1
|
Sánchez-Mendoza LM, Pérez-Sánchez C, Rodríguez-López S, López-Pedrera C, Calvo-Rubio M, de Cabo R, Burón MI, González-Reyes JA, Villalba JM. Sex-specific metabolic adaptations in transgenic mice overexpressing cytochrome b 5 reductase-3. Free Radic Biol Med 2023; 207:144-160. [PMID: 37463636 DOI: 10.1016/j.freeradbiomed.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Cytochrome b5 reductase 3 (CYB5R3) activates respiratory metabolism in cellular systems and exerts a prolongevity action in transgenic mice overexpressing this enzyme, mimicking some of the beneficial effects of calorie restriction. The aim of our study was to investigate the role of sex on metabolic adaptations elicited by CYB5R3 overexpression, and how key markers related with mitochondrial function are modulated in skeletal muscle, one of the major contributors to resting energy expenditure. Young CYB5R3 transgenic mice did not exhibit the striking adaptations in carbon metabolism previously detected in older animals. CYB5R3 was efficiently overexpressed and targeted to mitochondria in skeletal muscle from transgenic mice regardless sex. Overexpression significantly elevated NADH in both sexes, although differences were not statistically significant for NAD+, and increased the abundance of cytochrome c and the fission protein DRP-1 in females but not in males. Moreover, while mitochondrial biogenesis and function markers (as TFAM, NRF-1 and cleaved SIRT3) were markedly upregulated by CYB5R3 overexpression in females, a downregulation was observed in males. Ultrastructural changes were also highlighted, with an increase in the number of mitochondria per surface unit, and in the size of intermyofibrillar mitochondria in transgenic females compared with their wild-type controls. Our results support that CYB5R3 overexpression upregulates markers consistent with enhanced mitochondrial biogenesis and function, and increases mitochondrial abundance in skeletal muscle, producing most of these potentially beneficial actions in females.
Collapse
Affiliation(s)
- Luz Marina Sánchez-Mendoza
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - Carlos Pérez-Sánchez
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain; Rheumatology Service, Reina Sofia Hospital/ Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Cordoba, Spain.
| | - Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - Chary López-Pedrera
- Rheumatology Service, Reina Sofia Hospital/ Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/University of Cordoba, Cordoba, Spain.
| | - Miguel Calvo-Rubio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - María I Burón
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, Córdoba, Spain.
| |
Collapse
|
2
|
Therapeutic targeting of the hypoxic tumour microenvironment. Nat Rev Clin Oncol 2021; 18:751-772. [PMID: 34326502 DOI: 10.1038/s41571-021-00539-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
Hypoxia is prevalent in human tumours and contributes to microenvironments that shape cancer evolution and adversely affect therapeutic outcomes. Historically, two different tumour microenvironment (TME) research communities have been discernible. One has focused on physicochemical gradients of oxygen, pH and nutrients in the tumour interstitium, motivated in part by the barrier that hypoxia poses to effective radiotherapy. The other has focused on cellular interactions involving tumour and non-tumour cells within the TME. Over the past decade, strong links have been established between these two themes, providing new insights into fundamental aspects of tumour biology and presenting new strategies for addressing the effects of hypoxia and other microenvironmental features that arise from the inefficient microvascular system in solid tumours. This Review provides a perspective on advances at the interface between these two aspects of the TME, with a focus on translational therapeutic opportunities relating to the elimination and/or exploitation of tumour hypoxia.
Collapse
|
3
|
Subcellular Location of Tirapazamine Reduction Dramatically Affects Aerobic but Not Anoxic Cytotoxicity. Molecules 2020; 25:molecules25214888. [PMID: 33105798 PMCID: PMC7660101 DOI: 10.3390/molecules25214888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is an adverse prognostic feature of solid cancers that may be overcome with hypoxia-activated prodrugs (HAPs). Tirapazamine (TPZ) is a HAP which has undergone extensive clinical evaluation in this context and stimulated development of optimized analogues. However the subcellular localization of the oxidoreductases responsible for mediating TPZ-dependent DNA damage remains unclear. Some studies conclude only nuclear-localized oxidoreductases can give rise to radical-mediated DNA damage and thus cytotoxicity, whereas others identify a broader role for endoplasmic reticulum and cytosolic oxidoreductases, indicating the subcellular location of TPZ radical formation is not a critical requirement for DNA damage. To explore this question in intact cells we engineered MDA-231 breast cancer cells to express the TPZ reductase human NADPH: cytochrome P450 oxidoreductase (POR) harboring various subcellular localization sequences to guide this flavoenzyme to the nucleus, endoplasmic reticulum, cytosol or inner surface of the plasma membrane. We show that all POR variants are functional, with differences in rates of metabolism reflecting enzyme expression levels rather than intracellular TPZ concentration gradients. Under anoxic conditions, POR expression in all subcellular compartments increased the sensitivity of the cells to TPZ, but with a fall in cytotoxicity per unit of metabolism (termed ‘metabolic efficiency’) when POR is expressed further from the nucleus. However, under aerobic conditions a much larger increase in cytotoxicity was observed when POR was directed to the nucleus, indicating very high metabolic efficiency. Consequently, nuclear metabolism results in collapse of hypoxic selectivity of TPZ, which was further magnified to the point of reversing O2 dependence (oxic > hypoxic sensitivity) by employing a DNA-affinic TPZ analogue. This aerobic hypersensitivity phenotype was partially rescued by cellular copper depletion, suggesting the possible involvement of Fenton-like chemistry in generating short-range effects mediated by the hydroxyl radical. In addition, the data suggest that under aerobic conditions reoxidation strictly limits the TPZ radical diffusion range resulting in site-specific cytotoxicity. Collectively these novel findings challenge the purported role of intra-nuclear reductases in orchestrating the hypoxia selectivity of TPZ.
