangxinmycin showed in vitro antibacterial activity and in vivo efficacy in mouse infection models as well as preliminary clinical trials. But the biosynthetic pathway of chuangxinmycin has been obscure since its discovery. Herein, we report the identification of a stretch of DNA from the genome of A. tsinanensis CPCC 200056 that encodes genes for biosynthesis of chuangxinmycin by bioinformatics analysis. The designated cxn cluster was then confirmed to be responsible for chuangxinmycin biosynthesis by direct cloning and heterologous expressing in Streptomyces coelicolor M1146. The cytochrome P450 CxnD was verified to be involved in the dihydrothiopyran ring closure reaction by the identification of seco-chuangxinmycin in S. coelicolor M1146 harboring the cxn gene cluster with an inactivated cxnD. Based on these results, a plausible biosynthetic pathway for chuangxinmycin biosynthesis was proposed, by hijacking the primary sulfur transfer system for sulfur incorporation. The identification of the biosynthetic gene cluster of chuangxinmycin paves the way for elucidating the detail biochemical machinery for chuangxinmycin biosynthesis, and provides the basis for the generation of novel chuangxinmycin derivatives by means of combinatorial biosynthesis and synthetic biology.
Collapse
|
7
|
Abstract
Pantothenate is vitamin B5 and is the key precursor for the biosynthesis of coenzyme A (CoA), a universal and essential cofactor involved in a myriad of metabolic reactions, including the synthesis of phospholipids, the synthesis and degradation of fatty acids, and the operation of the tricarboxylic acid cycle. CoA is also the only source of the phosphopantetheine prosthetic group for enzymes that shuttle intermediates between the active sites of enzymes involved in fatty acid, nonribosomal peptide, and polyketide synthesis. Pantothenate can be synthesized de novo and/or transported into the cell through a pantothenatepermease. Pantothenate uptake is essential for those organisms that lack the genes to synthesize this vitamin. The intracellular levels of CoA are controlled by the balance between synthesis and degradation. In particular, CoA is assembled in five enzymatic steps, starting from the phosphorylation of pantothenate to phosphopantothenatecatalyzed by pantothenate kinase, the product of the coaA gene. In some bacteria, the production of phosphopantothenate by pantothenate kinase is the rate limiting and most regulated step in the biosynthetic pathway. CoA synthesis additionally networks with other vitamin-associated pathways, such as thiamine and folic acid.
Collapse
|
8
|
Sanchez JE, Gross PG, Goetze RW, Walsh RM, Peeples WB, Wood ZA. Evidence of Kinetic Cooperativity in Dimeric Ketopantoate Reductase from Staphylococcus aureus. Biochemistry 2015; 54:3360-3369. [PMID: 25946571 DOI: 10.1021/acs.biochem.5b00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ketopantoate reductase (KPR) catalyzes the NADPH-dependent production of pantoate, an essential precursor in the biosynthesis of coenzyme A. Previous structural studies have been limited to Escherichia coli KPR, a monomeric enzyme that follows a sequential ordered mechanism. Here we report the crystal structure of the Staphylococcus aureus enzyme at 1.8 Å resolution, the first description of a dimeric KPR. Using sedimentation velocity analysis, we show that the S. aureus KPR dimer is stable in solution. In fact, our structural analysis shows that the dimeric assembly we identify is present in the majority of KPR crystal structures. Steady state analysis of S. aureus KPR reveals strong positive cooperativity with respect to NADPH (Hill coefficient of 2.5). In contrast, high concentrations of the substrate ketopantoate (KP) inhibit the activity of the enzyme. These observations are consistent with a random addition mechanism in which the initial binding of NADPH is the kinetically preferred path. In fact, Förster resonance energy transfer studies of the equilibrium binding of NADPH show only a small degree of cooperativity between subunits (Hill coefficient of 1.3). Thus, the apparently strong cooperativity observed in substrate saturation curves is due to a kinetic process that favors NADPH binding first. This interpretation is consistent with our analysis of the A181L substitution, which increases the Km of ketopantoate 844-fold, without affecting kcat. The crystal structure of KPRA181L shows that the substitution displaces Ser239, which is known to be important for the binding affinity of KP. The decrease in KP affinity would enhance the already kinetically preferred NADPH binding path, making the random mechanism appear to be sequentially ordered and reducing the kinetic cooperativity. Consistent with this interpretation, the NADPH saturation curve for KPRA181L is hyperbolic.
