1
|
Meur S, Karati D. Fyn Kinase in Alzheimer's Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Mol Neurobiol 2025; 62:643-660. [PMID: 38890236 DOI: 10.1007/s12035-024-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease, characterized by the accumulation of abnormal protein aggregates and neuronal damage in the brain, leads to a gradual decline in cognitive function and memory. As a complex neurodegenerative disorder, it involves disruptions in various biochemical pathways and neurotransmitter systems, contributing to the progressive loss of neurons and synaptic connections. The complexity of Alzheimer's signaling pathways complicates treatment, presenting a formidable challenge in the quest for effective therapeutic interventions. A member of the Src family of kinases (SFKs), Fyn, is a type of non-receptor tyrosine kinase that has been linked to multiple essential CNS processes, such as myelination and synaptic transmission. Fyn is an appealing target for AD treatments because it is uniquely linked to the two major pathologies in AD by its interaction with tau, in addition to being activated by amyloid-beta (Aβ) through PrPC. Fyn mediates neurotoxicity and synaptic impairments caused by Aβ and is involved in regulating the process of Aβ synthesis.Additionally, the tau protein's tyrosine phosphorylation is induced by Fyn. Fyn is also a challenging target because of its widespread body expression and strong homology with other kinases of the Src family, which could cause unintentional off-target effects. This review emphasizes signaling pathways mediated by Fyn that govern neuronal development and plasticity while also summarizing the most noteworthy recent research relevant to Fyn kinase's function in the brain. Additionally, the therapeutic inhibition of Fyn kinase has been discussed, with a focus on the Fyn kinase inhibitors that are in clinical trials, which presents a fascinating opportunity for targeting Fyn kinase in the creation of possible therapeutic approaches for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
2
|
Zhou J, Lu X, Wang H. The underlying molecular mechanisms of Fyn in neonatal hypoxic-ischaemic encephalopathy. Front Cell Neurosci 2024; 18:1476856. [PMID: 39664999 PMCID: PMC11631624 DOI: 10.3389/fncel.2024.1476856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Fyn is a cytoplasmic tyrosine kinase (TK) that is a nonreceptor and a member of the Src family of kinases (SFKs). It is involved in several transduction pathways in the central nervous system (CNS), such as oligodendrocyte development, myelination, axon guidance, and synaptic transmission. Owing to its wide range of activities in the molecular signaling pathways that underpin both neuropathologic and neurodevelopmental events, Fyn has remained of great interest for more than a century. Accumulating preclinical data have highlighted the potential role of Fyn in the pathophysiology of neonatal hypoxic-ischaemic encephalopathy (HIE). By mediating important signaling pathways, Fyn may control glutamate excitotoxicity, promote neuroinflammation and facilitate the death of neurons caused by oxidative stress. In this review, we address new evidence regarding the role of Fyn in the pathogenesis of this condition, with the aim of providing a reference for the development of new strategies to improve the prognosis of neonatal HIE. In addition, we also offer insights into additional Fyn-related molecular mechanisms involved in HIE pathology.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Reproductive Medicine Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiang Lu
- Department of Cardiology, The First People’s Hospital of Yuexi County, Yuexi, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Walters JM, Noblet HA, Chung HJ. An emerging role of STriatal-Enriched protein tyrosine Phosphatase in hyperexcitability-associated brain disorders. Neurobiol Dis 2024; 200:106641. [PMID: 39159894 DOI: 10.1016/j.nbd.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer M Walters
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hayden A Noblet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hee Jung Chung
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Dept. of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Guglietti B, Sivasankar S, Mustafa S, Corrigan F, Collins-Praino LE. Fyn Kinase Activity and Its Role in Neurodegenerative Disease Pathology: a Potential Universal Target? Mol Neurobiol 2021; 58:5986-6005. [PMID: 34432266 DOI: 10.1007/s12035-021-02518-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
Fyn is a non-receptor tyrosine kinase belonging to the Src family of kinases (SFKs) which has been implicated in several integral functions throughout the central nervous system (CNS), including myelination and synaptic transmission. More recently, Fyn dysfunction has been associated with pathological processes observed in neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD) and Parkinson's disease (PD). Neurodegenerative diseases are amongst the leading cause of death and disability worldwide and, due to the ageing population, prevalence is predicted to rise in the coming years. Symptoms across neurodegenerative diseases are both debilitating and degenerative in nature and, concerningly, there are currently no disease-modifying therapies to prevent their progression. As such, it is important to identify potential new therapeutic targets. This review will outline the role of Fyn in normal/homeostatic processes, as well as degenerative/pathological mechanisms associated with neurodegenerative diseases, such as demyelination, pathological protein aggregation, neuroinflammation and cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca Guglietti
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Srisankavi Sivasankar
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Sanam Mustafa
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia
| | - Frances Corrigan
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia
| | - Lyndsey E Collins-Praino
- Department of Medical Sciences, University of Adelaide, SG31, Helen Mayo South, Adelaide, SA, 5005, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
5
|
Decotret LR, Wadsworth BJ, Li LV, Lim CJ, Bennewith KL, Pallen CJ. Receptor-type protein tyrosine phosphatase alpha (PTPα) mediates MMP14 localization and facilitates triple-negative breast cancer cell invasion. Mol Biol Cell 2021; 32:567-578. [PMID: 33566639 PMCID: PMC8101463 DOI: 10.1091/mbc.e20-01-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability of cancer cells to invade surrounding tissues requires degradation of the extracellular matrix (ECM). Invasive structures, such as invadopodia, form on the plasma membranes of cancer cells and secrete ECM-degrading proteases that play crucial roles in cancer cell invasion. We have previously shown that the protein tyrosine phosphatase alpha (PTPα) regulates focal adhesion formation and migration of normal cells. Here we report a novel role for PTPα in promoting triple-negative breast cancer cell invasion in vitro and in vivo. We show that PTPα knockdown reduces ECM degradation and cellular invasion of MDA-MB-231 cells through Matrigel. PTPα is not a component of TKS5-positive structures resembling invadopodia; rather, PTPα localizes with endosomal structures positive for MMP14, caveolin-1, and early endosome antigen 1. Furthermore, PTPα regulates MMP14 localization to plasma membrane protrusions, suggesting a role for PTPα in intracellular trafficking of MMP14. Importantly, we show that orthotopic MDA-MB-231 tumors depleted in PTPα exhibit reduced invasion into the surrounding mammary fat pad. These findings suggest a novel role for PTPα in regulating the invasion of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Lisa R Decotret
- Integrative Oncology, BC Cancer, Vancouver, British Columbia, BC V5Z 4E6, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, BC V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada
| | - Brennan J Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, British Columbia, BC V5Z 4E6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada
| | - Ling Vicky Li
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, BC V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada
| | - Chinten J Lim
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, BC V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada
| | - Kevin L Bennewith
- Integrative Oncology, BC Cancer, Vancouver, British Columbia, BC V5Z 4E6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada
| | - Catherine J Pallen
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, British Columbia, BC V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, BC V6H 3V4, Canada
| |
Collapse
|
6
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
7
|
