1
|
Yadav P, Tanweer S, Garg M, Verma M, Khan AS, Rahman SS, Ali A, Grover S, Kumar P, Kamthan M. Structural inscrutabilities of Histone (H2BK123) monoubiquitination: A systematic review. Int J Biol Macromol 2024; 280:135977. [PMID: 39322127 DOI: 10.1016/j.ijbiomac.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Histone H2B monoubiquitination in budding yeast is a highly conserved post-translational modification. It is involved in normal functions of the cells like DNA Repair, RNA Pol II activation, trans-histone H3K and H79K methylation, meiosis, vesicle budding, etc. Deregulation of H2BK123ub can lead to the activation of proto-oncogenes and is also linked to neurodegenerative and heart diseases. Recent discoveries have enhanced the mechanistic underpinnings of H2BK123ub. For the first time, the Rad6's acidic tail has been implicated in histone recognition and interaction with Bre1's RBD domain. The non-canonical backside of Rad6 showed inhibition in polyubiquitination activity. Bre1 domains RBD and RING play a role in site-specific ubiquitination. The role of single Alaline residue in Rad6 activity. Understanding the mechanism of ubiquitination before moving to therapeutic applications is important. Current advancements in this field indicate the creation of novel therapeutic approaches and a foundation for further study.
Collapse
Affiliation(s)
- Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sana Tanweer
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
3
|
Shukla PK, Bissell JE, Kumar S, Pokhrel S, Palani S, Radmall K, Obidi O, Parnell TJ, Brasch J, Shrieve D, Chandrasekharan M. Structure and functional determinants of Rad6-Bre1 subunits in the histone H2B ubiquitin-conjugating complex. Nucleic Acids Res 2023; 51:2117-2136. [PMID: 36715322 PMCID: PMC10018343 DOI: 10.1093/nar/gkad012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
The conserved complex of the Rad6 E2 ubiquitin-conjugating enzyme and the Bre1 E3 ubiquitin ligase catalyzes histone H2B monoubiquitination (H2Bub1), which regulates chromatin dynamics during transcription and other nuclear processes. Here, we report a crystal structure of Rad6 and the non-RING domain N-terminal region of Bre1, which shows an asymmetric homodimer of Bre1 contacting a conserved loop on the Rad6 'backside'. This contact is distant from the Rad6 catalytic site and is the location of mutations that impair telomeric silencing in yeast. Mutational analyses validated the importance of this contact for the Rad6-Bre1 interaction, chromatin-binding dynamics, H2Bub1 formation and gene expression. Moreover, the non-RING N-terminal region of Bre1 is sufficient to confer nucleosome binding ability to Rad6 in vitro. Interestingly, Rad6 P43L protein, an interaction interface mutant and equivalent to a cancer mutation in the human homolog, bound Bre1 5-fold more tightly than native Rad6 in vitro, but showed reduced chromatin association of Bre1 and reduced levels of H2Bub1 in vivo. These surprising observations imply conformational transitions of the Rad6-Bre1 complex during its chromatin-associated functional cycle, and reveal the differential effects of specific disease-relevant mutations on the chromatin-bound and unbound states. Overall, our study provides structural insights into Rad6-Bre1 interaction through a novel interface that is important for their biochemical and biological responses.
Collapse
Affiliation(s)
- Prakash K Shukla
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jesse E Bissell
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sanjit Kumar
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Srijana Pokhrel
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kaitlin S Radmall
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Onyeka Obidi
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Julia Brasch
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dennis C Shrieve
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Shi M, Zhao J, Zhang S, Huang W, Li M, Bai X, Zhang W, Zhang K, Chen X, Xiang S. Structural basis for the Rad6 activation by the Bre1 N-terminal domain. eLife 2023; 12:84157. [PMID: 36912886 PMCID: PMC10036116 DOI: 10.7554/elife.84157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The mono-ubiquitination of the histone protein H2B (H2Bub1) is a highly conserved histone post-translational modification that plays critical roles in many fundamental processes. In yeast, this modification is catalyzed by the conserved Bre1-Rad6 complex. Bre1 contains a unique N-terminal Rad6-binding domain (RBD), how it interacts with Rad6 and contributes to the H2Bub1 catalysis is unclear. Here, we present crystal structure of the Bre1 RBD-Rad6 complex and structure-guided functional studies. Our structure provides a detailed picture of the interaction between the dimeric Bre1 RBD and a single Rad6 molecule. We further found that the interaction stimulates Rad6's enzymatic activity by allosterically increasing its active site accessibility and likely contribute to the H2Bub1 catalysis through additional mechanisms. In line with these important functions, we found that the interaction is crucial for multiple H2Bub1-regulated processes. Our study provides molecular insights into the H2Bub1 catalysis.
Collapse
Affiliation(s)
- Meng Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Jiaqi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Simin Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Mengfei Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Wenxue Zhang
- Department of Radiation Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, The Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Shukla PK, Sinha D, Leng AM, Bissell JE, Thatipamula S, Ganguly R, Radmall KS, Skalicky JJ, Shrieve DC, Chandrasekharan MB. Mutations of Rad6 E2 ubiquitin-conjugating enzymes at alanine-126 affect ubiquitination activity and decrease enzyme stability. J Biol Chem 2022; 298:102524. [PMID: 36162503 PMCID: PMC9630792 DOI: 10.1016/j.jbc.2022.102524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022] Open
Abstract
Rad6, an E2 ubiquitin-conjugating enzyme conserved from yeast to humans, functions in transcription, genome maintenance, and proteostasis. The contributions of many conserved secondary structures of Rad6 and its human homologs UBE2A and UBE2B to their biological functions are not understood. A mutant RAD6 allele with a missense substitution at alanine-126 (A126) of helix-3 that causes defects in telomeric gene silencing, DNA repair, and protein degradation was reported over 2 decades ago. Here, using a combination of genetics, biochemical, biophysical, and computational approaches, we discovered that helix-3 A126 mutations compromise the ability of Rad6 to ubiquitinate target proteins without disrupting interactions with partner E3 ubiquitin-ligases that are required for their various biological functions in vivo. Explaining the defective in vitro or in vivo ubiquitination activities, molecular dynamics simulations and NMR showed that helix-3 A126 mutations cause local disorder of the catalytic pocket of Rad6 in addition to disorganizing the global structure of the protein to decrease its stability in vivo. We also show that helix-3 A126 mutations deform the structures of UBE2A and UBE2B, the human Rad6 homologs, and compromise the in vitro ubiquitination activity and folding of UBE2B. Providing insights into their ubiquitination defects, we determined helix-3 A126 mutations impair the initial ubiquitin charging and the final discharging steps during substrate ubiquitination by Rad6. In summary, our studies reveal that the conserved helix-3 is a crucial structural constituent that controls the organization of catalytic pockets, enzymatic activities, and biological functions of the Rad6-family E2 ubiquitin-conjugating enzymes.
Collapse
Affiliation(s)
- Prakash K Shukla
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dhiraj Sinha
- IHU, Aix Marseille University, Marseille, France
| | - Andrew M Leng
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jesse E Bissell
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Shravya Thatipamula
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Rajarshi Ganguly
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kaitlin S Radmall
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jack J Skalicky
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dennis C Shrieve
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Simões V, Cizubu BK, Harley L, Zhou Y, Pajak J, Snyder NA, Bouvette J, Borgnia MJ, Arya G, Bartesaghi A, Silva GM. Redox-sensitive E2 Rad6 controls cellular response to oxidative stress via K63-linked ubiquitination of ribosomes. Cell Rep 2022; 39:110860. [PMID: 35613580 PMCID: PMC9215706 DOI: 10.1016/j.celrep.2022.110860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 01/11/2023] Open
Abstract
Protein ubiquitination is an essential process that rapidly regulates protein synthesis, function, and fate in dynamic environments. Within its non-proteolytic functions, we showed that K63-linked polyubiquitinated conjugates heavily accumulate in yeast cells exposed to oxidative stress, stalling ribosomes at elongation. K63-ubiquitinated conjugates accumulate mostly because of redox inhibition of the deubiquitinating enzyme Ubp2; however, the role and regulation of ubiquitin-conjugating enzymes (E2) in this pathway remained unclear. Here, we show that the E2 Rad6 associates and modifies ribosomes during stress. We further demonstrate that Rad6 and its human homolog UBE2A are redox regulated by forming a reversible disulfide with the E1 ubiquitin-activating enzyme (Uba1). This redox regulation is part of a negative feedback regulation, which controls the levels of K63 ubiquitination under stress. Finally, we show that Rad6 activity is necessary to regulate translation, antioxidant defense, and adaptation to stress, thus providing an additional physiological role for this multifunctional enzyme.