Collapse
Affiliation(s)
- Joseph E Sanchez
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Phillip G Gross
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Russell W Goetze
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Richard M Walsh
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - William B Peeples
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Zachary A Wood
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Si D, Urano N, Shimizu S, Kataoka M. Cloning and overexpression of ketopantoic acid reductase gene from Stenotrophomonas maltophilia and its application to stereospecific production of d-pantoic acid. Appl Microbiol Biotechnol 2011; 93:1619-25. [DOI: 10.1007/s00253-011-3664-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/03/2011] [Accepted: 10/22/2011] [Indexed: 11/29/2022]
|
10
|
Mondal S, Nagao C, Mizuguchi K. Detecting subtle functional differences in ketopantoate reductase and related enzymes using a rule-based approach with sequence-structure homology recognition scores. Protein Eng Des Sel 2010; 23:859-69. [PMID: 20876192 DOI: 10.1093/protein/gzq062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ketopatoate reductase (KPR) is the second enzyme in the pantothenate (vitamin B(5)) biosynthesis pathway, an essential metabolic pathway identified as a potential target for new antimicrobials. The sequence similarity among putative KPRs is limited and KPR itself belongs to a large superfamily of 6-phosphogluconate dehydrogenases. Therefore, it is necessary to discriminate between true and other enzymes. In this paper, we describe a systematic analysis of putative KPRs in the context of this superfamily. Detailed structural analysis allowed us to define key residues for KPR activity and we classified eight structural genomics structures of the KPR family into four functional subclasses. We proposed a semi-automatic protocol, using sequence-structure homology recognition scores, for assigning KPR and related proteins to these subclasses and applied it to a representative set of 103 completely sequenced bacterial genomes. A similar approach can be applied to other enzyme families, which would aid the correct identification of drug targets and help design novel specific inhibitors.
Collapse
Affiliation(s)
- Sukanta Mondal
- National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka, Japan
| | | | | |
Collapse
|
11
|
The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis. J Bacteriol 2008; 191:873-81. [PMID: 19047348 DOI: 10.1128/jb.01114-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxyacid dehydrogenases of lactic acid bacteria, which catalyze the stereospecific reduction of branched-chain 2-keto acids to 2-hydroxyacids, are of interest in a variety of fields, including cheese flavor formation via amino acid catabolism. In this study, we used both targeted and random mutagenesis to identify the genes responsible for the reduction of 2-keto acids derived from amino acids in Lactococcus lactis. The gene panE, whose inactivation suppressed hydroxyisocaproate dehydrogenase activity, was cloned and overexpressed in Escherichia coli, and the recombinant His-tagged fusion protein was purified and characterized. The gene annotated panE was the sole gene responsible for the reduction of the 2-keto acids derived from leucine, isoleucine, and valine, while ldh, encoding L-lactate dehydrogenase, was responsible for the reduction of the 2-keto acids derived from phenylalanine and methionine. The kinetic parameters of the His-tagged PanE showed the highest catalytic efficiencies with 2-ketoisocaproate, 2-ketomethylvalerate, 2-ketoisovalerate, and benzoylformate (V(max)/K(m) ratios of 6,640, 4,180, 3,300, and 2,050 U/mg/mM, respectively), with NADH as the exclusive coenzyme. For the reverse reaction, the enzyme accepted d-2-hydroxyacids but not l-2-hydroxyacids. Although PanE showed the highest degrees of identity to putative NADP-dependent 2-ketopantoate reductases (KPRs), it did not exhibit KPR activity. Sequence homology analysis revealed that, together with the d-mandelate dehydrogenase of Enterococcus faecium and probably other putative KPRs, PanE belongs to a new family of D-2-hydroxyacid dehydrogenases which is unrelated to the well-described D-2-hydroxyisocaproate dehydrogenase family. Its probable physiological role is to regenerate the NAD(+) necessary to catabolize branched-chain amino acids, leading to the production of ATP and aroma compounds.