Boonying W, Joselin A, Huang E, Qu D, Safarpour F, Iyirhiaro GO, Gonzalez YR, Callaghan SM, Slack RS, Figeys D, Chung YH, Park DS. Pink1 regulates FKBP5 interaction with AKT/PHLPP and protects neurons from neurotoxin stress induced by MPP .. J Neurochem 2019; 150:312-329. [PMID: 30734931 DOI: 10.1111/jnc.14683] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Loss of function mutations in the PTEN-induced putative kinase 1 (Pink1) gene have been linked with an autosomal recessive familial form of early onset Parkinson's disease (PD). However, the underlying mechanism(s) responsible for degeneration remains elusive. Presently, using co-immunoprecipitation in HEK (Human embryonic kidney) 293 cells, we show that Pink1 endogenously interacts with FK506-binding protein 51 (FKBP51 or FKBP5), FKBP5 and directly phosphorylates FKBP5 at Serine in an in vitro kinase assay. Both FKBP5 and Pink1 have been previously associated with protein kinase B (AKT) regulation. We provide evidence using primary cortical cultured neurons from Pink1-deficient mice that Pink1 increases AKT phosphorylation at Serine 473 (Ser473) challenged by 1-methyl-4-phenylpyridinium (MPP+ ) and that over-expression of FKBP5 using an adeno-associated virus delivery system negatively regulates AKT phosphorylation at Ser473 in murine-cultured cortical neurons. Interestingly, FKBP5 over-expression promotes death in response to MPP+ in the absence of Pink1. Conversely, shRNA-mediated knockdown of FKBP5 in cultured cortical neurons is protective and this effect is reversed with inhibition of AKT signaling. In addition, shRNA down-regulation of PH domain leucine-rich repeat protein phosphatase (PHLPP) in Pink1 WT neurons increases neuronal survival, while down-regulation of PHLPP in Pink1 KO rescues neuronal death in response to MPP+ . Finally, using co-immunoprecipitation, we show that FKBP5 interacts with the kinase AKT and phosphatase PHLPP. This interaction is increased in the absence of Pink1, both in Mouse Embryonic Fibroblasts (MEF) and in mouse brain tissue. Expression of kinase dead Pink1 (K219M) enhances FKBP5 interaction with both AKT and PHLPP. Overall, our results suggest a testable model by which Pink1 could regulate AKT through phosphorylation of FKBP5 and interaction of AKT with PHLPP. Our results suggest a potential mechanism by which PINK1-FKBP5 pathway contributes to neuronal death in PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Wassamon Boonying
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - En Huang
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Dianbo Qu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Farzaneh Safarpour
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Grace O Iyirhiaro
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yasmilde Rodriguez Gonzalez
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Steve M Callaghan
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Department of Chemistry and Biomolecular Sciences, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Young-Hwa Chung
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - David S Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea.,Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Ly PTT, Stewart C, Pallen CJ. PTPα is required for laminin-2-induced Fyn-Akt signaling to drive oligodendrocyte differentiation. J Cell Sci 2018; 131:jcs.212076. [DOI: 10.1242/jcs.212076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
Extrinsic signals that regulate oligodendrocyte maturation and subsequent myelination are essential for central nervous system development and regeneration. Deficiency in the extracellular factor laminin-2 (Lm2), as occurs in congenital muscular dystrophy, can lead to impaired oligodendroglial development and aberrant myelination, but many aspects of Lm2-regulated oligodendroglial signaling and differentiation remain undefined. We show that receptor-like protein tyrosine phosphatase alpha (PTPα) is essential for myelin basic protein expression and cell spreading during Lm2-induced oligodendrocyte differentiation. PTPα complexes with the Lm2 receptors α6β1 integrin and dystroglycan to transduce Fyn activation upon Lm2 engagement. In this way, PTPα mediates a subset of Lm2-induced signals required for differentiation that includes mTOR-dependent Akt activation but not Erk activation. We identify N-myc downstream regulated gene-1 (NDRG1) as a PTPα-regulated molecule during oligodendrocyte differentiation and distinguish Lm2 receptor-specific modes of Fyn-Akt-dependent and -independent NDRG1 phosphorylation. Altogether, this reveals a Lm2-regulated PTPα-Fyn-Akt signaling axis that is critical for key aspects of the gene expression and morphological changes that mark oligodendrocyte maturation.
Collapse
Affiliation(s)
- Philip T. T. Ly
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Craig Stewart
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Catherine J. Pallen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
9
|
Targeting the intracellular signaling "STOP" and "GO" pathways for the treatment of alcohol use disorders. Psychopharmacology (Berl) 2018; 235:1727-1743. [PMID: 29654346 PMCID: PMC5949137 DOI: 10.1007/s00213-018-4882-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
In recent years, research has identified the molecular and neural substrates underlying the transition of moderate "social" consumption of alcohol to the characteristic alcohol use disorder (AUD) phenotypes including excessive and compulsive alcohol use which we define in the review as the GO signaling pathways. In addition, growing evidence points to the existence of molecular mechanisms that keep alcohol consumption in check and that confer resilience for the development of AUD which we define herein as the STOP signaling pathways. In this review, we focus on examples of the GO and the STOP intracellular signaling pathways and discuss our current knowledge of how manipulations of these pathways may be used for the treatment of AUD.
Collapse
|
10
|
Zhang S, Fan G, Hao Y, Hammell M, Wilkinson JE, Tonks NK. Suppression of protein tyrosine phosphatase N23 predisposes to breast tumorigenesis via activation of FYN kinase. Genes Dev 2017; 31:1939-1957. [PMID: 29066500 PMCID: PMC5710140 DOI: 10.1101/gad.304261.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
Zhang et al. identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. They validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dβ cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in β-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.
Collapse
Affiliation(s)
- Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Molly Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
11
|
Morisot N, Ron D. Alcohol-dependent molecular adaptations of the NMDA receptor system. GENES, BRAIN, AND BEHAVIOR 2017; 16:139-148. [PMID: 27906494 PMCID: PMC5444330 DOI: 10.1111/gbb.12363] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022]
Abstract
Phenotypes such as motivation to consume alcohol, goal-directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N-methyl-d-aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin-dependent protein kinase II (CamKII), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above-mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol-dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
Collapse
Affiliation(s)
- N. Morisot
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - D. Ron
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Abstract
The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways.
Collapse
Affiliation(s)
- Dorit Ron
- Corresponding author: Dorit Ron, 675 Nelson Rising Lane, BOX 0663, San Francisco, CA 94143-0663,
| | - Segev Barak
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
A ternary complex comprising FAK, PTPα and IP3 receptor 1 functionally engages focal adhesions and the endoplasmic reticulum to mediate IL-1-induced Ca2+ signalling in fibroblasts. Biochem J 2015; 473:397-410. [PMID: 26611753 DOI: 10.1042/bj20150907] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/26/2015] [Indexed: 11/17/2022]
Abstract
Ca(2+) release is tightly sequestered in eukaryotic cells to enable fine spatio-temporal control of signalling but how Ca(2+) release from the endoplasmic reticulum (ER) is linked to cell adhesions is not defined. We examined the spatial restriction of Ca(2+) release through the inositol 1,4,5-triphosphate receptor 1 (IP3R1) in response to interleukin-1 (IL-1) and the functions of the adhesion-associated proteins, focal adhesion kinase (FAK) and protein tyrosine phosphatase-α (PTPα). In cultured fibroblasts IL-1 treatment promoted co-localization of PTPα and FAK with the ER and increased association of IP3R1 with PTPα and FAK at focal adhesions (FAs). GST pull-down assays of purified proteins demonstrated that PTPα and FAK directly interacted with IP3R1. These interactions depended on the focal adhesion-targeting (FAT) and band4.1-ezrin-radixin-moesin (FERM) domains of FAK. PTPα was required for the association of IP3R1 with Src, which mediated IP3R1 phosphorylation and consequently ER Ca(2+) release. Collectively, these data indicate that PTPα and FAK, which are enriched in FAs, interact with IP3R1 at adjacent ER sites to spatially sequester IL-1-induced Ca(2+) signalling.
Collapse
|
14
|
Deneka A, Korobeynikov V, Golemis EA. Embryonal Fyn-associated substrate (EFS) and CASS4: The lesser-known CAS protein family members. Gene 2015; 570:25-35. [PMID: 26119091 DOI: 10.1016/j.gene.2015.06.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 01/15/2023]
Abstract
The CAS (Crk-associated substrate) adaptor protein family consists of four members: CASS1/BCAR1/p130Cas, CASS2/NEDD9/HEF1/Cas-L, CASS3/EFS/Sin and CASS4/HEPL. While CAS proteins lack enzymatic activity, they contain specific recognition and binding sites for assembly of larger signaling complexes that are essential for cell proliferation, survival, migration, and other processes. All family members are intermediates in integrin-dependent signaling pathways mediated at focal adhesions, and associate with FAK and SRC family kinases to activate downstream effectors regulating the actin cytoskeleton. Most studies of CAS proteins to date have been focused on the first two members, BCAR1 and NEDD9, with altered expression of these proteins now appreciated as influencing disease development and prognosis for cancer and other serious pathological conditions. For these family members, additional mechanisms of action have been defined in receptor tyrosine kinase (RTK) signaling, estrogen receptor signaling or cell cycle progression, involving discrete partner proteins such as SHC, NSP proteins, or AURKA. By contrast, EFS and CASS4 have been less studied, although structure-function analyses indicate they conserve many elements with the better-known family members. Intriguingly, a number of recent studies have implicated these proteins in immune system function, and the pathogenesis of developmental disorders, autoimmune disorders including Crohn's disease, Alzheimer's disease, cancer and other diseases. In this review, we summarize the current understanding of EFS and CASS4 protein function in the context of the larger CAS family group.