Collapse
Affiliation(s)
- Vanessa Simões
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Lana Harley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ye Zhou
- Department of Computer Science, Department of Biochemistry, and Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Nathan A Snyder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jonathan Bouvette
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC 27709, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Alberto Bartesaghi
- Department of Computer Science, Department of Biochemistry, and Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Characterization of the chimeric protein cUBC1 engineered by substituting the linker of E2-25K into UBC1 enzyme of Saccharomyces cerevisiae. Int J Biol Macromol 2022; 209:991-1000. [PMID: 35429515 DOI: 10.1016/j.ijbiomac.2022.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
Ubiquitination is an important posttranslational modification of proteins in eukaryotic cells, wherein ubiquitin molecules are conjugated to target proteins. Ubiquitination is catalyzed by the cascade of ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3). The number of E2s encoded in eukaryotes partly explains their contribution to the inherent specificity of the ubiquitin system. The ubiquitin conjugating enzyme UBC1 of Saccharomyces cerevisiae participates the degradation of short-lived and abnormal proteins. UBC1 consists of two well-defined domains separated by a long flexible linker. E2-25K, the human homolog of UBC1 is crucial to neurons and its failure leads to neurodegenerative disorders. The linker of UBC1 is of 22 amino acids, while that of E2-25K has 6 amino acids. To understand the importance of the linker, the chimeric protein, cUBC1 was constructed by substituting the linker of E2-25K in UBC1. cUBC1 shows minor changes in its secondary structure. cUBC1 expression in ubc1 deletion mutants showed no effect over growth, thermotolerance and resistance to antibiotic stress. However, survival under heat stress was enhanced with cUBC1. Western blot analysis of the enzymatic activity showed cUBC1 performed equally well as UBC1. Hence, cUBC1 demonstrates that the shorter linker increased the stability of UBC1.
Collapse
|
8
|
Cao C, Xue C. More Than Just Cleaning: Ubiquitin-Mediated Proteolysis in Fungal Pathogenesis. Front Cell Infect Microbiol 2021; 11:774613. [PMID: 34858882 PMCID: PMC8631298 DOI: 10.3389/fcimb.2021.774613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin-proteasome mediated protein turnover is an important regulatory mechanism of cellular function in eukaryotes. Extensive studies have linked the ubiquitin-proteasome system (UPS) to human diseases, and an array of proteasome inhibitors have been successfully developed for cancer therapy. Although still an emerging field, research on UPS regulation of fungal development and virulence has been rapidly advancing and has generated considerable excitement in its potential as a target for novel drugs. In this review, we summarize UPS composition and regulatory function in pathogenic fungi, especially in stress responses, host adaption, and fungal pathogenesis. Emphasis will be given to UPS regulation of pathogenic factors that are important for fungal pathogenesis. We also discuss future potential therapeutic strategies for fungal infections based on targeting UPS pathways.
Collapse
Affiliation(s)
- Chengjun Cao
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, New Brunswick, NJ, United States
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, Newark, NJ, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling. Proc Natl Acad Sci U S A 2020; 117:10778-10788. [PMID: 32366662 DOI: 10.1073/pnas.2003043117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal (Nt) residues. If a substrate bears, for example, Nt-Asn, its targeting involves deamidation of Nt-Asn, arginylation of resulting Nt-Asp, binding of resulting (conjugated) Nt-Arg to the UBR1-RAD6 E3-E2 ubiquitin ligase, ligase-mediated synthesis of a substrate-linked polyubiquitin chain, its capture by the proteasome, and substrate's degradation. We discovered that the human Nt-Asn-specific Nt-amidase NTAN1, Nt-Gln-specific Nt-amidase NTAQ1, arginyltransferase ATE1, and the ubiquitin ligase UBR1-UBE2A/B (or UBR2-UBE2A/B) form a complex in which NTAN1 Nt-amidase binds to NTAQ1, ATE1, and UBR1/UBR2. In addition, NTAQ1 Nt-amidase and ATE1 arginyltransferase also bind to UBR1/UBR2. In the yeast Saccharomyces cerevisiae, the Nt-amidase, arginyltransferase, and the double-E3 ubiquitin ligase UBR1-RAD6/UFD4-UBC4/5 are shown to form an analogous targeting complex. These complexes may enable substrate channeling, in which a substrate bearing, for example, Nt-Asn, would be captured by a complex-bound Nt-amidase, followed by sequential Nt modifications of the substrate and its polyubiquitylation at an internal Lys residue without substrate's dissociation into the bulk solution. At least in yeast, the UBR1/UFD4 ubiquitin ligase interacts with the 26S proteasome, suggesting an even larger Arg/N-degron-targeting complex that contains the proteasome as well. In addition, specific features of protein-sized Arg/N-degron substrates, including their partly sequential and partly nonsequential enzymatic modifications, led us to a verifiable concept termed "superchanneling." In superchanneling, the synthesis of a substrate-linked poly-Ub chain can occur not only after a substrate's sequential Nt modifications, but also before them, through a skipping of either some or all of these modifications within a targeting complex.
Collapse
|
10
|
Control of DNA Damage Bypass by Ubiquitylation of PCNA. Genes (Basel) 2020; 11:genes11020138. [PMID: 32013080 PMCID: PMC7074500 DOI: 10.3390/genes11020138] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/01/2023] Open
Abstract
DNA damage leads to genome instability by interfering with DNA replication. Cells possess several damage bypass pathways that mitigate the effects of DNA damage during replication. These pathways include translesion synthesis and template switching. These pathways are regulated largely through post-translational modifications of proliferating cell nuclear antigen (PCNA), an essential replication accessory factor. Mono-ubiquitylation of PCNA promotes translesion synthesis, and K63-linked poly-ubiquitylation promotes template switching. This article will discuss the mechanisms of how these post-translational modifications of PCNA control these bypass pathways from a structural and biochemical perspective. We will focus on the structure and function of the E3 ubiquitin ligases Rad18 and Rad5 that facilitate the mono-ubiquitylation and poly-ubiquitylation of PCNA, respectively. We conclude by reviewing alternative ideas about how these post-translational modifications of PCNA regulate the assembly of the multi-protein complexes that promote damage bypass pathways.
Collapse
|
11
|
Powers KT, Washington MT. Eukaryotic translesion synthesis: Choosing the right tool for the job. DNA Repair (Amst) 2018; 71:127-134. [PMID: 30174299 DOI: 10.1016/j.dnarep.2018.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Normal DNA replication is blocked by DNA damage in the template strand. Translesion synthesis is a major pathway for overcoming these replication blocks. In this process, multiple non-classical DNA polymerases are thought to form a complex at the stalled replication fork that we refer to as the mutasome. This hypothetical multi-protein complex is structurally organized by the replication accessory factor PCNA and the non-classical polymerase Rev1. One of the non-classical polymerases within this complex then catalyzes replication through the damage. Each non-classical polymerase has one or more cognate lesions, which the enzyme bypasses with high accuracy and efficiency. Thus, the accuracy and efficiency of translesion synthesis depends on which non-classical polymerase is chosen to bypass the damage. In this review article, we discuss how the most appropriate polymerase is chosen. In so doing, we examine the structural motifs that mediate the protein interactions in the mutasome; the multiple architectures that the mutasome can adopt, such as PCNA tool belts and Rev1 bridges; the intrinsically disordered regions that tether the polymerases to PCNA and to one another; and the kinetic selection model in which the most appropriate polymerase is chosen via a competition among the multiple polymerases within the mutasome.
Collapse
Affiliation(s)
- Kyle T Powers
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States
| | - M Todd Washington
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242-1109, United States.
| |
Collapse
|
12
|
Structural mechanism for the recognition and ubiquitination of a single nucleosome residue by Rad6-Bre1. Proc Natl Acad Sci U S A 2016; 113:10553-8. [PMID: 27601672 DOI: 10.1073/pnas.1606863113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cotranscriptional ubiquitination of histone H2B is key to gene regulation. The yeast E3 ubiquitin ligase Bre1 (human RNF20/40) pairs with the E2 ubiquitin conjugating enzyme Rad6 to monoubiquitinate H2B at Lys123. How this single lysine residue on the nucleosome core particle (NCP) is targeted by the Rad6-Bre1 machinery is unknown. Using chemical cross-linking and mass spectrometry, we identified the functional interfaces of Rad6, Bre1, and NCPs in a defined in vitro system. The Bre1 RING domain cross-links exclusively with distinct regions of histone H2B and H2A, indicating a spatial alignment of Bre1 with the NCP acidic patch. By docking onto the NCP surface in this distinct orientation, Bre1 positions the Rad6 active site directly over H2B Lys123. The Spt-Ada-Gcn5 acetyltransferase (SAGA) H2B deubiquitinase module competes with Bre1 for binding to the NCP acidic patch, indicating regulatory control. Our study reveals a mechanism that ensures site-specific NCP ubiquitination and fine-tuning of opposing enzymatic activities.