Collapse
|
12
|
Dougherty MJ, Downs DM. A connection between iron-sulfur cluster metabolism and the biosynthesis of 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate in Salmonella enterica. MICROBIOLOGY-SGM 2006; 152:2345-2353. [PMID: 16849799 DOI: 10.1099/mic.0.28926-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Several cellular pathways have been identified which affect the efficiency of thiamine biosynthesis in Salmonella enterica. Mutants defective in iron-sulfur (Fe-S) cluster metabolism are less efficient at synthesis of the pyrimidine moiety of thiamine. These mutants are compromised for the conversion of aminoimidazole ribotide (AIR) to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), not the synthesis of AIR. The gene product ThiC contains potential ligands for an Fe-S cluster that are required for function in vivo. The conversion of AIR to HMP-P is sensitive to oxidative stress, and variants of ThiC have been identified that have increased sensitivity to oxidative growth conditions. The data are consistent with ThiC or an as-yet-unidentified protein involved in HMP-P synthesis containing an Fe-S cluster required for its physiological function.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| |
Collapse
|
13
|
Lobley CMC, Ciulli A, Whitney HM, Williams G, Smith AG, Abell C, Blundell TL. The crystal structure of Escherichia coli ketopantoate reductase with NADP+ bound. Biochemistry 2005; 44:8930-9. [PMID: 15966718 DOI: 10.1021/bi0502036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NADPH-dependent reduction of ketopantoate to pantoate, catalyzed by ketopantoate reductase (KPR; EC 1.1.1.169), is essential for the biosynthesis of pantothenate (vitamin B(5)). Here we present the crystal structure of Escherichia coli KPR with NADP(+) bound, solved to 2.1 A resolution. The cofactor is bound in the active site cleft between the N-terminal Rossmann-fold domain and the C-terminal alpha-helical domain. The thermodynamics of cofactor and substrate binding were characterized by isothermal titration calorimetry. The dissociation constant for NADP(+) was found to be 6.5 muM, 20-fold larger than that for NADPH (0.34 muM). The difference is primarily due to the entropic term, suggesting favorable hydrophobic interactions of the more lipophilic nicotinamide ring in NADPH. Comparison of this binary complex structure with the previously studied apoenzyme reveals no evidence for large domain movements on cofactor binding. This observation is further supported both by molecular dynamics and by calorimetric analysis. A model of the ternary complex, based on the structure presented here, provides novel insights into the molecular mechanism of enzyme catalysis. We propose a conformational switch of the essential Lys176 from the "resting" state observed in our structure to an "active" state, to bind ketopantoate. Additionally, we identify the importance of Asn98 for substrate binding and enzyme catalysis.
Collapse
Affiliation(s)
- Carina M C Lobley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
15
|
Zheng R, Blanchard JS. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase. Biochemistry 2003; 42:11289-96. [PMID: 14503879 DOI: 10.1021/bi030101k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ketopantoate reductase (EC 1.1.1.169), an enzyme in the pantothenate biosynthetic pathway, catalyzes the NADPH-dependent reduction of alpha-ketopantoate to form D-(-)-pantoate. The enzyme exhibits high specificity for ketopantoate, with V and V/K for ketopantoate being 5- and 365-fold higher than those values for alpha-ketoisovalerate and 20- and 648-fold higher than those values for alpha-keto-beta-methyl-n-valerate, respectively. For pyridine nucleotides, V/K for beta-NADPH is 3-500-fold higher than that for other nucleotide substrates. The magnitude of the primary deuterium kinetic isotope effects on V and V/K varied substantially when different ketoacid and pyridine nucleotide substrates were used. The small primary deuterium kinetic isotope effects observed using NADPH and NHDPH suggest that the chemical step is not rate-limiting, while larger primary deuterium isotope effects were observed for poor ketoacid and pyridine nucleotide substrates, indicating that the chemical reaction has become partially or completely rate-limiting. The pH dependence of (D)V using ketopantoate was observed to vary from a value of 1.1 at low pH to a value of 2.5 at high pH, while the magnitude of (D)V/K(NADPH) and (D)V/K(KP) were pH-independent. The value of (D)V is large and pH-independent when alpha-keto-beta-methyl-n-valerate was used as the ketoacid substrate. Solvent kinetic isotope effects of 2.2 and 1.2 on V and V/K, respectively, were observed with alpha-keto-beta-methyl-n-valerate. Rapid reaction analysis of NADPH oxidation using ketopantoate showed no "burst" phase, suggesting that product-release steps are not rate-limiting and the cause of the small observed kinetic isotope effects with this substrate pair. Large primary deuterium isotope effects on V and V/K using 3-APADPH in steady-state experiments, equivalent to the isotope effect observed in single turnover studies, suggests that chemistry is rate-limiting for this poorer reductant. These results are discussed in terms of a kinetic and chemical mechanism for the enzyme.