Collapse
Affiliation(s)
- Alexander Deneka
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Kazan Federal University, 420000, Kazan, Russian Federation
| | - Vladislav Korobeynikov
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States; Novosibirsk State University, Medical Department, 630090, Novosibirsk, Russian Federation
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, United States.
| |
Collapse
|
15
|
Xu J, Kurup P, Foscue E, Lombroso PJ. Striatal-enriched protein tyrosine phosphatase regulates the PTPα/Fyn signaling pathway. J Neurochem 2015; 134:629-41. [PMID: 25951993 DOI: 10.1111/jnc.13160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/05/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
The tyrosine kinase Fyn has two regulatory tyrosine residues that when phosphorylated either activate (Tyr(420)) or inhibit (Tyr(531)) Fyn activity. Within the central nervous system, two protein tyrosine phosphatases (PTPs) target these regulatory tyrosines in Fyn. PTPα dephosphorylates Tyr(531) and activates Fyn, while STEP (STriatal-Enriched protein tyrosine Phosphatase) dephosphorylates Tyr(420) and inactivates Fyn. Thus, PTPα and STEP have opposing functions in the regulation of Fyn; however, whether there is cross talk between these two PTPs remains unclear. Here, we used molecular techniques in primary neuronal cultures and in vivo to demonstrate that STEP negatively regulates PTPα by directly dephosphorylating PTPα at its regulatory Tyr(789). Dephosphorylation of Tyr(789) prevents the translocation of PTPα to synaptic membranes, blocking its ability to interact with and activate Fyn. Genetic or pharmacologic reduction in STEP61 activity increased the phosphorylation of PTPα at Tyr(789), as well as increased translocation of PTPα to synaptic membranes. Activation of PTPα and Fyn and trafficking of GluN2B to synaptic membranes are necessary for ethanol (EtOH) intake behaviors in rodents. We tested the functional significance of STEP61 in this signaling pathway by EtOH administration to primary cultures as well as in vivo, and demonstrated that the inactivation of STEP61 by EtOH leads to the activation of PTPα, its translocation to synaptic membranes, and the activation of Fyn. These findings indicate a novel mechanism by which STEP61 regulates PTPα and suggest that STEP and PTPα coordinate the regulation of Fyn. STEP61 , PTPα, Fyn, and NMDA receptor (NMDAR) have been implicated in ethanol intake behaviors in the dorsomedial striatum (DMS) in rodents. Here, we report that PTPα is a novel substrate for STEP61. Upon ethanol exposure, STEP61 is phosphorylated and inactivated by protein kinase A (PKA) signaling in the DMS. As a result of STEP61 inhibition, there is an increase in the phosphorylation of PTPα, which translocates to lipid rafts and activates Fyn and subsequent NMDAR signaling. The results demonstrate a synergistic regulation of Fyn-NMDAR signaling by STEP61 and PTPα, which may contribute to the regulation of ethanol-related behaviors. NMDA, N-methyl-D-aspartate; PTPα, receptor-type protein tyrosine phosphatase alpha; STEP, STriatal-Enriched protein tyrosine Phosphatase.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pradeep Kurup
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ethan Foscue
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Paul J Lombroso
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Khanna RS, Le HT, Wang J, Fung TCH, Pallen CJ. The interaction of protein-tyrosine phosphatase α (PTPα) and RACK1 protein enables insulin-like growth factor 1 (IGF-1)-stimulated Abl-dependent and -independent tyrosine phosphorylation of PTPα. J Biol Chem 2015; 290:9886-95. [PMID: 25694432 DOI: 10.1074/jbc.m114.624247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration.
Collapse
Affiliation(s)
- Ranvikram S Khanna
- From the Departments of Medicine and the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hoa T Le
- the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada Pediatrics and
| | - Jing Wang
- the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada Pediatrics and
| | - Thomas C H Fung
- the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Catherine J Pallen
- the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada Pediatrics and
| |
Collapse
|
17
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
18
|
Selner NG, Luechapanichkul R, Chen X, Neel BG, Zhang ZY, Knapp S, Bell CE, Pei D. Diverse levels of sequence selectivity and catalytic efficiency of protein-tyrosine phosphatases. Biochemistry 2014; 53:397-412. [PMID: 24359314 PMCID: PMC3954597 DOI: 10.1021/bi401223r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sequence selectivity of 14 classical protein-tyrosine phosphatases (PTPs) (PTPRA, PTPRB, PTPRC, PTPRD, PTPRO, PTP1B, SHP-1, SHP-2, HePTP, PTP-PEST, TCPTP, PTPH1, PTPD1, and PTPD2) was systematically profiled by screening their catalytic domains against combinatorial peptide libraries. All of the PTPs exhibit similar preference for pY peptides rich in acidic amino acids and disfavor positively charged sequences but differ vastly in their degrees of preference/disfavor. Some PTPs (PTP-PEST, SHP-1, and SHP-2) are highly selective for acidic over basic (or neutral) peptides (by >10(5)-fold), whereas others (PTPRA and PTPRD) show no to little sequence selectivity. PTPs also have diverse intrinsic catalytic efficiencies (kcat/KM values against optimal substrates), which differ by >10(5)-fold due to different kcat and/or KM values. Moreover, PTPs show little positional preference for the acidic residues relative to the pY residue. Mutation of Arg47 of PTP1B, which is located near the pY-1 and pY-2 residues of a bound substrate, decreased the enzymatic activity by 3-18-fold toward all pY substrates containing acidic residues anywhere within the pY-6 to pY+5 region. Similarly, mutation of Arg24, which is situated near the C-terminus of a bound substrate, adversely affected the kinetic activity of all acidic substrates. A cocrystal structure of PTP1B bound with a nephrin pY(1193) peptide suggests that Arg24 engages in electrostatic interactions with acidic residues at the pY+1, pY+2, and likely other positions. These results suggest that long-range electrostatic interactions between positively charged residues near the PTP active site and acidic residues on pY substrates allow a PTP to bind acidic substrates with similar affinities, and the varying levels of preference for acidic sequences by different PTPs are likely caused by the different electrostatic potentials near their active sites. The implications of the varying sequence selectivity and intrinsic catalytic activities with respect to PTP in vivo substrate specificity and biological functions are discussed.
Collapse
Affiliation(s)
- Nicholas G. Selner
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Rinrada Luechapanichkul
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Xianwen Chen
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| | - Benjamin G. Neel
- Princess Margaret Cancer Center, University Health Network, and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Room 7-504, Toronto, ON M5G 2M9, Canada
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stefan Knapp
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Charles E. Bell
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Kinsey WH. SRC-family tyrosine kinases in oogenesis, oocyte maturation and fertilization: an evolutionary perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:33-56. [PMID: 25030759 DOI: 10.1007/978-1-4939-0817-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.
Collapse
Affiliation(s)
- William H Kinsey
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA,
| |
Collapse
|
20
|
Grb2 promotes integrin-induced focal adhesion kinase (FAK) autophosphorylation and directs the phosphorylation of protein tyrosine phosphatase α by the Src-FAK kinase complex. Mol Cell Biol 2013; 34:348-61. [PMID: 24248601 DOI: 10.1128/mcb.00825-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The integrin-activated Src-focal adhesion kinase (FAK) kinase complex phosphorylates PTPα at Tyr789, initiating PTPα-mediated signaling that promotes cell migration. Recruitment of the BCAR3-Cas complex by PTPα-phospho-Tyr789 at focal adhesions is one mechanism of PTPα signaling. The adaptor protein Grb2 is also recruited by PTPα-phospho-Tyr789, although the role of the PTPα-Grb2 complex in integrin signaling is unknown. We show that silencing Grb2 expression in fibroblasts abolishes PTPα-Tyr789 phosphorylation and that this is due to two unexpected actions of Grb2. First, Grb2 promotes integrin-induced autophosphorylation of FAK-Tyr397. This is impaired in Grb2-depleted cells and prohibits FAK activation and formation of the Src-FAK complex. Grb2-depleted cells contain less paxillin, and paxillin overexpression rescues FAK-Tyr397 phosphorylation, suggesting that the FAK-activating action of Grb2 involves paxillin. A second distinct role for Grb2 in PTPα-Tyr789 phosphorylation involves Grb2-mediated coupling of Src-FAK and PTPα. This requires two phosphosites, FAK-Tyr925 and PTPα-Tyr789, for Grb2-Src homology 2 (SH2) binding. We propose that a Grb2 dimer links FAK and PTPα, and this positions active Src-FAK in proximity with other, perhaps integrin-clustered, molecules of PTPα to enable maximal PTPα-Tyr789 phosphorylation. These findings identify Grb2 as a new FAK activator and reveal its essential role in coordinating PTPα tyrosine phosphorylation to enable downstream integrin signaling and migration.