Collapse
|
13
|
Molecular characterization, 3D model analysis, and expression pattern of the CmUBC gene encoding the melon ubiquitin-conjugating enzyme under drought and salt stress conditions. Biochem Genet 2013; 52:90-105. [PMID: 24213845 DOI: 10.1007/s10528-013-9630-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
Abstract
Ubiquitin-conjugating (UBC) enzyme is a key enzyme in ubiquitination. Here, we describe the cloning, characterization, and expression pattern of a novel gene, CmUBC, from a melon. Comparison of the deduced amino acid sequences allowed the identification of highly conserved motifs. Synteny analysis between Cucumis sativus L. and Arabidopsis demonstrated that homologs of several Cucumis UBC genes were found in corresponding syntenic blocks of Arabidopsis. The homology structure model of the CmUBC protein was constructed. UBCs from melon, yeast, and Arabidopsis were highly conserved in their three-dimensional folding. CmUBC was ubiquitously expressed in all melon tissues. Increased transcript levels of CmUBC were observed during drought and salinity stresses, which suggested that the expression of the CmUBC gene in melon plants is responsive to physiological water stress. These results suggested that the CmUBC gene might play an important role in the modulation of the ubiquitination pathway.
Collapse
|
14
|
Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. BMC SYSTEMS BIOLOGY 2013; 7:24. [PMID: 23514624 PMCID: PMC3668150 DOI: 10.1186/1752-0509-7-24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The genome of living organisms is constantly exposed to several damaging agents that induce different types of DNA lesions, leading to cellular malfunctioning and onset of many diseases. To maintain genome stability, cells developed various repair and tolerance systems to counteract the effects of DNA damage. Here we focus on Post Replication Repair (PRR), the pathway involved in the bypass of DNA lesions induced by sunlight exposure and UV radiation. PRR acts through two different mechanisms, activated by mono- and poly-ubiquitylation of the DNA sliding clamp, called Proliferating Cell Nuclear Antigen (PCNA). RESULTS We developed a novel protocol to measure the time-course ratios between mono-, di- and tri-ubiquitylated PCNA isoforms on a single western blot, which were used as the wet readout for PRR events in wild type and mutant S. cerevisiae cells exposed to acute UV radiation doses. Stochastic simulations of PCNA ubiquitylation dynamics, performed by exploiting a novel mechanistic model of PRR, well fitted the experimental data at low UV doses, but evidenced divergent behaviors at high UV doses, thus driving the design of further experiments to verify new hypothesis on the functioning of PRR. The model predicted the existence of a UV dose threshold for the proper functioning of the PRR model, and highlighted an overlapping effect of Nucleotide Excision Repair (the pathway effectively responsible to clean the genome from UV lesions) on the dynamics of PCNA ubiquitylation in different phases of the cell cycle. In addition, we showed that ubiquitin concentration can affect the rate of PCNA ubiquitylation in PRR, offering a possible explanation to the DNA damage sensitivity of yeast strains lacking deubiquitylating enzymes. CONCLUSIONS We exploited an in vivo and in silico combinational approach to analyze for the first time in a Systems Biology context the events of PCNA ubiquitylation occurring in PRR in budding yeast cells. Our findings highlighted an intricate functional crosstalk between PRR and other events controlling genome stability, and evidenced that PRR is more complicated and still far less characterized than previously thought.
Collapse
Affiliation(s)
- Flavio Amara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Riccardo Colombo
- Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Paolo Cazzaniga
- Dipartimento di Scienze Umane e Sociali, Università degli Studi di Bergamo, Bergamo, Italy
| | - Dario Pescini
- Dipartimento di Statistica e Metodi Quantitativi, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Attila Csikász-Nagy
- , The Microsoft Research - Università degli Studi di Trento, Centre for Computational and Systems Biology, Rovereto (Trento), Italy
| | - Marco Muzi Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Daniela Besozzi
- Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
15
|
Williams C, van den Berg M, Panjikar S, Stanley WA, Distel B, Wilmanns M. Insights into ubiquitin-conjugating enzyme/ co-activator interactions from the structure of the Pex4p:Pex22p complex. EMBO J 2011; 31:391-402. [PMID: 22085930 DOI: 10.1038/emboj.2011.411] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/19/2011] [Indexed: 11/09/2022] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) coordinate distinct types of ubiquitination via specific E3 ligases, to a large number of protein substrates. While many E2 enzymes need only the presence of an E3 ligase for substrate ubiquitination, a number of E2s require additional, non-canonical binding partners to specify their function. Here, we have determined the crystal structure and function of an E2/co-activator assembly, the Pex4p:Pex22p complex. The peroxisome-associated E2 enzyme Pex4p binds the peroxisomal membrane protein Pex22p through a binding site that does not overlap with any other known interaction interface in E2 enzymes. Pex22p association enhances Pex4p's ability to transfer ubiquitin to a substrate in vitro, and Pex22p binding-deficient forms of Pex4p are unable to ubiquitinate the peroxisomal import receptor Pex5p in vivo. Our data demonstrate that the Pex4p:Pex22p assembly, and not Pex4p alone, functions as the E2 enzyme required for Pex5p ubiquitination, establishing a novel mechanism of E2 enzyme regulation.
Collapse
Affiliation(s)
- Chris Williams
- Structural Biology Unit, European Molecular Biology Laboratory, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Masuda Y, Suzuki M, Kawai H, Suzuki F, Kamiya K. Asymmetric nature of two subunits of RAD18, a RING-type ubiquitin ligase E3, in the human RAD6A-RAD18 ternary complex. Nucleic Acids Res 2011; 40:1065-76. [PMID: 21967848 PMCID: PMC3273806 DOI: 10.1093/nar/gkr805] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RAD18, a RING-type ubiquitin ligase (E3) that plays an essential role in post-replication repair, possesses distinct domains named RING, UBZ, SAP and the RAD6-binding domain (R6BD) and forms a dimer. RAD6, an ubiquitin-conjugating enzyme (E2), stably associates with R6BD in the C-terminal portion. In this study, we established a method to distinguish between the two subunits of RAD18 by introduction of different tags, and analyzed mutant complexes. Our results, surprisingly, demonstrate that RAD6A and RAD18 form a ternary complex, RAD6A-(RAD18)(2) and the presence of only one R6BD in the two RAD18 subunits is sufficient for ternary complex formation and the ligase activity. Interestingly, ligase activity of a mutant dimer lacking both R6BDs is not restored even with large amounts of RAD6A added in solution, suggesting a requirement for precise juxtaposition via interaction with R6BD. We further show that mutations in both subunits of either RING or SAP, but not UBZ, strongly reduce ligase activity, although inactivation in only one of two subunits is without effect. These results suggest an asymmetric nature of the two RAD18 subunits in the complex.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | |
Collapse
|
17
|
NBS1 Recruits RAD18 via a RAD6-like Domain and Regulates Pol η-Dependent Translesion DNA Synthesis. Mol Cell 2011; 43:788-97. [DOI: 10.1016/j.molcel.2011.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 06/10/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022]
|
18
|
Lass A, Cocklin R, Scaglione KM, Skowyra M, Korolev S, Goebl M, Skowyra D. The loop-less tmCdc34 E2 mutant defective in polyubiquitination in vitro and in vivo supports yeast growth in a manner dependent on Ubp14 and Cka2. Cell Div 2011; 6:7. [PMID: 21453497 PMCID: PMC3080790 DOI: 10.1186/1747-1028-6-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The S73/S97/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and growth regulation. The inability of the loop-less Δ12Cdc34 mutant to support growth was linked to its inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in other E2s, supports growth. Whether tmCdc34 supports growth despite defective polyubiquitination, or the S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are unknown. RESULTS tmCdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sic1 substrate polyubiquitination is similar to the defect observed in reactions with Δ12Cdc34 that cannot support growth. The synthesis of free polyubiquitin by tmCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCFCdc4. Phosphorylation of C-terminal serines in tmCdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin chains, likely by promoting their attachment to substrate. Nevertheless, tmCDC34 yeast are sensitive to loss of the Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains produced in tmCDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from substrates, have an altered structure. CONCLUSIONS The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust polyubiquitination mediated by the S73/S97/loop motif is thus not necessary for Cdc34 role in yeast viability, at least under typical laboratory conditions.