Collapse
|
4
|
Rodríguez-López S, López-Bellón S, González-Reyes JA, Burón MI, de Cabo R, Villalba JM. Mitochondrial adaptations in liver and skeletal muscle to pro-longevity nutritional and genetic interventions: the crosstalk between calorie restriction and CYB5R3 overexpression in transgenic mice. GeroScience 2020; 42:977-994. [PMID: 32323139 DOI: 10.1007/s11357-020-00187-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022] Open
Abstract
Calorie restriction without malnutrition (CR) is considered as the most effective nongenetic nor pharmacological intervention that promotes healthy aging phenotypes and can extend lifespan in most model organisms. Lifelong CR leads to an increase of cytochrome b5 reductase-3 (CYB5R3) expression and activity. Overexpression of CYB5R3 confers some of the salutary effects of CR, although the mechanisms involved might be independent because key aspects of energy metabolism and lipid profiles of tissues go in opposite ways. It is thus important to study if some of the metabolic adaptations induced by CR are affected by CYB5R3 overexpression. CYB5R3 overexpression greatly preserved body and liver weight in mice under CR conditions. In liver, CR did not modify mitochondrial abundance, but lead to increased expression of mitofusin Mfn2 and TFAM, a transcription factor involved in mitochondrial biogenesis. These changes were prevented by CYB5R3 overexpression but resulted in a decreased expression of a different mitochondrial biogenesis-related transcription factor, Nrf1. In skeletal muscle, CR strongly increased mitochondrial mass, mitofusin Mfn1, and Nrf1. However, CYB5R3 mice on CR did not show increase in muscle mitochondrial mass, regardless of a clear increase in expression of TFAM and mitochondrial complexes in this tissue. Our results support that CYB5R3 overexpression significantly modifies the metabolic adaptations of mice to CR.
Collapse
Affiliation(s)
- Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Sara López-Bellón
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - M Isabel Burón
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain.
| |
Collapse
|
5
|
Martin-Montalvo A, Sun Y, Diaz-Ruiz A, Ali A, Gutierrez V, Palacios HH, Curtis J, Siendones E, Ariza J, Abulwerdi GA, Sun X, Wang AX, Pearson KJ, Fishbein KW, Spencer RG, Wang M, Han X, Scheibye-Knudsen M, Baur JA, Shertzer HG, Navas P, Villalba JM, Zou S, Bernier M, de Cabo R. Cytochrome b5 reductase and the control of lipid metabolism and healthspan. NPJ Aging Mech Dis 2016; 2:16006. [PMID: 28721264 PMCID: PMC5515006 DOI: 10.1038/npjamd.2016.6] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/02/2015] [Accepted: 12/09/2015] [Indexed: 12/26/2022] Open
Abstract
Cytochrome b5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yaning Sun
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ahmed Ali
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vincent Gutierrez
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Hector H Palacios
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jessica Curtis
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Emilio Siendones
- Centro Andaluz de Biología del Desarrollo, and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla, Spain
| | - Julia Ariza
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Gelareh A Abulwerdi
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Xiaoping Sun
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Annie X Wang
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kevin J Pearson
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.,Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Kenneth W Fishbein
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard G Spencer
- Magnetic Resonance Imaging and Spectroscopy Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miao Wang
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | - Xianlin Han
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joe A Baur
- Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard G Shertzer
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Placido Navas
- Centro Andaluz de Biología del Desarrollo, and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC, Sevilla, Spain
| | - Jose Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, Córdoba, Spain
| | - Sige Zou
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
6
|
Elahian F, Sepehrizadeh Z, Moghimi B, Mirzaei SA. Human cytochrome b5 reductase: structure, function, and potential applications. Crit Rev Biotechnol 2012; 34:134-43. [PMID: 23113554 DOI: 10.3109/07388551.2012.732031] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytochrome b5 reductase is a flavoprotein that is produced as two different isoforms that have different localizations. The amphipathic microsomal isoform, found in all cell types with the exception of erythrocytes, consists of one hydrophobic membrane-anchoring domain and a larger hydrophilic flavin catalytic domain. The soluble cytochrome b5 reductase isoform, found in human erythrocytes, is a truncated protein that is encoded by an alternative transcript and consists of the larger domain only. Cytochrome b5 reductase is involved in the transfer of reducing equivalents from the physiological electron donor, NADH, via an FAD domain to the small molecules of cytochrome b5. This protein has received much attention from researchers due to its involvement in many oxidation and reduction reactions, such as the reduction of methemoglobin to hemoglobin. Autosomal cytochrome b5 reductase gene deficiency manifests with the accumulation of oxidized Fe+3 and recessive congenital methemoglobinemia in humans. In this article, we provide a comprehensive overview of the structure and function of cytochrome b5 reductase from different eukaryotic sources and its potential use in the food industry, biosensor, and diagnostic areas.
Collapse
Affiliation(s)
- Fatemeh Elahian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences , Iran and
| | | | | | | |
Collapse
|
7
|
Celik H, Arinç E. Evaluation of bioreductive activation of anticancer drugs idarubicin and mitomycin C by NADH-cytochrome b5 reductase and cytochrome P450 2B4. Xenobiotica 2012; 43:263-75. [PMID: 22928801 DOI: 10.3109/00498254.2012.715212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
This study attempted to investigate the ability of microsomal NADH-cytochrome b5 reductase and cytochrome P450 2B4 to reductively activate idarubicin and mitomycin C. In vitro plasmid DNA damage experiments and assays using purified hepatic enzymes were employed to examine their respective roles in the metabolic activation of anticancer drugs. Mitomycin C was found to be not a good substrate for microsomal b5 reductase unlike P450 reductase. It produced low amounts of strand breaks in DNA when incubated with b5 reductase and its one-electron reduction by purified enzyme was found as negligible. Our findings revealed that P450 reductase-mediated metabolism of idarubicin resulted in a large increase in single-strand DNA breaks, whereas, b5 reductase neither catalyzed the reduction of idarubicin nor mediated the formation of DNA damage in the presence of idarubicin. The reconstitution studies, on the other hand, have identified rabbit liver CYP2B4 isozyme as being a potential candidate enzyme for reductive bioactivation of idarubicin and mitomycin C. Thus, the present novel findings strongly suggest that while b5 reductase could not play a key role in the cytotoxic and/or antitumor effects of idarubicin and mitomycin C, CYP2B4 could potentiate their activity in combination with P450 reductase.