Collapse
|
21
|
Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors. J Neurosci 2013; 33:14369-78. [PMID: 24005290 DOI: 10.1523/jneurosci.1954-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously found that excessive ethanol drinking activates Fyn in the dorsomedial striatum (DMS) (Wang et al., 2010; Gibb et al., 2011). Ethanol-mediated Fyn activation in the DMS leads to the phosphorylation of the GluN2B subunit of the NMDA receptor, to the enhancement of the channel's activity, and to the development and/or maintenance of ethanol drinking behaviors (Wang et al., 2007, 2010). Protein tyrosine phosphatase α (PTPα) is essential for Fyn kinase activation (Bhandari et al., 1998), and we showed that ethanol-mediated Fyn activation is facilitated by the recruitment of PTPα to synaptic membranes, the compartment where Fyn resides (Gibb et al., 2011). Here we tested the hypothesis that PTPα in the DMS is part of the Fyn/GluN2B pathway and is thus a major contributor to the neuroadaptations underlying excessive ethanol intake behaviors. We found that RNA interference (RNAi)-mediated PTPα knockdown in the DMS reduces excessive ethanol intake and preference in rodents. Importantly, no alterations in water, saccharine/sucrose, or quinine intake were observed. Furthermore, downregulation of PTPα in the DMS of mice significantly reduces ethanol-mediated Fyn activation, GluN2B phosphorylation, and ethanol withdrawal-induced long-term facilitation of NMDAR activity without altering the intrinsic features of DMS neurons. Together, these results position PTPα upstream of Fyn within the DMS and demonstrate the important contribution of the phosphatase to the maladaptive synaptic changes that lead to excessive ethanol intake.
Collapse
|
22
|
Ginnan R, Zou X, Pfleiderer PJ, Mercure MZ, Barroso M, Singer HA. Vascular smooth muscle cell motility is mediated by a physical and functional interaction of Ca2+/calmodulin-dependent protein kinase IIδ2 and Fyn. J Biol Chem 2013; 288:29703-12. [PMID: 24003228 DOI: 10.1074/jbc.m113.477257] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In vascular smooth muscle (VSM) cells, Ca(2+)/calmodulin-dependent protein kinase IIδ2 (CaMKIIδ2) activates non-receptor tyrosine kinases and EGF receptor, with a Src family kinase as a required intermediate. siRNA-mediated suppression of Fyn, a Src family kinase, inhibited VSM cell motility. Simultaneous suppression of both Fyn and CaMKIIδ2 was non-additive, suggesting coordinated regulation of cell motility. Confocal immunofluorescence microscopy indicated that CaMKIIδ2 and Fyn selectively (compared with Src) co-localized with the Golgi in quiescent cultured VSM cells. Stimulation with PDGF resulted in a rapid (<5 min) partial redistribution and co-localization of both kinases in peripheral membrane regions. Furthermore, CaMKIIδ2 and Fyn selectively (compared with Src) co-immunoprecipitated, suggesting a physical interaction in a signaling complex. Stimulation of VSM cells with ionomycin, a calcium ionophore, resulted in activation of CaMKIIδ2 and Fyn and disruption of the complex. Pretreatment with KN-93, a pharmacological inhibitor of CaMKII, prevented activation-dependent disruption of CaMKIIδ2 and Fyn, implicating CaMKIIδ2 as an upstream mediator of Fyn. Overexpression of constitutively active CaMKII resulted in the dephosphorylation of Fyn at Tyr-527, which is required for Fyn activation. Taken together, these data demonstrate a dynamic interaction between CaMKIIδ2 and Fyn in VSM cells and indicate a mechanism by which CaMKIIδ2 and Fyn may coordinately regulate VSM cell motility.
Collapse
Affiliation(s)
- Roman Ginnan
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | | | | | | | | | | |
Collapse
|
23
|
Protein tyrosine phosphatase receptor type z negatively regulates oligodendrocyte differentiation and myelination. PLoS One 2012; 7:e48797. [PMID: 23144976 PMCID: PMC3492236 DOI: 10.1371/journal.pone.0048797] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 10/01/2012] [Indexed: 01/06/2023] Open
Abstract
Background Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP) may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP) expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz. Methodology/Principal Findings We found an early onset of the expression of myelin basic protein (MBP), a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE) induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG) peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis. Conclusions/Significance Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS) development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.
Collapse
|
24
|
Protein tyrosine phosphatase α phosphotyrosyl-789 binds BCAR3 to position Cas for activation at integrin-mediated focal adhesions. Mol Cell Biol 2012; 32:3776-89. [PMID: 22801373 DOI: 10.1128/mcb.00214-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Integrin-mediated focal adhesions connect the extracellular matrix and cytoskeleton to regulate cell responses, such as migration. Protein tyrosine phosphatase α (PTPα) regulates integrin signaling, focal adhesion formation, and migration, but its roles in these events are incompletely understood. The integrin-proximal action of PTPα activates Src family kinases, and subsequent phosphorylation of PTPα at Tyr789 acts in an unknown manner to promote migration. PTPα-null cells were used in reconstitution assays to distinguish PTPα-Tyr789-dependent signaling events. This showed that PTPα-Tyr789 regulates the localization of PTPα and the scaffolding protein Cas to adhesion sites where Cas interacts with and is phosphorylated by Src to initiate Cas signaling. Linking these events, we identify BCAR3 as a molecular connector of PTPα and Cas, with phospho-Tyr789 PTPα serving as the first defined cellular ligand for the BCAR3 SH2 domain that recruits BCAR3-Cas to adhesions. Our findings reveal a novel role of PTPα in integrin-induced adhesion assembly that enables Src-mediated activation of the pivotal function of Cas in migration.
Collapse
|
25
|
Kapp K, Siemens J, Häring HU, Lammers R. Proteolytic processing of the protein tyrosine phosphatase α extracellular domain is mediated by ADAM17/TACE. Eur J Cell Biol 2012; 91:687-93. [PMID: 22647903 DOI: 10.1016/j.ejcb.2012.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 01/06/2023] Open
Abstract
The receptor protein tyrosine phosphatase alpha (PTPα) is involved in the regulation of tyrosine kinases like the Src kinase and the insulin receptor. As with other PTPs, its function is determined by alternative splicing, dimerisation, phosphorylation and proteolytical processing. PTPα is cleaved by calpain in its intracellular domain, which decreases its potential to dephosphorylate Src kinase. Here, we demonstrate that PTPα is also processed in the extracellular domain. Extracellular processing was exclusively found for a splice variant containing an extra nine amino acid insert three residues amino-terminal from the transmembrane domain. Processing was sensitive to the metalloprotease-inhibitor Batimastat, and CHO-M2 cells lacking a disintegrin and metalloproteinase 17 (ADAM17; tumor-necrosis-factor α converting enzyme) activity were not able to cleave PTPα. After transient overexpression of ADAM17 and PTPα in these cells, processing was restored, proving that ADAM17 is involved in this process. Further characterization of the consequences of processing revealed that dephosphorylation of the insulin receptor or activation of Src was not affected but focus formation was reduced. We conclude that extracellular proteolytic processing is a novel mechanism for PTPα regulation.
Collapse
Affiliation(s)
- Katja Kapp
- Department of Internal Medicine IV, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
26
|
Gibb SL, Hamida SB, Lanfranco MF, Ron D. Ethanol-induced increase in Fyn kinase activity in the dorsomedial striatum is associated with subcellular redistribution of protein tyrosine phosphatase α. J Neurochem 2011; 119:879-89. [PMID: 21919909 DOI: 10.1111/j.1471-4159.2011.07485.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo exposure of rodents to ethanol leads to a long-lasting increase in Fyn kinase activity in the dorsomedial striatum (DMS). In this study, we set out to identify a molecular mechanism that contributes to the enhancement of Fyn activity in response to ethanol in the DMS. Protein tyrosine phosphatase α (PTPα) positively regulates the activity of Fyn, and we found that repeated systemic administration or binge drinking of ethanol results in an increase in the synaptic localization of PTPα in the DMS, the same site where Fyn resides. We also demonstrate that binge drinking of ethanol leads to an increase in Fyn activity and to the co-localization of Fyn and PTPα in lipid rafts in the DMS. Finally, we show that the level of tyrosine phosphorylated (and thus active) PTPα in the synaptic fractions is increased in response to contingent or non-contingent exposure of rats to ethanol. Together, our results suggest that the redistribution of PTPα in the DMS into compartments where Fyn resides is a potential mechanism by which the activity of the kinase is increased upon ethanol exposure. Such neuroadaptations could be part of a mechanism that leads to the development of excessive ethanol consumption.