Collapse
Affiliation(s)
- Agnieszka Lass
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ross Cocklin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kenneth M Scaglione
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.,Dept. of Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sergey Korolev
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Goebl
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dorota Skowyra
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
19
|
New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 2010; 187:701-15. [PMID: 21196523 DOI: 10.1534/genetics.110.125302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cdc34 ubiquitin-conjugating enzyme plays a central role in progression of the cell cycle. Through analysis of the phenotype of a mutant missing a highly conserved sequence motif within the catalytic domain of Cdc34, we discovered previously unrecognized levels of regulation of the Ace2 transcription factor and the cyclin-dependent protein kinase inhibitor Sic1. In cells carrying the Cdc34(tm) mutation, which alters the conserved sequence, the cyclin-dependent protein kinase inhibitor Sic1, an SCF(Cdc4) substrate, has a shorter half-life, while the cyclin Cln1, an SCF(Grr1) substrate, has a longer half-life than in wild-type cells. Expression of the SIC1 gene cluster, which is regulated by Swi5 and Ace2 transcription factors, is induced in CDC34(tm) cells. Levels of Swi5, Ace2, and the SCF(Grr1) targets Cln1 and Cln2 are elevated in Cdc34(tm) cells, and loss of Grr1 causes an increase in Ace2 levels. Sic1 levels are similar in CDC34(tm) ace2Δ and wild-type cells, explaining a paradoxical increase in the steady-state level of Sic1 protein despite its reduced half-life. A screen for mutations that interact with CDC34(tm) uncovered novel regulators of Sic1, including genes encoding the polyubiquitin chain receptors Rad23 and Rpn10.
Collapse
|
20
|
|
21
|
Ju T, Bocik W, Majumdar A, Tolman JR. Solution structure and dynamics of human ubiquitin conjugating enzyme Ube2g2. Proteins 2010; 78:1291-301. [PMID: 20014027 DOI: 10.1002/prot.22648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum-associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48-linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin-tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95-107 and 130-135) flanking the active site cysteine are poorly defined. (15)N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester-linked donor ubiquitin, to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side-chains of Asp98 or Asp99.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
22
|
Walden H. Selenium incorporation using recombinant techniques. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:352-7. [PMID: 20382987 PMCID: PMC2852298 DOI: 10.1107/s0907444909038207] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 09/21/2009] [Indexed: 11/29/2022]
Abstract
An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.
Collapse
Affiliation(s)
- Helen Walden
- Protein Structure and Function Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, England.
| |
Collapse
|
23
|
Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319-31. [PMID: 19352404 PMCID: PMC2712597 DOI: 10.1038/nrm2673] [Citation(s) in RCA: 673] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Attachment of ubiquitin or ubiquitin-like proteins (known as UBLs) to their targets through multienzyme cascades is a central mechanism to modulate protein functions. This process is initiated by a family of mechanistically and structurally related E1 (or activating) enzymes. These activate UBLs through carboxy-terminal adenylation and thiol transfer, and coordinate the use of UBLs in specific downstream pathways by charging cognate E2 (or conjugating) enzymes, which then interact with the downstream ubiquitylation machinery to coordinate the modification of the target. A broad understanding of how E1 enzymes activate UBLs and how they selectively coordinate UBLs with downstream function has come from enzymatic, structural and genetic studies.
Collapse
Affiliation(s)
- Brenda A. Schulman
- Howard Hughes Medical Institute, Departments of Structural Biology, and Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115
| |
Collapse
|
24
|
Barik S. An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res 2008; 36:5232-41. [PMID: 18684991 PMCID: PMC2532712 DOI: 10.1093/nar/gkn513] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.
Collapse
Affiliation(s)
- Sailen Barik
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Boulevard, Mobile, Alabama 36688-0002, USA.
| |
Collapse
|
25
|
Abstract
To accompany the Focus on Chromatin appearing in this issue of Nature Structural & Molecular Biology, a series of primers has been specially prepared that covers the wealth of knowledge in four areas of chromatin research. These areas include functions associated with covalent histone modifications, the enzymes that mediate these modifications, modules that recognize chromatin, and the ATP-dependent chromatin-remodeling complexes. In such a complex field, the information has inevitably been somewhat simplified. As an example, the correlation between modifications and functions are often context dependent. For instance, H3K9 methylation has been associated with transcriptional activation when present in the coding region of the gene, but has also been associated with repression. The reference list provides further reading and details, as do the Reviews and Perspective in this issue. Although there are many informative structures in this field, space constraints allowed only representative structures to be shown, followed by reference citations for related structures ('3D REF' column). The primers can be used as a stand-alone resource--feel free to tear them out of the issue or print out the PDF versions and modify or add to them yourself as new data emerge. The online versions of the primers contain hyperlinks to the Protein Data Bank as well as 3D view links that allow structural visualization.
Collapse
|
26
|
Malkowski MG, Quartley E, Friedman AE, Babulski J, Kon Y, Wolfley J, Said M, Luft JR, Phizicky EM, DeTitta GT, Grayhack EJ. Blocking S-adenosylmethionine synthesis in yeast allows selenomethionine incorporation and multiwavelength anomalous dispersion phasing. Proc Natl Acad Sci U S A 2007; 104:6678-83. [PMID: 17426150 PMCID: PMC1850019 DOI: 10.1073/pnas.0610337104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae is an ideal host from which to obtain high levels of posttranslationally modified eukaryotic proteins for x-ray crystallography. However, extensive replacement of methionine by selenomethionine for anomalous dispersion phasing has proven intractable in yeast. We report a general method to incorporate selenomethionine into proteins expressed in yeast based on manipulation of the appropriate metabolic pathways. sam1(-) sam2(-) mutants, in which the conversion of methionine to S-adenosylmethionine is blocked, exhibit reduced selenomethionine toxicity compared with wild-type yeast, increased production of protein during growth in selenomethionine, and efficient replacement of methionine by selenomethionine, based on quantitative mass spectrometry and x-ray crystallography. The structure of yeast tryptophanyl-tRNA synthetase was solved to 1.8 A by using multiwavelength anomalous dispersion phasing with protein that was expressed and purified from the sam1(-) sam2(-) strain grown in selenomethionine. Six of eight selenium residues were located in the structure.
Collapse
Affiliation(s)
- Michael G. Malkowski
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | | | | | | | - Yoshiko Kon
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| | - Jennifer Wolfley
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
| | - Meriem Said
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
| | - Joseph R. Luft
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | - Eric M. Phizicky
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| | - George T. DeTitta
- *Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203; and
- Department of Structural Biology, State University of New York, 700 Ellicott Street, Buffalo, NY 14203
| | - Elizabeth J. Grayhack
- Center for Pediatric Biomedical Research and
- Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642
| |
Collapse
|
27
|
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A. The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. Mol Cell 2006; 20:589-99. [PMID: 16307922 DOI: 10.1016/j.molcel.2005.09.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/19/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022]
Abstract
To date, several classes of enzymes have been shown to affect transcription by catalyzing the modifications of nucleosomes via methylation. Employing our global proteomic screen, GPS, we have determined that the loss of Bur2, a component of the Bur1/Bur2 cyclin-dependent protein kinase, results in a decrease in histone H3(K4) methylation catalyzed by COMPASS. Furthermore, Bur1/Bur2 is required for histone H2B monoubiquitination by Rad6/Bre1. The effect on histone monoubiquitination and methylation is the result of defective Bur1/Bur2-mediated phosphorylation of Rad6 on its serine residue 120 and proper recruitment of the Paf1 complex to chromatin. We have also demonstrated that serine 120 of Rad6 is required for histone H2B monoubiquitination and the regulation of gene expression in vivo. Our results identify in vivo substrates for Bur1/Bur2, thus linking its role to transcriptional elongation and demonstrating a potential activation mechanism for histone H2B monoubiquitination by the Rad6/Bre1 complex.
Collapse
Affiliation(s)
- Adam Wood
- Department of Biochemistry, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
28
|
Pastushok L, Moraes TF, Ellison MJ, Xiao W. A single Mms2 "key" residue insertion into a Ubc13 pocket determines the interface specificity of a human Lys63 ubiquitin conjugation complex. J Biol Chem 2005; 280:17891-900. [PMID: 15749714 DOI: 10.1074/jbc.m410469200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Ubc13 and Mms2 (or its homolog, Uev1) form a unique ubiquitin-conjugating enzyme (Ubc) complex that generates atypical Lys(63)-linked ubiquitin conjugates. Such conjugates are attached to specific targets that modulate the activity of various cellular processes including DNA repair, mitotic progression, and nuclear factor-kappaB signaling. Whereas Ubc13 is a typical Ubc, Mms2 is a non-catalytic Ubc variant. Substantial biochemical evidence has revealed a mechanism whereby Mms2 properly orients ubiquitin to allow for Lys(63) conjugation by Ubc13; however, how this specific Ubc13-Mms2 complex is formed and why Mms2 does not form a complex with other Ubcs have not been reported. In order to address these questions, we used a structure-based approach to design mutations and characterize the human Ubc13-Mms2 interface. We used the yeast two-hybrid assay, glutathione S-transferase pull-downs, and surface plasmon resonance to test in vivo and in vitro binding. These experiments were paired with functional complementation and ubiquitin conjugation studies to provide in vivo and in vitro functional data. The results in this study allowed us to identify important residues of the Ubc13-Mms2 interface, determine a correlation between heterodimer formation and function, and conclude why Mms2 forms a specific complex with Ubc13 but not other Ubc proteins.