Collapse
Affiliation(s)
- Haydar Celik
- Biochemistry Graduate Programme and Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | |
Collapse
|
8
|
Penketh PG, Shyam K, Baumann RP, Ishiguro K, Patridge EV, Zhu R, Sartorelli AC. A strategy for selective O(6)-alkylguanine-DNA alkyltransferase depletion under hypoxic conditions. Chem Biol Drug Des 2012; 80:279-90. [PMID: 22553921 DOI: 10.1111/j.1747-0285.2012.01401.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular resistance to chemotherapeutics that alkylate the O-6 position of guanine residues in DNA correlates with their O(6)-alkylguanine-DNA alkyltransferase activity. In normal cells high [O(6)-alkylguanine-DNA alkyltransferase] is beneficial, sparing the host from toxicity, whereas in tumor cells high [O(6)-alkylguanine-DNA alkyltransferase] prevents chemotherapeutic response. Therefore, it is necessary to selectively inactivate O(6)-alkylguanine-DNA alkyltransferase in tumors. The oxygen-deficient compartment unique to solid tumors is conducive to reduction, and could be utilized to provide this selectivity. Therefore, we synthesized 2-nitro-6-benzyloxypurine, an analog of O(6)-benzylguanine in which the essential 2-amino group is replaced by a nitro moiety, and 2-nitro-6-benzyloxypurine is >2000-fold weaker than O(6)-benzylguanine as an O(6)-alkylguanine-DNA alkyltransferase inhibitor. We demonstrate oxygen concentration sensitive net reduction of 2-nitro-6-benzyloxypurine by cytochrome P450 reductase, xanthine oxidase, and EMT6, DU145, and HL-60 cells to yield O(6)-benzylguanine. We show that 2-nitro-6-benzyloxypurine treatment depletes O(6)-alkylguanine-DNA alkyltransferase in intact cells under oxygen-deficient conditions and selectively sensitizes cells to laromustine (an agent that chloroethylates the O-6 position of guanine) under oxygen-deficient but not normoxic conditions. 2-Nitro-6-benzyloxypurine represents a proof of concept lead compound; however, its facile reduction (E(1/2) - 177 mV versus Ag/AgCl) may result in excessive oxidative stress and/or the generation of O(6)-alkylguanine-DNA alkyltransferase inhibitors in normoxic regions in vivo.
Collapse
Affiliation(s)
- Philip G Penketh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhu R, Liu MC, Luo MZ, Penketh PG, Baumann RP, Shyam K, Sartorelli AC. 4-nitrobenzyloxycarbonyl derivatives of O(6)-benzylguanine as hypoxia-activated prodrug inhibitors of O(6)-alkylguanine-DNA alkyltransferase (AGT), which produces resistance to agents targeting the O-6 position of DNA guanine. J Med Chem 2011; 54:7720-8. [PMID: 21955333 DOI: 10.1021/jm201115f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of 4-nitrobenzyloxycarbonyl prodrug derivatives of O(6)-benzylguanine (O(6)-BG), conceived as prodrugs of O(6)-BG, an inhibitor of the resistance protein O(6)-alkylguanine-DNA alkyltransferase (AGT), were synthesized and evaluated for their ability to undergo bioreductive activation by reductase enzymes under oxygen deficiency. Three agents of this class, 4-nitrobenzyl (6-(benzyloxy)-9H-purin-2-yl)carbamate (1) and its monomethyl (2) and gem-dimethyl analogues (3), were tested for activation by reductase enzyme systems under oxygen deficient conditions. Compound 3, the most water-soluble of these agents, gave the highest yield of O(6)-BG following reduction of the nitro group trigger. Compound 3 was also evaluated for its ability to sensitize 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(methylamino)carbonyl]hydrazine (laromustine)-resistant DU145 human prostate carcinoma cells, which express high levels of AGT, to the cytotoxic effects of this agent under normoxic and oxygen deficient conditions. While 3 had little or no effect on laromustine cytotoxicity under aerobic conditions, significant enhancement occurred under oxygen deficiency, providing evidence for the preferential release of the AGT inhibitor O(6)-BG under hypoxia.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Penketh PG, Baumann RP, Shyam K, Williamson HS, Ishiguro K, Zhu R, Eriksson ESE, Eriksson LA, Sartorelli AC. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119): a cytotoxic prodrug with two stable conformations differing in biological and physical properties. Chem Biol Drug Des 2011; 78:513-26. [PMID: 21777394 DOI: 10.1111/j.1747-0285.2011.01193.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anticancer prodrug 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119) selectively releases a short-lived cytotoxin following enzymatic reduction in hypoxic environments found in solid tumors. KS119, in addition to two enantiomers, has two stable atropisomers (conformers differing in structure owing to hindered bond rotation) that interconvert at 37 °C in aqueous solution by first-order kinetics with t(1/2) values of ∼50 and ∼64 h. The atropisomers differ in physical properties such as partition coefficients that allow their chromatographic separation on non-chiral columns. A striking difference in the rate of metabolism of the two atropisomers occurs in intact EMT6 murine mammary carcinoma cells under oxygen-deficient conditions. A structurally related molecule, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(3-hydroxy-4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119WOH), was also found to exist in similar stable atropisomers. The ratio of the atropisomers of KS119 and structurally related agents has the potential to impact the bioavailability, activation, and therapeutic activity. Thus, thermally stable atropisomers/conformers in small molecules can result in chemically and enantiomerically pure compounds having differences in biological activities.