Collapse
Affiliation(s)
- Stuart L Gibb
- Ernest Gallo Research Center, University of California San Francisco, Emeryville, California, USA
| | | | | | | |
Collapse
|
27
|
Ye H, Zhao T, Tan YLJ, Liu J, Pallen CJ, Xiao ZC. Receptor-like protein-tyrosine phosphatase α enhances cell surface expression of neural adhesion molecule NB-3. J Biol Chem 2011; 286:26071-80. [PMID: 21622556 DOI: 10.1074/jbc.m110.214080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neural adhesion molecule NB-3 plays an important role in the apical dendrite development of layer V pyramidal neurons in the visual cortex, and receptor-like protein-tyrosine phosphatase α (PTPα) mediates NB-3 signaling in this process. Here we investigated the role of PTPα in regulating cell surface expression of NB-3. We found that cortical neurons from PTPα knock-out mice exhibited a lower level of NB-3 at the cell surface. When expressed in COS1 cells, NB-3 was enriched in the Golgi apparatus with a low level of cell surface expression. However, co-expression of PTPα increased the cell surface distribution of NB-3. Further analysis showed that PTPα facilitated Golgi exit of NB-3 and stabilized NB-3 protein at the cell surface by preventing its release from the plasma membrane. The extracellular region of PTPα but not its catalytic activity is necessary for its effect on NB-3 expression. Thus, the PTPα-mediated increase of NB-3 level at the cell surface represents a novel function of PTPα in NB-3 signaling in neural development.
Collapse
Affiliation(s)
- Haihong Ye
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | |
Collapse
|
28
|
Regulation of SRC family kinases in human cancers. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:865819. [PMID: 21776389 PMCID: PMC3135246 DOI: 10.1155/2011/865819] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 02/08/2011] [Indexed: 11/22/2022]
Abstract
The nonreceptor protein tyrosine kinase Src plays a crucial role in the signal transduction pathways involved in cell division, motility, adhesion, and survival in both normal and cancer cells. Although the Src family kinases (SFKs) are activated in various types of cancers, the exact mechanisms through which they contribute to the progression of individual tumors remain to be defined. The activation of Src in human cancers may occur through a variety of mechanisms that include domain interaction and structural remodeling in response to various activators or upstream kinases and phosphatastes. Because of Src's prominent roles in invasion and tumor progression, epithelial-to-mesenchymal transition, angiogenesis, and the development of metastasis, Src is a promising target for cancer therapy. Several small molecule inhibitors of Src are currently being investigated in clinical trials. In this article, we will summarize the mechanisms regulating Src kinase activity in normal and cancer cells and discuss the status of Src inhibitor development against various types of cancers.
Collapse
|
29
|
ZUKO AMILA, BOUYAIN SAMUEL, VAN DER ZWAAG BERT, BURBACH JPETERH. Contactins: structural aspects in relation to developmental functions in brain disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:143-80. [PMID: 21846565 PMCID: PMC9921585 DOI: 10.1016/b978-0-12-386483-3.00001-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contactins are members of a protein subfamily of neural immunoglobulin (Ig) domain-containing cell adhesion molecules. Their architecture is based on six N-terminal Ig domains, four fibronectin type III domains, and a C-terminal glycophosphatidylinositol (GPI)-anchor to the extracellular part of the cell membrane. Genetics of neuropsychiatric disorders, particularly autism spectrum disorders, have pinpointed contactin-4, -5, and -6 (CNTN4, -5, and -6) as potential disease genes in neurodevelopmental disorders and suggested that they participate in pathways important for appropriate brain development. These contactins have distinct but overlapping patterns of brain expression, and null-mutation causes subtle morphological and functional defects in the brain. The molecular basis of their neurodevelopmental functions is likely conferred by heterophilic protein interactions. Cntn4, -5, and -6 interact with protein tyrosine phosphatase receptor gamma (Ptptg) using a shared binding site that spans their second and third Ig repeats. Interactions with amyloid precursor protein (APP), Notch, and other IgCAMs have also been indicated. The present data indicate that Cntn4, -5, and -6 proteins may be part of heteromeric receptor complexes as well as serve as ligands themselves.
Collapse
Affiliation(s)
- AMILA ZUKO
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - SAMUEL BOUYAIN
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - BERT VAN DER ZWAAG
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. PETER H. BURBACH
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Samayawardhena LA, Pallen CJ. PTPalpha activates Lyn and Fyn and suppresses Hck to negatively regulate FcepsilonRI-dependent mast cell activation and allergic responses. THE JOURNAL OF IMMUNOLOGY 2010; 185:5993-6002. [PMID: 20944008 DOI: 10.4049/jimmunol.1001261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mast cell activation via FcεRI involves activation of the Src family kinases (SFKs) Lyn, Fyn, and Hck that positively or, in the case of Lyn, negatively regulate cellular responses. Little is known of upstream activators of these SFKs in FcεRI-dependent signaling. We investigated the role of receptor protein tyrosine phosphatase (PTP)α, a well-known activator of SFKs in diverse signaling systems, FcεRI-mediated mast cell activation, and IgE-dependent allergic responses in mice. PTPα(-/-) bone marrow-derived mast cells hyperdegranulate and exhibit increased cytokine and cysteinyl leukotriene secretion, and PTPα(-/-) mice display enhanced IgE-dependent anaphylaxis. At or proximal to FcεRI, PTPα(-/-) cells have reduced IgE-dependent activation of Lyn and Fyn, as well as reduced FcεRI and SHIP phosphorylation. In contrast, Hck and Syk activation is enhanced. Syk hyperactivation correlated with its increased phosphorylation at positive regulatory sites and defective phosphorylation at a negative regulatory site. Distal to FcεRI, we observed increased activation of PI3K and MAPK pathways. These findings demonstrate that PTPα activates the FcεRI-coupled kinases Lyn and Fyn and suppresses Hck activity. Furthermore, the findings indicate that hyperactivation of PTPα(-/-) mast cells and enhanced IgE-dependent allergic responses of PTPα(-/-) mice are due to the ablated function of PTPα as a critical regulator of Lyn negative signaling.
Collapse
Affiliation(s)
- Lionel A Samayawardhena
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
31
|
Wang Q, Rajshankar D, Laschinger C, Talior-Volodarsky I, Wang Y, Downey GP, McCulloch CA. Importance of protein-tyrosine phosphatase-alpha catalytic domains for interactions with SHP-2 and interleukin-1-induced matrix metalloproteinase-3 expression. J Biol Chem 2010; 285:22308-17. [PMID: 20472558 DOI: 10.1074/jbc.m110.102426] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Interleukin-1 (IL-1) induces extracellular matrix degradation as a result of increased expression of matrix metalloproteinases (MMPs). We examined adhesion-restricted signaling pathways that enable IL-1-induced MMP release in human gingival and murine fibroblasts. Of the seven MMPs and three tissue inhibitors of MMPs screened, IL-1 enhanced release only of MMP3 when cells formed focal adhesions. Inhibition of protein-tyrosine phosphatases (PTPs), which are enriched in focal adhesions, blocked IL-1-induced MMP3 release. Accordingly, in contrast to wild-type cells, fibroblasts null for PTPalpha did not exhibit IL-1-induced MMP3 release. IL-1 treatment enhanced the recruitment of SHP-2 and PTPalpha to focal adhesions and the association of PTPalpha with SHP-2. Pulldown assays confirmed a direct interaction between PTPalpha and SHP-2, which was dependent on the intact, membrane-proximal phosphatase domain of PTPalpha. Interactions between SHP-2 and PTPalpha, recruitment of SHP-2 to focal adhesions, IL-1-induced ERK activation, and MMP3 expression were all blocked by point mutations in the phosphatase domains of PTPalpha. These data indicate that IL-1-induced signaling through focal adhesions leading to MMP3 release and interactions between SHP-2 and PTPalpha are dependent on the integrity of the catalytic domains of PTPalpha.