Collapse
Affiliation(s)
- Renjian Zheng
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
16
|
Matak-Vinković D, Vinković M, Saldanha SA, Ashurst JL, von Delft F, Inoue T, Miguel RN, Smith AG, Blundell TL, Abell C. Crystal structure of Escherichia coli ketopantoate reductase at 1.7 A resolution and insight into the enzyme mechanism. Biochemistry 2001; 40:14493-500. [PMID: 11724562 DOI: 10.1021/bi011020w] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ketopantoate reductase (KPR, EC 1.1.1.169) catalyzes the NADPH-dependent reduction of ketopantoate to pantoate on the pantothenate (vitamin B(5)) biosynthetic pathway. The Escherichia coli panE gene encoding KPR was cloned and expressed at high levels as the native and selenomethionine-substituted (SeMet) proteins. Both native and SeMet recombinant proteins were purified by three chromatographic steps, to yield pure proteins. The wild-type enzyme was found to have a K(M)(NADPH) of 20 microM, a K(M)(ketopantoate) of 60 microM, and a k(cat) of 40 s(-1). Regular prismatic KPR crystals were prepared using the hanging drop technique. They belonged to the tetragonal space group P4(2)2(1)2, with cell parameters: a = b = 103.7 A and c = 55.7 A, accommodating one enzyme molecule per asymmetric unit. The structure of KPR was determined by the multiwavelength anomalous dispersion method using the SeMet protein, for which data were collected to 2.3 A resolution. The native data were collected to 1.7 A resolution and used to refine the final structure. The secondary structure comprises 12 alpha-helices, three 3(10)-helices, and 11 beta-strands. The enzyme is monomeric and has two domains separated by a cleft. The N-terminal domain has an alphabeta-fold of the Rossmann type. The C-terminal domain (residues 170-291) is composed of eight alpha-helices. KPR is shown to be a member of the 6-phosphogluconate dehydrogenase C-terminal domain-like superfamily. A model for the ternary enzyme-NADPH-ketopantoate ternary complex provides a rationale for kinetic data reported for specific site-directed mutants.
Collapse
|
17
|
Abstract
Coenzyme A (I) and enzyme-bound phosphopantetheine (II) function as acyl carriers and as carbonyl activating groups for Claisen reactions as well as for amide-, ester-, and thioester-forming reactions in the cell. In so doing, these cofactors play a key role in the biosynthesis and breakdown of fatty acids and in the biosynthesis of polyketides and nonribosomal peptides. Coenzyme A is biosynthesized in bacteria in nine steps. The biosynthesis begins with the decarboxylation of aspartate to give beta-alanine. Pantoic acid is formed by the hydroxymethylation of alpha-ketoisovalerate followed by reduction. These intermediates are then condensed to give pantothenic acid. Phosphorylation of pantothenic acid followed by condensation with cysteine and decarboxylation gives 4'-phosphopantetheine. Adenylation and phosphorylation of 4'-phosphopantetheine completes the biosynthesis of coenzyme A. This review will focus on the mechanistic enzymology of coenzyme A biosynthesis in bacteria.