Collapse
Affiliation(s)
- Philip G Penketh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Baumann RP, Ishiguro K, Penketh PG, Shyam K, Zhu R, Sartorelli AC. KS900: A hypoxia-directed, reductively activated methylating antitumor prodrug that selectively ablates O(6)-alkylguanine-DNA alkyltransferase in neoplastic cells. Biochem Pharmacol 2011; 81:1201-10. [PMID: 21396917 PMCID: PMC3084327 DOI: 10.1016/j.bcp.2011.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/22/2022]
Abstract
To most effectively treat cancer it may be necessary to preferentially destroy tumor tissue while sparing normal tissues. One strategy to accomplish this is to selectively cripple the involved tumor resistance mechanisms, thereby allowing the affected anticancer drugs to gain therapeutic efficacy. Such an approach is exemplified by our design and synthesis of the intracellular hypoxic cell activated methylating agent, 1,2-bis(methylsulfonyl)-1-methyl-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS900) that targets the O-6 position of guanine in DNA. KS900 is markedly more cytotoxic in clonogenic experiments under conditions of oxygen deficiency than the non-intracellularly activated agents KS90, and 90M, when tested in O(6)-alkylguanine-DNA alkyltransferase (AGT) non-expressing cells (EMT6 mouse mammary carcinoma, CHO/AA8 hamster ovary, and U251 human glioma), and than temozolomide when tested in AGT expressing cells (DU145 human prostate carcinoma). Furthermore, KS900 more efficiently ablates AGT in HL-60 human leukemia and DU145 cells than the spontaneous globally activated methylating agent KS90, with an IC(50) value over 9-fold lower than KS90. Finally, KS900 under oxygen-deficient conditions selectively sensitizes DU145 cells to the chloroethylating agent, onrigin, through the ablation of the resistance protein AGT. Thus, under hypoxia, KS900 is more cytotoxic at substantially lower concentrations than methylating agents such as temozolomide that are not preferentially activated in neoplastic cells by intracellular reductase catalysts. The necessity for intracellular activation of KS900 permits substantially greater cytotoxic activity against cells containing the resistance protein O(6)-alkylguanine-DNA alkyltransferase (AGT) than agents such as temozolomide. Furthermore, the hypoxia-directed intracellular activation of KS900 allows it to preferentially ablate AGT pools under the oxygen-deficient conditions that are present in malignant tissue.
Collapse
Affiliation(s)
- Raymond P Baumann
- Department of Pharmacology and Cancer Center, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Toteva MM, Richard JP. The Generation and Reactions of Quinone Methides. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2011; 45:39-91. [PMID: 24511169 DOI: 10.1016/b978-0-12-386047-7.00002-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Maria M Toteva
- Department of Chemistry, University at Buffalo, Buffalo, NY, 14260, USA
| | - John P Richard
- Department of Chemistry, University at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|
13
|
Baumann RP, Penketh PG, Ishiguro K, Shyam K, Zhu YL, Sartorelli AC. Reductive activation of the prodrug 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119) selectively occurs in oxygen-deficient cells and overcomes O(6)-alkylguanine-DNA alkyltransferase mediated KS119 tumor cell resistance. Biochem Pharmacol 2009; 79:1553-61. [PMID: 20005211 DOI: 10.1016/j.bcp.2009.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/01/2009] [Accepted: 12/03/2009] [Indexed: 12/23/2022]
Abstract
1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119) is a prodrug of the 1,2-bis(sulfonyl)hydrazine class of antineoplastic agents designed to exploit the oxygen-deficient regions of cancerous tissue. Thus, under reductive conditions in hypoxic cells this agent decomposes to produce the reactive intermediate 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE), which in turn generates products that alkylate the O(6)-position of guanine in DNA. Comparison of the cytotoxicity of KS119 in cultured cells lacking O(6)-alkylguanine-DNA alkyltransferase (AGT) to an agent such as Onrigin, which through base catalyzed activation produces the same critical DNA G-C cross-link lesions by the generation of 90CE, indicates that KS119 is substantially more potent than Onrigin under conditions of oxygen deficiency, despite being incompletely activated. In cell lines expressing relatively large amounts of AGT, the design of the prodrug KS119, which requires intracellular activation by reductase enzymes to produce a cytotoxic effect, results in an ability to overcome resistance derived from the expression of AGT. This appears to derive from the ability of a small portion of the chloroethylating species produced by the activation of KS119 to slip through the cellular protection afforded by AGT to generate the few DNA G-C cross-links that are required for tumor cell lethality. The findings also demonstrate that activation of KS119 under oxygen-deficient conditions is ubiquitous, occurring in all of the cell lines tested thus far, suggesting that the enzymes required for reductive activation of this agent are widely distributed in many different tumor types.
Collapse
Affiliation(s)
- Raymond P Baumann
- Department of Pharmacology and Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| | | | | | | | | | | |
Collapse
|
14
|
Baumann RP, Penketh PG, Seow HA, Shyam K, Sartorelli AC. Generation of oxygen deficiency in cell culture using a two-enzyme system to evaluate agents targeting hypoxic tumor cells. Radiat Res 2008; 170:651-60. [PMID: 18959466 PMCID: PMC2667281 DOI: 10.1667/rr1431.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 07/14/2008] [Indexed: 11/03/2022]
Abstract
The poor and aberrant vascularization of solid tumors makes them susceptible to localized areas of oxygen deficiency that can be considered sites of tumor vulnerability to prodrugs that are preferentially activated to cytotoxic species under conditions of low oxygenation. To readily facilitate the selection of agents targeted to oxygen-deficient cells in solid tumors, we have developed a simple and convenient two-enzyme system to generate oxygen deficiency in cell cultures. Glucose oxidase is employed to deplete oxygen from the medium by selectively oxidizing glucose and reducing molecular oxygen to hydrogen peroxide; an excess of catalase is also used to scavenge the peroxide molecules. Rapid and sustained depletion of oxygen occurs in medium or buffer, even in the presence of oxygen at the liquid/air interface. Studies using CHO/AA8 Chinese hamster cells, EMT6 murine mammary carcinoma cells, and U251 human glioma cells indicate that this system generates an oxygen deficiency that produces activation of the hypoxia-targeted prodrug KS119. This method of generating oxygen deficiency in cell culture is inexpensive, does not require cumbersome equipment, permits longer incubation times to be used without the loss of sample volume, and should be adaptable for high-throughput screening in 96-well plates.