Collapse
Affiliation(s)
- Qin Wang
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Serine dephosphorylation of receptor protein tyrosine phosphatase alpha in mitosis induces Src binding and activation. Mol Cell Biol 2010; 30:2850-61. [PMID: 20385765 DOI: 10.1128/mcb.01202-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Receptor protein tyrosine phosphatase alpha (RPTPalpha) is the mitotic activator of the protein tyrosine kinase Src. RPTPalpha serine hyperphosphorylation was proposed to mediate mitotic activation of Src. We raised phosphospecific antibodies to the two main serine phosphorylation sites, and we discovered that RPTPalpha Ser204 was almost completely dephosphorylated in mitotic NIH 3T3 and HeLa cells, whereas Ser180 and Tyr789 phosphorylation were only marginally reduced in mitosis. Concomitantly, Src pTyr527 and pTyr416 were dephosphorylated, resulting in 2.3-fold activation of Src in mitosis. Using inhibitors and knockdown experiments, we demonstrated that dephosphorylation of RPTPalpha pSer204 in mitosis was mediated by PP2A. Mutation of Ser204 to Ala did not activate RPTPalpha, and intrinsic catalytic activity of RPTPalpha was not affected in mitosis. Interestingly, binding of endogenous Src to RPTPalpha was induced in mitosis. GRB2 binding to RPTPalpha, which was proposed to compete with Src binding to RPTPalpha, was only modestly reduced in mitosis, which could not account for enhanced Src binding. Moreover, we demonstrate that Src bound to mutant RPTPalpha-Y789F, lacking the GRB2 binding site, and mutant Src with an impaired Src homology 2 (SH2) domain bound to RPTPalpha, illustrating that Src binding to RPTPalpha is not mediated by a pTyr-SH2 interaction. Mutation of RPTPalpha Ser204 to Asp, mimicking phosphorylation, reduced coimmunoprecipitation with Src, suggesting that phosphorylation of Ser204 prohibits binding to Src. Based on our results, we propose a new model for mitotic activation of Src in which PP2A-mediated dephosphorylation of RPTPalpha pSer204 facilitates Src binding, leading to RPTPalpha-mediated dephosphorylation of Src pTyr527 and pTyr416 and hence modest activation of Src.
Collapse
|
33
|
Wang Q, Rajshankar D, Branch DR, Siminovitch KA, Herrera Abreu MT, Downey GP, McCulloch CA. Protein-tyrosine phosphatase-alpha and Src functionally link focal adhesions to the endoplasmic reticulum to mediate interleukin-1-induced Ca2+ signaling. J Biol Chem 2009; 284:20763-72. [PMID: 19497848 DOI: 10.1074/jbc.m808828200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) alpha in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPalpha to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPalpha was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPalpha was required for the association of PTPalpha with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPalpha acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.
Collapse
Affiliation(s)
- Qin Wang
- Canadian Institutes of Health Research Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Chen SC, Khanna RS, Bessette DC, Samayawardhena LA, Pallen CJ. Protein tyrosine phosphatase-alpha complexes with the IGF-I receptor and undergoes IGF-I-stimulated tyrosine phosphorylation that mediates cell migration. Am J Physiol Cell Physiol 2009; 297:C133-9. [PMID: 19420001 DOI: 10.1152/ajpcell.00110.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein tyrosine phosphatase-alpha (PTPalpha) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPalpha can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPalpha phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPalpha tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPalpha phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPalpha tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPalpha physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPalpha phosphorylation, this association does not require IGF-I. The interaction of PTPalpha and the IGF-I receptor is independent of PTPalpha catalytic activity, and expression of exogenous PTPalpha does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPalpha does not act as an IGF-I receptor phosphatase. However, PTPalpha mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by approximately 50% in cells lacking PTPalpha or in cells with mutant PTPalpha lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPalpha tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPalpha, possibly catalyzed by the PTPalpha-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.
Collapse
Affiliation(s)
- Shirley C Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
35
|
Mikami T, Yasunaga D, Kitagawa H. Contactin-1 is a functional receptor for neuroregulatory chondroitin sulfate-E. J Biol Chem 2008; 284:4494-9. [PMID: 19075012 DOI: 10.1074/jbc.m809227200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chondroitin sulfate (CS) plays critical roles in central nervous system development and regeneration, and individual modifications of CS form a "sulfation code" that regulates growth factor signaling or neuronal growth. Although we have shown that CS-E polysaccharide, but not CS-A or -C polysaccharide, has an inherent ability to promote neurite outgrowth toward primary neurons, its molecular mechanism remains elusive. Here, we show the involvement of a plasma membrane-tethered cell adhesion molecule, contactin-1 (CNTN-1), in CS-E-mediated neurite extension in a mouse neuroblastoma cell line and primary hippocampal neurons. CS-E, but not CS-A, -C, or heparan sulfate, engaged CNTN-1 with significant affinity and induced intracellular signaling downstream of CNTN-1, indicating that CS-E is a selective ligand for a potential CS receptor, CNTN-1, leading to neurite outgrowth. Our data provide the first evidence that biological functions of CS are exerted through the CS receptor-mediated signaling pathway(s).
Collapse
Affiliation(s)
- Tadahisa Mikami
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558 and CREST, the Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | | | | |
Collapse
|
36
|
Bodrikov V, Sytnyk V, Leshchyns'ka I, den Hertog J, Schachner M. NCAM induces CaMKIIalpha-mediated RPTPalpha phosphorylation to enhance its catalytic activity and neurite outgrowth. ACTA ACUST UNITED AC 2008; 182:1185-200. [PMID: 18809727 PMCID: PMC2542478 DOI: 10.1083/jcb.200803045] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Receptor protein tyrosine phosphatase α (RPTPα) phosphatase activity is required for intracellular signaling cascades that are activated in motile cells and growing neurites. Little is known, however, about mechanisms that coordinate RPTPα activity with cell behavior. We show that clustering of neural cell adhesion molecule (NCAM) at the cell surface is coupled to an increase in serine phosphorylation and phosphatase activity of RPTPα. NCAM associates with T- and L-type voltage-dependent Ca2+ channels, and NCAM clustering at the cell surface results in Ca2+ influx via these channels and activation of NCAM-associated calmodulin-dependent protein kinase IIα (CaMKIIα). Clustering of NCAM promotes its redistribution to lipid rafts and the formation of a NCAM–RPTPα–CaMKIIα complex, resulting in serine phosphorylation of RPTPα by CaMKIIα. Overexpression of RPTPα with mutated Ser180 and Ser204 interferes with NCAM-induced neurite outgrowth, which indicates that neurite extension depends on NCAM-induced up-regulation of RPTPα activity. Thus, we reveal a novel function for a cell adhesion molecule in coordination of cell behavior with intracellular phosphatase activity.
Collapse
Affiliation(s)
- Vsevolod Bodrikov
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Dimmock JR, Chamankhah M, Das U, Zello GA, Quail JW, Yang J, Nienaber KH, Sharma RK, Selvakumar P, Balzarini J, De Clercq E, Stables JP. Cytotoxic and Topographical Properties of 6-Arylidene-2-dimethylaminomethylcyclohexanone Hydrochlorides and Related Compounds. J Enzyme Inhib Med Chem 2008; 19:1-10. [PMID: 15202487 DOI: 10.1080/14756360310001624975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A number of 2-arylidenecyclohexanones (1a-h) were converted into the corresponding Mannich bases (2a-h) and (3a,f). Evaluation against murine L1210 cells as well as human Molt 4/C8 and CEM T-lymphocytes revealed the marked cytotoxicity of the Mannich bases and also the fact that almost invariably these compounds were more potent than the precursor enones (1a-h). Further evaluation of most of the Mannich bases towards a panel of nearly 60 human tumour cell lines confirmed their utility as potent cytotoxins. In this assay, the compounds showed growth-inhibiting properties greater than the anticancer alkylator melphalan. QSAR studies revealed that in some cell lines compounds possessing small electron-attracting aryl substituents showed the greatest potencies. Molecular modeling and X-ray crystallography demonstrated that various interatomic distances and torsion angles correlated with cytotoxicity. A representative compound (2a) demonstrated weak inhibiting properties towards human N-myristoyltransferase and stimulated a tyrosine protein kinase. A single dose of 100 mg/kg of most of the compounds did not prove to be lethal in mice.