Collapse
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
29
|
Dominguez C, Bonvin AMJJ, Winkler GS, van Schaik FMA, Timmers HTM, Boelens R. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 2004; 12:633-44. [PMID: 15062086 DOI: 10.1016/j.str.2004.03.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/21/2004] [Accepted: 01/24/2004] [Indexed: 11/18/2022]
Abstract
The protein CNOT4 possesses an N-terminal RING finger domain that acts as an E3 ubiquitin ligase and specifically interacts with UbcH5B, a ubiquitin-conjugating enzyme. The structure of the CNOT4 RING domain has been solved and the amino acids important for the binding to UbcH5B have been mapped. Here, the residues of UbcH5B important for the binding to CNOT4 RING domain were identified by NMR chemical shift perturbation experiments, and these data were used to generate structural models of the complex with the program HADDOCK. Together with the NMR data, additional biochemical data were included in a second docking, and comparisons of the resulting model with the structure of the c-Cbl/UbcH7 complex reveal some significant differences, notably at specific residues, and give structural insights into the E2/E3 specificity.
Collapse
Affiliation(s)
- Cyril Dominguez
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Houben K, Dominguez C, van Schaik FMA, Timmers HTM, Bonvin AMJJ, Boelens R. Solution Structure of the Ubiquitin-conjugating Enzyme UbcH5B. J Mol Biol 2004; 344:513-26. [PMID: 15522302 DOI: 10.1016/j.jmb.2004.09.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 11/19/2022]
Abstract
The ubiquitination pathway is the main pathway for protein degradation in eukaryotic cells. The attachment of ubiquitin to a substrate protein is catalyzed by three types of enzymes, namely a ubiquitin activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin ligase (E3). Here, the structure of the human ubiquitin-conjugating enzyme (E2) UbcH5B has been solved by a combination of homology modeling, NMR relaxation data and automated NOE assignments. Comparison to E2 structures solved previously by X-ray crystallography or NMR shows in all cases the same compact fold, but differences are observed in the orientation of both N and C-terminal alpha-helices. The N-terminal helix that is involved in binding to ubiquitin ligases (E3) displays a different position, which could have consequences for precise E2-E3 recognition. In addition, multiple conformations of the side-chain of Asn77 are found in solution, which contrasts the single hydrogen-bonded conformation in the crystal structures of E2 enzymes. The possible implication of this conformational freedom of Asn77 for its catalytic function is discussed.
Collapse
Affiliation(s)
- Klaartje Houben
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Merkley N, Shaw GS. Solution Structure of the Flexible Class II Ubiquitin-conjugating Enzyme Ubc1 Provides Insights for Polyubiquitin Chain Assembly. J Biol Chem 2004; 279:47139-47. [PMID: 15328341 DOI: 10.1074/jbc.m409576200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E2 conjugating enzymes form a thiol ester intermediate with ubiquitin, which is subsequently transferred to a substrate protein targeted for degradation. While all E2 proteins comprise a catalytic domain where the thiol ester is formed, several E2s (class II) have C-terminal extensions proposed to control substrate recognition, dimerization, or polyubiquitin chain formation. Here we present the novel solution structure of the class II E2 conjugating enzyme Ubc1 from Saccharomyces cerevisiae. The structure shows the N-terminal catalytic domain adopts an alpha/beta fold typical of other E2 proteins. This domain is physically separated from its C-terminal domain by a 22-residue flexible tether. The C-terminal domain adopts a three-helix bundle that we have identified as an ubiquitin-associated domain (UBA). NMR chemical shift perturbation experiments show this UBA domain interacts in a regioselective manner with ubiquitin. This two-domain structure of Ubc1 was used to identify other UBA-containing class II E2 proteins, including human E2-25K, that likely have a similar architecture and to determine the role of the UBA domain in facilitating polyubiquitin chain formation.
Collapse
Affiliation(s)
- Nadine Merkley
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
32
|
Teo H, Veprintsev DB, Williams RL. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J Biol Chem 2004; 279:28689-96. [PMID: 15044434 DOI: 10.1074/jbc.m400023200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT-I) is a 350-kDa complex of three proteins, Vps23, Vps28, and Vps37. The N-terminal ubiquitin-conjugating enzyme E2 variant (UEV) domain of Vps23 is required for sorting ubiquitinated proteins into the internal vesicles of multivesicular bodies. UEVs are homologous to E2 ubiquitin ligases but lack the conserved cysteine residue required for catalytic activity. The crystal structure of the yeast Vps23 UEV in a complex with ubiquitin (Ub) shows the detailed interactions made with the bound Ub. Compared with the solution structure of the Tsg101 UEV (the human homologue of Vps23) in the absence of Ub, two loops that are conserved among the ESCRT-I UEVs move toward each other to grip the Ub in a pincer-like grasp. The contacts with the UEV encompass two adjacent patches on the surface of the Ub, one containing several hydrophobic residues, including Ile-8(Ub), Ile-44(Ub), and Val-70(Ub), and the second containing a hydrophilic patch including residues Asn-60(Ub), Gln-62(Ub), Glu-64(Ub). The hydrophobic Ub patch interacting with the Vps23 UEV overlaps the surface of Ub interacting with the Vps27 ubiquitin-interacting motif, suggesting a sequential model for ubiquitinated cargo binding by these proteins. In contrast, the hydrophilic patch encompasses residues uniquely interacting with the ESCRT-I UEV. The structure provides a detailed framework for design of mutants that can specifically affect ESCRT-I-dependent sorting of ubiquitinated cargo without affecting Vps27-mediated delivery of cargo to endosomes.
Collapse
Affiliation(s)
- Hsiangling Teo
- Medical Research Council Laboratory of Molecular Biology and Centre for Protein Engineering, Medical Research Council Centre, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
33
|
Oku H, Ohyama T, Hiroki A, Yamada K, Fukuyama K, Kawaguchi H, Katakai R. Addition of a peptide fragment on an ?-helical depsipeptide induces ?/310-conjugated helix: Synthesis, crystal structure, and CD spectra of Boc-Leu-Leu-Ala-(Leu-Leu-Lac)3-Leu-Leu-OEt. Biopolymers 2004; 75:242-54. [PMID: 15316916 DOI: 10.1002/bip.20117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The depsipeptide Boc(1)-Leu(2)-Leu(3)-Ala(4)-Leu(5)-Leu(6)-Lac(7)-Leu(8)-Leu(9)-Lac(10)-Leu(11)-Leu(12)-Lac(13)-Leu(14)-Leu(15)-OEt(16) (1) (Boc = tert-butyloxycarbonyl, Lac = L-lactic acid residue) has been synthesized from the peptide Boc-Leu-Leu-Ala-OEt (2) and a depsipeptide, Boc-(Leu-Leu-Lac)(3)-Leu-Leu-OEt (3). Single crystals of 1 were successfully obtained and the structure has been solved by direct methods (such as Sir2002 and Shake-and-Bake). Interestingly, 1 adopts an alpha/3(10)-conjugated helix containing a kink at the junction of peptide and depsipeptide segments, Leu3-Lac7. This is significantly different from the conformation of 3, which has a straight alpha-helical structure with standard phi and psi angles. Microcrystalline CD spectra were also studied to compare structural properties of 1 and 3. The differences between alpha/3(10)- and alpha-helices appear in these CD spectra.