Collapse
Affiliation(s)
- Raymond P. Baumann
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Philip G. Penketh
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Helen A. Seow
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Krishnamurthy Shyam
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Alan C. Sartorelli
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
15
|
Ward TH, Danson S, McGown AT, Ranson M, Coe NA, Jayson GC, Cummings J, Hargreaves RHJ, Butler J. Preclinical evaluation of the pharmacodynamic properties of 2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone. Clin Cancer Res 2005; 11:2695-701. [PMID: 15814651 DOI: 10.1158/1078-0432.ccr-04-1751] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of our study was to investigate the cellular accumulation, DNA cross-linking ability, and cellular toxicity of RH1 (2,5-diaziridinyl-3-[hydroxymethyl[-6-methyl-1,4-benzoquinone), a novel DNA alkylating agent currently in clinical trials. In addition, the in vivo efficacy of RH1 formulated in different vehicles was also compared. EXPERIMENTAL DESIGN RH1 is activated by the two-electron reducing enzyme NQO1 [NADPH:quinone oxidoreductase] forming a potent cytotoxic agent that cross-links DNA. We have used whole blood, cell lines, and primary explanted tumor cultures to measure both the cellular accumulation, DNA cross-linking, and cytotoxicity of RH1. Furthermore, the pharmacokinetic and pharmacodynamic characteristics of RH1 formulated in different vehicles were measured in vivo using the validated comet-X assay in mice bearing human tumor xenografts. RESULTS Accumulation of RH1 was shown to be both time and concentration dependent, reaching a maximum after 2 hours and correlated well with DNA cross-linking measurements. DNA cross-linking in vitro could be detected at low (1-10 nmol/L) concentrations after as little as 2 hours exposure. In primary tumor cultures, RH1 induces much higher levels of DNA cross-links at lower doses than either mitomycin C or cisplatin. In vivo efficacy testing using polyvinyl pyrrolidone, saline, or cyclodextrin as vehicles showed DNA cross-links readily detectable in all tissues examined and was enhanced when given in cyclodextrin compared with polyvinyl pyrrolidone or saline. CONCLUSIONS RH1 represents a potent bioreductive anticancer drug, which may prove effective in the treatment of cancers, particularly those that overexpress NQO1. DNA cross-linking can be reliably measured in tissue using the validated comet-X assay.
Collapse
Affiliation(s)
- Timothy H Ward
- Clinical and Experimental Pharmacology Group, Paterson Institute for Cancer Research, Christie Hospital, Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Seow HA, Penketh PG, Shyam K, Rockwell S, Sartorelli AC. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: an anticancer agent targeting hypoxic cells. Proc Natl Acad Sci U S A 2005; 102:9282-7. [PMID: 15964988 PMCID: PMC1166587 DOI: 10.1073/pnas.0409013102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 microM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NADPH: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues.
Collapse
Affiliation(s)
- Helen A Seow
- Department of Pharmacology and Therapeutic Radiology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
17
|
Isayama S, Saito S, Kuroda K, Umeda K, Kasamatsu K. Pyridalyl, a novel insecticide: potency and insecticidal selectivity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2005; 58:226-233. [PMID: 15756699 DOI: 10.1002/arch.20045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pyridalyl is an insecticide of a novel chemical class (unclassified insecticides). Toxicity of pyridalyl to two insect pest species, Spodoptera litura and Frankliniella occidentalis, an insect predator, Orius stringicollis, and a pollinator, Bombus terrestris, was evaluated in the laboratory. The insecticidal activity of pyridalyl against S. litura was evaluated using the leaf-dipping method. The potency of pyridalyl was highly effective against all development stages (2nd to 6th instar larvae) of S. litura. This compound was also evaluated against F. occidentalis using the direct spray method. For F. occidentalis, toxicity of pyridalyl was almost similar to that of acrinathrin, but greater than acrinathrin for adults. Then the toxicity of this product to the natural enemies, Orius stringicollis and the pollinating insect Bombus terrestris, was evaluated using the body-dipping method or direct spray method. No acute toxicity of this product was observed on these non-target insects. Moreover, the influence of pyridalyl to the nest of Bombus terrestris was evaluated using the direct spray to the inside of the nest. No apparent influence of this compound was observed by 21 days after treatment. The cytotoxicity of pyridalyl to the Sf9 insect cell line and the CHO-K1 mammalian cell line was evaluated using the trypan-blue exclusion method. High toxicity to the insect cell line, but almost no toxicity to the mammalian cell line, was observed. Thus, pyridalyl exhibited high selectivity in cytotoxicity between the insect and mammalian cell line as well as in insecticidal activity among insect species. We infer pyridalyl may be useful for IPM programs of greenhouse cultivation system.