Collapse
Affiliation(s)
- T P Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
18
|
Zheng R, Blanchard JS. Identification of active site residues in E. coli ketopantoate reductase by mutagenesis and chemical rescue. Biochemistry 2000; 39:16244-51. [PMID: 11123955 DOI: 10.1021/bi002134v] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of alpha-ketopantoate to D-(-)-pantoate in the biosynthesis of pantothenate. The pH dependence of V and V/K for the E. coli enzyme suggests the involvement of a general acid/base in the catalytic mechanism. To identify residues involved in catalysis and substrate binding, we mutated the following six strictly conserved residues to Ala: Lys72, Lys176, Glu210, Glu240, Asp248, and Glu256. Of these, the K176A and E256A mutant enzymes showed 233- and 42-fold decreases in V(max), and 336- and 63-fold increases in the K(m) value of ketopantoate, respectively, while the other mutants exhibited WT kinetic properties. The V(max) for the K176A and E256A mutant enzymes was markedly increased, up to 25% and 75% of the wild-type level, by exogenously added primary amines and formate, respectively. The rescue efficiencies for the K176A and E256A mutant enzymes were dependent on the molecular volume of rescue agents, as anticipated for a finite active site volume. The protonated form of the amine is responsible for recovery of activity, suggesting that Lys176 functions as a general acid in catalysis of ketopantoate reduction. The rescue efficiencies for the K176A mutant by primary amines were independent of the pK(a) value of the rescue agents (Bronsted coefficient, alpha = -0.004 +/-0.008). Insensitivity to acid strength suggests that the chemical reaction is not rate-limiting, consistent with (a) the catalytic efficiency of the wild-type enzyme (k(cat)/K(m) = 2x10(6) M(-1) s(-1) and (b) the small primary deuterium kinetic isotope effects, (D)V = 1.3 and (D)V/K = 1.5, observed for the wild-type enzyme. Larger primary deuterium isotope effects on V and V/K were observed for the K176A mutant ((D)V = 3.0, (D)V/K = 3.7) but decreased nearly to WT values as the concentration of ethylamine was increased. The nearly WT activity of the E256A mutant in the presence of formate argues for an important role for this residue in substrate binding. The double mutant (K176A/E256A) has no detectable ketopantoate reductase activity. These results indicate that Lys176 and Glu256 of the E. coli ketopantoate reductase are active site residues, and we propose specific roles for each in binding ketopantoate and catalysis.
Collapse
Affiliation(s)
- R Zheng
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
19
|
Zilles JL, Croal LR, Downs DM. Action of the thiamine antagonist bacimethrin on thiamine biosynthesis. J Bacteriol 2000; 182:5606-10. [PMID: 10986269 PMCID: PMC111009 DOI: 10.1128/jb.182.19.5606-5610.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacimethrin is an analog of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety of thiamine and inhibits the growth of Salmonella enterica serovar Typhimurium on a defined medium. Two classes of mutants that had increased bacimethrin resistance were isolated and characterized. Results showed that overexpression of the thi operon or specific lesions in thiD resulted in a bacimethrin-resistant phenotype. Phenotypic analyses of the thiD mutants suggested that they had a specific defect in one of the two kinase activities associated with this gene product and, further, that ThiD and not PdxK was primarily responsible for salvage of HMP from the medium.
Collapse
Affiliation(s)
- J L Zilles
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
20
|
Skovran E, Downs DM. Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar typhimurium: implications for thiamine synthesis. J Bacteriol 2000; 182:3896-903. [PMID: 10869064 PMCID: PMC94571 DOI: 10.1128/jb.182.14.3896-3903.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolic consequences of two insertions, iscR1::MudJ and iscA2::MudJ, in the isc gene cluster of Salmonella enterica serovar Typhimurium were studied. Each of these insertions had polar effects and caused a nutritional requirement for the thiazole moiety of thiamine. Data showed that IscS was required for the synthesis of nicotinic acid and the thiazole moiety of thiamine and that one or more additional isc gene products were required for a distinct step in the thiazole biosynthetic pathway. Strains with isc lesions had reduced succinate dehydrogenase and aconitase activities. Furthermore, isc mutants accumulated increased levels of pyruvate in the growth medium in response to exogenously added iron (FeCl(3)), and this response required a functional ferric uptake regulator, Fur.