Collapse
Affiliation(s)
- J R Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lin D, Kamsteeg EJ, Zhang Y, Jin Y, Sterling H, Yue P, Roos M, Duffield A, Spencer J, Caplan M, Wang WH. Expression of Tetraspan Protein CD63 Activates Protein-tyrosine Kinase (PTK) and Enhances the PTK-induced Inhibition of ROMK Channels. J Biol Chem 2008; 283:7674-81. [DOI: 10.1074/jbc.m705574200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
39
|
Ye H, Tan YLJ, Ponniah S, Takeda Y, Wang SQ, Schachner M, Watanabe K, Pallen CJ, Xiao ZC. Neural recognition molecules CHL1 and NB-3 regulate apical dendrite orientation in the neocortex via PTP alpha. EMBO J 2007; 27:188-200. [PMID: 18046458 DOI: 10.1038/sj.emboj.7601939] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 11/07/2007] [Indexed: 12/12/2022] Open
Abstract
Apical dendrites of pyramidal neurons in the neocortex have a stereotypic orientation that is important for neuronal function. Neural recognition molecule Close Homolog of L1 (CHL1) has been shown to regulate oriented growth of apical dendrites in the mouse caudal cortex. Here we show that CHL1 directly associates with NB-3, a member of the F3/contactin family of neural recognition molecules, and enhances its cell surface expression. Similar to CHL1, NB-3 exhibits high-caudal to low-rostral expression in the deep layer neurons of the neocortex. NB-3-deficient mice show abnormal apical dendrite projections of deep layer pyramidal neurons in the visual cortex. Both CHL1 and NB-3 interact with protein tyrosine phosphatase alpha (PTPalpha) and regulate its activity. Moreover, deep layer pyramidal neurons of PTPalpha-deficient mice develop misoriented, even inverted, apical dendrites. We propose a signaling complex in which PTPalpha mediates CHL1 and NB-3-regulated apical dendrite projection in the developing caudal cortex.
Collapse
Affiliation(s)
- Haihong Ye
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Das U, Selvakumar P, Sharma RK, Haas TA, Dimmock JR. N-acyl-3,5-bis(arylidene)-4-piperidones and related compounds which stimulate fyn kinase. J Enzyme Inhib Med Chem 2007; 22:451-5. [PMID: 17847712 DOI: 10.1080/14756360701192515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This study is part of a long term project designed to explore the hypothesis that stimulation of cancer cells followed by treatment with one or more cytotoxic agents may create greater damage to tumours than to the corresponding normal tissues. The aim of the present investigation was to discover various compounds which stimulate a protein tyrosine kinase, namely fyn kinase. The N-acyl-3,5-bis(arylidene)-4-piperidones and related analogues activated this enzyme using concentrations of 25 microM while representative molecules achieved this result at 0.1 microM. Molecular modelling suggested that the compounds interact transiently with the ATP binding site of fyn kinase thereby enhancing the catalytic phosphorylation of proteins. In the future, candidate antineoplastic agents will be designed which incorporate the structural features of these enzyme stimulators with the goal of their being formed in vitro and in vivo prior to the release of cytotoxins.
Collapse
Affiliation(s)
- Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | | | | | | | | |
Collapse
|
41
|
Maksumova L, Wang Y, Wong NKY, Le HT, Pallen CJ, Johnson P. Differential function of PTPalpha and PTPalpha Y789F in T cells and regulation of PTPalpha phosphorylation at Tyr-789 by CD45. J Biol Chem 2007; 282:20925-32. [PMID: 17507376 DOI: 10.1074/jbc.m703157200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD45 is a major membrane protein tyrosine phosphatase (PTP) expressed in T cells where it regulates the activity of Lck, a Src family kinase important for T cell receptor-mediated activation. PTPalpha is a more widely expressed transmembrane PTP that has been shown to regulate the Src family kinases, Src and Fyn, and is also present in T cells. Here, PTPalpha was phosphorylated at Tyr-789 in CD45(-) T cells but not in CD45(+) T cells suggesting that CD45 could regulate the phosphorylation of PTPalpha at this site. Furthermore, CD45 could directly dephosphorylate PTPalpha in vitro. Expression of PTPalpha and PTPalpha-Y789F in T cells revealed that the mutant had a reduced ability to decrease Fyn and Cbp phosphorylation, to regulate the kinase activity of Fyn, and to restore T cell receptor-induced signaling events when compared with PTPalpha. Conversely, this mutant had an increased ability to prevent Pyk2 phosphorylation and CD44-mediated cell spreading when compared with PTPalpha. These data demonstrate distinct activities of PTPalpha and PTPalpha-Y789F in T cells and identify CD45 as a regulator of PTPalpha phosphorylation at tyrosine 789 in T cells.
Collapse
Affiliation(s)
- Lola Maksumova
- Departments of Pediatrics, Microbiology and Immunology, and Pathology and Laboratory Medicine, University of British Columbia and Child & Family Research Institute, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Le HT, Maksumova L, Wang J, Pallen CJ. Reduced NMDA receptor tyrosine phosphorylation in PTPalpha-deficient mouse synaptosomes is accompanied by inhibition of four src family kinases and Pyk2: an upstream role for PTPalpha in NMDA receptor regulation. J Neurochem 2006; 98:1798-809. [PMID: 16899073 DOI: 10.1111/j.1471-4159.2006.04075.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mice lacking protein tyrosine phosphatase alpha (PTPalpha) exhibited defects in NMDA receptor (NMDAR)-associated processes such as learning and memory, hippocampal neuron migration, and CA1 hippocampal long-term potentiation (LTP). In vivo molecular effectors linking PTPalpha and the NMDAR have not been reported. Thus the involvement of PTPalpha as an upstream regulator of NMDAR tyrosine phosphorylation was investigated in synaptosomes of wild-type and PTPalpha-null mice. Tyrosine phosphorylation of the NMDAR NR2A and NR2B subunits was reduced upon PTPalpha ablation, indicating a positive effect of this phosphatase on NMDAR phosphorylation via intermediate molecules. The NMDAR is a substrate of src family tyrosine kinases, and reduced activity of src, fyn, yes and lck, but not lyn, was apparent in the absence of PTPalpha. In addition, autophosphorylation of proline-rich tyrosine kinase 2 (Pyk2), a tyrosine kinase linked to NMDAR signaling, was also reduced in PTPalpha-deficient synaptosomes. Altered protein tyrosine phosphorylation was not accompanied by altered expression of the NMDAR or the above tyrosine kinases at any stage of PTPalpha-null mouse development examined. In a human embryonic kidney (HEK) 293 cell expression system, PTPalpha enhanced fyn-mediated NR2A and NR2B tyrosine phosphorylation by several-fold. Together, these findings provide evidence that aberrant NMDAR-associated functions in PTPalpha-null mice are due to impaired NMDAR tyrosine phosphorylation resulting from the reduced activity of probably more than one of the src family kinases src, fyn, yes and lck. Defective NMDAR activity in these mice may also be linked to the loss of PTPalpha as an upstream regulator of Pyk2.
Collapse
Affiliation(s)
- Hoa T Le
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
43
|
Braithwaite SP, Paul S, Nairn AC, Lombroso PJ. Synaptic plasticity: one STEP at a time. Trends Neurosci 2006; 29:452-8. [PMID: 16806510 PMCID: PMC1630769 DOI: 10.1016/j.tins.2006.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/20/2006] [Accepted: 06/07/2006] [Indexed: 11/30/2022]
Abstract
Striatal enriched tyrosine phosphatase (STEP) has recently been identified as a crucial player in the regulation of synaptic function. It is restricted to neurons within the CNS and acts by downregulating the activity of MAP kinases, the tyrosine kinase Fyn and NMDA receptors. By modulating these substrates, STEP acts on several parallel pathways that impact upon the progression of synaptic plasticity. Here, we review recent advances that demonstrate the importance of STEP in normal cognitive function, and its possible involvement in cognitive disorders such as Alzheimer's disease.
Collapse
|
44
|
Chen M, Chen SC, Pallen CJ. Integrin-induced Tyrosine Phosphorylation of Protein-tyrosine Phosphatase-α Is Required for Cytoskeletal Reorganization and Cell Migration. J Biol Chem 2006; 281:11972-80. [PMID: 16507567 DOI: 10.1074/jbc.m600561200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase-alpha (PTPalpha) activates Src family kinases (SFKs) to promote the integrin-stimulated early autophosphorylation of focal adhesion kinase (FAK). We report here that integrin stimulation induces tyrosine phosphorylation of PTPalpha. PTPalpha was dephosphorylated upon fibroblast detachment from the substratum and rephosphorylated when cells were plated on the integrin ligand fibronectin. alpha PTP phosphorylation occurred at Tyr789 and required SFKs (Src or Fyn/Yes), FAK, and an intact cytoskeleton. It also required active PTPalpha or constitutively active Src. These observations indicate that PTPalpha activates SFKs and that the subsequently activated SFK.FAK tyrosine kinase complex in turn phosphorylates PTPalpha. Reintroduction of wild-type PTPalpha or unphosphorylatable PTPalpha(Y789F) (but not inactive PTPalpha) into PTPalpha-null fibroblasts restored defective integrin-induced SFK activation, FAK phosphorylation, and paxillin phosphorylation. PTPalpha(Y789F) and inactive PTPalpha could not rescue delayed actin stress fiber assembly and focal adhesion formation or defective cell migration. This study distinguishes two roles of PTPalpha in integrin signaling: an early role as an activator of SFKs and FAK with no requirement for PTPalpha phosphorylation and a later downstream role in cytoskeleton-associated events for which PTPalpha phosphorylation at Tyr789 is essential.