Collapse
Affiliation(s)
- S Isayama
- Crop Protection Division, Tokyo Head Office, Sumitomo Chemical Co. Ltd., Tokyo, Japan.
| | | | | | | | | |
Collapse
|
18
|
Seow HA, Belcourt MF, Penketh PG, Hodnick WF, Tomasz M, Rockwell S, Sartorelli AC. Nuclear localization of NADPH:cytochrome c (P450) reductase enhances the cytotoxicity of mitomycin C to Chinese hamster ovary cells. Mol Pharmacol 2005; 67:417-23. [PMID: 15547247 DOI: 10.1124/mol.104.004929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Overexpression of endoplasmic reticulum-localized NADPH: cytochrome c (P450) reductase (NPR) in Chinese hamster ovary cells increases the hypoxic/aerobic differential toxicity of the mitomycins. Because considerable evidence indicates that DNA cross-links are the major cytotoxic lesions generated by the mitomycins, we proposed that bioactivation of the mitomycins in the nucleus close to the DNA target would influence the cytotoxicity of these drugs. The simian virus 40 large T antigen nuclear localization signal was fused to the amino-terminal end of a human NPR protein that lacked its membrane anchor sequence. Immunofluorescent imaging of transfected cell lines expressing the fusion protein confirmed the nuclear location of the enzyme. Regardless of the oxygenation state of the cell, mitomycin C (MC) cytotoxicity was enhanced in cells with overexpressed NPR localized to the nuclear compartment compared with cells overexpressing an endoplasmic reticulum localized enzyme. Enhanced cytotoxicity in cells treated under hypoxic conditions correlated with increases in genomic DNA alkylations, with more MC-DNA adducts being formed when the enzyme was expressed closer to its DNA target. No change was observed in the hypoxic/aerobic differential toxicity as a function of enzyme localization. These findings indicate that drug efficacy is increased when the subcellular site of drug activation corresponds to its site of action.
Collapse
Affiliation(s)
- Helen A Seow
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Seow HA, Penketh PG, Belcourt MF, Tomasz M, Rockwell S, Sartorelli AC. Nuclear overexpression of NAD(P)H:quinone oxidoreductase 1 in Chinese hamster ovary cells increases the cytotoxicity of mitomycin C under aerobic and hypoxic conditions. J Biol Chem 2004; 279:31606-12. [PMID: 15155746 DOI: 10.1074/jbc.m404910200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of the subcellular localization of overexpressed bioreductive enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) on the activity of the antineoplastic agent mitomycin C (MC) under aerobic and hypoxic conditions were examined. Chinese hamster ovary (CHO-K1/dhfr(-)) cells were transfected with NQO1 cDNA to produce cells that overexpressed NQO1 activity in the nucleus (148-fold) or the cytosol (163-fold) over the constitutive level of the enzyme in parental cells. Subcellular localization of the enzyme was confirmed using antibody-assisted immunofluorescence. Nuclear localization of transfected NQO1 activity increased the cytotoxicity of MC over that produced by overexpression in the cytosol under both aerobic and hypoxic conditions, with greater cytotoxicity being produced under hypoxia. The greater cytotoxicity of nuclear localized NQO1 was not attributable to greater metabolic activation of MC but instead was the result of activation of the drug in close proximity to its target, nuclear DNA. A positive relationship existed between the degree of MC-induced cytotoxicity and the number of MC-DNA adducts produced. The findings indicate that activation of MC proximal to nuclear DNA by the nuclear localization of transfected NQO1 increases the cytotoxic effects of MC regardless of the degree of oxygenation and support the concept that the mechanism of action of MC involves alkylation of DNA.
Collapse
Affiliation(s)
- Helen A Seow
- Department of Pharmacology and the Developmental Therapeutics Program, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Affiliation(s)
- Helen A Seow
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
22
|
Holtz KM, Rockwell S, Tomasz M, Sartorelli AC. Nuclear overexpression of NADH:cytochrome b5 reductase activity increases the cytotoxicity of mitomycin C (MC) and the total number of MC-DNA adducts in Chinese hamster ovary cells. J Biol Chem 2003; 278:5029-34. [PMID: 12424239 DOI: 10.1074/jbc.m209722200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADH:cytochrome b(5) reductase (FpD) is an enzyme capable of converting the prodrug mitomycin C (MC) into a DNA alkylating agent via reduction of its quininone moiety. In this study, Chinese hamster ovary (CHO) cells were transfected with a cDNA encoding rat FpD. Despite the demonstrated ability of this enzyme to reduce MC in vitro, a modest 5-fold level of overexpression of FpD activity in CHO cells did not increase the cytotoxicity of the drug over that seen with the parental cell line under either aerobic or hypoxic conditions. When the enzyme, which is predominantly localized in the mitochondria, was instead directed to the nucleus of cells by the fusion of the SV40 large T antigen nuclear localization signal sequence to the amino terminus of an FpD gene that lacked the membrane anchor domain, drug sensitivity was significantly enhanced at all concentrations of MC examined (2-10 microm) under both aerobic and hypoxic conditions, with greater cell kill occurring under hypoxia. The marked increase in drug sensitivity under hypoxia at 10 microm MC corresponded to a measurable increase in total MC-DNA adducts at the same concentration. The results indicate that the cytotoxicity of MC is modulated by the subcellular location of FpD, with greater cell kill occurring when bioactivation occurs in the proximity of its target, nuclear DNA.
Collapse
Affiliation(s)
- Kathleen M Holtz
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
23
|
Zhang X, Melo T, Rauth AM, Ballinger JR. Cellular accumulation and retention of the technetium-99m-labelled hypoxia markers BRU59-21 and butylene amine oxime. Nucl Med Biol 2001; 28:949-57. [PMID: 11711315 DOI: 10.1016/s0969-8051(01)00267-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BRU59-21 and 99mTc-butylene amine oxime (BnAO, HL91) are being evaluated for imaging hypoxia in tumors. Both tracers: 1) rapidly reached a plateau in aerobic Chinese hamster ovary cells in vitro but continuously accumulated in hypoxic cells; 2) ceased to accumulate when hypoxic cells were exposed to air; 3) showed approximately 40% retention upon washing the cells; 4) showed selective hypoxic accumulation only at 37 degrees C; 5) accumulation could be modulated by addition of electron-affinic compounds; and 6) exhibited higher accumulation in cells which overexpress cytochrome P450 reductase. Both BRU59-21 and 99mTc-BnAO share properties making them suitable for hypoxia imaging.