Collapse
Affiliation(s)
- Hiroyuki Oku
- Department of Chemistry, Gunma University, Kiryu, Gunma 376-8515, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Pastushok L, Xiao W. DNA Postreplication Repair Modulated by Ubiquitination and Sumoylation. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:279-306. [PMID: 15588847 DOI: 10.1016/s0065-3233(04)69010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
35
|
Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS, Jensen JP, Matunis MJ, Weissman AM, Weisman AM, Weissman AM, Wolberger C, Wolberger CP, Pickart CM. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J 2003; 22:5241-50. [PMID: 14517261 PMCID: PMC204484 DOI: 10.1093/emboj/cdg501] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ubiquitin (Ub) regulates diverse functions in eukaryotes through its attachment to other proteins. The defining step in this protein modification pathway is the attack of a substrate lysine residue on Ub bound through its C-terminus to the active site cysteine residue of a Ub-conjugating enzyme (E2) or certain Ub ligases (E3s). So far, these E2 and E3 cysteine residues are the only enzyme groups known to participate in the catalysis of conjugation. Here we show that a strictly conserved E2 asparagine residue is critical for catalysis of E2- and E2/RING E3-dependent isopeptide bond formation, but dispensable for upstream and downstream reactions of Ub thiol ester formation. In contrast, the strictly conserved histidine and proline residues immediately upstream of the asparagine are dispensable for catalysis of isopeptide bond formation. We propose that the conserved asparagine side chain stabilizes the oxyanion intermediate formed during lysine attack. The E2 asparagine is the first non-covalent catalytic group to be proposed in any Ub conjugation factor.
Collapse
Affiliation(s)
- Pei-Ying Wu
- Department of Biochemistry and Molecular Biology/Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wong BR, Parlati F, Qu K, Demo S, Pray T, Huang J, Payan DG, Bennett MK. Drug discovery in the ubiquitin regulatory pathway. Drug Discov Today 2003; 8:746-54. [PMID: 12944097 DOI: 10.1016/s1359-6446(03)02780-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ubiquitin system has been implicated in the pathogenesis of numerous disease states, including oncogenesis, inflammation, viral infection, CNS disorders and metabolic dysfunction. Ubiquitin conjugation and deconjugation to substrate proteins is carried out by multiple families of proteins, each with a defined role in the enzymatic cascade. This conjugation-deconjugation system parallels the kinase-phosphatase system in that both alter protein function by the addition and removal of post-translational modifiers. Our understanding of ubiquitin biology and strategies to interfere pharmacologically with the ubiquitin regulatory machinery is progressing rapidly. In light of increased interest in ubiquitin pathways as drug targets, we review the ubiquitin enzymatic cascades, highlighting therapeutic opportunities and enzymatic mechanisms. We also discuss the challenges of targeting this class of enzymes with small molecules, as well as current approaches and progress in drug discovery.
Collapse
Affiliation(s)
- Brian R Wong
- Rigel Pharmaceuticals, 1180 Veterans Blvd South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
McKenna S, Moraes T, Pastushok L, Ptak C, Xiao W, Spyracopoulos L, Ellison MJ. An NMR-based model of the ubiquitin-bound human ubiquitin conjugation complex Mms2.Ubc13. The structural basis for lysine 63 chain catalysis. J Biol Chem 2003; 278:13151-8. [PMID: 12569095 DOI: 10.1074/jbc.m212353200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A heterodimer composed of the catalytically active ubiquitin-conjugating enzyme hUbc13 and its catalytically inactive paralogue, hMms2, forms the catalytic core for the synthesis of an alternative type of multiubiquitin chain where ubiquitin molecules are tandemly linked to one another through a Lys-63 isopeptide bond. This type of linkage, as opposed to the more typical Lys-48-linked chains, serves as a non-proteolytic marker of protein targets involved in error-free post-replicative DNA repair and NF-kappa B signal transduction. Using a two-dimensional (1)H-(15)N NMR approach, we have mapped: 1) the interaction between the subunits of the human Ubc13.Mms2 heterodimer and 2) the interactions between each of the subunits or heterodimer with a non-covalently bound acceptor ubiquitin or a thiolester-linked donor ubiquitin. Using these NMR-derived constraints and an unbiased docking approach, we have assembled the four components of this catalytic complex into a three-dimensional model that agrees well with its catalytic function.
Collapse
Affiliation(s)
- Sean McKenna
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Siepmann TJ, Bohnsack RN, Tokgöz Z, Baboshina OV, Haas AL. Protein interactions within the N-end rule ubiquitin ligation pathway. J Biol Chem 2003; 278:9448-57. [PMID: 12524449 DOI: 10.1074/jbc.m211240200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rate studies have been employed as a reporter function to probe protein-protein interactions within a biochemically defined reconstituted N-end rule ubiquitin ligation pathway. The concentration dependence for E1-catalyzed HsUbc2b/E2(14kb) transthiolation is hyperbolic and yields K(m) values of 102 +/- 13 nm and 123 +/- 19 nm for high affinity binding to rabbit and human E1/Uba1 orthologs. Competitive inhibition by the inactive substrate and product analogs HsUbc2bC88A (K(i) = 104 +/- 15 nm) and HsUbc2bC88S-ubiquitin oxyester (K(i) = 169 +/- 17 nm), respectively, indicates that the ubiquitin moiety contributes little to E1 binding. Under conditions of rate-limiting E3alpha-catalyzed conjugation to human alpha-lactalbumin, HsUbc2b-ubiquitin thiolester exhibits a K(i) of 54 +/- 18 nm and is competitively inhibited by the substrate analog HsUbc2bC88S-ubiquitin oxyester (K(i) = 66 +/- 29 nm). In contrast, the ligase product analog HsUbc2bC88A exhibits a K(i) of 440 +/- 55 nm with respect to the wild type HsUbc2b-ubiquitin thiolester, demonstrating that ubiquitin binding contributes to the ability of E3alpha to discriminate between substrate and product E2. A survey of E1 and E2 isoform distribution in selected cell lines demonstrates that Ubc2 isoforms are the predominant intracellular ubiquitin carrier protein. Intracellular levels of E1 and Ubc2 are micromolar and approximately equal based on in vitro quantitation by stoichiometric (125)I-ubiquitin thiolester formation. Comparison of intracellular E1 and Ubc2 pools with the corresponding ubiquitin pools reveals that most of the free ubiquitin in cells is present as thiolesters to the components of the conjugation pathways. The present data represent the first comprehensive analysis of protein interactions within a ubiquitin ligation pathway.
Collapse
Affiliation(s)
- Thomas J Siepmann
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
39
|
Pray TR, Parlati F, Huang J, Wong BR, Payan DG, Bennett MK, Issakani SD, Molineaux S, Demo SD. Cell cycle regulatory E3 ubiquitin ligases as anticancer targets. Drug Resist Updat 2002; 5:249-58. [PMID: 12531181 DOI: 10.1016/s1368-7646(02)00121-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Disregulation of the cell cycle and proliferation play key roles in cellular transformation and tumorigenesis. Such processes are intimately tied to the concentration, localization and activity of enzymes, adapters, receptors, and structural proteins in cells. Ubiquitination of these cellular regulatory proteins, governed by specific enzymes in the ubiquitin (Ub) conjugation cascade, has profound effects on their various functions, most commonly through proteasome targeting and degradation. This review will focus on a variety of E3 Ub ligases as potential oncology drug targets, with particular emphasis on the role of these molecules in the regulation of stability, localization, and activity of key proteins such as tumor suppressors and oncoproteins. E3 ubiquitin ligases that have established roles in cell cycle and apoptosis, such as the anaphase-promoting complex (APC), the Skp-1-Cul1-F-box class, and the murine double minute 2 (MDM2) protein, in addition to more recently discovered E3 ubiquitin ligases which may be similarly important in tumorigenesis, (e.g. Smurf family, CHFR, and Efp), will be discussed. We will present evidence to support E3 ligases as good biological targets in the development of anticancer therapeutics and address challenges in drug discovery for these targets.
Collapse
Affiliation(s)
- Todd R Pray
- Rigel Pharmaceuticals, Inc., 240 East Grand Avenue, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin D, Tatham MH, Yu B, Kim S, Hay RT, Chen Y. Identification of a substrate recognition site on Ubc9. J Biol Chem 2002; 277:21740-8. [PMID: 11877416 DOI: 10.1074/jbc.m108418200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human Ubc9 is homologous to ubiquitin-conjugating enzymes. However, instead of conjugating ubiquitin, it conjugates a ubiquitin homologue, small ubiquitin-like modifier 1 (SUMO-1), also known as UBL1, GMP1, SMTP3, PIC1, and sentrin. The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin-activating enzymes (E1), the three-dimensional structures of the ubiquitin-conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of substrates with Ubc9 has been studied using NMR spectroscopy. Peptides with sequences that correspond to those of the SUMO-1 conjugation sites from p53 and c-Jun both bind to a surface adjacent to the active site Cys93 of human Ubc9, which has been previously shown to include residues that demonstrate the most significant dynamics on the microsecond to millisecond time scale. Mutations in this region, Q126A, Q130A, A131D, E132A, Y134A, and T135A, were constructed to evaluate the role of these residues in SUMO-1 conjugation. These alterations have significant effects on the conjugation of SUMO-1 with the target proteins p53, E1B, and promyelocytic leukemia protein and define a substrate binding site on Ubc9. Furthermore, the SUMO-1 conjugation site of p53 does not form any defined secondary structure when either free or bound to Ubc9. This suggests that a defined secondary structure at SUMO-1 conjugation sites in target proteins is not necessary for recognition and conjugation by the SUMO-1 pathway.