Collapse
Affiliation(s)
- E Skovran
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|
21
|
Zheng R, Blanchard JS. Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase. Biochemistry 2000; 39:3708-17. [PMID: 10736170 DOI: 10.1021/bi992676g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ketopantoate reductase (EC 1.1.1.169) catalyzes the NADPH-dependent reduction of alpha-ketopantoate to form D-(-)-pantoate in the pantothenate/coenzyme A biosynthetic pathway. The enzyme encoded by the panE gene from E. coli K12 was overexpressed and purified to homogeneity. The native enzyme exists in solution as a monomer with a molecular mass of 34 000 Da. The steady-state initial velocity and product inhibition patterns are consistent with an ordered sequential kinetic mechanism in which NADPH binding is followed by ketopantoate binding, and pantoate release precedes NADP(+) release. The pH dependence of the kinetic parameters V and V/K for substrates in both the forward and reverse reactions suggests the involvement of a single general acid/base in the catalytic mechanism. An enzyme group exhibiting a pK value of 8.4 +/- 0.2 functions as a general acid in the direction of the ketopantoate reduction, while an enzyme group exhibiting a pK value of 7.8 +/- 0.2 serves as a general base in the direction of pantoate oxidation. The stereospecific transfer of the pro-S hydrogen atom of NADPH to the C-2 position of ketopantoate was demonstrated by (1)H NMR spectroscopy. Primary deuterium kinetic isotope effects of 1.3 and 1.5 on V(for) and V/K(NADPH), respectively, and 2.1 and 1.3 on V(rev) and V/K(HP), respectively, suggest that hydride transfer is not rate-limiting in catalysis. Solvent kinetic isotope effects of 1.3 on both V(for) and V/K(KP), and 1.4 and 1.5 on V(rev) and V/K(HP), respectively, support this conclusion. The apparent equilibrium constant, K(eq)', of 676 at pH 7.5 and the standard free energy change, DeltaG, of -14 kcal/mol suggest that ketopantoate reductase reaction is very favorable in the physiologically important direction of pantoate formation.
Collapse
Affiliation(s)
- R Zheng
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
22
|
Elischewski F, Pühler A, Kalinowski J. Pantothenate production in Escherichia coli K12 by enhanced expression of the panE gene encoding ketopantoate reductase. J Biotechnol 1999; 75:135-46. [PMID: 10553653 DOI: 10.1016/s0168-1656(99)00153-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using gene replacement and transposon Tn5 mutagenesis, an Escherichia coli ilvC panE double mutant completely lacking ketopantoate reductase activity was isolated. This E. coli double mutant was employed to isolate the E. coli panE gene by genetic complementation. The E. coli panE gene is characterized by a 912 bp coding region, which specifies a protein of 303 amino acids with a deduced molecular mass of 33.8 kD. A panE expression plasmid carrying the panE gene under the control of the tac promotor was constructed. Introduction of the panE expression plasmid into E. coli resulted in a threefold increase in ketopantoate reductase activity. It was also shown that the enhanced panE expression in E. coli K12 led to 3.5-fold increase in pantothenate excretion. Pantothenate excretion could even be more enhanced when the growth medium was supplemented with ketopantoate.
Collapse
Affiliation(s)
- F Elischewski
- Department of Genetics, University of Bielefeld, Germany
| | | | | |
Collapse
|
23
|
Christian T, Downs DM. Defects in pyruvate kinase cause a conditional increase of thiamine synthesis in Salmonella typhimurium. Can J Microbiol 1999. [DOI: 10.1139/w99-042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As genomic sequence data become more prevalent, the challenges in microbial physiology shift from identifying biochemical pathways to understanding the interactions that occur between them to create a robust but responsive metabolism. One of the most powerful methods to identify such interactions is in vivo phenotypic analysis. We have utilized thiamine synthesis as a model to detect subtle metabolic interactions due to the sensitivity allowed by the small cellular requirement for this vitamin. Although purine biosynthesis produces an intermediate in thiamine synthesis, mutants blocked in the first step of de novo purine biosynthesis (PurF) are able to grow in the absence of thiamine owing to an alternative synthesis. A number of general metabolic defects have been found to prevent PurF-independent thiamine synthesis. Here we report stimulation of thiamine-independent growth caused by a mutation in one or both genes encoding the pyruvate kinase isozymes. The results presented herein represent the first phenotype described for mutants defective in pykA or pykF, and thus identify metabolic interactions that exist in vivo.Key words: thiamine synthesis, metabolic integration.