Collapse
Affiliation(s)
- X Zhang
- Division of Experimental Therapeutics, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Penketh PG, Hodnick WF, Belcourt MF, Shyam K, Sherman DH, Sartorelli AC. Inhibition of DNA cross-linking by mitomycin C by peroxidase-mediated oxidation of mitomycin C hydroquinone. J Biol Chem 2001; 276:34445-52. [PMID: 11457837 DOI: 10.1074/jbc.m104263200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitomycin C requires reductive activation to cross-link DNA and express anticancer activity. Reduction of mitomycin C (40 microm) by sodium borohydride (200 microm) in 20 mm Tris-HCl, 1 mm EDTA at 37 degrees C, pH 7.4, gives a 50-60% yield of the reactive intermediate mitomycin C hydroquinone. The hydroquinone decays with first order kinetics or pseudo first order kinetics with a t(12) of approximately 15 s under these conditions. The cross-linking of T7 DNA in this system followed matching kinetics, with the conversion of mitomycin C hydroquinone to leuco-aziridinomitosene appearing to be the rate-determining step. Several peroxidases were found to oxidize mitomycin C hydroquinone to mitomycin C and to block DNA cross-linking to various degrees. Concentrations of the various peroxidases that largely blocked DNA cross-linking, regenerated 10-70% mitomycin C from the reduced material. Thus, significant quantities of products other than mitomycin C were produced by the peroxidase-mediated oxidation of mitomycin C hydroquinone or products derived therefrom. Variations in the sensitivity of cells to mitomycin C have been attributed to differing levels of activating enzymes, export pumps, and DNA repair. Mitomycin C hydroquinone-oxidizing enzymes give rise to a new mechanism by which oxic/hypoxic toxicity differentials and resistance can occur.
Collapse
Affiliation(s)
- P G Penketh
- Department of Pharmacology and Developmental Therapeutics Program, Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
25
|
Spooner RA, Maycroft KA, Paterson H, Friedlos F, Springer CJ, Marais R. Appropriate subcellular localisation of prodrug-activating enzymes has important consequences for suicide gene therapy. Int J Cancer 2001; 93:123-30. [PMID: 11391631 DOI: 10.1002/ijc.1288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Escherichia coli B nitroreductase (NR) has been expressed stably in MDA-MB-361 human breast adenocarcinoma cells either as the wild-type protein (wtNR), which is distributed evenly between the cytoplasmic and nuclear compartments, or targeted to the mitochondrion (mtNR). Whereas bacterial NR is active as a dimer, a proportion of wtNR is monomeric. In contrast, mtNR is mostly dimeric, suggesting that it adopts a more stable, native conformation. Despite this, when tested in gene-directed enzyme prodrug therapy cell cytotoxicity studies, cells expressing wtNR or mtNR had similar sensitivity to the prodrug CB1954 and mounted similar bystander killing effects. Furthermore, when short prodrug exposures were given, wtNR was more efficient at killing cells than mtNR. These data demonstrate that the site of enzyme expression and prodrug activation is an important variable that requires consideration in suicide gene therapy approaches.
Collapse
Affiliation(s)
- R A Spooner
- CRC Centre for Cancer Therapeutics, Institute of Cancer Research, Sutton, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Leroux A, Mota Vieira L, Kahn A. Transcriptional and translational mechanisms of cytochrome b5 reductase isoenzyme generation in humans. Biochem J 2001; 355:529-35. [PMID: 11284742 PMCID: PMC1221766 DOI: 10.1042/0264-6021:3550529] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytochrome b5 reductase (b5R) is an essential enzyme that exists in soluble and membrane-bound isoforms, each with specific functions. In the rat, the two forms are generated from alternative transcripts differing in the first exons. In contrast, the biogenesis of b5R isoforms in the human is not yet well understood. In the present study we have detected three novel alternative exons, designated 1S, S' and 1B, located between the first alternative exon 1M and the common second exon in the human b5R gene. Accordingly, multiple M-type, S-type and SS'-type and B-type transcripts are generated. All types of human b5R transcript are expressed ubiquitously. An analysis of in vitro translation products demonstrated an alternative use of different AUG initiators resulting in the production of various human b5R protein isoforms. Our results indicate that the organization of the 5' region of the b5R gene is not conserved between rodents and humans. Insertion of Alu elements into the human b5R gene, in particular just upstream of the S/S' region, could be responsible for dynamic events of gene rearrangement during evolution.
Collapse
Affiliation(s)
- A Leroux
- Institut Cochin de Génétique Moléculaire, U.129 INSERM Unité de Recherches en Physiologie et Pathologie Génétiques et Moléculaires, Université René Descartes, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France.
| | | | | |
Collapse
|
27
|
Melo T, Ballinger JR, Rauth AM. Role of NADPH:cytochrome P450 reductase in the hypoxic accumulation and metabolism of BRU59-21, a technetium-99m-nitroimidazole for imaging tumor hypoxia. Biochem Pharmacol 2000; 60:625-34. [PMID: 10927020 DOI: 10.1016/s0006-2952(00)00373-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitroimidazoles labeled with technetium-99m are being investigated as non-invasive markers of tumor hypoxia. They are bioreductive compounds that require enzymatic reduction for retention in hypoxic cells, but little is known about the cellular factors affecting their accumulation in hypoxic cells. If the absolute accumulation of hypoxia markers is affected by enzyme levels, an inaccurate assessment of the hypoxic cell fraction in tumors may occur. BRU59-21, (99m)Tc-oxo[[3,3,9, 9-tetramethyl-6-[(2-nitro-1H-imidazol-1-yl)methyl]5-oxa-4, 8-diazadioximato]-(3-)-N,N',N",N"'] technetium (V), a technetium-99m-nitroimidazole that is being studied as a potential marker of tumor hypoxia, was used in the present study to evaluate the effect of NADPH:cytochrome P450 reductase (EC 1.6.2.4) levels on BRU59-21 accumulation and metabolism. Metabolism of BRU59-21 in hypoxic cellular lysates derived from Chinese hamster ovary cells overexpressing NADPH:cytochrome P450 reductase was 8-fold greater than in control cells. This effect required the presence of exogenous NADPH. The increased metabolism of BRU59-21 in lysates overexpressing NADPH:cytochrome P450 reductase was inhibited at 4 degrees and by the addition of NADPH:cytochrome P450 reductase inhibitors. The addition of inhibitors of other nitroreductase enzymes had no effect on BRU59-21 metabolism in these lysates. When the accumulation and metabolism of BRU59-21 were studied in stirred suspension cultures, it was found that cells overexpressing NADPH:cytochrome P450 reductase exhibited about a 3-fold increase in both the hypoxic metabolism and the accumulation of BRU59-21. These findings suggest that NADPH:cytochrome P450 reductase is an important enzyme in BRU59-21 metabolism in model systems of tumor hypoxia.