Collapse
Affiliation(s)
- Donghai Lin
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
41
|
Lin Y, Hwang WC, Basavappa R. Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10. J Biol Chem 2002; 277:21913-21. [PMID: 11927573 DOI: 10.1074/jbc.m109398200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell cycle progression is controlled at several different junctures by the targeted destruction of cell cycle regulatory proteins. These carefully orchestrated events include the destruction of the securin protein to permit entry into anaphase, and the destruction of cyclin B to permit exit from mitosis. These destruction events are mediated by the ubiquitin/proteasome system. The human ubiquitin-conjugating enzyme, UbcH10, is an essential mediator of the mitotic destruction events. We report here the 1.95-A crystal structure of a mutant UbcH10, in which the active site cysteine has been replaced with a serine. Functional analysis indicates that the mutant is active in accepting ubiquitin, although not as efficiently as wild-type. Examination of the crystal structure reveals that the NH2-terminal extension in UbcH10 is disordered and that a conserved 3(10)-helix places a lysine residue near the active site. Analysis of relevant mutants demonstrates that for ubiquitin-adduct formation the presence or absence of the NH2-terminal extension has little effect, whereas the lysine residue near the active site has significant effect. The structure provides additional insight into UbcH10 function including possible sites of interaction with the anaphase promoting complex/cyclosome and the disposition of a putative destruction box motif in the structure.
Collapse
Affiliation(s)
- Yaqiong Lin
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
42
|
Pornillos O, Alam SL, Rich RL, Myszka DG, Davis DR, Sundquist WI. Structure and functional interactions of the Tsg101 UEV domain. EMBO J 2002; 21:2397-406. [PMID: 12006492 PMCID: PMC125378 DOI: 10.1093/emboj/21.10.2397] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human Tsg101 plays key roles in HIV budding and in cellular vacuolar protein sorting (VPS). In performing these functions, Tsg101 binds both ubiquitin (Ub) and the PTAP tetrapeptide 'late domain' motif located within the viral Gag protein. These interactions are mediated by the N-terminal domain of Tsg101, which belongs to the catalytically inactive ubiquitin E2 variant (UEV) family. We now report the structure of Tsg101 UEV and chemical shift mapping of the Ub and PTAP binding sites. Tsg101 UEV resembles canonical E2 ubiquitin conjugating enzymes, but has an additional N-terminal helix, an extended beta-hairpin that links strands 1 and 2, and lacks the two C-terminal helices normally found in E2 enzymes. PTAP-containing peptides bind in a hydrophobic cleft exposed by the absence of the C-terminal helices, whereas ubiquitin binds in a novel site surrounding the beta-hairpin. These studies provide a structural framework for understanding how Tsg101 mediates the protein-protein interactions required for HIV budding and VPS.
Collapse
Affiliation(s)
- Owen Pornillos
- Departments of
Biochemistry and Medicinal Chemistry and Center for Biomolecular Interactions Analysis, University of Utah, Salt Lake City, UT 84132, USA Corresponding authors e-mail: or O.Pornillos and S.L.Alam contributed equally to this work
| | - Steven L. Alam
- Departments of
Biochemistry and Medicinal Chemistry and Center for Biomolecular Interactions Analysis, University of Utah, Salt Lake City, UT 84132, USA Corresponding authors e-mail: or O.Pornillos and S.L.Alam contributed equally to this work
| | - Rebecca L. Rich
- Departments of
Biochemistry and Medicinal Chemistry and Center for Biomolecular Interactions Analysis, University of Utah, Salt Lake City, UT 84132, USA Corresponding authors e-mail: or O.Pornillos and S.L.Alam contributed equally to this work
| | - David G. Myszka
- Departments of
Biochemistry and Medicinal Chemistry and Center for Biomolecular Interactions Analysis, University of Utah, Salt Lake City, UT 84132, USA Corresponding authors e-mail: or O.Pornillos and S.L.Alam contributed equally to this work
| | - Darrell R. Davis
- Departments of
Biochemistry and Medicinal Chemistry and Center for Biomolecular Interactions Analysis, University of Utah, Salt Lake City, UT 84132, USA Corresponding authors e-mail: or O.Pornillos and S.L.Alam contributed equally to this work
| | - Wesley I. Sundquist
- Departments of
Biochemistry and Medicinal Chemistry and Center for Biomolecular Interactions Analysis, University of Utah, Salt Lake City, UT 84132, USA Corresponding authors e-mail: or O.Pornillos and S.L.Alam contributed equally to this work
| |
Collapse
|
43
|
Sarcevic B, Mawson A, Baker RT, Sutherland RL. Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J 2002; 21:2009-18. [PMID: 11953320 PMCID: PMC125963 DOI: 10.1093/emboj/21.8.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2001] [Revised: 01/07/2002] [Accepted: 02/20/2002] [Indexed: 11/12/2022] Open
Abstract
Cell cycle progression in eukaryotes is mediated by phosphorylation of protein substrates by the cyclin-dependent kinases (CDKs). We screened a cDNA library by solid-phase phosphorylation and isolated hHR6A as a CDK2 substrate. hHR6A is the human homologue of the product of the Saccharomyces cerevisiae RAD6/UBC2 gene, a member of the family of ubiquitin-conjugating enzymes. hHR6A is phosphorylated in vitro by CDK-1 and -2 on Ser120, a residue conserved in all hHR6A homologues, resulting in a 4-fold increase in its ubiquitin-conjugating activity. In vivo, hHR6A phosphorylation peaks during the G2/M phase of cell cycle transition, with a concomitant increase in histone H2B ubiquitylation. Mutation of Ser120 to threonine or alanine abolished hHR6A activity, while mutation to aspartate to mimic phosphorylated serine increased hHR6A activity 3-fold. Genetic complementation studies in S.cerevisiae demonstrated that hHR6A Ser120 is critical for cellular proliferation. This is the first study to demonstrate regulation of UBC function by phosphorylation on a conserved residue and suggests that CDK-mediated phosphorylation of hHR6A is an important regulatory event in the control of cell cycle progression.
Collapse
Affiliation(s)
- Boris Sarcevic
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent’s Hospital, Darlinghurst, NSW, 2010 and
Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia Corresponding author e-mail:
| | | | - Rohan T. Baker
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent’s Hospital, Darlinghurst, NSW, 2010 and
Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia Corresponding author e-mail:
| | | |
Collapse
|
44
|
Abstract
The conjugation of ubiquitin to other cellular proteins regulates a broad range of eukaryotic cell functions. The high efficiency and exquisite selectivity of ubiquitination reactions reflect the properties of enzymes known as ubiquitin-protein ligases or E3s. An E3 recognizes its substrates based on the presence of a specific ubiquitination signal, and catalyzes the formation of an isopeptide bond between a substrate (or ubiquitin) lysine residue and the C terminus of ubiquitin. Although a great deal is known about the molecular basis of E3 specificity, much less is known about molecular mechanisms of catalysis by E3s. Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type. The new findings shed light on many aspects of E3 structure, function, and mechanism, but also emphasize that key features of E3 catalysis remain to be elucidated.
Collapse
Affiliation(s)
- C M Pickart
- School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
45
|
McKenna S, Spyracopoulos L, Moraes T, Pastushok L, Ptak C, Xiao W, Ellison MJ. Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J Biol Chem 2001; 276:40120-6. [PMID: 11504715 DOI: 10.1074/jbc.m102858200] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-conjugating enzyme variants share significant sequence similarity with typical E2 (ubiquitin-conjugating) enzymes of the protein ubiquitination pathway but lack their characteristic active site cysteine residue. The MMS2 gene of Saccharomyces cerevisiae encodes one such ubiquitin-conjugating enzyme variant that is involved in the error-free DNA postreplicative repair pathway through its association with Ubc13, an E2. The Mms2-Ubc13 heterodimer is capable of linking ubiquitin molecules to one another through an isopeptide bond between the C terminus and Lys-63. Using highly purified components, we show here that the human forms of Mms2 and Ubc13 associate into a heterodimer that is stable over a range of conditions. The ubiquitin-thiol ester form of the heterodimer can be produced by the direct activation of its Ubc13 subunit with E1 (ubiquitin-activating enzyme) or by the association of Mms2 with the Ubc13-ubiquitin thiol ester. The activated heterodimer is capable of transferring its covalently bound ubiquitin to Lys-63 of an untethered ubiquitin molecule, resulting in diubiquitin as the predominant species. In (1)H (15)N HSQC ((1)H (15)N heteronuclear single quantum coherence) NMR experiments, we have mapped the surface determinants of tethered and untethered ubiquitin that interact with Mms2 and Ubc13 in both their monomeric and dimeric forms. These results have identified a surface of untethered ubiquitin that interacts with Mms2 in the monomeric and heterodimeric form. Furthermore, the C-terminal tail of ubiquitin does not participate in this interaction. These results suggest that the role of Mms2 is to correctly orient either a target-bound or untethered ubiquitin molecule such that its Lys-63 is placed proximally to the C terminus of the ubiquitin molecule that is linked to the active site of Ubc13.