Collapse
Affiliation(s)
- Min Chen
- Institute of Molecular and Cell Biology, Singapore 138673 and the Departments of Pediatrics and Pathology and Laboratory Medicine
| | | | | |
Collapse
|
45
|
Maksumova L, Le HT, Muratkhodjaev F, Davidson D, Veillette A, Pallen CJ. Protein Tyrosine Phosphatase α Regulates Fyn Activity and Cbp/PAG Phosphorylation in Thymocyte Lipid Rafts. THE JOURNAL OF IMMUNOLOGY 2005; 175:7947-56. [PMID: 16339530 DOI: 10.4049/jimmunol.175.12.7947] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A role for the receptor protein tyrosine phosphatase alpha (PTPalpha) in immune cell function and regulation of Src family kinases was investigated using thymocytes from PTPalpha-deficient mice. PTPalpha-null thymocytes develop normally, but unstimulated PTPalpha-/- cells exhibit increased tyrosine phosphorylation of specific proteins, increased Fyn activity, and hyperphosphorylation of Cbp/PAG that promotes its association with C-terminal Src kinase. Elevated Fyn activity in the absence of PTPalpha is due to enhanced phosphorylation of Fyn tyrosines 528 and 417. Some PTPalpha is localized in lipid rafts of thymocytes, and raft-associated Fyn is specifically activated in PTPalpha-/- cells. PTPalpha is not a Cbp/PAG phosphatase, because it is not required for Cbp/PAG dephosphorylation in unstimulated or anti-CD3-stimulated thymocytes. Together, our results indicate that PTPalpha, likely located in lipid rafts, regulates the activity of raft Fyn. In the absence of PTPalpha this population of Fyn is activated and phosphorylates Cbp/PAG to enhance association with C-terminal Src kinase. Although TCR-mediated tyrosine phosphorylation was apparently unaffected by the absence of PTPalpha, the long-term proliferative response of PTPalpha-/- thymocytes was reduced. These findings indicate that PTPalpha is a component of the complex Src family tyrosine kinase regulatory network in thymocytes and is required to suppress Fyn activity in unstimulated cells in a manner that is not compensated for by the major T cell PTP and SFK regulator, CD45.
Collapse
Affiliation(s)
- Lola Maksumova
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Ciereszko R, Opalka M, Kaminska B, Górska T, Dusza L. Prolactin signalling in porcine theca cells: the involvement of protein kinases and phosphatases. Reprod Fertil Dev 2005; 15:27-35. [PMID: 12729501 DOI: 10.1071/rd02049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2002] [Accepted: 12/16/2002] [Indexed: 11/23/2022] Open
Abstract
The hypothesis that protein kinase C (PKC) and tyrosine kinases, as well as serine-threonine and tyrosine phosphatases, are involved in prolactin (PRL) signalling in theca cells harvested from porcine follicles was tested. Theca cells were incubated with PRL for 24 h to stimulate progesterone (P4) production. In addition, treatments included inhibitors of PKC and tyrosine kinases, as well as serine-threonine phosphatase inhibitor and tyrosine phosphatase inhibitor. Prolactin significantly stimulated P4 production by theca cells and all inhibitors suppressed the PRL-stimulated P4 production. After incubation with PRL for 2, 5, 10 or 20 min, theca cells were homogenized and cytosolic and membrane fractions were obtained. This was followed by determination of PKC activity in partially purified subcellular fractions by measuring the transfer of 32P from [gamma-32P] adenosine triphosphatase (ATP) to histone III-S. In unstimulated porcine theca cells the major proportion of PKC activity was present in the cytosol. Incubation of cells with PRL resulted in a rapid, time-dependent increase in the amount of PKC activity in the membrane fraction. Protein kinase C activity in the membrane fraction was maximal after 10 min of cells' exposure to PRL. Protein kinase C activation was assessed also by measuring the specific association of 3H-phorbol dibutyrate (3H-PDBu) with theca cells after treatment with PRL. Prolactin significantly increased 3H-PDBu-specific binding in theca cells. In contrast to PKC, total inositol phosphate accumulation was not affected by PRL in the current study. In summary, PRL stimulated P4 production by porcine theca cells derived from large follicles. The results of the study were consistent with the hypothesis that PKC is one of the intracellular mediators of PRL action in porcine theca cells. Protein kinase C activation does not appear to occur through the action of phosphatidylinositol-dependent phospholipase C. Moreover, the involvement of tyrosine kinases, as well as tyrosine and serine-threonine phosphatases, in PRL signalling in the examined cells is suggested.
Collapse
Affiliation(s)
- R Ciereszko
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | | | | | | | | |
Collapse
|
47
|
Bodrikov V, Leshchyns'ka I, Sytnyk V, Overvoorde J, den Hertog J, Schachner M. RPTPalpha is essential for NCAM-mediated p59fyn activation and neurite elongation. ACTA ACUST UNITED AC 2004; 168:127-39. [PMID: 15623578 PMCID: PMC2171675 DOI: 10.1083/jcb.200405073] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The neural cell adhesion molecule (NCAM) forms a complex with p59fyn kinase and activates it via a mechanism that has remained unknown. We show that the NCAM140 isoform directly interacts with the intracellular domain of the receptor-like protein tyrosine phosphatase RPTPα, a known activator of p59fyn. Whereas this direct interaction is Ca2+ independent, formation of the complex is enhanced by Ca2+-dependent spectrin cytoskeleton–mediated cross-linking of NCAM and RPTPα in response to NCAM activation and is accompanied by redistribution of the complex to lipid rafts. Association between NCAM and p59fyn is lost in RPTPα-deficient brains and is disrupted by dominant-negative RPTPα mutants, demonstrating that RPTPα is a link between NCAM and p59fyn. NCAM-mediated p59fyn activation is abolished in RPTPα-deficient neurons, and disruption of the NCAM–p59fyn complex in RPTPα-deficient neurons or with dominant-negative RPTPα mutants blocks NCAM-dependent neurite outgrowth, implicating RPTPα as a major phosphatase involved in NCAM-mediated signaling.
Collapse
Affiliation(s)
- Vsevolod Bodrikov
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Brunton VG, MacPherson IRJ, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:121-44. [PMID: 15246683 DOI: 10.1016/j.bbamcr.2004.04.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/19/2004] [Indexed: 12/31/2022]
Abstract
The interaction of cells with surrounding matrix and neighbouring cells governs many aspects of cell behaviour. Aside from transmitting signals from the external environment, adhesion receptors also receive signals from the cell interior. Here we review the interrelationship between adhesion receptors, tyrosine kinases (both growth factor receptor and non-receptor) and modulators of the actin cytoskeletal network. Deregulation of many aspects of these signalling pathways in cancer highlights the need for a better understanding of the complexities involved.
Collapse
Affiliation(s)
- V G Brunton
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Michael W Salter
- Programme in Brain and Behaviour, The Hospital for Sick Children, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
50
|
Granot-Attas S, Elson A. Protein tyrosine phosphatase epsilon activates Yes and Fyn in Neu-induced mammary tumor cells. Exp Cell Res 2004; 294:236-43. [PMID: 14980517 DOI: 10.1016/j.yexcr.2003.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 10/27/2003] [Indexed: 12/20/2022]
Abstract
The receptor-type form of protein tyrosine phosphatase epsilon (RPTP) is among the few tyrosine phosphatases that can support the transformed phenotype of tumor cells. Accordingly, cells from mammary epithelial tumors induced by activated Neu in mice genetically lacking RPTP appear morphologically less transformed and exhibit reduced proliferation. The effect of RPTP in these cells is mediated at least in part by its ability to activate Src, the prototypic member of a family of related kinases. We show here that RPTP is a physiological activator of two additional Src family kinases, Yes and Fyn. Activities of both kinases are inhibited in mammary tumor cells lacking RPTP, and phosphorylation at their C-terminal inhibitory tyrosines is increased. In agreement, opposite effects on activities and phosphorylation of Yes and Fyn are observed following increased expression of PTP. RPTP also forms stable complexes with either kinase, providing physical opportunity for their activation by RPTP. Surprisingly, expression of Yes or of Fyn does not rescue the morphological phenotype of RPTP-deficient tumor cells in contrast with the strong ability of Src to do so. We conclude that RPTP activates Src, Yes, and Fyn, but that these related kinases play distinct roles in Neu-induced mammary tumor cells.
Collapse
Affiliation(s)
- Shira Granot-Attas
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|