Collapse
Affiliation(s)
- T Melo
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Toronto, Canada
| | | | | |
Collapse
|
28
|
Jiang HB, Ichikawa M, Furukawa A, Tomita S, Ichikawa Y. Reductive activation of mitomycin C by neuronal nitric oxide synthase. Biochem Pharmacol 2000; 60:571-9. [PMID: 10874132 DOI: 10.1016/s0006-2952(00)00346-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitomycin C (MC) requires bioreduction prior to the generation of alkylating moieties. NADPH-cytochrome P450 reductase is predominant in metabolic activation of MC in hypoxic cancer cells. In this study, neuronal nitric oxide synthase (nNOS), whose reductase domain is structurally similar to that of NADPH-cytochrome P450 reductase, was assessed for its ability to activate MC. nNOS under anaerobic conditions catalyzed the reduction of MC, which was measured as the decrease in absorbance at 375 nm. Neither the heme blocker potassium cyanide (1 mM) nor the nNOS competitive inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 1 mM) affected the bioreduction of MC, whereas 0.1 mM diphenyleneiodonium chloride, which binds to the reductase domain of nNOS, inhibited MC reduction completely. The reduction of MC by nNOS was influenced by Ca(2+)/calmodulin. In the absence of Ca(2+)/calmodulin, the rate of MC reduction decreased by 28% at pH 6.6. The formation of an alkylated complex of 4-(p-nitrobenzyl)pyridine occurred in a manner analogous to that observed in MC metabolic experiments. The rate of MC reduction and the formation of the alkylated complex of 4-(p-nitrobenzyl)pyridine at pH 6.6 were increased by 43 and 54%, respectively, as compared with that at pH 7.6. nNOS-activated MC resulted in the consumption of oxygen in air. The rate of oxygen consumption decreased by 50% in the presence of 2000 U/mL of catalase. MC inhibited nNOS activity in a noncompetitive manner. These findings demonstrate that nNOS is capable of catalyzing the bioreduction of MC.
Collapse
Affiliation(s)
- H B Jiang
- Department of Biochemistry, Kagawa Medical University, 761-0793, Kagawa, Japan.
| | | | | | | | | |
Collapse
|
29
|
Cummings J. The role of reductive enzymes in cancer cell resistance to mitomycin C. Drug Resist Updat 2000; 3:143-148. [PMID: 11498378 DOI: 10.1054/drup.2000.0140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitomycin C (MMC) is bioreductively activated to DNA binding species via complex chemical pathways involving a common hydroquinone intermediate. A recent publication by Belcourt et al. (1999) has revealed that the bacterial mitomycin C resistance protein (MCRA) acts as a unique hydroquinone oxidase converting this reactive intermediate back to the parent drug in the presence of molecular oxygen, preventing the formation of cytotoxic interstrand DNA crosslinks. It was argued that a mechanism analogous to MCRA may be responsible for the often observed phenomenon of aerobic drug resistance that develops in vitro to MMC in human cancer cell lines. Altered expression of activating reductase enzymes, which usually accompanies aerobic drug resistance, was claimed to be of lesser importance. Therefore, the role of reductases in MMC drug resistance has been reviewed. While it is clear from numerous studies that lowered reductase expression can in certain situations produce drug resistance, simple correlations between a specific enzyme and chemosensitivity generally do not hold due to the complex functional and regulatory interplay that exists among the different activating enzymes and detoxification systems. Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Imperial Cancer Research Fund, Medical Oncology Unit, Western General Hospital, Edinburgh, UK
| |
Collapse
|
30
|
Belcourt MF, Penketh PG, Hodnick WF, Johnson DA, Sherman DH, Rockwell S, Sartorelli AC. Mitomycin resistance in mammalian cells expressing the bacterial mitomycin C resistance protein MCRA. Proc Natl Acad Sci U S A 1999; 96:10489-94. [PMID: 10468636 PMCID: PMC17916 DOI: 10.1073/pnas.96.18.10489] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitomycin C-resistance gene, mcrA, of Streptomyces lavendulae produces MCRA, a protein that protects this microorganism from its own antibiotic, the antitumor drug mitomycin C. Expression of the bacterial mcrA gene in mammalian Chinese hamster ovary cells causes profound resistance to mitomycin C and to its structurally related analog porfiromycin under aerobic conditions but produces little change in drug sensitivity under hypoxia. The mitomycins are prodrugs that are enzymatically reduced and activated intracellularly, producing cytotoxic semiquinone anion radical and hydroquinone reduction intermediates. In vitro, MCRA protects DNA from cross-linking by the hydroquinone reduction intermediate of these mitomycins by oxidizing the hydroquinone back to the parent molecule; thus, MCRA acts as a hydroquinone oxidase. These findings suggest potential therapeutic applications for MCRA in the treatment of cancer with the mitomycins and imply that intrinsic or selected mitomycin C resistance in mammalian cells may not be due solely to decreased bioactivation, as has been hypothesized previously, but instead could involve an MCRA-like mechanism.
Collapse
Affiliation(s)
- M F Belcourt
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|