Collapse
Affiliation(s)
- S McKenna
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Ptak C, Gwozd C, Huzil JT, Gwozd TJ, Garen G, Ellison MJ. Creation of a pluripotent ubiquitin-conjugating enzyme. Mol Cell Biol 2001; 21:6537-48. [PMID: 11533242 PMCID: PMC99800 DOI: 10.1128/mcb.21.19.6537-6548.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the creation of a pluripotent ubiquitin-conjugating enzyme (E2) generated through a single amino acid substitution within the catalytic domain of RAD6 (UBC2). This RAD6 derivative carries out the stress-related function of UBC4 and the cell cycle function of CDC34 while maintaining its own DNA repair function. Furthermore, it carries out CDC34's function in the absence of the CDC34 carboxy-terminal extension. By using sequence and structural comparisons, the residues that define the unique functions of these three E2s were found on the E2 catalytic face partitioned to either side by a conserved divide. One of these patches corresponds to a binding site for both HECT and RING domain proteins, suggesting that a single substitution in the catalytic domain of RAD6 confers upon it the ability to interact with multiple ubiquitin protein ligases (E3s). Other amino acid substitutions made within the catalytic domain of RAD6 either caused loss of its DNA repair function or modified its ability to carry out multiple E2 functions. These observations suggest that while HECT and RING domain binding may generally be localized to a specific patch on the E2 surface, other regions of the functional E2 face also play a role in specificity. Finally, these data also indicate that RAD6 uses a different functional region than either UBC4 or CDC34, allowing it to acquire the functions of these E2s while maintaining its own. The pluripotent RAD6 derivative, coupled with sequence, structural, and phylogenetic data, suggests that E2s have diverged from a common multifunctional progenitor.
Collapse
Affiliation(s)
- C Ptak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Hamilton KS, Ellison MJ, Barber KR, Williams RS, Huzil JT, McKenna S, Ptak C, Glover M, Shaw GS. Structure of a conjugating enzyme-ubiquitin thiolester intermediate reveals a novel role for the ubiquitin tail. Structure 2001; 9:897-904. [PMID: 11591345 DOI: 10.1016/s0969-2126(01)00657-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Ubiquitin-conjugating enzymes (E2s) are central enzymes involved in ubiquitin-mediated protein degradation. During this process, ubiquitin (Ub) and the E2 protein form an unstable E2-Ub thiolester intermediate prior to the transfer of ubiquitin to an E3-ligase protein and the labeling of a substrate for degradation. A series of complex interactions occur among the target substrate, ubiquitin, E2, and E3 in order to efficiently facilitate the transfer of the ubiquitin molecule. However, due to the inherent instability of the E2-Ub thiolester, the structural details of this complex intermediate are not known. RESULTS A three-dimensional model of the E2-Ub thiolester intermediate has been determined for the catalytic domain of the E2 protein Ubc1 (Ubc1(Delta450)) and ubiquitin from S. cerevisiae. The interface of the E2-Ub intermediate was determined by kinetically monitoring thiolester formation by 1H-(15)N HSQC spectra by using combinations of 15N-labeled and unlabeled Ubc1(Delta450) and Ub proteins. By using the surface interface as a guide and the X-ray structures of Ub and the 1.9 A structure of Ubc1(Delta450) determined here, docking simulations followed by energy minimization were used to produce the first model of a E2-Ub thiolester intermediate. CONCLUSIONS Complementary surfaces were found on the E2 and Ub proteins whereby the C terminus of Ub wraps around the E2 protein terminating in the thiolester between C88 (Ubc1(Delta450)) and G76 (Ub). The model supports in vivo and in vitro experiments of E2 derivatives carrying surface residue substitutions. Furthermore, the model provides insights into the arrangement of Ub, E2, and E3 within a ternary targeting complex.
Collapse
Affiliation(s)
- K S Hamilton
- Department of Biochemistry, The University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
VanDemark AP, Hofmann RM, Tsui C, Pickart CM, Wolberger C. Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 2001; 105:711-20. [PMID: 11440714 DOI: 10.1016/s0092-8674(01)00387-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While the signaling properties of ubiquitin depend on the topology of polyubiquitin chains, little is known concerning the molecular basis of specificity in chain assembly and recognition. UEV/Ubc complexes have been implicated in the assembly of Lys63-linked polyubiquitin chains that act as a novel signal in postreplicative DNA repair and I kappa B alpha kinase activation. The crystal structure of the Mms2/Ubc13 heterodimer shows the active site of Ubc13 at the intersection of two channels that are potential binding sites for the two substrate ubiquitins. Mutations that destabilize the heterodimer interface confer a marked UV sensitivity, providing direct evidence that the intact heterodimer is necessary for DNA repair. Selective mutations in the channels suggest a molecular model for specificity in the assembly of Lys63-linked polyubiquitin signals.
Collapse
Affiliation(s)
- A P VanDemark
- Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
49
|
Sleep D, Finnis C, Turner A, Evans L. Yeast 2 microm plasmid copy number is elevated by a mutation in the nuclear gene UBC4. Yeast 2001; 18:403-21. [PMID: 11255249 DOI: 10.1002/yea.679] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The copy number of the Saccharomyces cerevisiae endogenous 2 microm plasmid is under strict control to ensure efficient propagation to the daughter cell without significantly reducing the growth rate of the mother or the daughter cell. A recessive mutation has been identified that resulted in an elevated but stable 2 microm plasmid copy number, which could be complemented by a genomic DNA clone containing the UBC4 gene, encoding an E2 ubiquitin-conjugating enzyme. A ubc4::URA3 deletion resulted in the same elevated 2 microm plasmid copy number. An analysis of the endogenous 2 microm transcripts revealed that the steady-state abundance of REP1, REP2, FLP and RAF were all increased 4-5-fold in the mutant. Analysis of the mutant ubc4 allele identified a single base pair mutation within the UBC4 coding region, which would generate a glutamic acid to lysine amino acid substitution within a region of conserved tertiary structure located within the first alpha-helix of Ubc4p. These investigations represent the first molecular characterization of a mutation within a Saccharomyces cerevisiae nuclear gene shown to affect 2 microm steady-state plasmid copy number and implicate the ubiquitin-dependent proteolytic pathway in host control of 2 microm plasmid copy number.
Collapse
Affiliation(s)
- D Sleep
- Delta Biotechnology Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, UK.
| | | | | | | |
Collapse
|
50
|
Lester D, Farquharson C, Russell G, Houston B. Identification of a family of noncanonical ubiquitin-conjugating enzymes structurally related to yeast UBC6. Biochem Biophys Res Commun 2000; 269:474-80. [PMID: 10708578 DOI: 10.1006/bbrc.2000.2302] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ubiquitin-conjugating enzymes (UBCs) selectively target proteins for proteasomal degradation by the covalent attachment of ubiquitin moieties. Yeast UBC6 is unusual in having an active site distinct from all other UBCs and in possessing a transmembrane domain that anchors it to the cytoplasmic surface of the endoplasmic reticulum. During a differential display analysis on chick growth plate chondrocytes we isolated a cDNA encoding a noncanonical ubiquitin-conjugating enzyme (NCUBE1) structurally similar to yeast UBC6. Chick NCUBE1 transcripts were detected in all tissues examined and decreased threefold during chondrocyte terminal differentiation. Database searches identified other related proteins; the human and mouse orthologues of NCUBE1, a second human homologue of yeast UBC6 (NCUBE2), and related proteins from S. pombe, C. elegans, and P. mariana. Together with yeast UBC6 these proteins constitute a distinct family of UBCs sharing a conserved noncanonical active site sequence and a C-terminal transmembrane domain. By analogy with yeast UBC6 they are likely to be localised to the endoplasmic reticulum where they may be involved in targeting retrotranslocated, ER-associated proteins for proteasomal degradation.
Collapse
Affiliation(s)
- D Lester
- Bone Biology Group, Roslin Institute, Roslin, Scotland, EH25 9PS, United Kingdom
| | | | | | | |
Collapse
|