Collapse
|
24
|
Sahm H, Eggeling L. D-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction. Appl Environ Microbiol 1999; 65:1973-9. [PMID: 10223988 PMCID: PMC91285 DOI: 10.1128/aem.65.5.1973-1979.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-Pantothenate is synthesized via four enzymes from ketoisovalerate, which is an intermediate of branched-chain amino acid synthesis. We quantified three of these enzyme activities in Corynebacterium glutamicum and determined specific activities ranging from 0.00014 to 0.001 micromol/min mg (protein)-1. The genes encoding the ketopantoatehydroxymethyl transferase and the pantothenate synthetase were cloned, sequenced, and functionally characterized. These studies suggest that panBC constitutes an operon. By using panC, an assay system was developed to quantify D-pantothenate. The wild type of C. glutamicum was found to accumulate 9 micrograms of this vitamin per liter. A strain was constructed (i) to abolish L-isoleucine synthesis, (ii) to result in increased ketoisovalerate formation, and (iii) to enable its further conversion to D-pantothenate. The best resulting strain has ilvA deleted from its chromosome and has two plasmids to overexpress genes of ketoisovalerate (ilvBNCD) and D-pantothenate (panBC) synthesis. With this strain a D-pantothenate accumulation of up to 1 g/liter is achieved, which is a 10(5)-fold increase in concentration compared to that of the original wild-type strain. From the series of strains analyzed it follows that an increased ketoisovalerate availability is mandatory to direct the metabolite flux into the D-pantothenate-specific part of the pathway and that the availability of beta-alanine is essential for D-pantothenate formation.
Collapse
Affiliation(s)
- H Sahm
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | |
Collapse
|
25
|
Enos-Berlage JL, Langendorf MJ, Downs DM. Complex metabolic phenotypes caused by a mutation in yjgF, encoding a member of the highly conserved YER057c/YjgF family of proteins. J Bacteriol 1998; 180:6519-28. [PMID: 9851994 PMCID: PMC107753 DOI: 10.1128/jb.180.24.6519-6528.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxidative pentose phosphate pathway is required for function of the alternative pyrimidine biosynthetic pathway, a pathway that allows thiamine synthesis in the absence of the PurF enzyme in Salmonella typhimurium. Mutants that no longer required function of the oxidative pentose phosphate pathway for thiamine synthesis were isolated. Further phenotypic analyses of these mutants demonstrated that they were also sensitive to the presence of serine in the medium, suggesting a partial defect in isoleucine biosynthesis. Genetic characterization showed that these pleiotropic phenotypes were caused by null mutations in yjgF, a previously uncharacterized open reading frame encoding a hypothetical 13.5-kDa protein. The YjgF protein belongs to a class of proteins of unknown function that exhibit striking conservation across a wide range of organisms, from bacteria to humans. This work represents the first detailed phenotypic characterization of yjgF mutants in any organism and provides important clues as to the function of this highly conserved class of proteins. Results also suggest a connection between function of the isoleucine biosynthetic pathway and the requirement for the pentose phosphate pathway in thiamine synthesis.
Collapse
Affiliation(s)
- J L Enos-Berlage
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
26
|
Frodyma ME, Downs D. The panE gene, encoding ketopantoate reductase, maps at 10 minutes and is allelic to apbA in Salmonella typhimurium. J Bacteriol 1998; 180:4757-9. [PMID: 9721324 PMCID: PMC107496 DOI: 10.1128/jb.180.17.4757-4759.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Accepted: 06/21/1998] [Indexed: 11/20/2022] Open
Abstract
In Salmonella typhimurium, precursors to the pyrimidine moiety of thiamine are synthesized de novo by the purine biosynthetic pathway or the alternative pyrimidine biosynthetic (APB) pathway. The apbA gene was the first locus defined as required for function of the APB pathway (D. M. Downs and L. Petersen, J. Bacteriol. 176:4858-4864, 1994). Recent work showed the ApbA protein catalyzes the NADPH-specific reduction of ketopantoic acid to pantoic acid. This activity had previously been associated with the pantothenate biosynthetic gene panE. Although previous reports placed panE at 87 min on the Escherichia coli chromosome, we show herein that apbA and panE are allelic and map to 10 min on both the S. typhimurium and E. coli chromosomes. Results presented here suggest that the role of ApbA in thiamine synthesis is indirect since in vivo labeling studies showed that pantoic acid, the product of the ApbA-catalyzed reaction, is not a direct precursor to thiamine via the APB pathway.
Collapse
Affiliation(s)
- M E Frodyma
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|